

wwPDB EM Validation Summary Report (i)

Nov 23, 2022 – 03:26 PM EST

PDB ID	:	7T4S
EMDB ID	:	EMD-25687
Title	:	CryoEM structure of the HCMV Pentamer gH/gL/UL128/UL130/UL131A in
		complex with NRP2 and neutralizing fabs 8I21 and 13H11
Authors	:	Kschonsak, M.; Johnson, M.C.; Schelling, R.; Green, E.M.; Rouge, L.; Ho, H.;
		Patel, N.; Kilic, C.; Kraft, E.; Arthur, C.P.; Rohou, A.L.; Comps-Agrar, L.;
		Martinez-Martin, N.; Perez, L.; Payandeh, J.; Ciferri, C.
Deposited on	:	2021-12-10
Resolution	:	3.10 Å(reported)
Based on initial models	:	5VOB, 2QQO

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	EM structures
IVIEUTIC	$(\# {\rm Entries})$	$(\# { m Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain						
1	А	767			11%	19%				
2	В	278		73%						
3	С	171	49%	49% 17%			5%			
4	D	254	56%	56%		3!	5%			
5	Е	129	60%		17%	6	23%			
6	F	875	34%	7%	5	9%				
7	Н	249	41%	8%		51%				
8	J	250	42%	6%		52%				

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain					
9	K	237	38%	6%	56%			
10	Ι	238	38%	7%	55%			

2 Entry composition (i)

There are 12 unique types of molecules in this entry. The entry contains 16404 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Envelope glycoprotein H.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	624	Total 5034	C 3232	N 848	O 930	S 24	0	0

There are 52 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	716	GLY	-	expression tag	UNP F5H9T3
А	717	THR	-	expression tag	UNP F5H9T3
А	718	LYS	-	expression tag	UNP F5H9T3
А	719	LEU	-	expression tag	UNP F5H9T3
А	720	GLY	-	expression tag	UNP F5H9T3
А	721	PRO	-	expression tag	UNP F5H9T3
А	722	GLU	-	expression tag	UNP F5H9T3
А	723	GLN	-	expression tag	UNP F5H9T3
А	724	LYS	-	expression tag	UNP F5H9T3
А	725	LEU	-	expression tag	UNP F5H9T3
А	726	ILE	-	expression tag	UNP F5H9T3
А	727	SER	-	expression tag	UNP F5H9T3
А	728	GLU	-	expression tag	UNP F5H9T3
А	729	GLU	-	expression tag	UNP F5H9T3
А	730	ASP	-	expression tag	UNP F5H9T3
А	731	LEU	-	expression tag	UNP F5H9T3
А	732	ASN	-	expression tag	UNP F5H9T3
А	733	SER	-	expression tag	UNP F5H9T3
А	734	ALA	-	expression tag	UNP F5H9T3
А	735	VAL	-	expression tag	UNP F5H9T3
А	736	ASP	-	expression tag	UNP F5H9T3
А	737	GLY	-	expression tag	UNP F5H9T3
А	738	SER	-	expression tag	UNP F5H9T3
А	739	GLY	-	expression tag	UNP F5H9T3
А	740	LEU	-	expression tag	UNP F5H9T3
А	741	ASN	-	expression tag	UNP F5H9T3
А	742	ASP	-	expression tag	UNP F5H9T3
А	743	ILE	-	expression tag	UNP F5H9T3

Continued on next page...

