

wwPDB EM Validation Summary Report (i)

Dec 11, 2022 – 10:56 pm GMT

PDB ID	:	6TDV
EMDB ID	:	EMD-10468
Title	:	$\label{eq:cryo-EM} Cryo-EM \ structure \ of \ Euglena \ gracilis \ mitochondrial \ ATP \ synthase, \ membrane$
		region
Authors	:	Muhleip, A.; Amunts, A.
Deposited on	:	2019-11-10
Resolution	:	2.80 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Ramachandran outliers Sidechain outliers	0
Sidechain outliers	
	0
Worse Bette	er
Percentile relative to all structures	
Percentile relative to all EM structures	
MetricWhole archive (#Entries)EM struct (#Entri	ures

154571

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

4023

3826

Mol	Chain	Length	Quality of chain
1	А	487	100%
1	a	487	7%100%
2	В	338	8% 9% 91%
2	b	338	8% 9% 91%
3	D	187	99% •
3	d	187	99% •
4	Е	97	7% 99%
4	е	97	99%
5	F	274	100%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
5	f	274	100%	
6	G	112	99%	
6	g	112	99%	
7	Н	476	82%	18%
7	h	476	82%	18%
8	Ι	98	99%	
8	i	98	99%	
9	J	104	99%	
9	j	104	99%	
10	K	113	91%	9%
10	k	113	91%	9%
11	L	57	14%	
11	1	57	12%	
12	М	169	98%	
12	m	169	98%	
13	Ν	137	96%	
13	n	137	96%	
14	0	116	86%	14%
14	0	116	86%	14%
15	Р	120	95%	5%
15	р	120	95%	5%
16	Q	90	<u>24%</u> 99%	•
16	q	90	26%	•
17	R	78	8%	12%
17	r	78	8%	12%

Contr	nuea jron	i previous	page		
Mol	Chain	Length		Quality of chain	
18	S	74	7%	88%	12%
18	S	74	7%	88%	12%
19	Т	66	14%	100%	
19	t	66	14%	100%	

2 Entry composition (i)

There are 23 unique types of molecules in this entry. The entry contains 95420 atoms, of which 47674 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	S			AltConf	Trace
1	Δ 486	Total	С	Η	Ν	0	S	0	0	
	400	7864	2525	3919	677	733	10	0	0	
1	1 0	. 196	Total	С	Η	Ν	Ο	S	0	0
	a	400	7864	2525	3919	677	733	10	0	U

• Molecule 1 is a protein called ATPTB1.

• Molecule 2 is a protein called ATPTB3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
2	В	31	Total 494	C 153	Н 243	N 44	O 54	0	0
2	b	31	Total 494	$\begin{array}{c} \mathrm{C} \\ 153 \end{array}$	Н 243	N 44	O 54	0	0

• Molecule 3 is a protein called ATPTB6.

Mol	Chain	Residues			Atom	S			AltConf	Trace
3	Л	186	Total	С	Η	Ν	0	\mathbf{S}	0	0
5 D	100	3040	977	1519	269	267	8	0	0	
2	d	186	Total	С	Η	Ν	0	S	0	0
5	u	160	3040	977	1519	269	267	8	0	0

• Molecule 4 is a protein called ATPTB12.

Mol	Chain	Residues			Aton		AltConf	Trace		
4	4 E	96	Total	С	Н	Ν	Ο	S	0	0
	Ľ	50	1574	509	777	144	141	3		0
4	4 е	96	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
4			1577	510	779	144	141	3	0	0

• Molecule 5 is a protein called subunit a.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
5	F 274	274	Total	С	Η	Ν	0	\mathbf{S}	0	0
- Э Г	214	4639	1566	2327	341	391	14	0	0	
5	f	274	Total	С	Η	Ν	0	S	0	0
0 1	1	214	4642	1566	2329	342	391	14	0	0

• Molecule 6 is a protein called subunit b.

