

Full wwPDB X-ray Structure Validation Report (i)

Apr 15, 2024 – 06:06 PM EDT

PDB ID	:	8SW9
Title	:	Plasmodium falciparum M17 (A460S) mutant
Authors	:	McGowan, S.; Suraweera, C.; Drinkwater, N.
Deposited on	:	2023-05-17
Resolution	:	2.60 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#Entries)$	Similar resolution (#Entries, resolution range(Å))		
Rfree	130704	3163 (2.60-2.60)		
Clashscore	141614	3518 (2.60-2.60)		
Ramachandran outliers	138981	3455 (2.60-2.60)		
Sidechain outliers	138945	3455 (2.60-2.60)		
RSRZ outliers	127900	3104 (2.60-2.60)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	528	83%	15%	<u>.</u>
	_	020	10%	13,0	
1	В	528	79%	17%	••
1	С	528	84%	14%	·
1	D	528	3% 82%	15%	•
1	F	528	% •	1.20/	
	Ľ	520	82%	13%	••

001111	nucu jion	i pretious	page		
Mol	Chain	Length	Quality of chain		
1	F	528	8%	100/	
1	Г	520	//%	19%	••
1	G	528	85%	12%	••
1	Н	528	77%	17%	•••
1	Ι	528	84%	12%	•••
1	J	528	4% 82%	13%	••
1	Κ	528	5% 80%	16%	••
1	L	528	6%	17%	••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	CO3	Н	703	-	-	Х	-
4	SO4	А	704	-	-	-	Х
4	SO4	А	705	-	-	-	Х
4	SO4	D	704	-	-	-	Х
4	SO4	Е	704	-	-	-	Х
4	SO4	L	701	-	-	-	Х
4	SO4	L	705	-	-	-	Х

8SW9

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 93534 atoms, of which 45524 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	IS			ZeroOcc	AltConf	Trace	
1	Δ	517	Total	С	Η	Ν	0	S	0	1	0	
	A	517	7782	2533	3841	632	757	19	0	1	0	
1	В	511	Total	С	Η	Ν	0	S	0	0	0	
	D	511	7528	2470	3698	618	723	19	0	0	0	
1	С	518	Total	С	Η	Ν	0	S	0	0	0	
1	U	510	7820	2540	3871	637	753	19	0	0	0	
1	а	513	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0	
1	D	515	7748	2520	3832	631	745	20	0	0	0	
1	F	500	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0	
L		505	7674	2499	3789	623	744	19			0	
1	F	510	Total	\mathbf{C}	Η	Ν	0	\mathbf{S}	0	0	0	
1	Ľ	510	7365	2428	3589	609	720	19		Ŭ		
1	G	514	Total	\mathbf{C}	Η	Ν	0	\mathbf{S}	0	0	0	
	G	014	7798	2530	3862	633	754	19	0	0	0	0
1	н	511	Total	С	Η	Ν	0	\mathbf{S}	0	0	0	
1	11	011	7605	2485	3742	622	737	19	0	0	0	
1	Т	515	Total	С	Η	Ν	0	\mathbf{S}	0	0	0	
1	T	515	7736	2518	3827	631	741	19	0	0	0	
1	т	514	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0	
1	0	014	7753	2521	3840	632	741	19	0	0	0	
1	K	509	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	3	0	0	
	17	009	7624	2489	3757	620	739	19	5	0	0	
1	T.	508	Total	С	Н	Ν	0	S	1	0	0	
		000	7424	2442	3623	611	729	19	1	U	0	

• Molecule 1 is a protein called Leucine aminopeptidase.

There are 120 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual Comment		Reference
А	152	GLN	ASN	engineered mutation	UNP Q8IL11
А	460	SER	ALA	engineered mutation	UNP Q8IL11
А	515	GLN	ASN	engineered mutation	UNP Q8IL11
А	546	GLN	ASN	engineered mutation	UNP Q8IL11
А	606	HIS	-	expression tag	UNP Q8IL11

	Reference	
	UNP Q8IL11	
on	UNP Q8IL11	

Chain	Residue	Modelled	Actual	Comment	Reference
А	607	HIS	-	expression tag	UNP Q8IL11
А	608	HIS	-	expression tag	UNP Q8IL11
А	609	HIS	-	expression tag	UNP Q8IL11
А	610	HIS	-	expression tag	UNP Q8IL11
А	611	HIS	-	expression tag	UNP Q8IL11
В	152	GLN	ASN	engineered mutation	UNP Q8IL11
В	460	SER	ALA	engineered mutation	UNP Q8IL11
В	515	GLN	ASN	engineered mutation	UNP Q8IL11
В	546	GLN	ASN	engineered mutation	UNP Q8IL11
В	606	HIS	-	expression tag	UNP Q8IL11
В	607	HIS	-	expression tag	UNP Q8IL11
В	608	HIS	-	expression tag	UNP Q8IL11
В	609	HIS	-	expression tag	UNP Q8IL11
В	610	HIS	-	expression tag	UNP Q8IL11
В	611	HIS	-	expression tag	UNP Q8IL11
С	152	GLN	ASN	engineered mutation	UNP Q8IL11
С	460	SER	ALA	engineered mutation	UNP Q8IL11
С	515	GLN	ASN	engineered mutation	UNP Q8IL11
С	546	GLN	ASN	engineered mutation	UNP Q8IL11
С	606	HIS	-	expression tag	UNP Q8IL11
С	607	HIS	-	expression tag	UNP Q8IL11
С	608	HIS	-	expression tag	UNP Q8IL11
С	609	HIS	-	expression tag	UNP Q8IL11
С	610	HIS	-	expression tag	UNP Q8IL11
С	611	HIS	-	expression tag	UNP Q8IL11
D	152	GLN	ASN	engineered mutation	UNP Q8IL11
D	460	SER	ALA	engineered mutation	UNP Q8IL11
D	515	GLN	ASN	engineered mutation	UNP Q8IL11
D	546	GLN	ASN	engineered mutation	UNP Q8IL11
D	606	HIS	-	expression tag	UNP Q8IL11
D	607	HIS	-	expression tag	UNP Q8IL11
D	608	HIS	-	expression tag	UNP Q8IL11
D	609	HIS	-	expression tag	UNP Q8IL11
D	610	HIS	-	expression tag	UNP Q8IL11
D	611	HIS	-	expression tag	UNP Q8IL11
E	152	GLN	ASN	engineered mutation	UNP Q8IL11
E	460	SER	ALA	engineered mutation	UNP Q8IL11
E	515	GLN	ASN	engineered mutation	UNP Q8IL11
E	546	GLN	ASN	engineered mutation	UNP Q8IL11
E	606	HIS	-	expression tag	UNP Q8IL11
E	607	HIS	-	expression tag	UNP Q8IL11
E E	608	HIS	-	expression tag	UNP Q8IL11

Chain	Residue	Modelled	Actual	Comment	Reference
Е	609	HIS	-	expression tag	UNP Q8IL11
Е	610	HIS	_	expression tag	UNP Q8IL11
Е	611	HIS	-	expression tag	UNP Q8IL11
F	152	GLN	ASN	engineered mutation	UNP Q8IL11
F	460	SER	ALA	engineered mutation	UNP Q8IL11
F	515	GLN	ASN	engineered mutation	UNP Q8IL11
F	546	GLN	ASN	engineered mutation	UNP Q8IL11
F	606	HIS	-	expression tag	UNP Q8IL11
F	607	HIS	-	expression tag	UNP Q8IL11
F	608	HIS	-	expression tag	UNP Q8IL11
F	609	HIS	-	expression tag	UNP Q8IL11
F	610	HIS	-	expression tag	UNP Q8IL11
F	611	HIS	-	expression tag	UNP Q8IL11
G	152	GLN	ASN	engineered mutation	UNP Q8IL11
G	460	SER	ALA	engineered mutation	UNP Q8IL11
G	515	GLN	ASN	engineered mutation	UNP Q8IL11
G	546	GLN	ASN	engineered mutation	UNP Q8IL11
G	606	HIS	-	expression tag	UNP Q8IL11
G	607	HIS	-	expression tag	UNP Q8IL11
G	608	HIS	-	expression tag	UNP Q8IL11
G	609	HIS	-	expression tag	UNP Q8IL11
G	610	HIS	-	expression tag	UNP Q8IL11
G	611	HIS	-	expression tag	UNP Q8IL11
Н	152	GLN	ASN	engineered mutation	UNP Q8IL11
Н	460	SER	ALA	engineered mutation	UNP Q8IL11
Н	515	GLN	ASN	engineered mutation	UNP Q8IL11
Н	546	GLN	ASN	engineered mutation	UNP Q8IL11
Н	606	HIS	-	expression tag	UNP Q8IL11
Н	607	HIS	-	expression tag	UNP Q8IL11
Н	608	HIS	-	expression tag	UNP Q8IL11
Н	609	HIS	-	expression tag	UNP Q8IL11
Н	610	HIS	-	expression tag	UNP Q8IL11
Н	611	HIS	-	expression tag	UNP Q8IL11
Ι	152	GLN	ASN	engineered mutation	UNP Q8IL11
Ι	460	SER	ALA	engineered mutation	UNP Q8IL11
Ι	515	GLN	ASN	engineered mutation	UNP Q8IL11
I	546	GLN	ASN	engineered mutation	UNP Q8IL11
Ι	606	HIS	-	expression tag	UNP Q8IL11
Ι	607	HIS	-	expression tag	UNP Q8IL11
Ι	608	HIS	-	expression tag	UNP Q8IL11
I	609	HIS	-	expression tag	UNP Q8IL11
Ι	610	HIS	-	expression tag	UNP Q8IL11

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	611	HIS	-	expression tag	UNP Q8IL11
J	152	GLN	ASN	engineered mutation	UNP Q8IL11
J	460	SER	ALA	engineered mutation	UNP Q8IL11
J	515	GLN	ASN	engineered mutation	UNP Q8IL11
J	546	GLN	ASN	engineered mutation	UNP Q8IL11
J	606	HIS	-	expression tag	UNP Q8IL11
J	607	HIS	-	expression tag	UNP Q8IL11
J	608	HIS	-	expression tag	UNP Q8IL11
J	609	HIS	-	expression tag	UNP Q8IL11
J	610	HIS	-	expression tag	UNP Q8IL11
J	611	HIS	-	expression tag	UNP Q8IL11
K	152	GLN	ASN	engineered mutation	UNP Q8IL11
K	460	SER	ALA	engineered mutation	UNP Q8IL11
K	515	GLN	ASN	engineered mutation	UNP Q8IL11
K	546	GLN	ASN	engineered mutation	UNP Q8IL11
K	606	HIS	-	expression tag	UNP Q8IL11
K	607	HIS	-	expression tag	UNP Q8IL11
K	608	HIS	-	expression tag	UNP Q8IL11
K	609	HIS	-	expression tag	UNP Q8IL11
K	610	HIS	-	expression tag	UNP Q8IL11
K	611	HIS	-	expression tag	UNP Q8IL11
L	152	GLN	ASN	engineered mutation	UNP Q8IL11
L	460	SER	ALA	engineered mutation	UNP Q8IL11
L	515	GLN	ASN	engineered mutation	UNP Q8IL11
L	546	GLN	ASN	engineered mutation	UNP Q8IL11
L	606	HIS	-	expression tag	UNP Q8IL11
L	607	HIS	-	expression tag	UNP Q8IL11
L	608	HIS	-	expression tag	UNP Q8IL11
L	609	HIS	-	expression tag	UNP Q8IL11
L	610	HIS	-	expression tag	UNP Q8IL11
L	611	HIS	-	expression tag	UNP Q8IL11

• Molecule 2 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	2	Total Zn 2 2	0	0
2	В	2	Total Zn 2 2	0	0
2	С	2	Total Zn 2 2	0	0
2	D	2	Total Zn 2 2	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	Е	2	Total Zn 2 2	0	0
2	F	2	Total Zn 2 2	0	0
2	G	2	Total Zn 2 2	0	0
2	Н	2	Total Zn 2 2	0	0
2	Ι	2	Total Zn 2 2	0	0
2	J	2	Total Zn 2 2	0	0
2	К	2	Total Zn 2 2	0	0
2	L	2	Total Zn 2 2	0	0

• Molecule 3 is CARBONATE ION (three-letter code: CO3) (formula: CO₃).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	D	1	Total C O 4 1 3	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
3	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
3	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 1 & 3 \end{array}$	0	0
3	K	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0
3	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 1 3 \end{array}$	0	0

Continued from previous page...

• Molecule 4 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Ε	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	F	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Ι	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Ι	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	J	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	K	1	$\begin{array}{c cc} \hline \text{Total} & \text{O} & \text{S} \\ \hline 5 & 4 & 1 \end{array}$	0	0
4	L	1	$\begin{array}{c cc} Total & O & S \\ 5 & 4 & 1 \end{array}$	0	0
4	L	1	$\begin{array}{c ccc} \hline Total & O & S \\ \hline 5 & 4 & 1 \end{array}$	0	0

• Molecule 5 is PENTAETHYLENE GLYCOL (three-letter code: 1PE) (formula: $C_{10}H_{22}O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
F	Δ	1	Total C H O	0	0
0	A	1	19 6 10 3	0	0
Б	Δ	1	Total C H O	0	0
0	A	1	23 6 13 4	0	0
5	В	1	Total C H O	0	0
0	D	1	13 5 6 2	0	0
5	С	1	Total C H O	0	0
0	0	Ĩ	27 9 14 4	0	0
5	С	1	Total C H O	0	0
		1	19 6 10 3	0	0
5	С	1	Total C H O	0	0
		1	23 6 13 4	0	Ŭ
5	D	1	Total C H O	0	0
		-	20 7 10 3		
5	D	1	Total C H O	0	0
		-			
5	D	1	Total C H O	0	0
			$20 \ 6 \ 11 \ 3$	_	_
5	Е	1	Total C H O	0	0
		_	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	
5	Е	1	Total C H O	0	0
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
5	F	1	Total C H O	0	0
			$23 \ 6 \ 13 \ 4$		
5	G	1	Total C H O	0	0
			$19 \ 6 \ 10 \ 3$		
5	G	1	Total C H O	0	0
			23 6 13 4		

Continued from previous page...

