

wwPDB EM Validation Summary Report (i)

Nov 2, 2022 – 12:50 AM EDT

PDB ID	:	5T5H
EMDB ID	:	EMD-8361
Title	:	Structure and assembly model for the Trypanosoma cruzi 60S ribosomal sub-
		unit
Authors	:	Liu, Z.; Gutierrez-Vargas, C.; Wei, J.; Grassucci, R.A.; Ramesh, M.; Espina,
		N.; Sun, M.; Tutuncuoglu, B.; Madison-Antenucci, S.; Woolford Jr., J.L.;
		Tong, L.; Frank, J.
Deposited on	:	2016-08-31
Resolution	:	2.54 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.54 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures (#Entries)		
	(#Entries)	(#Entries)		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	1278	• 69%		29%	·
2	В	941	67%		•	
3	С	169	61%	22%	·	13%
4	D	118	75%		21%	·
5	Е	146	77%		21%	•
6	F	46	50%	50%		
7	G	123	73%		23%	•••
8	Н	91	75%		25%	

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	Ι	192	99%	
10	L	65	98%	
11	Ν	205	81% · 16%	
12	0	203	99%	•
13	Р	149	95% · ·	
14	Q	203	99%	
15	R	152	99%	•
16	S	177	98% •	
17	Т	150	99%	•
18	U	146	84% · 14%	-
19	V	99	86% 14%	
20	W	127	98%	•
21	Х	116	93% • 6%	
22	Y	61	95% 5%	•
23	Z	113	99%	
24	a	132	77% • 20%	
25	b	144	97%	
26	с	125	94% • •	
27	d	63	95% 5%	•
28	е	245	99%	•
29	f	397	• 96% •	•
30	g	66	95% 5%	•
31	h	169	88% • 11%	
32	i	113	99%	•
33	j	104	100%	•

Mol	Chain	Length	Quality of chain	
34	k	120	5% 93% • 6%	
35	1	136	10% 97% ·	
36	m	95	6% 97% ·	
37	n	81	99%	
38	О	85	96% ·	
39	р	58	88% • 10%	
40	q	50	• 98% •	
41	r	337	96% · ·	1
42	t	93	99%	
43	u	254	8% • 24%	
44	v	171	7% • 23%	
45	W	215	99%	
46	x	223	6% 93% 7%	

Continued from previous page...

2 Entry composition (i)

There are 49 unique types of molecules in this entry. The entry contains 105124 atoms, of which 12 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA LARGE SUBUNIT ALPHA.

Mol	Chain	Residues				AltConf	Trace			
1	А	1278	Total 27453	C 12272	Н 12	N 5035	O 8856	Р 1278	0	0

• Molecule 2 is a RNA chain called RNA LARGE SUBUNIT BETA.

Mol	Chain	Residues		A		AltConf	Trace		
2	В	941	Total 20110	C 9007	N 3606	O 6556	Р 941	0	0

• Molecule 3 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		A		AltConf	Trace		
3	С	147	Total 3140	C 1408	N 557	O 1028	Р 147	0	0

• Molecule 4 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
4	D	114	Total 2432	C 1084	N 435	O 799	Р 114	0	0

• Molecule 5 is a RNA chain called srRNA1.

Mol	Chain	Residues		Α		AltConf	Trace		
5	Е	146	Total 3110	C 1390	N 552	O 1022	Р 146	0	0

• Molecule 6 is a RNA chain called srRNA3.

Mol	Chain	Residues		A	toms	AltConf	Trace		
6	F	46	Total 965	C 433	N 165	0 321	Р 46	0	0

• Molecule 7 is a RNA chain called srRNA2.

Mol	Chain	Residues		A	AltConf	Trace			
7	G	121	Total 2578	C 1150	N 455	O 852	Р 121	0	0

• Molecule 8 is a RNA chain called srRNA4.

Mol	Chain	Residues		A	AltConf	Trace			
8	Н	91	Total 1946	C 867	N 354	0 634	Р 91	0	0

• Molecule 9 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	Ι	192	Total 1515	C 951	N 308	O 250	S 6	0	0

• Molecule 10 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	L	65	Total 535	C 333	N 112	O 85	${S \atop 5}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	Ν	172	Total 1413	C 892	N 291	0 224	S 6	0	0

• Molecule 12 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues		At	AltConf	Trace			
12	О	203	Total 1642	C 1046	N 322	O 269	${ m S}{ m 5}$	0	1

• Molecule 13 is a protein called 40S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	Р	149	Total 1186	C 746	N 235	O 203	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Р	72	LYS	ARG	conflict	UNP Q4DQ35

• Molecule 14 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate	AltConf	Trace			
14	Q	203	Total 1710	C 1076	N 365	O 263	S 6	1	0

• Molecule 15 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
15	R	152	Total 1226	C 768	N 243	O 205	S 10	0	0

• Molecule 16 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	S	177	Total 1449	C 919	N 282	0 242	S 6	0	0

• Molecule 17 is a protein called Ribosomal protein L19-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
17	Т	150	Total 1273	C 789	N 273	O 205	S 6	0	0

• Molecule 18 is a protein called Ribosomal protein L21E (60S).

Mol	Chain	Residues		At	oms			AltConf	Trace
18	U	126	Total 1016	C 642	N 207	0 163	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	V	85	Total 730	C 481	N 127	O 120	${S \over 2}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	W	127	Total 960	C 611	N 180	O 166	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L23a.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	Х	109	Total 890	$\begin{array}{c} \mathrm{C} \\ 565 \end{array}$	N 164	0 157	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called Ribosomal protein L24.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
22	Y	61	Total 519	C 340	N 98	0 77	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Z	113	Total 919	C 571	N 195	O 150	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called Ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	a	105	Total 877	$\begin{array}{c} \mathrm{C} \\ 565 \end{array}$	N 175	0 135	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L27A/L29.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	b	144	Total 1135	C 720	N 226	0 185	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
26	С	120	Total 935	C 583	N 187	0 161	${S \atop 4}$	0	0

• Molecule 27 is a protein called Ribosomal protein L29.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
27	d	63	Total 518	C 314	N 122	0 81	S 1	0	0

• Molecule 28 is a protein called 60S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
28	е	245	Total 1874	C 1170	N 379	0 314	S 11	0	0

• Molecule 29 is a protein called Ribosomal protein L13.