Mol	Chain	Residues			Aton		AltConf	Trace		
6	6 C	111	Total	С	Η	Ν	0	S	0	0
0 G	G		1803	566	924	160	146	7		0
6	6 ~	111	Total	С	Н	Ν	0	S	0	0
0 g	g		1803	566	924	160	146	$\overline{7}$	0	U

• Molecule 7 is a protein called subunit d.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
7	н	388	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
1	11	300	6165	1987	3059	512	598	9	0	0
7	h	388	Total	С	Η	Ν	Ο	S	0	0
1	11	000	6165	1987	3059	512	598	9	0	0

• Molecule 8 is a protein called subunit f.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
0	т	07	Total	С	Η	Ν	0	S	0	0
0	1	91	1553	504	771	140	135	3	0	0
0	;	07	Total	С	Η	Ν	0	S	0	0
0		91	1553	504	771	140	135	3		U

• Molecule 9 is a protein called subunit i/j.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
0	Т	103	Total	С	Н	Ν	0	S	0	0
9	J	105	1734	581	853	151	146	3	0	0
0	;	102	Total	С	Н	Ν	0	S	0	0
9	J	105	1734	581	853	151	146	3	0	0

• Molecule 10 is a protein called subunit k.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
10	K	103	Total 1637	C 530	Н 821	N 136	0 144	S 6	0	0

Continued from previous page...

Mol	Chain	Residues			Aton	ns			AltConf	Trace
10	k	103	Total 1637	C 530	Н 821	N 136	0 144	S 6	0	0

• Molecule 11 is a protein called subunit 8.

Mol	Chain	Residues		At	oms		AltConf	Trace	
11	т	57	Total	С	Η	Ν	0	0	0
11		51	1008	350	507	69	82	0	0
11	1	57	Total	С	Н	Ν	0	0	0
	1	51	1008	350	507	69	82	0	0

• Molecule 12 is a protein called ATPEG1.

Mol	Chain	Residues			Atom		AltConf	Trace		
19	М	166	Total	С	Η	Ν	0	S	0	0
	111	100	2717	887	1354	228	240	8	0	0
19	m	166	Total	С	Η	Ν	0	S	0	0
	111	100	2717	887	1354	228	240	8	0	U

• Molecule 13 is a protein called ATPEG2.

Mol	Chain	Residues			Atom		AltConf	Trace		
12	N	121	Total	С	Η	Ν	0	S	0	0
10	11	151	2167	714	1070	198	182	3	0	0
12	n	121	Total	С	Η	Ν	Ο	S	0	0
10	11	101	2167	714	1070	198	182	3	0	U

• Molecule 14 is a protein called ATPEG3.

Mol	Chain	Residues		Atoms						Trace
14	0	100	Total	С	Η	Ν	0	S	0	0
14	0	100	1652	556	803	146	145	2	0	0
14	0	100	Total	С	Η	Ν	0	S	0	0
14	0	100	1652	556	803	146	145	2	0	0

• Molecule 15 is a protein called ATPEG4.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
15	D	11/	Total	С	Η	Ν	0	\mathbf{S}	0	0
10	1	114	1838	601	912	159	160	6	0	0
15	n	114	Total	С	Н	Ν	0	\mathbf{S}	0	0
1.0	р	114	1838	601	912	159	160	6	0	0

• Molecule 16 is a protein called ATPEG5.

Mol	Chain	Residues			Aton		AltConf	Trace		
16	0	80	Total	С	Η	Ν	0	\mathbf{S}	0	0
10	Q	09	1476	475	723	137	137	4	0	0
16	a	80	Total	С	Η	Ν	0	S	0	0
10	Ч	09	1476	475	723	137	137	4	0	0

• Molecule 17 is a protein called ATPEG6.

Mol	Chain	Residues		_	Atom	IS			AltConf	Trace
17	D	60	Total	С	Η	Ν	0	S	0	0
11	n	09	1160	374	581	106	97	2	0	0
17	r	60	Total	С	Η	Ν	0	S	0	0
11	1	09	1160	374	581	106	97	2		

• Molecule 18 is a protein called ATPEG7.

Mol	Chain	Residues	Atoms				AltConf	Trace		
18 5	q	65	Total	С	Н	Ν	0	S	0	0
	G	00	1092	371	541	90	89	1	0	0
18	G	65	Total	С	Н	Ν	0	S	0	0
	S	5	05	1092	371	541	90	89	1	0

• Molecule 19 is a protein called ATPEG8.