Chain	Residue	Modelled	Actual	Comment	Reference
А	744	PHE	-	expression tag	UNP F5H9T3
А	745	GLU	-	expression tag	UNP F5H9T3
А	746	ALA	-	expression tag	UNP F5H9T3
А	747	GLN	-	expression tag	UNP F5H9T3
А	748	LYS	-	expression tag	UNP F5H9T3
A	749	ILE	-	expression tag	UNP F5H9T3
А	750	GLU	-	expression tag	UNP F5H9T3
A	751	TRP	-	expression tag	UNP F5H9T3
А	752	HIS	-	expression tag	UNP F5H9T3
А	753	GLU	-	expression tag	UNP F5H9T3
А	754	ASN	-	expression tag	UNP F5H9T3
A	755	LEU	-	expression tag	UNP F5H9T3
А	756	TYR	-	expression tag	UNP F5H9T3
А	757	PHE	-	expression tag	UNP F5H9T3
А	758	GLN	-	expression tag	UNP F5H9T3
A	759	GLY	-	expression tag	UNP F5H9T3
A	760	HIS	-	expression tag	UNP F5H9T3
А	761	HIS	-	expression tag	UNP F5H9T3
A	762	HIS	-	expression tag	UNP F5H9T3
A	763	HIS	-	expression tag	UNP F5H9T3
A	764	HIS	-	expression tag	UNP F5H9T3
A	765	HIS	-	expression tag	UNP F5H9T3
А	766	HIS	-	expression tag	UNP F5H9T3
А	767	HIS	-	expression tag	UNP F5H9T3

Continued from previous page...

• Molecule 2 is a protein called Envelope glycoprotein L.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	227	Total 1804	C 1149	N 315	O 332	S 8	0	0

• Molecule 3 is a protein called Envelope protein UL128.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	112	Total 896	C 562	N 165	O 160	S 9	0	0

• Molecule 4 is a protein called Envelope glycoprotein UL130.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	166	Total 1359	C 870	N 239	0 242	S 8	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
D	215	GLY	-	expression tag	UNP Q38M07
D	216	SER	-	expression tag	UNP Q38M07
D	217	GLU	-	expression tag	UNP Q38M07
D	218	ASN	_	expression tag	UNP Q38M07
D	219	LEU	_	expression tag	UNP Q38M07
D	220	TYR	-	expression tag	UNP Q38M07
D	221	PHE	-	expression tag	UNP Q38M07
D	222	GLN	-	expression tag	UNP Q38M07
D	223	GLY	-	expression tag	UNP Q38M07
D	224	SER	-	expression tag	UNP Q38M07
D	225	ALA	-	expression tag	UNP Q38M07
D	226	TRP	-	expression tag	UNP Q38M07
D	227	SER	-	expression tag	UNP Q38M07
D	228	HIS	-	expression tag	UNP Q38M07
D	229	PRO	-	expression tag	UNP Q38M07
D	230	GLN	-	expression tag	UNP Q38M07
D	231	PHE	-	expression tag	UNP Q38M07
D	232	GLU	-	expression tag	UNP Q38M07
D	233	LYS	-	expression tag	UNP Q38M07
D	234	GLY	-	expression tag	UNP Q38M07
D	235	GLY	-	expression tag	UNP Q38M07
D	236	GLY	-	expression tag	UNP Q38M07
D	237	SER	-	expression tag	UNP Q38M07
D	238	GLY	-	expression tag	UNP Q38M07
D	239	GLY	-	expression tag	UNP Q38M07
D	240	GLY	-	expression tag	UNP Q38M07
D	241	SER	-	expression tag	UNP Q38M07
D	242	GLY	-	expression tag	UNP Q38M07
D	243	GLY	-	expression tag	UNP Q38M07
D	244	GLY	-	expression tag	UNP Q38M07
D	245	SER	-	expression tag	UNP Q38M07
D	246	ALA	-	expression tag	UNP Q38M07
D	247	TRP	-	expression tag	UNP Q38M07
D	248	SER	-	expression tag	UNP Q38M07
D	249	HIS		expression tag	UNP $Q3\overline{8M07}$
D	250	PRO	-	expression tag	UNP Q38M07
D	251	GLN	-	expression tag	UNP $Q3\overline{8M07}$
D	252	PHE	-	expression tag	UNP Q38M07
D	253	GLU	-	expression tag	UNP $Q3\overline{8M07}$
D	254	LYS	-	expression tag	UNP Q38M07

There are 40 discrepancies between the modelled and reference sequences:

 $\bullet\,$ Molecule 5 is a protein called Envelope protein UL131A.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	99	Total 821	C 518	N 147	O 155	S 1	0	0

• Molecule 6 is a protein called Neuropilin-2.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	363	Total 2883	C 1843	N 494	O 529	S 17	0	0

There are 11 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	865	GLY	-	expression tag	UNP O60462
F	866	ASN	-	expression tag	UNP O60462
F	867	SER	-	expression tag	UNP O60462
F	868	ASP	-	expression tag	UNP O60462
F	869	TYR	-	expression tag	UNP O60462
F	870	LYS	-	expression tag	UNP O60462
F	871	ASP	-	expression tag	UNP O60462
F	872	ASP	-	expression tag	UNP O60462
F	873	ASP	-	expression tag	UNP O60462
F	874	ASP	-	expression tag	UNP O60462
F	875	LYS	-	expression tag	UNP O60462

• Molecule 7 is a protein called Fab 8I21 heavy chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	Н	121	Total 951	C 602	N 167	0 177	${ m S}{ m 5}$	0	0

• Molecule 8 is a protein called Fab 13H11 heavy chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	J	121	Total 924	C 581	N 160	0 178	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called Fab 13H11 light chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	K	105	Total 790	C 500	N 131	0 156	$\frac{S}{3}$	0	0

• Molecule 10 is a protein called Fab 8I21 light chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	Ι	107	Total 815	C 515	N 138	O 159	${ m S} { m 3}$	0	0

• Molecule 11 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	Aton	ns		AltConf
11	Λ	1	Total	С	Ν	0	0
11	Л	1	56	32	4	20	0
11	Λ	1	Total	С	Ν	0	0
11	Л	T	56	32	4	20	0
11	Δ	1	Total	С	Ν	0	0
11	Π	T	56	32	4	20	0
11	Δ	1	Total	С	Ν	0	0
11	11	I	56	32	4	20	0
11	Л	1	Total	\mathbf{C}	Ν	Ο	0
11	D	I	28	16	2	10	0
11	Л	1	Total	С	Ν	Ο	0
		1	28	16	2	10	0
11	E	1	Total	С	Ν	Ο	0
	12	1	14	8	1	5	0
11	F	1	Total	С	Ν	Ο	0
	1	1	28	16	2	10	0
11	F	1	Total	\mathbf{C}	Ν	Ο	0
	T		28	16	2	10	0

• Molecule 12 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms		AltConf
12	F	1	Total 1	Ca 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Envelope glycoprotein H