Mol	Chain	Residues		At	AltConf	Trace			
29	f	397	Total 3189	C 2010	N 630	O 537	S 12	0	0

• Molecule 30 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
30	g	66	Total 523	C 335	N 91	O 93	$\frac{S}{4}$	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
g	91	VAL	ALA	conflict	UNP Q4DIC9
g	92	LEU	GLY	conflict	UNP Q4DIC9
g	93	SER	ASN	conflict	UNP Q4DIC9
g	94	ILE	ASN	conflict	UNP Q4DIC9
g	95	THR	LEU	conflict	UNP Q4DIC9
g	97	VAL	LEU	conflict	UNP Q4DIC9

• Molecule 31 is a protein called 60S ribosomal subunit protein L31.

Mol	Chain	Residues		At	AltConf	Trace			
31	h	150	Total 1064	C 671	N 208	0 183	${S \over 2}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	AltConf	Trace			
32	i	113	Total 928	C 585	N 185	0 154	${S \over 4}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	AltConf	Trace			
33	j	104	Total 863	C 532	N 191	0 137	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		At	AltConf	Trace			
34	k	113	Total 967	C 602	N 212	O 150	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called Ribosomal protein L35A.

Mol	Chain	Residues		At	AltConf	Trace			
35	1	136	Total 1057	C 662	N 217	0 174	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called Ribosomal protein L36.

Mol	Chain	Residues		At	AltConf	Trace			
36	m	95	Total 757	C 474	N 159	O 121	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	AltConf	Trace			
37	n	81	Total 679	C 413	N 154	0 106	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
n	64	MET	CYS	conflict	UNP Q4DXW6

• Molecule 38 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	AltConf	Trace			
38	О	85	Total 669	C 413	N 141	0 108	${ m S} 7$	0	0

• Molecule 39 is a protein called Ribosomal protein L38.

Mol	Chain	Residues	Atoms					AltConf	Trace
39	р	52	Total 432	C 277	N 82	0 71	${ m S}_2$	0	0

• Molecule 40 is a protein called Ribosomal protein L39.

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
40	q	50	Total 456	C 297	N 98	O 61	0	0

• Molecule 41 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	r	325	Total 2513	$\begin{array}{c} \mathrm{C} \\ 1575 \end{array}$	N 489	0 434	S 15	0	0

• Molecule 42 is a protein called 60S ribosomal protein L44.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	t	93	Total 763	C 486	N 149	0 123	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	u	193	Total 1541	C 982	N 292	O 262	${ m S}{ m 5}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	v	132	Total 1037	C 661	N 194	0 179	${ m S} { m 3}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
45	W	215	Total 1749	C 1110	N 342	0 288	S 9	0	0

• Molecule 46 is a protein called Ribosomal protein L7a-like protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
46	х	208	Total 1690	C 1062	N 338	0 284	S 6	0	0

• Molecule 47 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
47	А	66	Total Mg 66 66	0
47	В	32	Total Mg 32 32	0
47	С	2	Total Mg 2 2	0
47	D	1	Total Mg 1 1	0
47	Ε	1	Total Mg 1 1	0
47	F	1	Total Mg 1 1	0
47	G	1	Total Mg 1 1	0
47	Н	1	Total Mg 1 1	0

• Molecule 48 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
48	n	1	Total Zn 1 1	0
48	О	1	Total Zn 1 1	0
48	t	1	Total Zn 1 1	0

• Molecule 49 is water.

Mol	Chain	Residues	Atoms	AltConf
49	А	38	Total O 38 38	0
49	В	26	Total O 26 26	0
49	С	1	Total O 1 1	0

Mol	Chain	Residues	Atoms	AltConf
49	Е	1	Total O 1 1	0
49	G	3	Total O 3 3	0
49	Н	2	Total O 2 2	0
49	Ι	1	Total O 1 1	0
49	R	1	Total O 1 1	0
49	a	1	Total O 1 1	0
49	b	1	Total O 1 1	0
49	е	2	Total O 2 2	0
49	f	1	Total O 1 1	0
49	j	1	Total O 1 1	0
49	k	1	Total O 1 1	0
49	n	1	Total O 1 1	0
49	W	1	Total O 1 1	0
49	х	1	Total O 1 1	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA LARGE SUBUNIT ALPHA

di 647 11 655 11 655 11 655 11 655 11 655 11 655 11 655 11 655 11 651 11 655 11 651 11 655 11 651 11 651 11 652 11 652 11 652 11 652 11 652 11 652 11 723 11 725 11 725 11 725 11 725 11 725 11 725 11 725 11 725 11 725 11 75

G1777 G1778 C1778 C1778 C1780 C1791 C1928 C1938 C1938 C1938 C1938 C1938 C1947 C1945 C1945 C1945 C1947 C1945 C1947 C1946 C1946 C1946 C1946 C1946 C1947 C1946 C1966 C1966

• Molecule 4: 5S rRNA

• Molecule 11: 60S rib	oosomal protein L13	
Chain N:	81%	• 16%
P2 220 221 222 221 222 222 223 223 223 223 223	VAL VAL LYS GLY GLV GLU THR GLU GLU GLU GLU ALA ARG GLN ARG ARG ARG ARG ARG ARG ARG ARG ALA ALA ALA ALA	VAL GLY GLY PHE VAL T168 P174 R206
• Molecule 12: 60S rib	oosomal protein L13a	
Chain O:	99%	
H20 F107 K188 K192 S206 K207 V208		
• Molecule 13: 40S rib	oosomal protein L14	
Chain P:	95%	•
N5 131 131 K44 K72 K72 K75	E80 D129 D129 K133 K133 K133 K135 K135 V135 V135 V135 K145 K145 K145 K145 K145 K145 K145 K145 K145 K145 K133 K135 K144 K144 K145	4148 K149 A151 K152 K152
• Molecule 14: Riboso	mal protein L15	
Chain Q:	99%	
G18 R40 R201 R220		
• Molecule 15: 60S rib	osomal protein L17	
Chain R:	99%	
H3 N64 A132 Q164		
• Molecule 16: 60S rib	oosomal protein L18a	
Chain S:	98%	
V2 E19 K20 B68 R86 R86 R86 R86 R86 R86 R86	C C C C C C C C C C C C C C C C C C C	
• Molecule 17: Riboso	mal protein L19-like protein	
7%		