Mol	Chain	Residues	Atoms				AltConf	Trace		
19 T	66	Total	С	Η	Ν	0	S	0	0	
	1	00	1080	349	552	95	83	1	0	0
19 t	+	t 66	Total	С	Η	Ν	0	S	0	0
	U		1080	349	552	95	83	1	0	0

• Molecule 20 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
20	٨	1	Total C H O P	0
20	А	1	636 231 329 68 8	0
20	Δ	1	Total C H O P	0
20	A	1	636 231 329 68 8	0
20	Λ	1	Total C H O P	0
20	A	1	636 231 329 68 8	0
20	Λ	1	Total C H O P	0
20	Л	1	636 231 329 68 8	0
20	Л	1	Total C H O P	0
20	D	T	412 139 235 34 4	0
20	л	1	Total C H O P	0
20	D	1	412 139 235 34 4	0
20	E	1	Total C H O P	0
20	Ц	I	95 44 32 17 2	0
20	М	1	Total C H O P	0
20	111	1	232 92 102 34 4	0
20	М	1	Total C H O P	0
		1	232 92 102 34 4	0
20	0	1	Total C H O P	0
		1	124 46 59 17 2	0
20	Р	1	Total C H O P	0
	-	1	75 29 27 17 2	0
20	R	1	Total C H O P	0
		-	150 57 74 17 2	<u> </u>
20	а	1	Total C H O P	0
		-	636 231 329 68 8	, , , , , , , , , , , , , , , , , , ,
20	a	1	Total C H O P	0
		-	636 231 329 68 8	Ť

Mol	Chain	Residues	Atoms	AltConf
20	0	1	Total C H O P	0
20	a	T	636 231 329 68 8	0
20	9	1	Total C H O P	0
20	a	I	636 231 329 68 8	0
20	d	1	Total C H O P	0
20	u	T	412 139 235 34 4	0
20	d	1	Total C H O P	0
20	u	T	412 139 235 34 4	0
20	е	1	Total C H O P	0
20	C	1	95 44 32 17 2	0
20	m	1	Total C H O P	0
		T	232 92 102 34 4	
20	m	1	Total C H O P	0
		-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
20	0	1	Total C H O P	0
		-	124 46 59 17 2	
20	n	1	Total C H O P	0
	Р	-	319 108 173 34 4	Ŭ
20	n	1	Total C H O P	0
20	Р	1	319 108 173 34 4	0
20	r	1	Total C H O P	0
20	L		150 57 74 17 2	U

Continued from previous page...

• Molecule 21 is DODECYL-BETA-D-MALTOSIDE (three-letter code: LMT) (formula: $\rm C_{24}H_{46}O_{11}).$

Mol	Chain	Residues		Atoms				
21	п	1	Total	С	Η	0	0	
21	D	1	81	24	46	11	0	
91	F	1	Total	С	Η	0	0	
21	Ľ	T	81	24	46	11	0	
91	N	1	Total	С	Η	Ο	0	
21	11	T	81	24	46	11	0	
21	1 0	1	Total	С	Η	Ο	0	
21	Q	1	81	24	46	11	0	
21	d	d 1	1	Total	С	Η	Ο	0
21	u	1	81	24	46	11	0	
21	f	1	Total	С	Η	Ο	0	
21	I	1	81	24	46	11	0	
21	n	n 1	Total	С	Η	Ο	0	
<u>1</u>	11		81	24	46	11	0	
-91	a	1	Total	C	Η	0	0	
<u></u>	Ч	1	81	24	46	11	0	

• Molecule 22 is 2-(HEXADECANOYLOXY)-1-[(PHOSPHONOOXY)METHYL]ETHYL HEXADECANOATE (three-letter code: LPP) (formula: C₃₅H₆₉O₈P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			AltConf
22	F	1	Total	С	Η	0	Р	0
		1	41	15	17	8	1	0
22	т	1	Total	С	Η	0	Р	0
	1	1	111	35	67	8	1	0
22	22 N	1	Total	С	Η	0	Р	0
	IN	1	43	17	17	8	1	0