Mol	Chain	Residues	A	Ator	ns		ZeroOcc	AltConf			
5	C	1	Total	С	Η	0	0	0			
0	G	L	30	8	17	5	0	0			
5	ц	1	Total	С	Η	0	0	0			
0	11	T	20	$\overline{7}$	10	3	0	0			
5	т	1	Total	С	Η	Ο	0	0			
0	0	T	23	6	13	4	0	0			
5	V	K	K	K	1	Total	С	Η	Ο	0	0
0	17	T	20	6	11	3	0	0			
5	K	1	Total	С	Η	Ο	0	0			
0	17	T	38	10	22	6	0	0			
5	Т	1	Total	С	Η	0	0	0			
0		L	38	10	22	6	0	0			

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	97	Total O 97 97	0	0
6	В	78	Total O 78 78	0	0
6	С	79	Total O 79 79	0	0
6	D	87	Total O 87 87	0	0
6	Е	119	Total O 119 119	0	0
6	F	94	Total O 94 94	0	0
6	G	85	Total O 85 85	0	0
6	Н	79	Total O 79 79	0	0
6	Ι	98	Total O 98 98	0	0
6	J	86	Total O 86 86	0	0
6	К	88	Total O 88 88	0	0
6	L	66	Total O 66 66	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: Leucine aminopeptidase

HIS HIS SIH SIH SIH SIH SIH

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	174.34Å 176.72 Å 225.21 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.57 - 2.60	Depositor
Resolution (A)	49.57 - 2.60	EDS
% Data completeness	99.7 (49.57-2.60)	Depositor
(in resolution range)	$100.0 \ (49.57-2.60)$	EDS
R _{merge}	0.37	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.77 (at 2.61 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.20.1_4487: ???)	Depositor
D D.	0.235 , 0.281	Depositor
Π, Π_{free}	0.240 , 0.284	DCC
R_{free} test set	10857 reflections $(5.10%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	29.9	Xtriage
Anisotropy	0.882	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.37, 38.3	EDS
L-test for twinning ²	$< L > = 0.47, < L^2 > = 0.30$	Xtriage
Estimated twinning fraction	0.000 for k,h,-l	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	93534	wwPDB-VP
Average B, all atoms $(Å^2)$	39.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 35.11 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 6.1391e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, CO3, SO4, 1PE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
MOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/4021	0.46	0/5459	
1	В	0.26	0/3907	0.77	3/5312~(0.1%)	
1	С	0.26	0/4027	0.44	0/5465	
1	D	0.28	0/3993	0.45	0/5417	
1	Ε	0.25	0/3961	0.43	0/5375	
1	F	0.25	0/3850	0.44	0/5241	
1	G	0.25	0/4012	0.45	1/5442~(0.0%)	
1	Н	0.25	0/3940	0.46	0/5354	
1	Ι	0.26	0/3986	0.45	0/5410	
1	J	0.24	0/3990	0.44	0/5414	
1	K	0.25	0/3943	0.44	0/5354	
1	L	0.25	0/3876	0.45	0/5277	
All	All	0.26	0/47506	0.48	4/64520~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	D	0	1
1	F	0	1
1	G	0	1
1	Н	0	2
1	Ι	0	4
1	Κ	0	1
All	All	0	11

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	125	GLU	OE1-CD-OE2	-36.19	79.88	123.30
1	В	125	GLU	CG-CD-OE2	-20.73	76.84	118.30
1	В	125	GLU	CG-CD-OE1	19.11	156.51	118.30
1	G	156	PHE	CG-CD1-CE1	6.48	127.92	120.80

All (4) bond angle outliers are listed below:

There are no chirality outliers.

All (11) planarity	outliers	are listed	below:
--------------------	----------	------------	--------

Mol	Chain	\mathbf{Res}	Type	Group
1	А	162	MET	Peptide
1	D	232	LYS	Peptide
1	F	332	GLU	Peptide
1	G	277	TYR	Peptide
1	Η	284	ALA	Peptide
1	Н	419	GLU	Peptide
1	Ι	360	LYS	Peptide
1	Ι	361	SER	Peptide
1	Ι	418	PRO	Peptide
1	Ι	419	GLU	Peptide
1	Κ	194	SER	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3941	3841	3841	42	1
1	В	3830	3698	3698	48	0
1	С	3949	3871	3871	37	0
1	D	3916	3832	3832	47	0
1	Е	3885	3789	3789	43	0
1	F	3776	3589	3588	58	0
1	G	3936	3862	3862	37	1
1	Н	3863	3742	3742	60	0
1	Ι	3909	3827	3827	41	0
1	J	3913	3840	3836	48	0
1	K	3867	3757	3757	53	0

8S	W	9

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	L	3801	3623	3623	55	0
2	A	2	0	0	0	0
2	B	2	0	0	0	0
2	C	2	0	0	0	0
2	D	2	0	0	0	0
2	E	2	0	0	0	0
2	F	2	0	0	0	0
2	G	2	0	0	0	0
2	H	2	0	0	0	0
2	Ι	2	0	0	0	0
2	J	2	0	0	0	0
2	K	2	0	0	0	0
2	L	2	0	0	0	0
3	А	4	0	0	1	0
3	В	4	0	0	0	0
3	С	4	0	0	0	0
3	D	4	0	0	0	0
3	Е	4	0	0	0	0
3	F	4	0	0	0	0
3	G	4	0	0	0	0
3	Н	4	0	0	2	0
3	Ι	4	0	0	1	0
3	J	4	0	0	0	0
3	K	4	0	0	0	0
3	L	4	0	0	0	0
4	А	10	0	0	1	0
4	В	5	0	0	1	0
4	С	10	0	0	1	0
4	D	5	0	0	1	0
4	E	5	0	0	0	0
4	F	5	0	0	0	0
4	G	10	0	0	0	0
4	Н	5	0	0	0	0
4	I	10	0	0	1	0
4	J	5	0	0	1	0
4	K	5	0	0	0	0
4	L	10	0	0	0	0
5	A	19	23	23	2	0
5	B	7	6	6	0	0
5	C	32	37	37	1	0
5	D	29	31	31	2	0
5	E	21	25	25	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	F	10	13	13	3	0
5	G	32	40	40	4	0
5	Н	10	10	10	1	0
5	J	10	13	13	0	0
5	Κ	25	33	33	2	0
5	L	16	22	22	3	0
6	А	97	0	0	1	0
6	В	78	0	0	1	0
6	С	79	0	0	0	0
6	D	87	0	0	2	0
6	Е	119	0	0	4	0
6	F	94	0	0	7	0
6	G	85	0	0	4	0
6	Н	79	0	0	1	0
6	Ι	98	0	0	2	0
6	J	86	0	0	6	0
6	K	88	0	0	3	0
6	L	66	0	0	0	0
All	All	48010	45524	45519	535	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (535) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:J:400:MET:HE1	6:J:805:HOH:O	1.53	1.08
1:J:400:MET:CE	6:J:805:HOH:O	2.04	1.02
1:H:286:VAL:HG11	1:H:412:CYS:HA	1.60	0.81
1:E:273:ASN:OD1	1:E:276:THR:OG1	1.99	0.81
1:L:386:LYS:HB2	1:L:393:ILE:HD12	1.63	0.79
1:J:390:GLY:O	1:J:392:MET:N	2.17	0.77
1:I:419:GLU:HB2	1:I:421:VAL:H	1.50	0.75
1:B:142:VAL:HG12	1:B:167:VAL:HG12	1.70	0.74
1:B:532:GLU:OE1	1:E:498:SER:OG	2.04	0.74
1:F:328:LEU:HB2	1:F:354:PHE:HB3	1.69	0.74
1:F:221:LYS:HG3	1:F:266:HIS:HB2	1.71	0.71
1:H:231:ASP:OD1	1:H:231:ASP:N	2.22	0.71
1:D:232:LYS:HA	1:D:235:PHE:H	1.54	0.71
1:B:134:ASN:ND2	1:B:141:PRO:O	2.24	0.70
1:K:328:LEU:HB2	1:K:354:PHE:HB3	1.73	0.69

	A de la construction de la const	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:321:LEU:HD11	1:F:411:TYR:HA	1.72	0.69
1:H:462:GLY:N	3:H:703:CO3:O2	2.24	0.69
1:F:214:LEU:HD21	1:F:222:LEU:HD13	1.72	0.69
1:I:419:GLU:HG3	1:I:420:ASN:H	1.58	0.69
1:E:328:LEU:HB2	1:E:354:PHE:HB3	1.73	0.69
1:D:503:PHE:HB3	1:D:529:ILE:HD11	1.75	0.68
1:E:518:LYS:NZ	6:E:801:HOH:O	2.26	0.68
1:K:374:LYS:HE3	1:K:462:GLY:HA3	1.76	0.68
1:J:298:ILE:HA	1:J:400:MET:HE1	1.75	0.67
1:F:195:VAL:O	1:F:197:ASP:N	2.26	0.67
1:H:328:LEU:HB2	1:H:354:PHE:HB3	1.76	0.67
1:B:326:LYS:HE2	1:B:328:LEU:HD21	1.75	0.67
1:G:489:GLY:HA3	5:G:706:1PE:H241	1.75	0.66
1:B:320:LYS:NZ	6:B:1101:HOH:O	2.29	0.66
1:I:328:LEU:HB2	1:I:354:PHE:HB3	1.76	0.66
1:A:123:VAL:HG21	1:A:153:VAL:HG11	1.76	0.66
1:L:423:ILE:HD11	1:L:600:VAL:HG11	1.78	0.65
1:G:230:VAL:HG12	1:G:234:LEU:HD23	1.77	0.65
1:H:388:ALA:O	1:H:391:SER:OG	2.15	0.65
1:J:157:LEU:HD23	1:J:162:MET:HE3	1.79	0.65
1:I:163:GLU:HG3	1:I:164:LYS:N	2.11	0.65
1:K:374:LYS:HE2	1:K:376:ILE:HG13	1.79	0.65
1:H:463:ARG:NE	3:H:703:CO3:O1	2.27	0.64
1:F:361:SER:HB3	1:F:419:GLU:HA	1.78	0.64
1:A:328:LEU:HB2	1:A:354:PHE:HB3	1.79	0.64
1:G:534:ARG:O	1:G:534:ARG:NH1	2.27	0.64
1:H:419:GLU:O	1:H:421:VAL:N	2.30	0.64
1:J:436:LYS:NZ	1:K:437:ASN:OD1	2.31	0.63
1:F:489:GLY:HA3	5:F:705:1PE:H222	1.80	0.63
1:H:285:ARG:HG2	1:H:286:VAL:HG23	1.79	0.63
1:I:359:TYR:OH	1:I:418:PRO:O	2.13	0.63
1:J:144:ILE:HG21	1:J:157:LEU:HD22	1.79	0.63
1:D:380:SER:HA	1:D:393:ILE:HD11	1.79	0.62
1:A:114:VAL:HG11	1:A:278:LYS:HB3	1.80	0.62
1:H:364:ASP:O	1:H:420:ASN:ND2	2.18	0.62
1:D:388:ALA:O	1:D:391:SER:OG	2.15	0.62
1:E:451:LYS:NZ	1:E:564:GLU:O	2.32	0.62
1:F:534:ARG:O	1:F:534:ARG:NH1	2.33	0.62
1:B:134:ASN:HB2	1:B:167:VAL:HG11	1.80	0.62
1:D:343:SER:HA	1:D:346:LYS:HD3	1.81	0.62
1:B:151:LYS:N	1:B:180:ASP:OD2	2.33	0.62