 \bullet Molecule 18: Ribosomal protein L21E (60S)

Chain U: 84%	• 14%
H3 84 84 84 84 84 84 81 81 81 81 81 81 81 81 81 81 81 81 81	
• Molecule 19: 60S ribosomal protein L22	
Chain V: 86%	14%
K24 P33 ALA ASP ALA ASP ALA ASP CLU CLE CLE CLU CLU CLU CLU CLU CLU CLU CLZ ARC ASN NT5 ASN NT5 ASS ASS ASA ASA ASA CLU CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2	
\bullet Molecule 20: 60S ribosomal protein L23	
Chain W: 98%	·
F13 K1 22 V1 39	
\bullet Molecule 21: 60S ribosomal protein L23a	
Chain X: 93%	• 6%
A78 SSR PRO LYS PRO ASN M102 L193 L193	
• Molecule 22: Ribosomal protein L24	
Chain Y: 95%	5%
13 828 X30 X30 A6 1	
• Molecule 23: 60S ribosomal protein L26	
Chain Z: 99%	:

• Molecule 24: Ribosomal protein L27

Chain a:	11%	• 20%	-
K2 K6 V25 K31	S32 K33 R334 R335 R335 R33 R33 ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	M86 LEU LEU SEEU SEE ARG ARG ARG ARG ARG ARG ARG ARA ARA ALA ALA ALA ALA ALA ALA SER LYS SIO CYS SIO CYS SIO CYS SIO CYS SIO CYS SIO CYS SIO CYS SIO CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	q109 1110 115 115 115 115 115 115 11
R132 F133			
• Molecule	25: 60S ribosomal protein L27	7A/L29	
Chain b:	97	1%	
P2 F16 C17 F45 F45	E86 A87 K199 A145 A145		
• Molecule	26: 60S ribosomal protein L28	3	
Chain c:	94%	•	
S4 A43 G57 D58	469 469 482 482 488 414 012 012 012 012 012 888 488 6113 888 4125 8125 8125 8125 8125 8125 8125 8125		
• Molecule	27: Ribosomal protein L29		
Chain d:	950	% 5	%
N6 H30 K33 R34 A68			
• Molecule	28: 60S ribosomal protein L2		
Chain e:	9	9%	-
G2 H19 E142 G153	1246		
• Molecule	29: Ribosomal protein L13		
Chain f:	96%	6	
H8 R62 S65 K666 K666	N66 Kr0 Kr1 Kr1 Kr1 Kr1 Kr138 Kr138 Kr138 Kr138 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr209 Kr203	1372 (3375 (3375 (3396 (1396 (1399) (1399) (1400 (1400 (1400 (1400 (1400) (1400)	
• Molecule	30: 60S ribosomal protein L30)	
Chain g:	24% 95°	% 5	%

T14 K15 116 Q17 Q17 L18 N20 K21 K21 K22 G23 K24 C23 C23 C23 C23 C23 C23 C23 C23 C23 C23	N49 153 195 196 V97		
• Molecule 31: 60S ribosoma	al subunit protein L31		
Chain h:	88%	• 11%	
A15 L16 L17 D18 A19 K21 K21 K22 A23 S25 S25 K27 K28 K28 K28 K28 K28 K28 K28	D31 D32 B32 R33 R33 A41 A42 A41 A42 A42 CVR H178 L78 CVR H178 CVR H178 CVR VR	dr.n. R48 A50 A50 A68 A68 A68 K71 K71 K72	1774 778 778 779 778 184 184 184 184 184 184 184 184 184 18
LYS ARG K164			
• Molecule 32: 60S ribosoma	al protein L32		
Chain i:	99%		
V11 K12 K13 C13 C123			
• Molecule 33: 60S ribosoma	al protein L34		
Chain j:	100%		
P4 H62 K105 A107			
• Molecule 34: 60S ribosoma	al protein L35		
Chain k:	93%	• 6%	
I7 R8 D9 D12 A12 A12 A13 A13 A13 A13 A13 A13 A13 A13 A13 A13	N105		
• Molecule 35: Ribosomal p	rotein L35A		
Chain l:	97%	·	
N14 R15 S16 K17 K17 K18 C19 Q21 Q21 Q21 C22 C23 K24 K26 K26 K26 K26 K34	1149		
• Molecule 36: Ribosomal p	rotein L36		
Chain m:	97%	•	

• Molecule 37: Ribosomal protein L37

Chain n: 99% • Molecule 38: 60S ribosomal protein L37a Chain o: 96% • Molecule 39: Ribosomal protein L38 19% Chain p: 88% . 10% A13 114 CYS CYS SER ARG ARG ASP ASP ASP ALA ALA A48 D49 K50 • Molecule 40: Ribosomal protein L39 Chain q: 98% \bullet Molecule 41: 60S ribosomal protein L4 Chain r: 96% LYS GLN GLN GLN SER ALA SER SER LYS SER LLEU LLEU THR • Molecule 42: 60S ribosomal protein L44 6% Chain t: 99%