Mol	Chain	Residues		Atoms				
	0	1	Total	С	Η	Ο	Р	0
	0	1	113	37	58	16	2	0
22 O	0	1	Total	С	Η	Ο	Р	0
	0	1	113	37	58	16	2	0
22	P 1	Total	С	Η	Ο	Р	0	
		1	43	17	17	8	1	0
		1	Total	С	Η	Ο	Р	0
	n	1	48	22	17	8	1	0
22	22 f	1	Total	С	Η	Ο	Р	0
	1		41	15	17	8	1	0
22	i	1	Total	С	Η	Ο	Р	0
	1	1	111	35	67	8	1	0
22	0	1	Total	С	Η	Ο	Р	0
22	0	I	113	37	58	16	2	0
22	0	1	Total	С	Η	Ο	Р	0
	0	1	113	37	58	16	2	0
		n 1	Total	С	Η	Ο	Р	0
	1	1	48	22	17	8	1	0

Continued from previous page...

• Molecule 23 is FRAGMENT OF TRITON X-100 (three-letter code: TRT) (formula: $C_{21}H_{36}O_4$).

Mol	Chain	Residues	Atoms				AltConf
23	С	1	Total	С	Η	Ο	0
20	G	T	122	42	72	8	0
23	G	1	Total	С	Η	Ο	0
23			122	42	72	8	0

Mol	Chain	Residues	1	Aton	ns		AltConf	
0.0	м	1	Total	С	Н	0	0	
23	M	1	122	42	72	8	0	
0.0	м	1	Total	С	Η	0	0	
23	IVI	1	122	42	72	8	0	
- 12	23 N	1	Total	С	Н	0	0	
25 IN	L	122	42	72	8	0		
- 12	N	1	Total	С	Η	Ο	0	
20	IN	L	122	42	72	8	0	
- 12	D	1	Total	С	Η	Ο	0	
20	Г	L	61	21	36	4	0	
<u></u>	D	1	Total	С	Η	Ο	0	
20	n	L	61	21	36	4	0	
- 12	23 g	g 1	Total	С	Η	Ο	0	
23			122	42	72	8	0	
23	r 1	1	Total	С	Η	Ο	0	
20	g	I	122	42	72	8	0	
23	1	1	Total	С	Η	Ο	0	
20	111	I	122	42	72	8	0	
1 2	m	1	Total	С	Η	Ο	0	
20	111	I	122	42	72	8	0	
93	n	1	Total	С	Η	Ο	0	
20	11	I	122	42	72	8	0	
93	n	1	Total	С	Η	Ο	0	
20	20 11	I	122	42	72	8	U	
23	23 р	n 1		Total	С	Η	Ο	0
20		T	61	21	36	4	0	
23	r	1	Total	С	Η	0	0	
20	L	1	61	21	36	4	U	

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain b: 9

A61 B632 R63 A64 A65 A65 A65 A65 A68 A68 A68 A68 A68 A68 A71 A71 A71 A71 A71 A71 A71 A72 A71 A74 A71 A74 A72 A74 A74 A74 A74 A74 A74 A74 A74 A74 A74	579 181 181 182 184 184 185 185 185 185 185 185 185 107 107	E199 + E217 + E217 + E217 + E218 + E211 + E241 + E241 + E241 + E241 + E242 + E242 + E240 + E2	P225 P225 P253 P254 P254 A255 A255	Y268 A269 P270 M271 A272 E273 K274 K274
A276 1.277 K278 K278 K278 A58 A58 A58 A58 A58 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LEU PRO LEU ASP VAL ASP CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	ARG ASP ARG TTYR LEU LEU VAL CLU GLU	GLN ALA P331 P332 L333 P334 F335	
T336 P337 D338 Q454 P456 P456 P456 P456 P456 P456 P465 P463 P463 P464 P465 P465	P468 P469 A471 A471 A473 A473 A473 S475 B475 B475			
• Molecule 8: subunit f				
Chain I:	99%		I	
MET A2 B65 E94 P98				
• Molecule 8: subunit f				
Chain i:	99%			
MET 42 DES 6 E94				
\bullet Molecule 9: subunit i/j				
Chain J:	99%			
MET V2 191 E92 K96 K96 N104				
\bullet Molecule 9: subunit i/j				
Chain j:	99%			
MET V2 191 E92 K96 N104				
• Molecule 10: subunit k				
Chain K:	91%	9%	-	
• Molecule 10: subunit k				