L548 D556 C569 C569 C577 L590 L590 THRP THRP	ASP SER LYS FRO THR VAL GLU THR LEU GLY FRO	VAL LYS SER SER GLU GLU THR THR TYR PRO FYR GLU GLU	ALA ALA THR CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS
SER GLY PHE ASN CYS ASN PHE ASP PHE ASP PHE CYS CYS CYS	GLY TRP MET TYR MET TYR ALA ALA ALA ALA LYS TRP LLY TRP LEU ARG	THR TRP ALA ALA SER SER SER PRO ASP ASP ASP PHE PHE	ASP ASP ASP ASN ASN PHE LEU ARG CLN CLN CLN CLN CLN CLN CLN ARG CLN TYR ARG CLN ARG ALA
LEU ILE SER PRO PRO PRO HIS LEU PRO PRO PRO VAL CVS	MET GLU GLU GLN TTR GLN TTR GLY GLY GLY GLY	VAL ALA ALA LEU CLN VAL ARG GLU SER SER SER SER SER SER	LEU TRP VAL TRP VAL TRP ASP GLV GLV GLV GLV GLV CTRP GLV TRP CLU CTRP CLU CTRP CLU CTRP CLU CTRP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
PRO SER TYR AET AET AET CLU CLU CLU CLU CLU CLU VAL VAL	1LE GLY LYS GLY GLY SER SER GLY TLE TLE ASP	ASP ILE ARG ILE SER SER ASP VAL PRO CLU CVS MCY SN	GLU PRO PRO SER ALA ALA ALA ALA ASN CLU ASN CLU ASN ASP TRO CLU TRE PRO GLU GLU GLU
ARG GLU GLU GLU GLU GLU ISP ASP ASP ASP CLU TYR GLU VAL	ASP TRP SER ASN SER SER SER ALA THR THR SER SER SER	GLY ALA PRO PRO SER ASP ASP LYS CLYS CLYS CLYS SER THP THR THR	LEU PRO CLY CLY SER SER SER CLY SER ASP ASP ASP ASP ASP
• Molecule 7: Fab	8I21 heavy chain	1	
Chain H:	41%	8%	51%
MET LYS LYS LYS ASN ALA PHE LEU LEU ALA ALA ALA SER SER YAH	PHE SER ILE ALA ALA ALA ALA ALA V2 V2	E6 112 118 118 118 128 182 167 167	L86 L86 D90 M93 M93 M93 M101 M100 M100 M100 M105 M103 M105 M105 M111
S121 SER ALA ALA ALA ALA CLY PRO CLY VAL PHE PHE PHE PLO	ALA PRO SER SER SER LYS SER SER GLY THR ALA	ALA LEU GLY GLY CYS CYS LEU VAL LEU VAL LYS PRO PRO PRO	THR VAL SER TRP ASN ASN ASN SER CLY THR CLY VAL THR THR THR THR THR THR THR THR THR THR
LN EER LLY EER EER EAL AL AL AL	KC KC KC KC KC KC KC KC KC KC KC KC KC K	AAR AAR AAR AAR AAR AAR AAR AAR AAR AAR	AL LU RO SP SP
0 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2	C N N N N N N N N N N N N N N N N N N N	APAHICSAHIPAII	A C S L P G C
• Molecule 8: Fab	13H11 heavy cha	apampesatoraco in	> 0 0 C 2 0 C 4
• Molecule 8: Fab Chain J:	13H11 heavy cha 42%	asamum akansanu in 6%	52%
Molecule 8: Fab Chain J:	13H11 heavy cha 42%		52% 52% 52% 52% 52% 52% 52% 52%
Molecule 8: Fab Chain J:	A S S S S S S S S S S S S S S S S S S S	CTS LEEU V11 ASP ASP ASP CT ASP CT ASP CT A A A A A A A A A A A A A A A A A A	TRP TRP 176 Standard Standard
Molecule 8: Fab Chain J: Solution of the second seco	A S S S S S S S S S S S S S S S S S S S	HIS CYS LEG CYS LVS LEG CYS VII THR TYR VAL THR TYR VAB ASN ASP CLU VAL THR ASP CUU ASN ASP CUU VAL THR Q43 CUU A40 A40 A40 A40 A40 A40 A40 A40 A40 A40	LIYS TRP CYS Kasy CYS SER Ala Ala Ala Ala Ala Ala Ala Hill Hill Hill Pino Pino
 Molecule 8: Fab Chain J: SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13H11 heavy cha 42% # 約 前 計 # 約 平 5 平 5 平 5 平 # 約 計 計 # 約 平 5 平 5 平 約 約 約 # 約 # 約 計 # 1 7 8 3 約 約 約 # 約 # 約 # 1 7 8 3 約 約 約 # 約 # 約 # 1 8 5 8 8 7 8 8 13H11 light chair	u HIS CYS VII LVS CYS VII NAN ASP VAL VIS SRA VAL VIE NAN ASP VAL VIE VAL VIE VAL 134 043 VAL 160 440 440 440 VAL 160 643 440 440 440 440 555 VAL 160 744 741 755 757 757 757 757 757 757 757 757 75	2558 ASN CITY ASN CITY A
 Molecule 8: Fab Chain J: Chain J: Chain S: Chain S: Chain S: Molecule 9: Fab Chain K: 	13H11 heavy cha 42% # 6 1 4 # 6 7 # 6 7 # 7 # 7 # 7 # 7 # 7 # 7 # 7	ewale with the second s	522% 522% 522% 522% 528% 528% 528% 528%
 Molecule 8: Fab Chain J: SEE SET THE SET SEE SET THE SET TH	13H11 heavy cha 42% # # # # # # # # # # # # # # # # # # #	472 427 1133 114 114 114 114 114 114 114 114 114 118 48 118 114 118 114 118 114 114 114 118 114 118 114 118 114 118 114 118 114 118 114 118 114 118 114 119 114 118 114 119 114 110 114 111 114 118 114 119 114 111 114 118 114 119 114 110 114 111 114 111 114 111 114 111 114 111 114 111 114 111 114 111 114 111 114 111 114 119 114 110 114	71 100 1110 100 1110 100 1100 100 <td< td=""></td<>
Molecule 8: Fab Chain J: So S S S S S S S S S S S S S S S S	13H11 heavy cha 42% # # # # # # # # # # # # # # # # # # #	ARG GUU 027 UL U U U U U U U U U VAL 147 CAN 147 CAN 148 CAN 144 CAN 1	2538 861 2617 71 2618 71 2619 71 2610 71 2610 71 271 70 271 71