 \bullet Molecule 43: 60S ribosomal protein L5

<u> </u>	8%			
Chain u:	7!	•	24%	
V6 V7 G45 D59	Q85 B90 CL113 CL113 CL13 CL1 CL1 CL1 CL1 CL2 CLU CL2 CLU CL2 CLU CL2 CLU CL2 CLU CL2 CLU CL2 CLU CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2	ALU ALU ALS ALS ALS ALS SER TTR SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LVS LVS ARG F146 F146 D190 E192 E192 K191	D194 (199 (199 (199 (199 (199 (199 (199 (
G207 L208 E212 Y213 L214 L214 LYS	GLN VAL ARA GLU GLU GLU SER SER SER SER SER SER SER CUU CTS CTS PHE	LYS TYR TYR TYR LYS LYS LYS VAL VAL PRO FRO FRO FRO FRO FRO FRO FRO FRO FRO F	A224	
• Molecule	44: 60S ribosomal pro	tein L6		
Chain v:	7%7	6 % .	23%	
F23 Y24 K29 N58	Ge6 N93 N93 N93 D102 F104 F104 F104 CUN3 GLN GLN GLN GLN	LYS ARG VAL LYS SER SER SER GUU CUS ALA ALA ALA ALA	LLN LYS LYS LYS LYS THR AIA AIA AIA AIA AIA LYS LYS	uri ILE V144 S145 D146
D156	ee ta			
• Molecule	e 45: 60S ribosomal pro	tein L7		
Chain w:	•	99%	<u> </u>	
K28 A29 N33 K34 A35	1111 V164 0192 1242			
• Molecule	46: Ribosomal protein	L7a-like protein		
Chain x:	6%	93%	7%	
R88 A101 D141	R164 Q165 F168 F168 F168 F168 Club Club Club Club Club Club Club Club	ALA ALA ALA ALA ALA ALA LYS LYS A185 P216 P216 P216 P216 P216 B245 B245 B245 B245 B245	N310	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	235000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	27	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.816	Depositor
Minimum map value	-0.455	Depositor
Average map value	0.004	Depositor
Map value standard deviation	0.053	Depositor
Recommended contour level	0.07	Depositor
Map size (Å)	240.34999, 240.34999, 240.34999	wwPDB
Map dimensions	230, 230, 230	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.045, 1.045, 1.045	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 7MG, OMC, MG, OMU, A2M, 5MC, OMG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		B	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.31	11/29897~(0.0%)	1.06	45/46554~(0.1%)	
2	В	1.14	4/21699~(0.0%)	1.00	16/33776~(0.0%)	
3	С	1.23	0/3306	1.04	3/5144~(0.1%)	
4	D	0.83	0/2715	0.90	0/4226	
5	Е	0.95	2/3472~(0.1%)	0.92	1/5396~(0.0%)	
6	F	0.88	0/1074	0.98	3/1665~(0.2%)	
7	G	1.25	1/2849~(0.0%)	1.06	5/4431~(0.1%)	
8	Н	1.16	0/2171	1.01	1/3374~(0.0%)	
9	Ι	0.67	0/1540	0.67	0/2058	
10	L	0.38	0/542	0.52	0/718	
11	Ν	0.66	0/1442	0.65	1/1926~(0.1%)	
12	0	0.67	0/1673	0.62	0/2244	
13	Р	0.51	0/1204	0.60	1/1618~(0.1%)	
14	Q	0.82	0/1752	0.80	7/2341~(0.3%)	
15	R	0.74	0/1251	0.67	0/1678	
16	S	0.62	0/1484	0.60	0/1997	
17	Т	0.57	0/1292	0.58	0/1711	
18	U	0.67	0/1037	0.62	0/1389	
19	V	0.49	0/742	0.57	0/986	
20	W	0.64	0/977	0.61	0/1318	
21	Х	0.65	0/905	0.65	0/1215	
22	Y	0.69	0/539	0.66	0/728	
23	Ζ	0.56	0/934	0.59	0/1249	
24	a	0.45	0/895	0.55	0/1190	
25	b	0.73	0/1164	0.69	2/1558~(0.1%)	
26	с	0.55	0/946	0.58	0/1263	
27	d	0.57	0/527	0.67	0/703	
28	е	0.72	0/1915	0.66	0/2576	
29	f	0.72	0/3257	0.69	3/4376~(0.1%)	
30	g	0.43	0/530	0.55	0/712	
31	h	0.61	0/1076	0.60	0/1450	
32	i	0.74	0/948	0.67	0/1265	

Mal	Chain	B	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	j	0.62	0/879	0.62	0/1174	
34	k	0.53	0/972	0.61	0/1283	
35	1	0.77	0/1079	0.66	0/1451	
36	m	0.53	0/767	0.62	0/1017	
37	n	0.85	0/692	0.75	0/921	
38	0	0.74	0/681	0.67	0/905	
39	р	0.45	0/437	0.56	0/579	
40	q	0.66	0/470	0.65	0/626	
41	r	0.70	0/2560	0.63	0/3444	
42	t	0.62	0/777	0.65	0/1030	
43	u	0.52	0/1568	0.56	0/2104	
44	V	0.51	0/1055	0.57	0/1420	
45	W	0.68	0/1780	0.62	0/2384	
46	х	0.60	0/1715	0.64	0/2306	
All	All	1.02	$18/111187 \ (0.0\%)$	0.90	88/163479~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
14	Q	0	1
24	a	0	1
All	All	0	2

The worst 5 of 18 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	А	1610	А	N9-C4	-6.70	1.33	1.37
1	А	1079	G	N9-C4	-6.39	1.32	1.38
2	В	1347	А	N9-C4	-6.00	1.34	1.37
1	А	20	G	N9-C4	-5.97	1.33	1.38
1	А	405	А	N9-C4	-5.83	1.34	1.37

The worst 5 of 88 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	А	1578	U	OP2-P-O3'	-10.15	82.87	105.20
1	А	1578	U	OP1-P-O3'	-9.94	83.34	105.20
14	Q	40[A]	ARG	CA-C-O	9.91	140.91	120.10
14	Q	40[B]	ARG	CA-C-O	9.91	140.91	120.10

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	20	G	N3-C4-C5	9.68	133.44	128.60