Chain k:	91%	9%
MET ALA ALA ALA CLY GLY ARG THR ARG THR THR E96 E96		
• Molecule 11: subur	nit 8	
Chain L:	100%	
L1 12 85 85 16 16 16 16 16 18 18 16 18 18 16 16		
• Molecule 11: subur	nit 8	
Chain l:	100%	
L1 12 L6 V7 D8 N55 N156		
• Molecule 12: ATPI	EG1	
Chain M:	98%	
MET S2 E128 E128 E143 E144 A145 A145 A146 A146 A146 A140 A140	V150 V151 V151 E153 E155 E155 E155 E155 E155 E158 C150 Q160 Q160 Q160 Q160 Q160 Q160 Q160 Q16	
• Molecule 12: ATPI	EG1	
Chain m:	98%	•
MET S2 E128 E128 E144 K143 E147 0146 E147 M148	V150 V150 V151 V151 K154 E153 E155 E155 E155 E155 C155 C160 C160 C160 C10 C10 C10	
• Molecule 13: ATPI	EG2	
Chain N:	96%	•
MET P2 L21 D22 E33 E101 C104	6109 6109 117 117 1123 1123 1124 1124 1128 1128 1128 1128 1128 1128 1128 1130 1128 1130 1130 1132 1131 1131 1132 1132 1131 1131 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1132 1133 1132 1134 1131 1135 1132 1132 1132 1133 1132 1134 1131 1135 1132 1135 1132 1135 1132 1135 1132 1135 1131 1135 <td></td>	
• Molecule 13: ATPI	EG2	
Chain n:	96%	•
MET P2 L21 D22 E93 E93 C104 G104	6109 H110 D117 D123 L124 K127 F129 F126 F129 F129 F129 F129 F129 F129 F129 F129	

• Molecule 14: ATPEG3		
Chain O:	86%	14%
MET ASP ASP HIS ASP LIYS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	E37 B85 B101 B101 E107 A110 A110 A111 A112 A112 A112 H113 H113 H113 H113	
• Molecule 14: ATPEG3		
Chain o:	86%	14%
MET ALA ASP ASN HISS ASN LYS LYS CLY SER ALA ALA ALA SEL ALA B23 D23	E37 B85 R100 D101 E107 R108 A110 A1110 A112 A112 H1S H1S H1S H1S	
• Molecule 15: ATPEG4		
Chain P:	95%	5%
MET GLY GLY GLY ALA AS AS A7 A7 A7 A7 A10 F13 F13 F13 F13 F13 H120		
• Molecule 15: ATPEG4		
Chain p:	95%	5%
MET GLY GLY ALA ALA HIS AR P P P C HIS D14 HI20		
• Molecule 16: ATPEG5		
Chain Q:	99%	
MET S2 S2 S2 NE2 NE2 NE2 NE2 NE3 NE3 NE3 NE3 NE3 NE3 NE3 NE3 NE4 NE4 SE4 SE4 SE4 SE4 SE4 SE4 SE5 NE3	V47 S50 464 K70 464 K75 C76 K75 K75 K75 K75 K75 K75 K75 K75 K76 K79 K76 K79 K76 K79 K79 K79 K79 K79 K70 K70 K70 K70 K70 K70 K70 K70 K70 K70	
• Molecule 16: ATPEG5		
Chain q:	99%	
MET S2 S2 S2 S2 N33 N33 N33 N33 N33 N33 N33 N33 N33 N3	V47 S50 Q54 K70 K70 K75 K75 K75 K75 K79 K79 K79 K79 K79 K79 K76 K76 K76 K76 K76 K76 K76 K76	
• Molecule 17: ATPEG6		
Chain R:	88%	12%