	A	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:161:ASN:ND2	6:D:807:HOH:O	2.32	0.61
1:D:232:LYS:HB3	1:D:235:PHE:HB3	1.81	0.61
1:K:483:ASP:OD1	1:K:573:HIS:ND1	2.27	0.61
1:F:340:ALA:HA	1:F:445:ILE:HD12	1.82	0.61
1:G:394:ASP:HA	1:I:441:PRO:HB2	1.81	0.61
1:F:123:VAL:HG21	1:F:153:VAL:HG21	1.82	0.60
1:F:168:LYS:O	1:F:171:THR:HG22	2.00	0.60
1:A:173:LYS:NZ	6:A:803:HOH:O	2.34	0.60
1:D:533:TYR:O	1:D:536:THR:HG22	2.02	0.60
1:D:146:SER:OG	1:D:227:GLU:OE2	2.20	0.60
1:J:198:LEU:HD22	1:J:202:ASP:HB3	1.83	0.60
1:F:107:ILE:HA	1:F:110:ILE:HD12	1.84	0.60
1:H:123:VAL:HG23	1:H:124:GLU:H	1.67	0.59
1:B:507:GLU:HA	1:B:510:ILE:HD12	1.85	0.59
1:L:324:GLU:HB3	1:L:358:THR:HB	1.84	0.59
1:G:328:LEU:HB2	1:G:354:PHE:HB3	1.83	0.59
1:L:244:TYR:OH	1:L:588:PRO:O	2.18	0.59
1:H:491:MET:HE2	1:H:491:MET:HA	1.83	0.59
1:K:316:GLU:HG3	5:K:705:1PE:H121	1.85	0.59
1:L:388:ALA:O	1:L:391:SER:OG	2.19	0.59
1:G:357:LEU:HB2	1:G:425:PHE:HB2	1.84	0.59
1:I:214:LEU:HD21	1:I:222:LEU:HD22	1.85	0.59
1:K:160:GLU:OE2	1:K:160:GLU:N	2.25	0.59
1:E:540:LYS:NZ	6:E:806:HOH:O	2.36	0.59
1:B:500:ALA:HB3	1:B:524:VAL:HG22	1.85	0.58
1:A:198:LEU:HD22	1:A:202:ASP:HB3	1.86	0.58
1:C:551:VAL:HG12	1:C:553:ALA:H	1.68	0.58
1:L:115:TYR:HB2	1:L:270:TYR:CE2	2.38	0.58
1:I:451:LYS:NZ	1:I:564:GLU:O	2.36	0.58
1:J:400:MET:HE2	6:J:805:HOH:O	1.84	0.58
1:K:137:LYS:N	6:K:809:HOH:O	2.36	0.58
1:D:346:LYS:NZ	6:D:809:HOH:O	2.34	0.58
1:B:386:LYS:HB3	1:B:391:SER:HB3	1.85	0.58
1:L:172:SER:OG	1:L:189:TYR:O	2.19	0.58
1:D:328:LEU:HB2	1:D:354:PHE:HB3	1.84	0.58
1:D:132:VAL:HG21	1:D:142:VAL:HG13	1.85	0.57
1:J:214:LEU:HD21	1:J:222:LEU:HD22	1.86	0.57
1:A:340:ALA:HA	1:A:445:ILE:HD12	1.86	0.57
1:L:219:LEU:HB2	1:L:264:ILE:HG22	1.87	0.57
1:C:328:LEU:HB2	1:C:354:PHE:HB3	1.86	0.57
1:D:254:SER:OG	1:F:543:ASP:OD2	2.22	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:217:ASN:HB2	1:K:173:LYS:HZ1	1.70	0.57
1:I:440:ARG:NH1	6:I:802:HOH:O	2.37	0.57
1:H:494:SER:OG	1:H:495:LEU:N	2.38	0.57
1:H:286:VAL:CG1	1:H:412:CYS:HA	2.31	0.56
1:F:320:LYS:NZ	6:F:807:HOH:O	2.35	0.56
1:H:419:GLU:O	1:H:421:VAL:HG22	2.05	0.56
1:B:338:MET:HG2	1:B:448:SER:HB3	1.87	0.56
1:H:460:SER:O	1:H:546:GLN:NE2	2.35	0.56
1:L:530:ILE:HD12	1:L:556:ILE:HD13	1.87	0.56
1:B:125:GLU:HG2	1:B:126:GLY:N	2.20	0.56
1:G:156:PHE:CZ	1:G:156:PHE:CD2	2.92	0.56
1:K:221:LYS:NZ	6:K:806:HOH:O	2.33	0.56
1:D:301:PRO:HA	1:D:397:LYS:HD2	1.87	0.56
1:F:386:LYS:HB3	1:F:391:SER:HB2	1.87	0.56
1:A:388:ALA:O	1:A:391:SER:OG	2.23	0.56
1:K:340:ALA:HA	1:K:445:ILE:HD12	1.88	0.56
1:J:326:LYS:NZ	6:J:806:HOH:O	2.38	0.55
1:H:174:HIS:CE1	1:H:213:MET:HG2	2.42	0.55
1:A:157:LEU:HA	1:A:162:MET:HE2	1.88	0.55
1:L:451:LYS:HZ2	5:L:706:1PE:H232	1.70	0.55
1:A:530:ILE:HD12	1:A:556:ILE:HD13	1.89	0.55
1:A:192:CYS:HB3	1:A:198:LEU:HD11	1.88	0.55
1:G:176:TYR:HB3	1:J:177:MET:HE2	1.88	0.55
1:I:221:LYS:HG3	1:I:266:HIS:HB2	1.88	0.55
1:C:361:SER:OG	1:C:421:VAL:O	2.13	0.55
1:E:386:LYS:HB3	1:E:391:SER:HB2	1.88	0.54
1:J:321:LEU:HD11	1:J:411:TYR:HA	1.89	0.54
1:J:298:ILE:HA	1:J:400:MET:CE	2.37	0.54
1:L:364:ASP:OD2	1:L:364:ASP:N	2.39	0.54
1:L:145:SER:O	1:L:145:SER:OG	2.25	0.54
1:H:340:ALA:HA	1:H:445:ILE:HD12	1.88	0.54
1:D:321:LEU:HD11	1:D:411:TYR:HA	1.88	0.54
1:J:543:ASP:OD2	1:K:254:SER:OG	2.26	0.54
1:C:214:LEU:HD21	1:C:222:LEU:HD22	1.90	0.54
1:E:483:ASP:OD1	1:E:573:HIS:ND1	2.41	0.54
1:E:203:MET:HE3	1:E:206:VAL:HB	1.89	0.54
1:F:533:TYR:O	1:F:536:THR:OG1	2.24	0.54
1:E:454:GLU:OE1	1:E:539:SER:OG	2.26	0.54
1:E:346:LYS:NZ	6:E:807:HOH:O	2.39	0.53
1:B:386:LYS:HE3	1:B:396:MET:HE2	1.90	0.53
1:I:326:LYS:HB3	1:I:356:HIS:HB3	1.90	0.53

	lo uo pugo	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:113:GLN:HG2	1:B:115:TYR:CZ	2.43	0.53
1:F:386:LYS:NZ	5:F:705:1PE:OH5	2.40	0.53
1:J:374:LYS:HE3	1:J:376:ILE:HG13	1.91	0.53
1:C:500:ALA:HB3	1:C:524:VAL:HG22	1.91	0.53
1:L:311:SER:HB2	1:L:327:ILE:HD12	1.89	0.53
1:A:90:GLN:HB3	1:A:95:ASP:HB2	1.90	0.53
1:B:441:PRO:HB2	1:C:394:ASP:HA	1.90	0.53
1:H:289:PHE:HD2	1:H:411:TYR:CE2	2.27	0.53
1:K:236:ARG:HD2	1:K:283:LYS:HG2	1.91	0.53
1:K:445:ILE:HD11	1:K:464:LEU:HD22	1.89	0.53
1:E:203:MET:HB3	1:E:237:PHE:HE2	1.73	0.53
1:F:427:SER:O	6:F:801:HOH:O	2.18	0.53
1:H:225:VAL:HG22	1:H:270:TYR:HB2	1.90	0.53
1:D:431:GLU:OE2	1:F:440:ARG:NH1	2.42	0.53
1:B:128:THR:HG23	1:B:223:THR:HB	1.91	0.53
1:J:90:GLN:NE2	1:J:95:ASP:O	2.42	0.53
1:K:419:GLU:O	1:K:421:VAL:HG13	2.09	0.53
1:E:230:VAL:HG12	1:E:234:LEU:HD23	1.90	0.52
1:K:444:ILE:HG13	1:L:301:PRO:HG3	1.90	0.52
1:K:453:ILE:HD13	1:K:561:PHE:HZ	1.74	0.52
1:A:514:LEU:HD11	1:A:526:TRP:HB2	1.92	0.52
1:J:394:ASP:HA	1:L:441:PRO:HB2	1.92	0.52
1:K:90:GLN:NE2	1:K:95:ASP:O	2.36	0.52
1:F:322:ASN:HB3	1:K:160:GLU:OE1	2.10	0.52
1:H:282:GLU:O	1:H:285:ARG:NE	2.36	0.52
1:C:366:LYS:HG2	1:C:420:ASN:HB3	1.91	0.52
1:J:440:ARG:NH1	6:J:809:HOH:O	2.42	0.52
1:B:483:ASP:OD1	1:B:573:HIS:ND1	2.41	0.51
1:H:594:ARG:NH2	6:H:808:HOH:O	2.43	0.51
1:J:216:ASP:OD1	6:J:801:HOH:O	2.19	0.51
1:K:311:SER:HB2	1:K:327:ILE:HD12	1.92	0.51
1:C:320:LYS:NZ	5:C:705:1PE:OH3	2.42	0.51
1:E:359:TYR:OH	1:E:418:PRO:O	2.26	0.51
1:L:115:TYR:HB2	1:L:270:TYR:HE2	1.75	0.51
1:E:324:GLU:HB2	1:E:358:THR:HB	1.93	0.51
1:I:164:LYS:NZ	1:K:176:TYR:OH	2.23	0.51
1:D:232:LYS:HE3	1:D:277:TYR:HA	1.91	0.51
1:H:282:GLU:HB3	1:H:285:ARG:NE	2.25	0.51
1:I:357:LEU:HB2	1:I:425:PHE:HB2	1.92	0.51
1:K:320:LYS:NZ	5:K:705:1PE:OH3	2.44	0.51
1:C:107:ILE:HG12	1:C:247:MET:HG2	1.92	0.51