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
14	Q	200	LEU	Peptide
24	a	115	PHE	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
9	Ι	190/192~(99%)	177 (93%)	11 (6%)	2 (1%)	14	19
10	L	57/65~(88%)	51 (90%)	5 (9%)	1 (2%)	8	10
11	Ν	168/205~(82%)	154 (92%)	12 (7%)	2 (1%)	13	17
12	Ο	201/203~(99%)	191 (95%)	8 (4%)	2 (1%)	15	22
13	Р	147/149~(99%)	133 (90%)	11 (8%)	3 (2%)	7	8
14	Q	202/203~(100%)	188 (93%)	14 (7%)	0	100	100
15	R	150/152~(99%)	138 (92%)	10 (7%)	2 (1%)	12	16
16	S	175/177~(99%)	158 (90%)	13 (7%)	4 (2%)	6	6
17	Т	148/150~(99%)	144 (97%)	3 (2%)	1 (1%)	22	30
18	U	122/146~(84%)	111 (91%)	7 (6%)	4 (3%)	4	2
19	V	79/99~(80%)	70 (89%)	9 (11%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
20	W	125/127~(98%)	120 (96%)	3 (2%)	2(2%)	9	12
21	Х	105/116~(90%)	101 (96%)	3~(3%)	1 (1%)	15	22
22	Y	59/61~(97%)	57 (97%)	2(3%)	0	100	100
23	Z	111/113~(98%)	100 (90%)	10 (9%)	1 (1%)	17	24
24	a	99/132~(75%)	92 (93%)	5 (5%)	2(2%)	7	8
25	b	142/144~(99%)	130 (92%)	11 (8%)	1 (1%)	22	30
26	с	116/125~(93%)	108 (93%)	6 (5%)	2(2%)	9	11
27	d	61/63~(97%)	56 (92%)	2 (3%)	3(5%)	2	1
28	е	243/245~(99%)	225 (93%)	16 (7%)	2(1%)	19	27
29	f	395/397~(100%)	372 (94%)	19 (5%)	4 (1%)	15	22
30	g	62/66~(94%)	59 (95%)	2 (3%)	1 (2%)	9	12
31	h	140/169~(83%)	133 (95%)	7 (5%)	0	100	100
32	i	111/113 (98%)	108 (97%)	2 (2%)	1 (1%)	17	24
33	j	102/104 (98%)	98 (96%)	4 (4%)	0	100	100
34	k	109/120 (91%)	105 (96%)	3 (3%)	1 (1%)	17	24
35	1	134/136~(98%)	123 (92%)	9 (7%)	2(2%)	10	14
36	m	93/95~(98%)	87 (94%)	3 (3%)	3(3%)	4	3
37	n	79/81~(98%)	71 (90%)	7 (9%)	1 (1%)	12	16
38	0	83/85~(98%)	76 (92%)	4 (5%)	3 (4%)	3	2
39	р	48/58~(83%)	44 (92%)	3 (6%)	1 (2%)	7	7
40	q	48/50~(96%)	43 (90%)	4 (8%)	1 (2%)	7	7
41	r	321/337~(95%)	309 (96%)	10 (3%)	2(1%)	25	34
42	t	91/93~(98%)	86 (94%)	4 (4%)	1 (1%)	14	19
43	u	187/254 (74%)	176 (94%)	9(5%)	2 (1%)	14	19
44	V	128/171~(75%)	119 (93%)	7 (6%)	2(2%)	9	12
45	W	213/215~(99%)	194 (91%)	16 (8%)	3 (1%)	11	15
46	x	204/223~(92%)	196 (96%)	7 (3%)	1 (0%)	29	40
All	All	5248/5634 (93%)	4903 (93%)	281 (5%)	64 (1%)	17	17

5 of 64 Ramachandran outliers are listed below:

Mol	Chain	Res	Type	
9	Ι	142	ASN	

Continued from previous page...

Mol	Chain	Res	Type
11	Ν	66	PRO
11	N	174	PRO
13	Р	21	GLN
15	R	132	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
9	Ι	160/160~(100%)	160 (100%)	0	100	100
10	L	57/57~(100%)	57 (100%)	0	100	100
11	Ν	153/178~(86%)	150 (98%)	3 (2%)	55	70
12	Ο	175/175~(100%)	175 (100%)	0	100	100
13	Р	119/131 (91%)	115 (97%)	4 (3%)	37	50
14	Q	177/176~(101%)	177 (100%)	0	100	100
15	R	131/131~(100%)	131 (100%)	0	100	100
16	S	158/158~(100%)	158 (100%)	0	100	100
17	Т	134/134~(100%)	134 (100%)	0	100	100
18	U	108/123~(88%)	108 (100%)	0	100	100
19	V	79/90~(88%)	79~(100%)	0	100	100
20	W	99/99~(100%)	99 (100%)	0	100	100
21	Х	96/103~(93%)	96 (100%)	0	100	100
22	Y	55/55~(100%)	52 (94%)	3~(6%)	21	29
23	Z	97/97~(100%)	97~(100%)	0	100	100
24	a	93/116~(80%)	93~(100%)	0	100	100
25	b	116/116~(100%)	114 (98%)	2(2%)	60	75
26	с	99/102~(97%)	99 (100%)	0	100	100
27	d	52/52~(100%)	52 (100%)	0	100	100
28	е	194/194~(100%)	194 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
29	f	339/339~(100%)	332~(98%)	7 (2%)	53	68
30	g	62/62~(100%)	60~(97%)	2(3%)	39	53
31	h	91/144~(63%)	89~(98%)	2(2%)	52	66
32	i	100/100~(100%)	100 (100%)	0	100	100
33	j	90/90~(100%)	90 (100%)	0	100	100
34	k	103/108~(95%)	103 (100%)	0	100	100
35	1	102/112~(91%)	100 (98%)	2 (2%)	55	70
36	m	77/77~(100%)	77 (100%)	0	100	100
37	n	69/69~(100%)	69 (100%)	0	100	100
38	О	68/68~(100%)	68 (100%)	0	100	100
39	р	48/53~(91%)	48 (100%)	0	100	100
40	q	46/46~(100%)	46 (100%)	0	100	100
41	r	262/273~(96%)	262 (100%)	0	100	100
42	t	82/82~(100%)	82 (100%)	0	100	100
43	u	155/207~(75%)	155 (100%)	0	100	100
44	v	112/141~(79%)	112 (100%)	0	100	100
45	W	180/180 (100%)	180 (100%)	0	100	100
46	х	182/194 (94%)	182 (100%)	0	100	100
All	All	4520/4792 (94%)	4495 (99%)	25 (1%)	86	92

Continued from previous page...

5 of 25 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
29	f	67	VAL
29	f	209	ARG
35	1	149	ILE
29	f	71	GLU
29	f	396	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 80 such sidechains are listed below:

Mol	Chain	Res	Type
29	f	248	HIS
41	r	42	ASN
29	f	289	GLN

Continued from previous page...