MET PHE GLY VAL THR THR THR THR THR THR THR THR THR THR		
• Molecule 17: ATPEG6		
Chain r:	88%	12%
MET PHE GLY VAL THR ARG LARG LEU ELU ELU CLO ELU CLO ELU CLO CLO N33 R33 R33 R33 R33 R33 R33 R33 R33 R33		
• Molecule 18: ATPEG7		
Chain S:	88%	12%
MET MET ARG TILE SER ARG LEU LAU LAU LAU LAU LAU LEU LAU ESS ESS F74		
• Molecule 18: ATPEG7		
1 7/-		
Chain s:	88%	12%
	88%	12%
Chain s:	88%	12%
Chain s: E E E E E E E E E E E E E E E E E E E	88%	12%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C2	Depositor
Number of particles used	150242	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	36.3	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	130000	Depositor
Image detector	GATAN K2 QUANTUM (4k x 4k)	Depositor
Maximum map value	0.133	Depositor
Minimum map value	-0.061	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.025	Depositor
Map size (Å)	461.99997, 461.99997, 461.99997	wwPDB
Map dimensions	440, 440, 440	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.05, 1.05, 1.05	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: LMT, LPP, TRT, CDL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.35	0/4047	0.49	0/5500	
1	a	0.35	0/4047	0.50	0/5500	
2	В	0.24	0/252	0.37	0/335	
2	b	0.25	0/252	0.37	0/335	
3	D	0.34	0/1559	0.52	0/2106	
3	d	0.34	0/1559	0.52	0/2106	
4	Ε	0.32	0/819	0.47	0/1096	
4	е	0.31	0/821	0.46	0/1100	
5	F	0.37	0/2377	0.46	0/3228	
5	f	0.37	0/2379	0.46	0/3233	
6	G	0.34	0/901	0.57	0/1218	
6	g	0.34	0/901	0.57	0/1218	
7	Н	0.33	0/3185	0.47	0/4352	
7	h	0.33	0/3185	0.47	0/4352	
8	Ι	0.35	0/804	0.47	0/1084	
8	i	0.35	0/804	0.47	0/1084	
9	J	0.34	0/918	0.46	0/1255	
9	j	0.34	0/918	0.46	0/1255	
10	Κ	0.32	0/839	0.45	0/1135	
10	k	0.32	0/839	0.45	0/1135	
11	L	0.40	0/518	0.46	0/711	
11	1	0.40	0/518	0.46	0/711	
12	М	0.33	0/1399	0.45	0/1895	
12	m	0.34	0/1399	0.45	0/1895	
13	N	0.34	0/1137	0.47	0/1540	
13	n	0.34	0/1137	0.48	0/1540	
14	0	0.32	0/881	0.44	0/1193	
14	0	0.32	0/881	0.44	0/1193	
15	Р	0.36	0/955	0.49	0/1292	
15	р	0.36	0/955	0.49	0/1292	
16	Q	0.29	0/774	0.51	0/1040	
16	q	0.29	0/774	0.51	0/1040	

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
17	R	0.30	0/594	0.51	0/798	
17	r	0.30	0/594	0.51	0/798	
18	S	0.34	0/575	0.48	0/785	
18	s	0.34	0/575	0.48	0/785	
19	Т	0.33	0/543	0.52	0/730	
19	t	0.33	0/543	0.52	0/730	
All	All	0.34	0/46158	0.48	0/62595	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percent	iles
1	А	484/487~(99%)	467~(96%)	17 (4%)	0	100 1	L00
1	a	484/487~(99%)	467~(96%)	17 (4%)	0	100 1	L00
2	В	29/338~(9%)	29 (100%)	0	0	100 1	L00
2	b	29/338~(9%)	29 (100%)	0	0	100 1	L00
3	D	184/187~(98%)	180~(98%)	4 (2%)	0	100 1	L00
3	d	184/187~(98%)	180~(98%)	4 (2%)	0	100 1	L00
4	Е	94/97~(97%)	91 (97%)	3 (3%)	0	100 1	100
4	е	94/97~(97%)	91 (97%)	3 (3%)	0	100 1	L00