 \bullet Molecule 10: Fab 8I21 light chain

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	2252924	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	52	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	165000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	15.305	Depositor
Minimum map value	0.000	Depositor
Average map value	0.012	Depositor
Map value standard deviation	0.182	Depositor
Recommended contour level	0.8	Depositor
Map size (Å)	383.7976, 383.7976, 383.7976	wwPDB
Map dimensions	284, 284, 284	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.3514, 1.3514, 1.3514	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
WIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.28	0/5149	0.51	0/7007
2	В	0.30	0/1848	0.55	0/2520
3	С	0.29	0/911	0.58	0/1227
4	D	0.29	0/1397	0.55	0/1896
5	Ε	0.30	0/840	0.55	0/1138
6	F	0.28	0/2950	0.55	0/3991
7	Η	0.30	0/976	0.57	0/1322
8	J	0.31	0/944	0.53	0/1280
9	Κ	0.33	0/808	0.53	0/1100
10	Ι	0.31	0/837	0.53	0/1141
All	All	0.29	0/16660	0.54	0/22622

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5034	0	5000	54	0
2	В	1804	0	1793	19	0
3	C	896	0	902	23	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	D	1359	0	1332	21	0
5	Е	821	0	781	20	0
6	F	2883	0	2826	51	0
7	Н	951	0	910	18	0
8	J	924	0	900	14	0
9	K	790	0	780	18	0
10	Ι	815	0	781	10	0
11	А	56	0	52	0	0
11	D	28	0	26	2	0
11	Е	14	0	13	2	0
11	F	28	0	26	0	0
12	F	1	0	0	0	0
All	All	16404	0	16122	221	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 221 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
9:K:47:LEU:O	9:K:48:ILE:HD13	1.84	0.78
2:B:158:LEU:HD21	7:H:105:TRP:CH2	2.20	0.76
9:K:50:ALA:HB3	9:K:53:THR:CB	2.17	0.75
1:A:464:ARG:NH1	1:A:519:TYR:O	2.26	0.67
6:F:365:VAL:HG21	6:F:402:LEU:CD2	2.25	0.67