Mol	Chain	Res	Type
33	j	51	HIS
45	W	110	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	1249/1278~(97%)	348~(27%)	33~(2%)
2	В	925/941~(98%)	275~(29%)	18 (1%)
3	С	144/169~(85%)	39~(27%)	2(1%)
4	D	111/118 (94%)	23~(20%)	4(3%)
5	Е	141/146~(96%)	30 (21%)	4 (2%)
6	F	44/46~(95%)	21 (47%)	7~(15%)
7	G	117/123~(95%)	28~(23%)	2(1%)
8	Н	86/91~(94%)	20 (23%)	3~(3%)
All	All	2817/2912~(96%)	784 (27%)	73~(2%)

5 of 784 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	4	А
1	А	5	G
1	А	12	G
1	А	15	U
1	А	20	G

5 of 73 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
5	Е	67	U
8	Н	41	А
5	Е	126	А
6	F	62	U
1	А	1083	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

72 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	ths	В	Bond angles		
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
2	OMC	В	77	2	19,22,23	2.40	6 (31%)	$26,\!31,\!34$	0.82	0	
2	A2M	В	482	2	18,25,26	<mark>3.93</mark>	7 (38%)	$18,\!36,\!39$	2.64	3 (16%)	
2	7MG	В	1138	2	22,26,27	2.49	9 (40%)	29,39,42	2.08	8 (27%)	
2	OMU	В	1345	2	19,22,23	2.32	3 (15%)	26,31,34	1.82	5 (19%)	
2	OMG	В	755	2	18,26,27	1.64	5 (27%)	19,38,41	1.83	5 (26%)	
2	OMG	В	1363	2	18,26,27	1.78	5 (27%)	19,38,41	1.74	5 (26%)	
2	OMG	В	1492	2	18,26,27	1.69	5 (27%)	19,38,41	1.48	5 (26%)	
1	A2M	А	974	1	18,25,26	<mark>3.90</mark>	6 (33%)	18,36,39	2.74	5 (27%)	
1	OMG	А	1316	1	18,26,27	1.71	5 (27%)	19,38,41	1.76	5 (26%)	
2	OMG	В	1385	2	18,26,27	1.67	5 (27%)	19,38,41	1.59	<mark>6 (31%)</mark>	
2	A2M	В	1516	2,47	18,25,26	4.07	7 (38%)	18,36,39	2.65	3 (16%)	
1	OMG	А	1075	1	18,26,27	1.70	5 (27%)	19,38,41	1.78	4 (21%)	
1	OMC	А	919	1	19,22,23	2.42	5 (26%)	26,31,34	1.23	3 (11%)	
2	OMU	В	73	2	19,22,23	2.29	5 (26%)	26,31,34	1.70	4 (15%)	
1	OMG	А	1675	2,1	18,26,27	1.58	4 (22%)	19,38,41	1.65	7 (36%)	
1	OMG	А	972	1	18,26,27	1.67	4 (22%)	19,38,41	1.71	<mark>5 (26%)</mark>	
1	7MG	А	931	1	22,26,27	2.01	8 (36%)	29,39,42	1.97	9 (31%)	
1	OMC	А	1053	1	19,22,23	2.16	6 (31%)	26,31,34	1.55	5 (19%)	
1	A2M	А	775	2,1	18,25,26	4.07	6 (33%)	18,36,39	2.55	4 (22%)	
1	5MC	А	1525	1	18,22,23	2.51	5 (27%)	26,32,35	1.15	2 (7%)	
1	A2M	А	1804	1	18,25,26	4.01	7 (38%)	18,36,39	2.79	6 (33%)	
2	OMC	В	1529	2	19,22,23	2.20	5 (26%)	26,31,34	0.76	0	
2	OMC	В	1449	2	19,22,23	2.25	6 (31%)	26,31,34	0.85	0	
2	OMC	В	21	2,1	19,22,23	2.32	5 (26%)	26,31,34	0.82	0	
2	OMG	В	634	2	18,26,27	1.58	5 (27%)	19,38,41	1.57	5 (26%)	
2	A2M	В	691	2	18,25,26	4.08	7 (38%)	18,36,39	3.16	7 (38%)	
1	OMU	А	1227	1	19,22,23	2.30	5 (26%)	26,31,34	1.82	4 (15%)	
1	7MG	А	1725	2,1	22,26,27	2.15	8 (36%)	29,39,42	1.98	9 (31%)	
2	OMG	В	564	2	18,26,27	1.76	5 (27%)	19,38,41	1.54	5 (26%)	
1	OMU	А	1497	1	19,22,23	2.33	5 (26%)	26,31,34	2.18	7 (26%)	
3	7MG	С	42	3	22,26,27	<mark>2.13</mark>	8 (36%)	29,39,42	2.16	9 (31%)	