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:502:VAL:HG12	1:E:526:TRP:HA	1.92	0.51	
1:C:340:ALA:HA	1:C:445:ILE:HD12	1.92	0.51	
1:D:394:ASP:HA	1:F:441:PRO:HB2	1.91	0.51	
1:G:193:GLY:N	6:G:802:HOH:O	2.44	0.51	
1:J:321:LEU:HD13	1:J:414:GLY:HA3	1.91	0.51	
1:J:343:SER:HA	1:J:346:LYS:HG3	1.92	0.51	
1:D:123:VAL:HG12	1:D:128:THR:HG21	1.93	0.51	
1:F:142:VAL:HG22	1:F:162:MET:HB3	1.93	0.51	
1:B:144:ILE:HG13	1:B:157:LEU:HD22	1.93	0.51	
1:D:103:TYR:HB3	5:D:705:1PE:H242	1.93	0.51	
1:F:230:VAL:HG12	1:F:234:LEU:HD23	1.93	0.51	
1:F:512:LYS:O	1:F:516:SER:OG	2.26	0.51	
1:F:548:SER:HB3	1:F:557:VAL:HG11	1.92	0.51	
1:F:440:ARG:NH2	6:F:802:HOH:O	2.43	0.50	
1:A:255:THR:HG21	1:C:451:LYS:HG2	1.93	0.50	
1:H:118:LYS:HD2	1:H:118:LYS:N	2.27	0.50	
1:L:413:VAL:HG11	1:L:423:ILE:HD12	1.93	0.50	
1:G:440:ARG:NE	1:H:431:GLU:OE2	2.43	0.50	
1:K:379:ASP:O	1:K:396:MET:HG3	2.10	0.50	
1:A:434:VAL:HG23	1:C:383:TYR:HE1	1.76	0.50	
1:H:376:ILE:HB	1:H:399:ASP:HB3	1.92	0.50	
1:C:122:ASN:OD1	1:C:149:ASN:ND2	2.41	0.50	
1:J:520:SER:HB3	1:J:598:GLU:HG3	1.93	0.50	
1:E:502:VAL:HG23	1:E:574:ILE:HG12	1.94	0.50	
1:G:324:GLU:HB2	1:G:358:THR:HB	1.94	0.50	
1:B:360:LYS:HG3	1:B:422:GLU:HG3	1.92	0.50	
1:K:134:ASN:H	1:K:194:SER:HB3	1.76	0.50	
1:B:140:GLY:O	1:B:167:VAL:HG13	2.12	0.50	
1:C:220:SER:OG	4:C:704:SO4:O3	2.30	0.50	
1:J:217:ASN:HD21	1:J:219:LEU:HB2	1.76	0.50	
1:L:121:CYS:HA	1:L:270:TYR:CE1	2.47	0.50	
1:E:364:ASP:OD1	1:E:364:ASP:N	2.44	0.50	
1:I:321:LEU:HD11	1:I:411:TYR:HA	1.94	0.50	
1:H:525:TRP:CZ3	1:K:528:PRO:HB3	2.47	0.49	
1:I:244:TYR:OH	1:I:588:PRO:O	2.29	0.49	
1:J:94:LEU:HD21	1:L:337:LYS:HA	1.94	0.49	
1:B:471:VAL:HG12	1:B:475:LYS:HE3	1.95	0.49	
1:H:517:SER:OG	1:H:522:GLU:O	2.24	0.49	
1:A:165:PHE:HB3	1:A:189:TYR:OH	2.13	0.49	
1:F:287:TYR:CD2	1:F:594:ARG:HG2	2.47	0.49	
1:A:411:TYR:CE1	5:A:706:1PE:H242	2.48	0.49	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:F:236:ARG:NE	1:F:240:GLU:OE2	2.42	0.49	
1:K:456:GLY:N	1:K:456:GLY:N 1:K:546:GLN:OE1		0.49	
1:E:287:TYR:CD2	1:E:594:ARG:HG2	2.48	0.49	
1:H:221:LYS:HD3	1:H:266:HIS:HB2	1.95	0.49	
1:K:100:PRO:O	1:K:251:ARG:NH1	2.39	0.49	
1:L:451:LYS:HE2	1:L:564:GLU:HB3	1.93	0.49	
1:D:376:ILE:HB	1:D:399:ASP:HB3	1.95	0.49	
1:L:328:LEU:HB2	1:L:354:PHE:HB3	1.93	0.49	
1:D:489:GLY:HA3	5:D:707:1PE:H132	1.94	0.49	
1:G:273:ASN:O	1:G:276:THR:OG1	2.28	0.49	
1:H:275:ASP:HA	1:H:278:LYS:HG2	1.95	0.49	
1:L:230:VAL:O	1:L:277:TYR:OH	2.23	0.49	
1:A:168:LYS:O	1:A:171:THR:HG22	2.12	0.49	
1:B:190:VAL:HG11	1:B:206:VAL:HG13	1.94	0.49	
1:F:443:ASP:OD2	6:F:802:HOH:O	2.20	0.49	
1:B:225:VAL:HG22	1:B:270:TYR:HB2	1.93	0.48	
1:L:153:VAL:O	1:L:157:LEU:HG	2.12	0.48	
1:B:125:GLU:HG3	1:B:221:LYS:HB3	1.95	0.48	
1:H:115:TYR:HD1	1:H:270:TYR:CZ	2.31	0.48	
1:I:506:ASN:O	1:I:510:ILE:HG13	2.12	0.48	
1:J:441:PRO:HB2	1:K:394:ASP:HA	1.93	0.48	
1:D:232:LYS:HD2	1:D:280:GLU:HG3	1.96	0.48	
1:I:165:PHE:HB3	1:I:189:TYR:OH	2.13	0.48	
1:A:128:THR:HG23	1:A:223:THR:HB	1.93	0.48	
1:A:230:VAL:HG12	1:A:234:LEU:HD23	1.95	0.48	
1:C:597:THR:HG22	1:C:601:LEU:HD22	1.95	0.48	
1:E:500:ALA:HB3	1:E:524:VAL:HG22	1.95	0.48	
1:G:321:LEU:HD11	1:G:411:TYR:HA	1.94	0.48	
1:K:232:LYS:NZ	1:K:276:THR:O	2.38	0.48	
1:K:371:LEU:HD13	1:K:596:LEU:HD22	1.95	0.48	
1:B:340:ALA:HA	1:B:445:ILE:HD12	1.94	0.48	
1:I:172:SER:HB2	1:I:213:MET:CE	2.43	0.48	
1:I:287:TYR:CD2	1:I:594:ARG:HG2	2.49	0.48	
1:H:514:LEU:HD11	1:H:526:TRP:HB2	1.96	0.48	
1:J:360:LYS:HG3	1:J:422:GLU:HG3	1.95	0.48	
1:A:449:ASN:HD21	1:A:451:LYS:HD2	1.76	0.48	
1:L:111:LYS:O	1:L:267:LEU:N	2.39	0.48	
1:F:418:PRO:HB3	1:F:601:LEU:HD23	1.94	0.48	
1:I:164:LYS:NZ	1:K:217:ASN:HB3	2.29	0.48	
1:G:124:GLU:O	6:G:801:HOH:O	2.20	0.47	
1:H:282:GLU:OE1	1:H:285:ARG:HD3	2.14	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:K:214:LEU:HD11	1:K:222:LEU:HD22	1.96	0.47	
1:K:461:GLU:HA	1:K:464:LEU:HD12	1.96	0.47	
1:D:386:LYS:HB3	1:D:391:SER:HB2	1.96	0.47	
1:I:326:LYS:HE2	1:I:328:LEU:HD21	1.96	0.47	
1:J:368:LYS:HB3	1:J:478:VAL:HA	1.96	0.47	
1:C:232:LYS:HE2	1:C:276:THR:O	2.15	0.47	
1:C:395:LEU:HD21	1:C:581:TRP:CG	2.50	0.47	
1:H:132:VAL:HG11	1:H:142:VAL:HG13	1.96	0.47	
1:A:208:LEU:O	1:A:212:THR:HG23	2.15	0.47	
1:B:371:LEU:HD22	1:B:596:LEU:HD22	1.97	0.47	
1:F:361:SER:CB	1:F:419:GLU:HA	2.45	0.47	
1:G:207:VAL:HG11	1:G:241:THR:HG22	1.97	0.47	
1:K:236:ARG:HG2	1:K:284:ALA:HB2	1.96	0.47	
1:D:115:TYR:HB2	1:D:270:TYR:CD2	2.49	0.47	
1:D:274:ALA:HA	1:D:277:TYR:HB2	1.96	0.47	
1:D:386:LYS:HB2	1:D:393:ILE:HD13	1.97	0.47	
1:J:359:TYR:OH	1:J:418:PRO:O	2.29	0.47	
1:E:321:LEU:O	1:E:322:ASN:HB2	2.14	0.47	
1:L:178:PHE:HA	1:L:183:ASN:O	2.15	0.47	
1:F:153:VAL:HA	1:F:177:MET:HE3	1.96	0.47	
1:H:285:ARG:CG	1:H:286:VAL:HG23	2.44	0.47	
1:L:460:SER:O	1:L:546:GLN:NE2	2.48	0.47	
1:D:176:TYR:HB3	4:D:704:SO4:O1	2.15	0.47	
1:D:383:TYR:HE1	1:E:434:VAL:HG23	1.80	0.47	
1:G:537:LEU:HA	1:G:545:ASN:HB2	1.96	0.47	
1:F:546:GLN:HG2	1:F:547:ILE:HG23	1.97	0.46	
1:H:311:SER:HB2	1:H:327:ILE:HD12	1.97	0.46	
1:C:107:ILE:HA	1:C:110:ILE:HD12	1.96	0.46	
1:D:454:GLU:OE1	1:D:539:SER:OG	2.26	0.46	
1:G:441:PRO:HB2	1:H:394:ASP:HA	1.95	0.46	
1:B:329:GLY:O	1:B:333:LEU:HG	2.15	0.46	
1:D:232:LYS:CB	1:D:235:PHE:HB3	2.45	0.46	
1:G:374:LYS:HE3	1:G:462:GLY:HA3	1.97	0.46	
1:H:282:GLU:HB3	1:H:285:ARG:CZ	2.45	0.46	
1:H:299:ALA:HA	1:H:397:LYS:HE3	1.96	0.46	
1:J:522:GLU:OE2	1:J:595:LEU:N	2.49	0.46	
1:J:600:VAL:HG12	1:J:601:LEU:HD23	1.97	0.46	
1:K:211:VAL:HG21	1:K:245:GLU:HB2	1.97	0.46	
1:C:143:LYS:HB3	1:C:143:LYS:HE2	1.69	0.46	
1:I:544:ILE:HD12	1:I:544:ILE:HA	1.82	0.46	
1:A:367:LYS:HA	1:A:367:LYS:HD3	1.77	0.46	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:114:VAL:HG12	1:C:274:ALA:HB1	1.98	0.46	
1:D:232:LYS:CE	1:D:277:TYR:HA	2.46	0.46	
1:K:375:GLY:O	1:K:429:VAL:HA	2.16	0.46	
1:K:530:ILE:HD12	1:K:556:ILE:HD13	1.98	0.46	
1:B:120:GLY:HA2	1:B:147:LYS:O	2.16	0.46	
1:B:321:LEU:HD11	1:B:411:TYR:HA	1.98	0.46	
1:F:346:LYS:HB3	1:F:437:ASN:O	2.16	0.46	
1:A:342:LEU:HD12	1:B:94:LEU:HD12	1.98	0.46	
1:E:396:MET:HA	1:E:396:MET:HE3	1.98	0.46	
1:F:574:ILE:HD13	1:F:595:LEU:HD21	1.97	0.46	
1:L:100:PRO:O	1:L:251:ARG:NH1	2.33	0.46	
1:L:488:THR:OG1	1:L:575:ASP:OD2	2.32	0.46	
1:F:204:LYS:O	1:F:208:LEU:HD12	2.16	0.46	
1:H:364:ASP:OD1	1:H:364:ASP:N	2.36	0.46	
1:J:112:VAL:HG22	1:J:267:LEU:HB3	1.98	0.46	
1:L:360:LYS:HG2	1:L:422:GLU:HG3	1.98	0.46	
1:B:328:LEU:HB2	1:B:354:PHE:HB3	1.98	0.45	
1:D:236:ARG:HD3	1:D:280:GLU:OE1	2.15	0.45	
1:F:293:TYR:CZ	1:F:317:LEU:HD13	2.50	0.45	
1:H:207:VAL:HG13	1:H:242:LEU:HD12	1.98	0.45	
1:I:198:LEU:HD22	1:I:202:ASP:HB3	1.97	0.45	
1:F:217:ASN:OD1	1:F:219:LEU:N	2.41	0.45	
1:G:321:LEU:O	1:G:322:ASN:HB2	2.15	0.45	
1:I:528:PRO:HB3	1:J:525:TRP:CZ3	2.51	0.45	
1:A:221:LYS:HG3	1:A:266:HIS:HB2	1.96	0.45	
1:A:359:TYR:OH	1:A:418:PRO:O	2.24	0.45	
1:L:445:ILE:HD11	1:L:464:LEU:HD22	1.98	0.45	
1:B:364:ASP:O	1:B:420:ASN:HA	2.17	0.45	
1:D:232:LYS:HA	1:D:235:PHE:HB3	1.98	0.45	
1:E:440:ARG:NH1	6:E:810:HOH:O	2.42	0.45	
1:F:217:ASN:OD1	1:F:218:LYS:N	2.49	0.45	
1:B:522:GLU:OE1	1:B:595:LEU:N	2.49	0.45	
1:E:533:TYR:O	1:E:536:THR:OG1	2.34	0.45	
1:I:340:ALA:HA	1:I:445:ILE:HD12	1.97	0.45	
1:A:530:ILE:O	1:A:560:LEU:HD11	2.16	0.45	
1:F:375:GLY:O	1:F:429:VAL:HA	2.16	0.45	
1:G:464:LEU:HD21	1:G:546:GLN:HG3	1.98	0.45	
1:B:210:LEU:HD21	1:B:222:LEU:HD21	1.98	0.45	
1:L:122:ASN:OD1	1:L:149:ASN:ND2	2.44	0.45	
1:L:487:LEU:HA	1:L:487:LEU:HD12	1.79	0.45	
1:B:375:GLY:O	1:B:429:VAL:HA	2.17	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:441:PRO:HB2	1:F:394:ASP:HA	1.98	0.45	
1:G:167:VAL:HB	6:G:802:HOH:O	2.17	0.44	
1:B:357:LEU:HB2	1:B:425:PHE:HB2	2.00	0.44	
1:H:207:VAL:HG11	1:H:241:THR:HG22	1.99	0.44	
1:C:359:TYR:OH	1:C:418:PRO:O	2.32	0.44	
1:E:436:LYS:NZ	6:F:803:HOH:O	2.27	0.44	
1:C:368:LYS:HB3	1:C:478:VAL:HG12	2.00	0.44	
1:F:230:VAL:O	1:F:277:TYR:OH	2.31	0.44	
1:G:174:HIS:HB3	1:J:175:PHE:CD2	2.53	0.44	
1:I:436:LYS:NZ	4:I:704:SO4:O1	2.42	0.44	
1:J:147:LYS:HD2	1:J:147:LYS:HA	1.60	0.44	
1:A:375:GLY:O	1:A:429:VAL:HA	2.17	0.44	
1:H:175:PHE:HD1	1:L:176:TYR:HB2	1.83	0.44	
1:J:359:TYR:HD2	1:J:423:ILE:HD12	1.81	0.44	
1:L:338:MET:HB3	1:L:338:MET:HE2	1.87	0.44	
1:L:386:LYS:HB3	1:L:391:SER:HB3	2.00	0.44	
1:A:155:GLU:O	1:A:158:LYS:HG2	2.18	0.44	
1:H:320:LYS:HB3	5:H:704:1PE:H141	2.00	0.44	
1:L:230:VAL:HB	1:L:234:LEU:HB3	1.99	0.44	
1:H:528:PRO:HB3	1:K:525:TRP:CZ3	2.52	0.44	
1:J:364:ASP:O	1:J:420:ASN:HA	2.17	0.44	
1:A:525:TRP:CZ3	1:F:528:PRO:HB3	2.52	0.44	
1:F:315:VAL:O	1:F:319:GLN:HG3	2.18	0.44	
1:K:129:ILE:HD11	1:K:213:MET:HE1	2.00	0.44	
1:H:121:CYS:HA	1:H:270:TYR:CE2	2.53	0.43	
1:H:200:GLU:OE2	1:H:523:PRO:HD3	2.17	0.43	
1:I:483:ASP:OD1	1:I:573:HIS:ND1	2.41	0.43	
1:D:121:CYS:HA	1:D:270:TYR:CZ	2.54	0.43	
1:H:361:SER:OG	1:H:419:GLU:O	2.29	0.43	
1:B:449:ASN:ND2	1:B:451:LYS:HG3	2.33	0.43	
1:K:127:LEU:HD21	1:K:213:MET:HE2	2.01	0.43	
1:K:493:TYR:O	6:K:801:HOH:O	2.21	0.43	
1:A:114:VAL:HG11	1:A:278:LYS:CB	2.48	0.43	
1:D:340:ALA:HA	1:D:445:ILE:HD12	1.99	0.43	
1:H:530:ILE:HD12	1:H:556:ILE:HD13	2.00	0.43	
1:J:150:ASP:OD1	1:J:179:ASN:HB2	2.19	0.43	
1:J:164:LYS:HB2	1:J:164:LYS:HE3	1.84	0.43	
1:L:369:ILE:HG23	1:L:480:TYR:HB2	2.01	0.43	
1:F:190:VAL:HG11	1:F:206:VAL:HG13	2.00	0.43	
1:I:505:ASN:ND2	6:I:805:HOH:O	2.47	0.43	
1:C:321:LEU:HD11	1:C:411:TYR:HA	2.00	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:J:329:GLY:O	1:J:333:LEU:HG	2.19	0.43	
1:J:393:ILE:HG12	1:L:441:PRO:HG2	2.00	0.43	
1:L:273:ASN:HB3	1:L:276:THR:OG1	2.17	0.43	
1:C:123:VAL:HG21	1:C:153:VAL:HG21	2.00	0.43	
1:E:333:LEU:HD21	1:E:354:PHE:HB2	2.01	0.43	
1:H:419:GLU:HG2	1:H:420:ASN:HB2	2.01	0.43	
1:I:419:GLU:HA	1:I:421:VAL:HG22	2.01	0.43	
1:K:392:MET:HE2	1:K:392:MET:HB2	1.92	0.43	
1:D:379:ASP:O	1:D:396:MET:HG3	2.19	0.43	
1:F:214:LEU:HA	1:F:214:LEU:HD23	1.75	0.43	
1:G:411:TYR:HE1	5:G:707:1PE:H141	1.84	0.43	
1:H:211:VAL:HG21	1:H:245:GLU:HB2	2.00	0.43	
1:A:411:TYR:HE1	5:A:706:1PE:H242	1.83	0.43	
1:B:528:PRO:HB3	1:E:525:TRP:CZ3	2.53	0.43	
1:C:544:ILE:HD12	1:C:564:GLU:HG3	2.01	0.43	
1:E:107:ILE:HG21	1:E:243:PHE:HB3	2.01	0.43	
1:F:355:ILE:N	6:F:801:HOH:O	2.48	0.43	
1:K:509:LEU:O	1:K:513:ILE:HG12	2.19	0.43	
1:B:365:VAL:HG11	1:B:422:GLU:HB2	2.01	0.43	
1:E:86:SER:O	1:E:312:ASN:ND2	2.43	0.43	
1:E:100:PRO:O	1:E:251:ARG:NH1	2.47	0.43	
1:E:214:LEU:HD21	1:E:222:LEU:HD22	2.01	0.43	
1:G:491:MET:HE1	1:G:495:LEU:HD12	2.01	0.43	
1:J:435:SER:OG	4:J:705:SO4:O2	2.25	0.43	
1:L:451:LYS:NZ	5:L:706:1PE:H232	2.33	0.43	
1:A:402:GLY:O	1:A:406:VAL:HG23	2.18	0.42	
1:C:509:LEU:O	1:C:513:ILE:HG12	2.18	0.42	
1:D:394:ASP:OD2	1:D:395:LEU:HD22	2.19	0.42	
1:E:148:VAL:HG12	1:E:150:ASP:H	1.84	0.42	
1:G:173:LYS:NZ	1:J:176:TYR:OH	2.52	0.42	
1:G:320:LYS:HG2	5:G:705:1PE:H222	2.01	0.42	
1:I:463:ARG:N	3:I:703:CO3:O2	2.39	0.42	
1:L:494:SER:OG	1:L:495:LEU:N	2.52	0.42	
1:E:487:LEU:HA	1:E:487:LEU:HD12	1.83	0.42	
1:F:487:LEU:HD12	1:F:487:LEU:HA	1.81	0.42	
1:G:236:ARG:HG2	1:G:284:ALA:HB2	2.01	0.42	
1:G:551:VAL:HG12	1:G:553:ALA:H	1.84	0.42	
1:H:173:LYS:HB2	1:H:189:TYR:CE2	2.54	0.42	
1:I:551:VAL:HG12	1:I:553:ALA:H	1.84	0.42	
1:K:198:LEU:HG	1:K:202:ASP:HB3	2.00	0.42	
1:K:236:ARG:HG3	1:K:280:GLU:HB3	2.01	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:F:153:VAL:HG12	1:F:177:MET:HE2	2.01	0.42	
1:K:328:LEU:HD23	1:K:328:LEU:HA	1.81	0.42	
1:H:118:LYS:HD2	1:H:118:LYS:H	1.82	0.42	
1:I:368:LYS:C	1:I:478:VAL:HG22	2.40	0.42	
1:B:323:LEU:HD23	1:B:359:TYR:HB2	2.01	0.42	
1:C:301:PRO:HB2	1:C:303:ASN:OD1	2.19	0.42	
1:C:364:ASP:O	1:C:420:ASN:HA	2.19	0.42	
1:D:114:VAL:HB	1:D:278:LYS:HD2	2.02	0.42	
1:F:330:VAL:C	1:F:332:GLU:H	2.23	0.42	
1:F:456:GLY:N	1:F:546:GLN:OE1	2.48	0.42	
1:I:338:MET:HE3	1:I:468:ASP:HB3	2.00	0.42	
1:J:200:GLU:H	1:J:200:GLU:HG3	1.68	0.42	
1:B:436:LYS:HG2	4:B:1004:SO4:O2	2.19	0.42	
1:C:492:LEU:HD23	1:C:492:LEU:HA	1.88	0.42	
1:D:232:LYS:HE3	1:D:276:THR:O	2.20	0.42	
1:I:125:GLU:CG	1:I:221:LYS:HD2	2.50	0.42	
1:L:398:PHE:O	1:L:401:SER:OG	2.27	0.42	
5:L:706:1PE:H231	5:L:706:1PE:H122	1.72	0.42	
1:A:329:GLY:O	1:A:333:LEU:HG	2.19	0.42	
1:D:302:SER:OG	1:D:378:PHE:HB2	2.20	0.42	
1:G:124:GLU:HB3	1:G:125:GLU:H	1.62	0.42	
1:G:199:SER:OG	1:G:200:GLU:N	2.53	0.42	
1:L:343:SER:HA	1:L:346:LYS:HG3	2.01	0.42	
1:L:379:ASP:O	1:L:396:MET:HG3	2.19	0.42	
1:L:407:LEU:HD12	1:L:407:LEU:HA	1.94	0.42	
1:A:386:LYS:HB3	1:A:391:SER:HB2	2.02	0.42	
1:A:534:ARG:NH1	1:A:537:LEU:HB2	2.35	0.42	
1:D:150:ASP:HB3	1:D:153:VAL:HB	2.02	0.42	
1:B:530:ILE:HD12	1:B:556:ILE:HD13	2.02	0.42	
1:D:449:ASN:HD21	1:D:451:LYS:HD2	1.85	0.42	
1:H:90:GLN:HB3	1:H:95:ASP:HB2	2.01	0.42	
1:J:203:MET:HE2	1:J:230:VAL:HG11	2.02	0.42	
1:G:472:TYR:O	1:G:476:LEU:HD13	2.20	0.41	
1:K:318:ALA:HB2	1:K:357:LEU:HD22	2.00	0.41	
1:A:357:LEU:HB2	1:A:425:PHE:HB2	2.01	0.41	
1:A:394:ASP:HA	1:C:441:PRO:HB2	2.01	0.41	
1:B:121:CYS:HA	1:B:270:TYR:CE2	2.55	0.41	
1:C:106:PRO:HD2	1:C:247:MET:SD	2.60	0.41	
1:E:283:LYS:HE2	1:E:287:TYR:CZ	2.55	0.41	
1:K:369:ILE:HB	1:K:423:ILE:HD13	2.02	0.41	
1:L:151:LYS:N	1:L:180:ASP:OD2	2.52	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	a) overlap (Å)	
1:L:406:VAL:HG12	1:L:425:PHE:HB3	2.02	0.41	
4:A:704:SO4:O4	1:C:541:TYR:OH	2.17	0.41	
1:B:511:ASN:O	1:B:515:GLN:HB2	2.20	0.41	
1:E:396:MET:CE	5:E:706:1PE:H121	2.50	0.41	
5:F:705:1PE:H132	5:F:705:1PE:H221	1.73	0.41	
1:C:174:HIS:HB3	1:E:175:PHE:CD2	2.55	0.41	
1:C:179:ASN:OD1	1:C:181:ASN:N	2.44	0.41	
1:E:214:LEU:HD11	1:E:222:LEU:HD22	2.01	0.41	
1:E:340:ALA:HA	1:E:445:ILE:HD12	2.02	0.41	
1:L:395:LEU:HD11	1:L:581:TRP:CE2	2.55	0.41	
1:L:481:ILE:O	1:L:571:TRP:HA	2.21	0.41	
1:B:394:ASP:OD2	1:B:394:ASP:N	2.35	0.41	
1:C:386:LYS:HE3	1:C:396:MET:HG3	2.01	0.41	
1:D:232:LYS:HD3	1:D:277:TYR:CG	2.55	0.41	
1:G:440:ARG:HD3	1:H:378:PHE:CG	2.56	0.41	
1:G:530:ILE:HG13	1:G:556:ILE:HG21	2.02	0.41	
1:H:230:VAL:O	1:H:277:TYR:OH	2.34	0.41	
1:I:153:VAL:HA	1:I:177:MET:HE1	2.01	0.41	
1:K:444:ILE:HD13	1:K:542:ALA:HB2	2.03	0.41	
1:K:585:ALA:HB1	1:K:587:LYS:HD3	2.02	0.41	
1:B:530:ILE:O	1:B:560:LEU:HD11	2.20	0.41	
1:E:360:LYS:HD2	1:E:422:GLU:OE1	2.21	0.41	
1:F:169:LEU:HD23	1:F:192:CYS:HA	2.02	0.41	
1:H:282:GLU:HA	1:H:285:ARG:HB2	2.02	0.41	
1:J:242:LEU:O	1:J:246:TYR:HB2	2.20	0.41	
1:L:112:VAL:HG22	1:L:267:LEU:HD23	2.03	0.41	
1:L:214:LEU:HB3	1:L:246:TYR:CE1	2.55	0.41	
1:L:232:LYS:HE2	1:L:232:LYS:HB3	1.89	0.41	
1:B:534:ARG:NH1	1:B:537:LEU:HB2	2.36	0.41	
1:C:202:ASP:O	1:C:206:VAL:HG23	2.21	0.41	
1:C:530:ILE:HD12	1:C:556:ILE:HD13	2.03	0.41	
1:D:100:PRO:O	1:D:101:ILE:HD13	2.20	0.41	
1:D:158:LYS:HE3	1:D:160:GLU:HB3	2.03	0.41	
1:I:168:LYS:HB3	1:I:171:THR:OG1	2.20	0.41	
1:I:338:MET:CE	1:I:468:ASP:HB3	2.51	0.41	
1:A:395:LEU:HD11	1:A:581:TRP:CE2	2.55	0.41	
1:B:174:HIS:NE2	1:B:213:MET:SD	2.94	0.41	
1:E:435:SER:OG	1:E:436:LYS:N	2.54	0.41	
1:F:357:LEU:HB2	1:F:425:PHE:HB2	2.02	0.41	
1:F:385:LEU:HD23	1:F:387:ALA:HB2	2.03	0.41	
1:G:133:ASN:HA	6:G:802:HOH:O	2.20	0.41	