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	610/767~(80%)	595~(98%)	15 (2%)	0	100	100
2	В	223/278~(80%)	215~(96%)	8 (4%)	0	100	100
3	С	106/171~(62%)	100 (94%)	6 (6%)	0	100	100
4	D	162/254~(64%)	162 (100%)	0	0	100	100
5	Е	95/129~(74%)	94 (99%)	1 (1%)	0	100	100
6	F	341/875~(39%)	327 (96%)	14 (4%)	0	100	100
7	Н	119/249~(48%)	116 (98%)	3 (2%)	0	100	100
8	J	119/250~(48%)	117 (98%)	2 (2%)	0	100	100
9	Κ	103/237~(44%)	97~(94%)	6 (6%)	0	100	100
10	Ι	105/238~(44%)	98 (93%)	7 (7%)	0	100	100
All	All	1983/3448 (58%)	1921 (97%)	62 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	569/692~(82%)	569~(100%)	0	100	100
2	В	198/238~(83%)	198 (100%)	0	100	100
3	С	100/153~(65%)	100 (100%)	0	100	100
4	D	152/223~(68%)	152 (100%)	0	100	100
5	Ε	88/114 (77%)	88 (100%)	0	100	100
6	F	316/764~(41%)	316 (100%)	0	100	100
7	Н	101/210~(48%)	101 (100%)	0	100	100
8	J	101/211~(48%)	101 (100%)	0	100	100
9	Κ	88/204~(43%)	88 (100%)	0	100	100
10	Ι	87/202~(43%)	87 (100%)	0	100	100
All	All	1800/3011 (60%)	1800 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 1 is monoatomic - leaving 9 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	Bond angles		
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
11	NAG	А	801	1	14,14,15	0.22	0	17,19,21	0.57	0
11	NAG	F	901	6	14,14,15	0.32	0	$17,\!19,\!21$	0.52	0
11	NAG	А	802	1	14,14,15	0.30	0	17,19,21	0.64	1 (5%)
11	NAG	D	302	4	14,14,15	0.20	0	17,19,21	0.46	0
11	NAG	D	301	4	14,14,15	0.17	0	17,19,21	0.39	0
11	NAG	F	902	6	14,14,15	0.18	0	$17,\!19,\!21$	0.37	0
11	NAG	А	804	1	14,14,15	0.27	0	17,19,21	0.69	1 (5%)
11	NAG	А	803	-	14,14,15	0.20	0	17,19,21	0.46	0
11	NAG	Е	201	5	14,14,15	0.33	0	17,19,21	0.62	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	NAG	А	801	1	-	1/6/23/26	0/1/1/1
11	NAG	F	901	6	-	0/6/23/26	0/1/1/1
11	NAG	А	802	1	-	2/6/23/26	0/1/1/1
11	NAG	D	302	4	-	2/6/23/26	0/1/1/1
11	NAG	D	301	4	-	0/6/23/26	0/1/1/1
11	NAG	F	902	6	-	0/6/23/26	0/1/1/1
11	NAG	А	804	1	-	1/6/23/26	0/1/1/1
11	NAG	А	803	-	-	2/6/23/26	0/1/1/1
11	NAG	Е	201	5	-	2/6/23/26	0/1/1/1

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	А	804	NAG	C1-O5-C5	2.44	115.50	112.19
11	А	802	NAG	C1-O5-C5	2.29	115.29	112.19

There are no chirality outliers.

 $5~{\rm of}~10$ torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	А	803	NAG	O5-C5-C6-O6
11	Е	201	NAG	C4-C5-C6-O6
11	Е	201	NAG	O5-C5-C6-O6
11	D	302	NAG	O5-C5-C6-O6
11	А	802	NAG	O5-C5-C6-O6

There are no ring outliers.

2 monomers are involved in 4 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
11	D	302	NAG	2	0
11	Е	201	NAG	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-25687. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 142

Y Index: 142

Z Index: 142

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 137

Y Index: 120

Z Index: 159

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.8. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 156 $\rm nm^3;$ this corresponds to an approximate mass of 141 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-25687 and PDB model 7T4S. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.8 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.8).

9.4 Atom inclusion (i)

At the recommended contour level, 99% of all backbone atoms, 94% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.8) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.9396	0.5700	1.0
А	0.9389	0.5810	
В	0.9474	0.5480	
С	0.8895	0.4990	
D	0.9704	0.5860	
Е	0.9493	0.5550	
F	0.9021	0.5360	
Н	0.9578	0.5930	
Ι	0.9774	0.6160	0.0
J	0.9767	0.6250	<0.0
K	0.9524	0.5980	