Mol	Type	Chain	Dog	Link	Bo	ond leng	ths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	A2M	С	43	3	18,25,26	<mark>3.97</mark>	7 (38%)	18,36,39	2.40	3 (16%)
3	OMG	С	75	3	18,26,27	1.68	5 (27%)	19,38,41	1.60	<mark>6 (31%)</mark>
1	OMC	А	792	1	19,22,23	2.29	5 (26%)	26,31,34	0.81	1 (3%)
2	A2M	В	50	2,47	$18,\!25,\!26$	3.95	7 (38%)	18,36,39	2.46	<mark>3 (16%)</mark>
2	A2M	В	728	2	$18,\!25,\!26$	3.93	7 (38%)	$18,\!36,\!39$	2.64	3 (16%)
1	A2M	А	1043	1	18,25,26	3.95	7 (38%)	18,36,39	2.89	3 (16%)
2	5MC	В	624	2	18,22,23	2.52	5 (27%)	26,32,35	1.30	4 (15%)
1	A2M	А	423	1	18,25,26	4.00	6 (33%)	18,36,39	2.63	4 (22%)
1	OMG	А	958	1	18,26,27	1.60	5 (27%)	19,38,41	1.71	4 (21%)
2	OMU	В	1491	2	19,22,23	2.17	4 (21%)	26,31,34	2.08	<u>6 (23%)</u>
1	A2M	А	1071	1	18,25,26	4.06	6 (33%)	18,36,39	2.54	3 (16%)
2	OMC	В	1380	2	19,22,23	2.29	5 (26%)	26,31,34	0.84	0
1	5MC	А	1073	1	18,22,23	2.46	6 (33%)	26,32,35	1.30	3 (11%)
2	7MG	В	1107	2	22,26,27	2.42	8 (36%)	29,39,42	2.10	8 (27%)
1	OMC	А	343	1	19,22,23	2.31	5 (26%)	26,31,34	0.88	0
3	OMU	С	118	3	19,22,23	2.30	4 (21%)	26,31,34	1.92	5 (19%)
2	OMC	В	543	2	19,22,23	2.23	5 (26%)	26,31,34	0.70	0
2	OMC	В	683	2	19,22,23	2.23	5 (26%)	26,31,34	0.83	0
1	OMU	А	963	1	19,22,23	2.38	5 (26%)	26,31,34	1.87	5 (19%)
2	OMG	В	1210	2	18,26,27	1.59	5 (27%)	19,38,41	1.92	7 (36%)
3	OMG	С	166	3,1	18,26,27	1.65	5 (27%)	19,38,41	1.69	5 (26%)
1	7MG	А	1045	1	22,26,27	2.20	7 (31%)	29,39,42	1.92	8 (27%)
2	OMU	В	767	2	19,22,23	2.28	4 (21%)	26,31,34	1.77	4 (15%)
2	OMG	В	1169	2	18,26,27	1.62	5 (27%)	19,38,41	1.63	5 (26%)
1	OMC	А	1662	1	19,22,23	2.20	6 (31%)	26,31,34	0.68	0
2	OMG	В	1361	2	18,26,27	1.64	5 (27%)	19,38,41	1.63	5 (26%)
2	OMG	В	71	2	18,26,27	1.77	5 (27%)	19,38,41	1.82	<u>6 (31%)</u>
3	A2M	С	163	3,1	18,25,26	3.92	7 (38%)	18,36,39	2.55	3 (16%)
2	A2M	В	627	2	18,25,26	<mark>3.83</mark>	7 (38%)	18,36,39	2.60	4 (22%)
2	7MG	В	657	2,47	22,26,27	2.18	8 (36%)	29,39,42	2.15	9 (31%)
7	OMG	G	70	7	18,26,27	1.58	4 (22%)	19,38,41	1.69	6 (31%)
1	OMC	А	777	1	19,22,23	2.36	6 (31%)	26,31,34	0.74	0
1	OMG	А	1659	1	18,26,27	1.57	5 (27%)	19,38,41	1.80	<mark>6 (31%)</mark>
1	A2M	А	1674	47,2,1	18,25,26	4.01	7 (38%)	18,36,39	2.46	3 (16%)
1	A2M	А	778	1	18,25,26	<mark>3.91</mark>	7 (38%)	18,36,39	2.27	3 (16%)

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
1	A2M	А	794	1	18,25,26	4.04	7 (38%)	18,36,39	3.31	7 (38%)
1	OMG	А	1710	1	18,26,27	1.72	5 (27%)	$19,\!38,\!41$	1.64	5 (26%)
1	OMU	А	1127	1	19,22,23	2.36	5 (26%)	$26,\!31,\!34$	1.70	6 (23%)
1	OMG	А	927	1	18,26,27	1.71	5 (27%)	$19,\!38,\!41$	1.62	6 (31%)
3	OMU	С	7	3,1	19,22,23	2.45	6 (31%)	26,31,34	1.81	4 (15%)
3	OMC	С	105	3,47	19,22,23	2.28	7 (36%)	26,31,34	1.09	1 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OMC	В	77	2	-	2/9/27/28	0/2/2/2
2	A2M	В	482	2	-	0/5/27/28	0/3/3/3
2	7MG	В	1138	2	-	2/7/37/38	0/3/3/3
2	OMU	В	1345	2	-	0/9/27/28	0/2/2/2
2	OMG	В	755	2	-	4/5/27/28	0/3/3/3
2	OMG	В	1363	2	-	0/5/27/28	0/3/3/3
2	OMG	В	1492	2	-	2/5/27/28	0/3/3/3
1	A2M	А	974	1	-	0/5/27/28	0/3/3/3
1	OMG	А	1316	1	-	0/5/27/28	0/3/3/3
2	OMG	В	1385	2	-	0/5/27/28	0/3/3/3
2	A2M	В	1516	2,47	-	1/5/27/28	0/3/3/3
1	OMG	А	1075	1	-	0/5/27/28	0/3/3/3
1	OMC	А	919	1	-	5/9/27/28	0/2/2/2
2	OMU	В	73	2	_	3/9/27/28	0/2/2/2
1	OMG	А	1675	2,1	-	1/5/27/28	0/3/3/3
1	OMG	А	972	1	-	0/5/27/28	0/3/3/3
1	7MG	А	931	1	-	0/7/37/38	0/3/3/3
1	OMC	А	1053	1	-	3/9/27/28	0/2/2/2
1	A2M	А	775	2,1	-	0/5/27/28	0/3/3/3
1	5MC	А	1525	1	-	2/7/25/26	0/2/2/2
1	A2M	А	1804	1	-	4/5/27/28	0/3/3/3
2	OMC	В	1529	2	-	0/9/27/28	0/2/2/2
2	OMC	В	1449	2	-	0/9/27/28	0/2/2/2
2	OMC	В	21	2,1	-	0/9/27/28	0/2/2/2
2	OMG	В	634	2	-	1/5/27/28	0/3/3/3
2	A2M	В	691	2	-	3/5/27/28	0/3/3/3