A + 1	A + 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:G:194:SER:O	1:G:194:SER:OG	2.28	0.41	
1:G:411:TYR:CE1	5:G:707:1PE:H141	2.56	0.41	
1:H:117:ILE:HD12	1:H:117:ILE:H	1.86	0.41	
1:J:279:GLU:H	1:J:279:GLU:HG2	1.63	0.41	
1:K:336:LEU:HD13	1:K:336:LEU:HA	1.85	0.41	
1:K:487:LEU:HD12	1:K:487:LEU:HA	1.85	0.41	
1:F:320:LYS:NZ	6:F:817:HOH:O	2.47	0.41	
1:I:392:MET:HB3	1:I:395:LEU:HD12	2.02	0.41	
1:A:321:LEU:HD11	1:A:411:TYR:HA	2.03	0.40	
1:A:483:ASP:OD1	1:A:573:HIS:ND1	2.40	0.40	
1:E:102:GLU:HG2	1:E:102:GLU:O	2.21	0.40	
1:G:278:LYS:HB3	1:G:279:GLU:H	1.40	0.40	
1:H:145:SER:H	1:H:227:GLU:CD	2.25	0.40	
1:I:172:SER:HB2	1:I:213:MET:HE2	2.01	0.40	
1:K:471:VAL:O	1:K:475:LYS:HG3	2.21	0.40	
1:L:216:ASP:N	1:L:216:ASP:OD1	2.54	0.40	
1:L:362:LYS:HD3	1:L:362:LYS:HA	1.79	0.40	
1:A:463:ARG:HG2	3:A:703:CO3:O2	2.22	0.40	
1:D:470:LEU:HD23	1:D:470:LEU:HA	1.97	0.40	
1:F:321:LEU:O	1:F:322:ASN:HB2	2.20	0.40	
1:J:502:VAL:HG23	1:J:574:ILE:HG12	2.03	0.40	
1:F:107:ILE:HG21	1:F:243:PHE:HB3	2.03	0.40	
1:L:481:ILE:HG22	1:L:571:TRP:HD1	1.86	0.40	
1:A:486:THR:HG22	1:A:577:ALA:HA	2.03	0.40	
1:F:179:ASN:ND2	1:F:181:ASN:H	2.19	0.40	
1:H:139:ASN:OD1	1:H:139:ASN:N	2.54	0.40	
1:H:520:SER:HB3	1:H:598:GLU:HG3	2.03	0.40	
1:I:210:LEU:HD21	1:I:222:LEU:HD21	2.04	0.40	

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:179:ASN:HD21	1:G:113:GLN:HE22[2_564]	1.19	0.41