α i 1	ſ	•	
Continuea	Jrom	previous	page
	5	1	1 0

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	F	270/274~(98%)	262 (97%)	8~(3%)	0	100	100
5	f	272/274~(99%)	264 (97%)	8~(3%)	0	100	100
6	G	109/112~(97%)	108 (99%)	1 (1%)	0	100	100
6	g	109/112~(97%)	108 (99%)	1 (1%)	0	100	100
7	Н	384/476~(81%)	380 (99%)	4 (1%)	0	100	100
7	h	384/476~(81%)	380 (99%)	4 (1%)	0	100	100
8	Ι	95/98~(97%)	91 (96%)	4 (4%)	0	100	100
8	i	95/98~(97%)	92 (97%)	3 (3%)	0	100	100
9	J	101/104 (97%)	99 (98%)	2 (2%)	0	100	100
9	j	101/104~(97%)	99 (98%)	2 (2%)	0	100	100
10	K	101/113 (89%)	99 (98%)	2 (2%)	0	100	100
10	k	101/113 (89%)	99 (98%)	2 (2%)	0	100	100
11	L	55/57~(96%)	51 (93%)	4 (7%)	0	100	100
11	1	55/57~(96%)	51 (93%)	4 (7%)	0	100	100
12	М	164/169~(97%)	164 (100%)	0	0	100	100
12	m	164/169~(97%)	164 (100%)	0	0	100	100
13	Ν	129/137~(94%)	124 (96%)	5 (4%)	0	100	100
13	n	129/137~(94%)	124 (96%)	5 (4%)	0	100	100
14	Ο	98/116 (84%)	95~(97%)	3 (3%)	0	100	100
14	О	98/116 (84%)	95~(97%)	3 (3%)	0	100	100
15	Р	112/120~(93%)	109 (97%)	3 (3%)	0	100	100
15	р	112/120~(93%)	109 (97%)	3 (3%)	0	100	100
16	Q	87/90~(97%)	80 (92%)	7 (8%)	0	100	100
16	q	87/90~(97%)	80 (92%)	7 (8%)	0	100	100
17	R	67/78~(86%)	66 (98%)	1 (2%)	0	100	100
17	r	67/78~(86%)	66 (98%)	1 (2%)	0	100	100
18	S	63/74~(85%)	61 (97%)	2 (3%)	0	100	100
18	S	63/74~(85%)	61 (97%)	2 (3%)	0	100	100
19	Т	64/66~(97%)	63~(98%)	1 (2%)	0	100	100
19	t	64/66~(97%)	63~(98%)	1 (2%)	0	100	100
All	All	5382/6386~(84%)	5241 (97%)	141 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	426/427~(100%)	426 (100%)	0	100	100	
1	a	426/427~(100%)	426 (100%)	0	100	100	
2	В	28/259~(11%)	28 (100%)	0	100	100	
2	b	28/259~(11%)	28 (100%)	0	100	100	
3	D	159/160~(99%)	159~(100%)	0	100	100	
3	d	159/160~(99%)	$159\ (100\%)$	0	100	100	
4	Ε	80/82~(98%)	80 (100%)	0	100	100	
4	е	81/82~(99%)	81 (100%)	0	100	100	
5	F	258/259~(100%)	258 (100%)	0	100	100	
5	f	259/259~(100%)	259 (100%)	0	100	100	
6	G	98/99~(99%)	98 (100%)	0	100	100	
6	g	98/99~(99%)	98 (100%)	0	100	100	
7	Н	339/414~(82%)	339 (100%)	0	100	100	
7	h	339/414~(82%)	339 (100%)	0	100	100	
8	Ι	82/83~(99%)	82 (100%)	0	100	100	
8	i	82/83~(99%)	82 (100%)	0	100	100	
9	J	94/95~(99%)	94 (100%)	0	100	100	
9	j	94/95~(99%)	94 (100%)	0	100	100	
10	K	89/97~(92%)	89 (100%)	0	100	100	
10	k	89/97~(92%)	89 (100%)	0	100	100	
11	L	56/56~(100%)	56 (100%)	0	100	100	
11	1	56/56~(100%)	56 (100%)	0	100	100	
12	М	137/140~(98%)	137 (100%)	0	100	100	
12	m	137/140~(98%)	137 (100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
13	Ν	114/119~(96%)	114 (100%)	0	100	100	
13	n	114/119~(96%)	114 (100%)	0	100	100	
14	Ο	90/103~(87%)	90 (100%)	0	100	100	
14	О	90/103~(87%)	90 (100%)	0	100	100	
15	Р	96/99~(97%)	96 (100%)	0	100	100	
15	р	96/99~(97%)	96 (100%)	0	100	100	
16	Q	82/83~(99%)	82 (100%)	0	100	100	
16	q	82/83~(99%)	82 (100%)	0	100	100	
17	R	59/67~(88%)	59~(100%)	0	100	100	
17	r	59/67~(88%)	59~(100%)	0	100	100	
18	S	59/68~(87%)	59~(100%)	0	100	100	
18	s	59/68~(87%)	59~(100%)	0	100	100	
19	Т	54/54~(100%)	54 (100%)	0	100	100	
19	t	54/54~(100%)	54 (100%)	0	100	100	
All	All	4802/5528 (87%)	4802 (100%)	0	100	100	

Continued from previous page...