α \cdot \cdot \cdot	C		
Continued	trom	previous	<i>page</i>
• • • • • • • • • • • • •	J	<i>P</i> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	OMU	А	1227	1	-	2/9/27/28	0/2/2/2
1	7MG	А	1725	2,1	-	2/7/37/38	0/3/3/3
2	OMG	В	564	2	_	2/5/27/28	0/3/3/3
1	OMU	А	1497	1	-	2/9/27/28	0/2/2/2
3	7MG	С	42	3	-	0/7/37/38	0/3/3/3
3	A2M	С	43	3	-	0/5/27/28	0/3/3/3
3	OMG	С	75	3	-	2/5/27/28	0/3/3/3
1	OMC	А	792	1	-	0/9/27/28	0/2/2/2
2	A2M	В	50	$2,\!47$	-	0/5/27/28	0/3/3/3
2	A2M	В	728	2	-	1/5/27/28	0/3/3/3
1	A2M	А	1043	1	-	0/5/27/28	0/3/3/3
2	$5 \mathrm{MC}$	В	624	2	-	2/7/25/26	0/2/2/2
1	A2M	А	423	1	-	2/5/27/28	0/3/3/3
1	OMG	А	958	1	-	0/5/27/28	0/3/3/3
2	OMU	В	1491	2	-	0/9/27/28	0/2/2/2
1	A2M	А	1071	1	-	1/5/27/28	0/3/3/3
2	OMC	В	1380	2	-	3/9/27/28	0/2/2/2
1	5MC	А	1073	1	-	2/7/25/26	0/2/2/2
2	7MG	В	1107	2	-	0/7/37/38	0/3/3/3
1	OMC	А	343	1	-	0/9/27/28	0/2/2/2
3	OMU	С	118	3	-	3/9/27/28	0/2/2/2
2	OMC	В	543	2	-	6/9/27/28	0/2/2/2
2	OMC	В	683	2	-	0/9/27/28	0/2/2/2
1	OMU	А	963	1	-	0/9/27/28	0/2/2/2
2	OMG	В	1210	2	-	2/5/27/28	0/3/3/3
3	OMG	С	166	3,1	-	0/5/27/28	0/3/3/3
1	7MG	А	1045	1	-	0/7/37/38	0/3/3/3
2	OMU	В	767	2	_	0/9/27/28	0/2/2/2
2	OMG	В	1169	2	-	2/5/27/28	0/3/3/3
1	OMC	А	1662	1	-	2/9/27/28	0/2/2/2
2	OMG	В	1361	2	-	2/5/27/28	0/3/3/3
2	OMG	В	71	2	-	0/5/27/28	0/3/3/3
3	A2M	С	163	3,1	-	2/5/27/28	0/3/3/3
2	A2M	В	627	2	-	3/5/27/28	0/3/3/3
2	7MG	В	657	2,47	-	2/7/37/38	0/3/3/3
7	OMG	G	70	7	-	2/5/27/28	0/3/3/3
1	OMC	А	777	1	-	2/9/27/28	0/2/2/2
1	OMG	А	1659	1	-	0/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	A2M	А	1674	47,2,1	-	0/5/27/28	0/3/3/3
1	A2M	А	778	1	-	3/5/27/28	0/3/3/3
1	A2M	А	794	1	-	2/5/27/28	0/3/3/3
1	OMG	А	1710	1	-	0/5/27/28	0/3/3/3
1	OMU	А	1127	1	-	3/9/27/28	0/2/2/2
1	OMG	А	927	1	-	0/5/27/28	0/3/3/3
3	OMU	С	7	3,1	-	2/9/27/28	0/2/2/2
3	OMC	С	105	3,47	-	3/9/27/28	0/2/2/2

Continued from previous page...

The worst 5 of 412 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	А	794	A2M	O4'-C1'	14.68	1.61	1.41
2	В	691	A2M	O4'-C1'	14.56	1.61	1.41
2	В	1516	A2M	O4'-C1'	14.32	1.61	1.41
1	А	1804	A2M	O4'-C1'	14.21	1.60	1.41
1	А	775	A2M	O4'-C1'	14.10	1.60	1.41

The worst 5 of 309 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	А	794	A2M	C5-C6-N6	8.87	133.84	120.35
1	А	1043	A2M	C5-C6-N6	8.25	132.89	120.35
2	В	728	A2M	C5-C6-N6	7.88	132.32	120.35
1	А	974	A2M	C5-C6-N6	7.55	131.82	120.35
2	В	482	A2M	C5-C6-N6	7.53	131.79	120.35

There are no chirality outliers.

5 of 95 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	В	73	OMU	C1'-C2'-O2'-CM2
2	В	77	OMC	C3'-C4'-C5'-O5'
2	В	543	OMC	C2'-C1'-N1-C6
2	В	543	OMC	O4'-C4'-C5'-O5'
2	В	627	A2M	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 108 ligands modelled in this entry, 108 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	А	30
2	В	16
5	Е	5
8	Н	4
10	L	3
7	G	2
31	h	2
6	F	1
30	g	1

The worst 5 of 64 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	282:U	O3'	304:A	Р	49.48
1	А	1269:U	O3'	1283:A	Р	36.80
1	В	913:U	O3'	1105:C	Р	35.79
1	А	1233:A	O3'	1245:C	Р	34.48

Continued from previous page...

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	154:A	O3'	175:U	Р	29.48

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-8361. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 115

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 144

Y Index: 74

Z Index: 128

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.07. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 791 $\rm nm^3;$ this corresponds to an approximate mass of 715 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.394 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-8361 and PDB model 5T5H. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.07 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.07).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.07) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8435	0.5690
А	0.9167	0.6020
В	0.8565	0.5680
С	0.9281	0.6040
D	0.8335	0.5320
Е	0.8534	0.5690
F	0.8427	0.5310
G	0.9073	0.5890
Н	0.8803	0.5810
Ι	0.8455	0.5800
L	0.5499	0.4390
Ν	0.8218	0.5520
0	0.8195	0.5570
Р	0.6521	0.4780
Q	0.8977	0.6060
R	0.8587	0.5860
S	0.7320	0.5270
Т	0.7399	0.5390
U	0.7961	0.5600
V	0.6442	0.4670
W	0.8090	0.5480
Х	0.8181	0.5700
Y	0.7796	0.5520
Z	0.7662	0.5280
a	0.6639	0.4860
b	0.8541	0.5800
с	0.7231	0.5200
d	0.8185	0.5680
е	0.8795	0.5990
f	0.8162	0.5600
g	0.5302	0.4320
h	0.7162	0.5060
i	0.8672	0.5970
j	0.7888	0.5600
k	0.7563	0.5150

0.0 <0.0

1.0

Continued from previous page...

Chain	Atom inclusion	Q-score
1	0.8192	0.5670
m	0.7610	0.5160
n	0.9016	0.6160
0	0.8031	0.5680
р	0.5952	0.4730
q	0.8449	0.5900
r	0.8328	0.5730
t	0.7513	0.5290
u	0.7019	0.4910
V	0.7326	0.5140
W	0.8274	0.5810
X	0.7629	0.5270