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	514/528~(97%)	493 (96%)	17 (3%)	4 (1%)	19	39
1	В	507/528~(96%)	483 (95%)	19 (4%)	5 (1%)	15	32
1	С	516/528~(98%)	500 (97%)	16 (3%)	0	100	100
1	D	509/528~(96%)	495 (97%)	14 (3%)	0	100	100
1	Е	503/528~(95%)	489 (97%)	13 (3%)	1 (0%)	47	71
1	F	504/528~(96%)	486 (96%)	15 (3%)	3(1%)	25	47
1	G	510/528~(97%)	494 (97%)	14 (3%)	2~(0%)	34	57
1	Н	507/528~(96%)	482 (95%)	21 (4%)	4 (1%)	19	39
1	Ι	511/528~(97%)	489 (96%)	20 (4%)	2~(0%)	34	57
1	J	510/528~(97%)	496 (97%)	12 (2%)	2~(0%)	34	57
1	Κ	503/528~(95%)	493 (98%)	10 (2%)	0	100	100
1	L	502/528~(95%)	484 (96%)	18 (4%)	0	100	100
All	All	6096/6336 (96%)	5884 (96%)	189 (3%)	23 (0%)	34	57

All (23) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	163	GLU
1	Н	285	ARG
1	Н	419	GLU
1	Н	420	ASN
1	Ι	419	GLU
1	J	391	SER
1	А	258	ASN
1	В	124	GLU
1	В	126	GLY
1	В	138	GLU
1	Ι	139	ASN
1	J	137	LYS

Mol	Chain	Res	Type
1	А	507	GLU
1	F	196	ALA
1	F	332	GLU
1	G	278	LYS
1	В	163	GLU
1	G	124	GLU
1	Н	321	LEU
1	Ε	322	ASN
1	В	119	GLY
1	А	195	VAL
1	F	135	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	417/456~(91%)	409 (98%)	8 (2%)	57	79	
1	В	394/456~(86%)	382 (97%)	12 (3%)	41	67	
1	С	419/456~(92%)	402 (96%)	17 (4%)	30	56	
1	D	414/456~(91%)	392~(95%)	22~(5%)	22	45	
1	Ε	412/456~(90%)	397~(96%)	15 (4%)	35	61	
1	F	382/456~(84%)	362~(95%)	20 (5%)	23	46	
1	G	420/456~(92%)	404 (96%)	16 (4%)	33	59	
1	Н	404/456~(89%)	375~(93%)	29 (7%)	14	29	
1	Ι	412/456~(90%)	398~(97%)	14 (3%)	37	63	
1	J	412/456~(90%)	393~(95%)	19 (5%)	27	51	
1	Κ	407/456~(89%)	394~(97%)	13 (3%)	39	65	
1	L	391/456~(86%)	372 (95%)	19 (5%)	25	48	
All	All	4884/5472 (89%)	4680 (96%)	204 (4%)	30	55	

All (204) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	194	SER
1	А	288	TYR
1	А	391	SER
1	А	398	PHE
1	А	400	MET
1	А	439	TYR
1	А	554	SER
1	А	603	ASP
1	В	128	THR
1	В	139	ASN
1	В	146	SER
1	В	172	SER
1	В	177	MET
1	В	180	ASP
1	В	254	SER
1	В	288	TYR
1	В	398	PHE
1	В	433	MET
1	В	439	TYR
1	В	580	SER
1	С	86	SER
1	С	104	ASN
1	С	117	ILE
1	С	164	LYS
1	С	173	LYS
1	С	195	VAL
1	С	288	TYR
1	С	311	SER
1	С	322	ASN
1	С	395	LEU
1	С	398	PHE
1	С	439	TYR
1	C	479	ASP
1	C	483	ASP
1	С	507	GLU
1	C	550	SER
1	С	601	LEU
1	D	97	THR
1	D	116	ASP
1	D	146	SER
1	D	154	SER
1	D	172	SER
1	D	217	ASN

Mol Chain Res	s Type
1 D 250	GLU
1 D 288	TYR
1 D 295	SER
1 D 322	ASN
1 D 361	SER
1 D 391	SER
1 D 398	PHE
1 D 399	ASP
1 D 417	LYS
1 D 439	TYR
1 D 483	ASP
1 D 554	SER
1 D 568	ASN
1 D 571	TRP
1 D 588	PRO
1 D 595	LEU
1 E 86	SER
1 E 117	ILE
1 E 145	SER
1 E 146	SER
1 E 195	VAL
1 E 200	GLU
1 E 203	MET
1 E 288	TYR
1 E 398	PHE
1 E 439	TYR
1 E 446	THR
1 E 448	SER
1 E 498	SER
1 E 512	LYS
1 E 550	SER
1 F 86	SER
1 F 115	TYR
1 F 169	LEU
1 F 200	GLU
1 F 209	SER
1 F 212	THR
1 F 222	LEU
1 F 273	ASN
1 F 288	TYR
1 F 295	SER

Mol	Chain	Res	Type
1	F	372	VAL
1	F	398	PHE
1	F	400	MET
1	F	439	TYR
1	F	460	SER
1	F	461	GLU
1	F	483	ASP
1	F	548	SER
1	F	554	SER
1	G	139	ASN
1	G	154	SER
1	G	168	LYS
1	G	199	SER
1	G	204	LYS
1	G	230	VAL
1	G	278	LYS
1	G	288	TYR
1	G	367	LYS
1	G	398	PHE
1	G	427	SER
1	G	439	TYR
1	G	552	LYS
1	G	554	SER
1	G	602	ASN
1	G	603	ASP
1	Н	116	ASP
1	Н	118	LYS
1	Н	148	VAL
1	H	150	ASP
1	Н	161	ASN
1	Н	164	LYS
1	Н	181	ASN
1	Н	187	VAL
1	Н	194	SER
1	Н	200	GLU
1	Н	202	ASP
1	Н	221	LYS
1	Н	224	VAL
1	Н	231	ASP
1	Н	246	TYR
1	H	276	THR
1	Н	285	ARG

Mol	Chain	Res	Type
1	Н	288	TYR
1	Н	364	ASP
1	Н	391	SER
1	Н	398	PHE
1	Н	399	ASP
1	Н	439	TYR
1	Н	483	ASP
1	Н	498	SER
1	Н	507	GLU
1	Н	549	SER
1	Н	554	SER
1	Н	587	LYS
1	Ι	86	SER
1	Ι	159	ASP
1	Ι	164	LYS
1	Ι	199	SER
1	Ι	221	LYS
1	Ι	232	LYS
1	Ι	257	LYS
1	Ι	295	SER
1	Ι	361	SER
1	Ι	398	PHE
1	Ι	439	TYR
1	Ι	478	VAL
1	Ι	594	ARG
1	Ι	595	LEU
1	J	86	SER
1	J	197	ASP
1	J	203	MET
1	J	216	ASP
1	J	219	LEU
1	J	246	TYR
1	J	275	ASP
1	J	276	THR
1	J	288	TYR
1	J	326	LYS
1	J	392	MET
1	J	393	ILE
1	J	398	PHE
1	J	400	MET
1	J	436	LYS
1	J	439	TYR

Mol	Chain	Res	Type
1	J	445	ILE
1	J	567	GLN
1	J	569	THR
1	K	98	SER
1	K	142	VAL
1	K	216	ASP
1	K	288	TYR
1	K	336	LEU
1	K	358	THR
1	K	398	PHE
1	K	399	ASP
1	K	400	MET
1	К	439	TYR
1	K	550	SER
1	K	571	TRP
1	K	587	LYS
1	L	145	SER
1	L	200	GLU
1	L	211	VAL
1	L	272	ASN
1	L	283	LYS
1	L	288	TYR
1	L	308	VAL
1	L	391	SER
1	L	398	PHE
1	L	400	MET
1	L	407	LEU
1	L	439	TYR
1	L	445	ILE
1	L	483	ASP
1	L	488	THR
1	L	548	SER
1	L	549	SER
1	L	550	SER
1	L	554	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	272	ASN
1	С	521	ASN
1	D	122	ASN

Continued from previous page...

Mol	Chain	Res	Type
1	D	161	ASN
1	D	515	GLN
1	F	266	HIS
1	G	602	ASN
1	Ι	174	HIS
1	J	217	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 73 ligands modelled in this entry, 24 are monoatomic - leaving 49 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	n Deg Link		Bo	ond leng	$_{\rm sths}$	B	ond ang	gles
	Type	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	SO4	С	704	-	4,4,4	0.14	0	6,6,6	0.04	0
3	CO3	L	704	-	2,3,3	0.39	0	2,3,3	0.16	0
5	1PE	А	706	-	8,8,15	0.19	0	7,7,14	0.17	0
5	1PE	С	707	-	9,9,15	0.11	0	8,8,14	0.13	0
5	1PE	Е	706	-	8,8,15	0.17	0	7,7,14	0.11	0
3	CO3	Ι	703	-	2,3,3	0.40	0	2,3,3	0.19	0
5	1PE	L	706	-	$15,\!15,\!15$	0.14	0	14,14,14	0.16	0
3	CO3	В	1001	-	2,3,3	0.39	0	2,3,3	0.15	0

Mal	Turne	Chain	Dec	Timle	Bond lengths		Bond angles			
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
4	SO4	С	708	-	4,4,4	0.14	0	$6,\!6,\!6$	0.05	0
5	1PE	Е	705	-	$11,\!11,\!15$	0.17	0	$10,\!10,\!14$	0.14	0
5	1PE	K	704	-	8,8,15	0.18	0	$7,\!7,\!14$	0.10	0
5	1PE	J	704	-	9,9,15	0.10	0	8,8,14	0.14	0
3	CO3	Е	703	-	2,3,3	0.40	0	$2,\!3,\!3$	0.20	0
5	1PE	Н	704	-	$9,\!9,\!15$	0.20	0	8,8,14	0.13	0
3	CO3	F	704	-	2,3,3	0.41	0	$2,\!3,\!3$	0.18	0
4	SO4	F	701	-	4,4,4	0.14	0	$6,\!6,\!6$	0.07	0
3	CO3	Н	703	-	2,3,3	0.45	0	$2,\!3,\!3$	0.31	0
4	SO4	G	704	-	4,4,4	0.14	0	$6,\!6,\!6$	0.05	0
4	SO4	Ι	705	-	4,4,4	0.14	0	$6,\!6,\!6$	0.04	0
4	SO4	K	706	-	4,4,4	0.14	0	$6,\!6,\!6$	0.05	0
4	SO4	Е	704	-	4,4,4	0.14	0	$6,\!6,\!6$	0.08	0
5	1PE	K	705	-	$15,\!15,\!15$	0.11	0	14,14,14	0.13	0
3	CO3	D	703	-	2,3,3	0.40	0	$2,\!3,\!3$	0.17	0
5	1PE	А	707	-	9,9,15	0.11	0	8,8,14	0.14	0
5	1PE	G	705	-	8,8,15	0.19	0	7,7,14	0.14	0
5	1PE	G	707	-	12,12,15	0.10	0	11,11,14	0.13	0
5	1PE	D	705	-	9,9,15	0.21	0	8,8,14	0.12	0
4	SO4	А	705	-	4,4,4	0.14	0	$6,\!6,\!6$	0.04	0
4	SO4	L	701	-	4,4,4	0.14	0	$6,\!6,\!6$	0.04	0
4	SO4	D	704	-	4,4,4	0.15	0	$6,\!6,\!6$	0.08	0
5	1PE	D	707	-	8,8,15	0.18	0	7,7,14	0.09	0
4	SO4	L	705	-	4,4,4	0.13	0	$6,\!6,\!6$	0.04	0
3	CO3	K	703	-	2,3,3	0.39	0	$2,\!3,\!3$	0.15	0
5	1PE	С	705	-	12,12,15	0.19	0	11,11,14	0.12	0
5	1PE	С	706	-	8,8,15	0.19	0	$7,\!7,\!14$	0.15	0
3	CO3	J	703	-	2,3,3	0.40	0	$2,\!3,\!3$	0.18	0
5	1PE	F	705	-	9,9,15	0.09	0	8,8,14	0.15	0
3	CO3	G	701	-	2,3,3	0.40	0	$2,\!3,\!3$	0.21	0
4	SO4	А	704	-	4,4,4	0.15	0	$6,\!6,\!6$	0.08	0
4	SO4	G	708	-	4,4,4	0.15	0	$6,\!6,\!6$	0.05	0
3	CO3	А	703	-	2,3,3	0.41	0	$2,\!3,\!3$	0.23	0
4	SO4	Ι	704	-	4,4,4	0.15	0	$6,\!6,\!6$	0.05	0
3	CO3	С	703	-	2,3,3	0.40	0	2,3,3	0.19	0
4	SO4	J	705	-	4,4,4	0.14	0	6,6,6	0.08	0
4	SO4	Н	705	-	4,4,4	0.14	0	$6,\!6,\!6$	0.05	0
4	SO4	В	1004	-	4,4,4	0.15	0	$6,\!6,\!6$	0.09	0
5	1PE	В	1005	-	$6,\!6,\!15$	0.22	0	5, 5, 14	0.11	0
5	1PE	G	706	-	9,9,15	0.11	0	8,8,14	0.13	0
5	1PE	D	706	-	9,9,15	0.22	0	8,8,14	0.12	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

	1		1		1		
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	1PE	А	706	-	-	<mark>3/6/6/13</mark>	-
5	1PE	С	707	-	-	4/7/7/13	-
5	1PE	Е	706	-	-	2/6/6/13	-
5	1PE	L	706	-	-	6/13/13/13	-
5	1PE	Е	705	-	-	5/9/9/13	-
5	1PE	K	704	-	-	1/6/6/13	-
5	1PE	J	704	-	-	5/7/7/13	-
5	1PE	Н	704	-	-	6/7/7/13	-
5	1PE	К	705	-	-	4/13/13/13	-
5	1PE	А	707	-	-	6/7/7/13	-
5	1PE	G	705	-	-	4/6/6/13	-
5	1PE	G	707	-	-	4/10/10/13	-
5	1PE	D	705	-	-	5/7/7/13	-
5	1PE	D	707	-	-	5/6/6/13	-
5	1PE	С	705	-	-	2/10/10/13	-
5	1PE	С	706	-	-	2/6/6/13	-
5	1PE	F	705	-	-	4/7/7/13	-
5	1PE	В	1005	-	-	2/4/4/13	-
5	1PE	G	706	-	-	2/7/7/13	-
5	1PE	D	706	-	-	2/7/7/13	-

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (74) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	L	706	1PE	C14-C24-OH4-C13
5	А	707	1PE	OH5-C14-C24-OH4
5	L	706	1PE	С12-С22-ОН3-С23
5	D	705	1PE	OH4-C13-C23-OH3
5	G	707	1PE	OH5-C14-C24-OH4
5	А	707	1PE	OH6-C15-C25-OH5
5	D	706	1PE	OH5-C14-C24-OH4

Mol	Chain	Res	Type	Atoms
5	J	704	1PE	OH6-C15-C25-OH5
5	С	707	1PE	C13-C23-OH3-C22
5	Е	705	1PE	OH6-C15-C25-OH5
5	F	705	1PE	OH5-C14-C24-OH4
5	А	707	1PE	OH7-C16-C26-OH6
5	С	707	1PE	OH5-C14-C24-OH4
5	G	707	1PE	OH4-C13-C23-OH3
5	L	706	1PE	OH2-C12-C22-OH3
5	D	707	1PE	OH4-C13-C23-OH3
5	J	704	1PE	С16-С26-ОН6-С15
5	G	705	1PE	OH4-C13-C23-OH3
5	F	705	1PE	С13-С23-ОН3-С22
5	D	705	1PE	OH5-C14-C24-OH4
5	С	706	1PE	OH5-C14-C24-OH4
5	K	705	1PE	OH4-C13-C23-OH3
5	L	706	1PE	OH5-C14-C24-OH4
5	Е	705	1PE	OH4-C13-C23-OH3
5	С	705	1PE	OH4-C13-C23-OH3
5	Е	705	1PE	OH5-C14-C24-OH4
5	G	706	1PE	OH5-C14-C24-OH4
5	J	704	1PE	ОН7-С16-С26-ОН6
5	С	705	1PE	С12-С22-ОН3-С23
5	Е	705	1PE	С12-С22-ОН3-С23
5	G	705	1PE	С12-С22-ОН3-С23
5	Н	704	1PE	OH4-C13-C23-OH3
5	D	707	1PE	C14-C24-OH4-C13
5	А	706	1PE	OH5-C14-C24-OH4
5	E	706	1PE	OH4-C13-C23-OH3
5	G	707	1PE	C24-C14-OH5-C25
5	D	707	1PE	C13-C23-OH3-C22
5	L	706	1PE	C15-C25-OH5-C14
5	Н	704	1PE	C13-C23-OH3-C22
5	G	705	1PE	C13-C23-OH3-C22
5	K	$70\overline{5}$	1PE	C25-C15-OH6-C26
5	A	706	1PE	C23-C13-OH4-C24
5	A	707	1PE	C25-C15-OH6-C26
5	F	705	1PE	C14-C24-OH4-C13
5	A	707	1PE	C15-C25-OH5-C14
5	K	705	1PE	C12-C22-OH3-C23
5	Н	704	1PE	OH5-C14-C24-OH4
5	A	706	1PE	C12-C22-OH3-C23
5	L	706	1PE	OH6-C15-C25-OH5

Continued from previous page...

Mol	Chain	Res	Type	Atoms
5	В	1005	1PE	C14-C24-OH4-C13
5	Н	704	1PE	C24-C14-OH5-C25
5	J	704	1PE	C25-C15-OH6-C26
5	G	705	1PE	C23-C13-OH4-C24
5	G	707	1PE	C25-C15-OH6-C26
5	С	706	1PE	C23-C13-OH4-C24
5	Н	704	1PE	С12-С22-ОН3-С23
5	Н	704	1PE	C23-C13-OH4-C24
5	D	705	1PE	C13-C23-OH3-C22
5	В	1005	1PE	C24-C14-OH5-C25
5	D	705	1PE	C14-C24-OH4-C13
5	D	707	1PE	C23-C13-OH4-C24
5	D	705	1PE	С12-С22-ОН3-С23
5	J	704	1PE	C24-C14-OH5-C25
5	Κ	704	1PE	C23-C13-OH4-C24
5	Е	705	1PE	C14-C24-OH4-C13
5	G	706	1PE	C14-C24-OH4-C13
5	F	705	1PE	OH4-C13-C23-OH3
5	D	707	1PE	С12-С22-ОН3-С23
5	С	707	1PE	OH4-C13-C23-OH3
5	Е	706	1PE	C23-C13-OH4-C24
5	С	707	1PE	OH2-C12-C22-OH3
5	К	705	1PE	С13-С23-ОН3-С22
5	А	707	1PE	С16-С26-ОН6-С15
5	D	706	1PE	С12-С22-ОН3-С23

Continued from previous page...

There are no ring outliers.

21 monomers are	involved	in 29	short	contacts:
-----------------	----------	---------	------------------------	-----------

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	С	704	SO4	1	0
5	А	706	1PE	2	0
5	Е	706	1PE	1	0
3	Ι	703	CO3	1	0
5	L	706	1PE	3	0
5	Н	704	1PE	1	0
3	Н	703	CO3	2	0
5	Κ	705	1PE	2	0
5	G	705	1PE	1	0
5	G	707	1PE	2	0
5	D	705	1PE	1	0
4	D	704	SO4	1	0

					C Cl l
Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	D	707	1PE	1	0
5	С	705	1PE	1	0
5	F	705	1PE	3	0
4	А	704	SO4	1	0
3	А	703	CO3	1	0
4	Ι	704	SO4	1	0
4	J	705	SO4	1	0
4	В	1004	SO4	1	0
5	G	706	1PE	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSRZ>2		$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q < 0.9
1	А	517/528~(97%)	0.53	22 (4%) 35 2	28	30, 37, 59, 88	0
1	В	511/528~(96%)	0.66	51 (9%) 7	4	28, 39, 69, 107	0
1	С	518/528~(98%)	0.49	19 (3%) 41 3	34	27, 36, 59, 87	0
1	D	513/528~(97%)	0.40	18 (3%) 44 3	36	23, 31, 52, 80	0
1	Ε	509/528~(96%)	0.38	7 (1%) 75 7	'1	24, 33, 46, 68	0
1	\mathbf{F}	510/528~(96%)	0.65	42 (8%) 11	8	25, 39, 70, 93	0
1	G	514/528~(97%)	0.61	29 (5%) 24 1	19	32, 40, 60, 80	0
1	Η	511/528~(96%)	0.75	56 (10%) 5	3	28, 40, 73, 114	1 (0%)
1	Ι	515/528~(97%)	0.62	27 (5%) 27 2	21	28, 38, 60, 105	0
1	J	514/528~(97%)	0.48	20 (3%) 39 3	32	24, 34, 51, 70	0
1	Κ	509/528~(96%)	0.53	25 (4%) 29 2	23	26, 34, 50, 79	3~(0%)
1	L	508/528~(96%)	0.59	31 (6%) 21 1	16	29, 40, 66, 96	1 (0%)
All	All	6149/6336~(97%)	0.56	347 (5%) 24	19	23, 37, 63, 114	5(0%)

All (347) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Ι	361	SER	11.3
1	F	121	CYS	8.3
1	Н	285	ARG	8.0
1	В	196	ALA	7.6
1	F	148	VAL	6.2
1	А	362	LYS	5.5
1	Н	419	GLU	5.4
1	С	268	GLY	5.4
1	В	185	VAL	5.2
1	F	129	ILE	5.2
1	Κ	362	LYS	5.0

Mol	Chain	Res	Type	RSRZ
1	L	144	ILE	5.0
1	F	153	VAL	4.9
1	Ι	167	VAL	4.8
1	А	603	ASP	4.8
1	D	277	TYR	4.8
1	F	255	THR	4.7
1	С	549	SER	4.7
1	Н	480	TYR	4.7
1	D	232	LYS	4.7
1	А	132	VAL	4.6
1	F	157	LEU	4.6
1	Ι	121	CYS	4.6
1	В	226	PHE	4.5
1	В	600	VAL	4.5
1	F	162	MET	4.5
1	Κ	119	GLY	4.4
1	F	156	PHE	4.3
1	В	135	PRO	4.3
1	Н	272	ASN	4.3
1	Н	365	VAL	4.2
1	Ι	114	VAL	4.2
1	Ι	230	VAL	4.2
1	Н	601	LEU	4.1
1	G	146	SER	4.1
1	G	188	GLY	4.1
1	Н	281	VAL	4.1
1	F	123	VAL	4.0
1	Н	224	VAL	4.0
1	Н	421	VAL	4.0
1	В	114	VAL	4.0
1	Н	180	ASP	4.0
1	В	476	LEU	3.9
1	L	270	TYR	3.9
1	А	259	VAL	3.9
1	В	136	GLY	3.9
1	A	163	GLU	3.9
1	G	148	VAL	3.8
1	Ι	123	VAL	3.8
1	G	363	GLY	3.8
1	L	121	CYS	3.8
1	G	603	ASP	3.8
1	Н	277	TYR	3.7

Mol	Chain	Res	Type	RSRZ
1	L	110	ILE	3.7
1	F	112	VAL	3.7
1	В	219	LEU	3.7
1	Н	282	GLU	3.7
1	F	274	ALA	3.7
1	Ι	144	ILE	3.7
1	В	224	VAL	3.6
1	K	120	GLY	3.6
1	А	162	MET	3.6
1	L	507	GLU	3.6
1	В	228	ILE	3.6
1	Н	121	CYS	3.5
1	Н	130	PHE	3.5
1	D	549	SER	3.5
1	Н	129	ILE	3.5
1	В	197	ASP	3.5
1	Н	366	LYS	3.5
1	Н	445	ILE	3.5
1	Н	119	GLY	3.4
1	D	371	LEU	3.4
1	Н	234	LEU	3.4
1	Ι	198	LEU	3.4
1	J	426	LEU	3.4
1	K	568	ASN	3.4
1	А	136	GLY	3.4
1	F	363	GLY	3.4
1	J	219	LEU	3.3
1	В	232	LYS	3.3
1	Н	476	LEU	3.3
1	J	195	VAL	3.3
1	K	361	SER	3.3
1	F	267	LEU	3.3
1	В	146	SER	3.3
1	F	269	VAL	3.3
1	В	201	ALA	3.3
1	С	101	ILE	3.2
1	Н	363	GLY	3.2
1	F	144	ILE	3.2
1	F	507	GLU	3.2
1	K	129	ILE	3.2
1	Н	390	GLY	3.2
1	F	128	THR	3.2

Mol	Chain	Res	Type	RSRZ
1	F	599	PHE	3.2
1	Е	507	GLU	3.2
1	F	155	GLU	3.2
1	В	407	LEU	3.2
1	J	112	VAL	3.1
1	Н	196	ALA	3.1
1	J	513	ILE	3.1
1	В	234	LEU	3.1
1	В	192	CYS	3.1
1	В	125	GLU	3.1
1	С	121	CYS	3.1
1	K	409	CYS	3.1
1	А	148	VAL	3.1
1	J	260	ASN	3.0
1	J	370	ALA	3.0
1	Н	235	PHE	3.0
1	Н	197	ASP	3.0
1	Н	507	GLU	3.0
1	F	113	GLN	3.0
1	В	276	THR	3.0
1	F	127	LEU	3.0
1	L	112	VAL	3.0
1	Н	146	SER	3.0
1	G	599	PHE	3.0
1	А	274	ALA	3.0
1	Н	477	GLY	2.9
1	Н	165	PHE	2.9
1	В	131	LEU	2.9
1	Ι	274	ALA	2.9
1	G	216	ASP	2.9
1	L	146	SER	2.9
1	Н	369	ILE	2.9
1	L	140	GLY	2.9
1	L	219	LEU	2.9
1	J	92	VAL	2.9
1	А	363	GLY	2.9
1	Κ	175	PHE	2.9
1	D	419	GLU	2.9
1	K	135	PRO	2.9
1	Н	132	VAL	2.9
1	G	117	ILE	2.8
1	G	278	LYS	2.8

8SV	V9
-----	----

Mol	Chain	Res	Type	RSRZ
1	K	417	LYS	2.8
1	J	599	PHE	2.8
1	F	321	LEU	2.8
1	D	372	VAL	2.8
1	D	515	GLN	2.8
1	K	322	ASN	2.8
1	L	274	ALA	2.8
1	С	167	VAL	2.8
1	Н	322	ASN	2.8
1	Ι	281	VAL	2.8
1	G	192	CYS	2.8
1	Κ	420	ASN	2.8
1	В	177	MET	2.8
1	J	596	LEU	2.8
1	Κ	195	VAL	2.8
1	J	127	LEU	2.8
1	F	511	ASN	2.8
1	Н	280	GLU	2.7
1	K	123	VAL	2.7
1	F	146	SER	2.7
1	D	427	SER	2.7
1	Ι	270	TYR	2.7
1	Н	409	CYS	2.7
1	В	383	TYR	2.7
1	J	183	ASN	2.7
1	А	510	ILE	2.7
1	А	146	SER	2.7
1	В	225	VAL	2.7
1	G	159	ASP	2.7
1	G	136	GLY	2.7
1	Н	217	ASN	2.7
1	G	144	ILE	2.7
1	В	123	VAL	2.7
1	Е	219	LEU	2.7
1	В	269	VAL	2.7
1	F	372	VAL	2.7
1	Κ	193	GLY	2.7
1	L	126	GLY	2.7
1	В	601	LEU	2.7
1	F	130	PHE	2.6
1	Н	189	TYR	2.6
1	В	195	VAL	2.6

8SW9	
------	--

Mol	Chain	Res	Type	RSRZ
1	Н	230	VAL	2.6
1	L	217	ASN	2.6
1	Ι	184	SER	2.6
1	Κ	228	ILE	2.6
1	L	362	LYS	2.6
1	Н	175	PHE	2.6
1	G	186	ALA	2.6
1	В	187	VAL	2.6
1	L	281	VAL	2.6
1	F	147	LYS	2.6
1	G	160	GLU	2.6
1	G	161	ASN	2.6
1	G	187	VAL	2.6
1	G	195	VAL	2.6
1	В	150	ASP	2.6
1	Κ	324	GLU	2.6
1	F	514	LEU	2.6
1	G	129	ILE	2.5
1	Н	200	GLU	2.5
1	Ι	330	VAL	2.5
1	J	482	VAL	2.5
1	С	600	VAL	2.5
1	Ι	360	LYS	2.5
1	Н	181	ASN	2.5
1	В	126	GLY	2.5
1	В	477	GLY	2.5
1	G	485	ALA	2.5
1	Ι	117	ILE	2.5
1	В	310	LEU	2.5
1	Κ	601	LEU	2.5
1	В	229	ASN	2.5
1	Е	548	SER	2.5
1	G	362	LYS	2.5
1	L	115	TYR	2.5
1	Ι	271	ILE	2.5
1	L	214	LEU	2.5
1	С	365	VAL	2.4
1	Ι	202	ASP	2.4
1	F	177	MET	2.4
1	Ι	120	GLY	2.4
1	В	194	SER	2.4
1	L	273	ASN	2.4

Mol	Chain	Res	Type	RSRZ
1	F	141	PRO	2.4
1	J	299	ALA	2.4
1	Н	472	TYR	2.4
1	Н	428	ALA	2.4
1	Ι	513	ILE	2.4
1	В	222	LEU	2.4
1	С	114	VAL	2.4
1	В	597	THR	2.3
1	L	127	LEU	2.3
1	G	504	GLY	2.3
1	С	207	VAL	2.3
1	В	550	SER	2.3
1	F	184	SER	2.3
1	L	213	MET	2.3
1	J	136	GLY	2.3
1	F	272	ASN	2.3
1	J	123	VAL	2.3
1	Н	364	ASP	2.3
1	F	161	ASN	2.3
1	K	196	ALA	2.3
1	F	224	VAL	2.3
1	А	483	ASP	2.3
1	Ι	272	ASN	2.3
1	А	187	VAL	2.3
1	J	600	VAL	2.3
1	Н	150	ASP	2.3
1	С	144	ILE	2.3
1	F	402	GLY	2.3
1	L	111	LYS	2.3
1	С	568	ASN	2.3
1	F	94	LEU	2.3
1	Н	549	SER	2.3
1	J	85	ALA	2.3
1	А	258	ASN	2.2
1	А	601	LEU	2.2
1	В	389	PRO	2.2
1	Н	131	LEU	2.2
1	L	162	MET	2.2
1	В	105	THR	2.2
1	В	472	TYR	2.2
1	Н	226	PHE	2.2
1	L	178	PHE	2.2

8SV	W9	
-----	----	--

Mol	Chain	Res	Type	RSRZ
1	D	369	ILE	2.2
1	K	224	VAL	2.2
1	А	255	THR	2.2
1	Н	202	ASP	2.2
1	В	193	GLY	2.2
1	F	277	TYR	2.2
1	K	445	ILE	2.2
1	А	161	ASN	2.2
1	В	328	LEU	2.2
1	Ι	165	PHE	2.2
1	L	149	ASN	2.2
1	L	525	TRP	2.2
1	J	261	MET	2.2
1	D	361	SER	2.2
1	В	157	LEU	2.2
1	В	159	ASP	2.2
1	F	201	ALA	2.2
1	D	178	PHE	2.2
1	В	199	SER	2.1
1	С	187	VAL	2.1
1	Н	225	VAL	2.1
1	Е	239	LEU	2.1
1	Ι	135	PRO	2.1
1	L	159	ASP	2.1
1	D	261	MET	2.1
1	А	507	GLU	2.1
1	D	600	VAL	2.1
1	Ι	600	VAL	2.1
1	K	112	VAL	2.1
1	Ε	289	PHE	2.1
1	В	421	VAL	2.1
1	Е	224	VAL	2.1
1	С	165	PHE	2.1
1	D	315	VAL	2.1
1	Е	150	ASP	2.1
1	Н	586	ARG	2.1
1	Н	198	LEU	2.1
1	Ι	442	GLY	2.1
1	A	117	ILE	2.1
1	Н	444	ILE	2.1
1	Κ	365	VAL	2.1
1	L	365	VAL	2.1

Mol	Chain	Res	Type	RSRZ
1	D	405	ALA	2.1
1	Н	511	ASN	2.1
1	Ι	226	PHE	2.1
1	Κ	419	GLU	2.1
1	А	600	VAL	2.1
1	В	129	ILE	2.1
1	В	217	ASN	2.1
1	F	139	ASN	2.1
1	K	134	ASN	2.1
1	L	177	MET	2.1
1	L	254	SER	2.1
1	В	142	VAL	2.1
1	С	214	LEU	2.1
1	D	123	VAL	2.1
1	G	601	LEU	2.1
1	F	111	LYS	2.1
1	А	85	ALA	2.1
1	G	200	GLU	2.1
1	Н	245	GLU	2.1
1	J	291	THR	2.1
1	С	226	PHE	2.1
1	L	180	ASP	2.1
1	Н	310	LEU	2.0
1	С	132	VAL	2.0
1	Ι	132	VAL	2.0
1	F	230	VAL	2.0
1	L	423	ILE	2.0
1	L	94	LEU	2.0
1	С	544	ILE	2.0
1	Ι	160	GLU	2.0
1	G	158	LYS	2.0
1	С	150	ASP	2.0
1	D	275	ASP	2.0
1	G	243	PHE	2.0
1	Н	156	PHE	2.0
1	В	127	LEU	2.0
1	С	507	GLU	2.0
1	F	198	LEU	2.0
1	G	155	GLU	2.0
1	G	174	HIS	2.0
1	D	524	VAL	2.0
1	G	147	LYS	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	\mathbf{RSR}	$B-factors(Å^2)$	Q<0.9
4	SO4	L	705	5/5	<mark>-0.31</mark>	1.19	123,128,135,152	0
4	SO4	L	701	5/5	0.29	1.10	123,127,143,154	0
4	SO4	Е	704	5/5	0.42	1.48	122,123,124,148	0
4	SO4	А	705	5/5	0.55	0.48	92,92,106,117	0
5	1PE	K	704	9/16	0.58	0.29	31,34,42,42	0
5	1PE	С	705	13/16	0.61	0.26	37,49,62,64	0
4	SO4	А	704	5/5	0.62	0.62	84,85,101,116	0
4	SO4	D	704	5/5	0.68	0.82	112,113,119,125	0
5	1PE	D	706	10/16	0.69	0.27	$36,\!55,\!59,\!62$	0
5	1PE	В	1005	7/16	0.71	0.34	37,47,51,53	0
5	1PE	L	706	16/16	0.72	0.31	48,64,75,78	0
3	CO3	J	703	4/4	0.74	0.40	26,26,27,44	0
5	1PE	G	705	9/16	0.74	0.28	40,50,58,58	0
5	1PE	K	705	16/16	0.75	0.30	45,59,72,75	0
4	SO4	С	704	5/5	0.78	0.26	66,72,75,94	0
5	1PE	D	707	9/16	0.78	0.23	28,38,51,51	0
5	1PE	D	705	10/16	0.78	0.32	33,39,41,45	0
5	1PE	G	707	13/16	0.79	0.27	41,50,64,67	0
5	1PE	A	707	10/16	0.81	0.28	$39,\!43,\!52,\!55$	0
5	1PE	Е	705	12/16	0.81	0.25	28,33,64,64	0
5	1PE	J	704	10/16	0.81	0.28	33,37,46,51	0
5	1PE	C	706	9/16	0.82	0.17	33,38,46,48	0
5	1PE	G	706	10/16	0.83	0.22	35,44,54,56	0
5	1PE	C	707	10/16	0.83	0.25	$28,\!35,\!50,\!51$	0
3	CO3	E	703	4/4	0.84	0.21	$37,\!38,\!39,\!42$	0
5	1PE	Н	704	10/16	0.84	0.23	44,51,59,61	0
4	SO4	G	708	5/5	0.85	0.32	$75,77,92,9\overline{5}$	0

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		mued jro	m previoi	is page.		DCCC	DCD	$\mathbf{D} \mathbf{f}_{2} = \mathbf{f}_{2}$	0 (0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- IVIOI	1ype	Chain	Res	Atoms	RSCC	R5R	$\mathbf{B}\text{-factors}(\mathbf{A}^2)$	Q<0.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	IPE	E	706	9/10	0.85	0.21	23,33,41,41	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	CO3	A	703	4/4	0.86	0.26	35,38,38,43	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	SO4	1	705	$\frac{5}{5}$	0.86	0.26	64,68,75,77	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	IPE	A	706	9/16	0.86	0.24	37,37,46,49	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	CO3	D	703	4/4	0.87	0.23	23,23,25,31	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	SO4	H	705	5/5	0.87	0.21	52,55,81,85	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	CO3	H	703	4/4	0.87	0.22	37,37,39,39	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	CO3	G	701	4/4	0.88	0.22	39,39,46,50	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1PE	F	705	10/16	0.88	0.22	33,38,44,48	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	CO3	С	703	4/4	0.89	0.20	33,34,35,43	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	SO4	G	704	5/5	0.90	0.21	45,54,65,69	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	CO3	F	704	4/4	0.91	0.27	25,29,32,36	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	SO4	K	706	5/5	0.91	0.32	46,53,74,74	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	CO3	L	704	4/4	0.91	0.22	37,43,44,48	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	CO3	Ι	703	4/4	0.92	0.17	29,31,32,33	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ZN	F	702	1/1	0.94	0.19	$31,\!31,\!31,\!31$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	SO4	В	1004	5/5	0.94	0.15	33,33,33,37	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	CO3	В	1001	4/4	0.95	0.16	29,30,32,33	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	SO4	J	705	5/5	0.96	0.13	24,31,34,41	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ZN	С	702	1/1	0.96	0.18	29,29,29,29	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	CO3	K	703	4/4	0.96	0.20	26,29,34,42	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ZN	F	703	1/1	0.96	0.13	24,24,24,24	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	SO4	С	708	5/5	0.96	0.13	49,52,54,65	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ZN	J	701	1/1	0.96	0.17	30,30,30,30	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	SO4	F	701	5/5	0.97	0.12	20,24,29,33	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	ZN	G	703	1/1	0.97	0.18	34,34,34,34	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	ZN	Н	702	1/1	0.97	0.10	30,30,30,30	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	ZN	D	701	1/1	0.97	0.15	25,25,25,25	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	SO4	Ι	704	5/5	0.97	0.13	34,34,34,40	0
2 ZN L 703 1/1 0.97 0.15 28,28,28,28 0 2 ZN C 701 1/1 0.97 0.21 29,29,29,29 0	2	ZN	L	702	1/1	0.97	0.20	32,32,32,32	0
2 ZN C 701 1/1 0.97 0.21 29,29,29,29 0	2	ZN	L	703	1/1	0.97	0.15	28,28,28,28	0
	2	ZN	С	701	1/1	0.97	0.21	29,29,29,29	0
2 ZN A 701 1/1 0.97 0.16 32,32,32,32 0	2	ZN	А	701	1/1	0.97	0.16	32,32,32,32	0
2 ZN G 702 1/1 0.97 0.17 34,34,34,34 0	2	ZN	G	702	1/1	0.97	0.17	34,34,34,34	0
2 ZN I 701 1/1 0.98 0.20 29,29,29,29 0	2	ZN	Ι	701	1/1	0.98	0.20	29,29,29,29	0
2 ZN I 702 1/1 0.98 0.19 29,29,29,29 0	2	ZN	Ι	702	1/1	0.98	0.19	29,29,29,29	0
2 ZN E 702 1/1 0.98 0.20 38,38,38,38 0	2	ZN	Е	702	1/1	0.98	0.20	38,38,38,38	0
2 ZN K 701 1/1 0.98 0.17 25.25.25.25 0	2	ZN	K	701	1/1	0.98	0.17	25,25,25,25	0
2 ZN K 702 1/1 0.98 0.14 32.32.32.32 0	2	ZN	K	702	1/1	0.98	0.14	32,32,32,32	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{2}$	ZN	B	1003	1/1	0.98	0.12	35,35,35,35	0
2 ZN H 701 1/1 0.98 0.11 31.31.31.31 0	$\frac{1}{2}$	ZN	H	701	1/1	0.98	0.11	31.31.31.31	0
2 ZN A 702 1/1 0.98 0.15 32,32,32,32 0	2	ZN	A	702	1/1	0.98	0.15	32,32,32,32	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q<0.9
2	ZN	Е	701	1/1	0.99	0.14	23,23,23,23	0
2	ZN	В	1002	1/1	0.99	0.14	29,29,29,29	0
2	ZN	J	702	1/1	0.99	0.14	24,24,24,24	0
2	ZN	D	702	1/1	0.99	0.12	30,30,30,30	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