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
5	F	32	ASN
5	f	32	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

61 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain Bos Link Bond lengths		Bond angles						
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
22	LPP	Ν	203	-	25,25,43	1.34	3 (12%)	29,30,48	1.24	2 (6%)
22	LPP	F	301	-	23,23,43	1.37	3 (13%)	27,28,48	1.19	2 (7%)
23	TRT	М	201	-	25,25,25	0.55	0	33,33,33	0.70	1 (3%)
21	LMT	d	203	-	36,36,36	1.19	5 (13%)	47,47,47	0.91	1 (2%)
23	TRT	g	201	-	25,25,25	0.53	0	33,33,33	0.80	1 (3%)
23	TRT	Ν	201	-	25,25,25	0.50	0	33,33,33	0.87	1 (3%)
20	CDL	a	503	-	80,80,99	0.97	8 (10%)	85,91,111	1.04	4 (4%)
22	LPP	R	102	-	30,30,43	1.25	4 (13%)	34,35,48	1.22	2 (5%)
23	TRT	r	103	-	25,25,25	0.53	0	33,33,33	0.83	1 (3%)
20	CDL	А	501	-	80,80,99	0.97	7 (8%)	86,92,111	1.11	5 (5%)
20	CDL	a	504	-	62,62,99	1.10	8 (12%)	68,74,111	1.17	4 (5%)
20	CDL	А	502	-	80,80,99	0.98	8 (10%)	86,92,111	1.08	4 (4%)
23	TRT	р	203	-	25,25,25	1.25	3 (12%)	33,33,33	4.75	8 (24%)
23	TRT	m	204	-	25,25,25	0.54	0	33,33,33	0.79	1 (3%)
20	CDL	Р	201	-	47,47,99	1.24	8 (17%)	53,59,111	1.29	<mark>5 (9%)</mark>
23	TRT	G	202	-	25,25,25	0.59	0	33,33,33	0.69	0
20	CDL	М	203	-	76,76,99	0.99	8 (10%)	82,88,111	1.09	4 (4%)
20	CDL	Ο	201	-	64,64,99	1.07	8 (12%)	70,76,111	1.07	4 (5%)
20	CDL	a	502	-	80,80,99	0.97	8 (10%)	86,92,111	1.08	4 (4%)
23	TRT	R	103	-	$25,\!25,\!25$	0.53	0	33,33,33	0.83	1 (3%)
20	CDL	А	503	-	80,80,99	0.97	8 (10%)	85,91,111	1.05	4 (4%)
22	LPP	r	102	-	30,30,43	1.24	4 (13%)	34,35,48	1.22	2 (5%)
20	CDL	Е	101	-	62,62,99	1.08	8 (12%)	68,74,111	1.11	4 (5%)
20	CDL	m	201	-	76,76,99	0.99	8 (10%)	82,88,111	1.09	4 (4%)
20	CDL	d	202	-	84,84,99	0.95	7 (8%)	90,96,111	1.01	4 (4%)
20	CDL	D	201	-	90,90,99	0.91	8 (8%)	96,102,111	1.03	4 (4%)

Mal	Trime	Chain	Dec	Tinle	Bo	ond leng	ths	Bond angles			
WIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
21	LMT	n	201	-	36,36,36	1.20	6 (16%)	$47,\!47,\!47$	1.02	3 (6%)	
22	LPP	О	202	-	22,22,43	1.39	2 (9%)	$26,\!27,\!48$	1.17	2 (7%)	
20	CDL	0	201	-	64,64,99	1.07	8 (12%)	70,76,111	1.08	4 (5%)	
23	TRT	n	203	-	25,25,25	0.60	0	33,33,33	0.63	0	
21	LMT	F	302	-	36,36,36	1.18	5 (13%)	47,47,47	0.95	2 (4%)	
20	CDL	m	202	-	52,52,99	1.19	8 (15%)	58,64,111	1.24	4 (6%)	
22	LPP	Ο	202	-	22,22,43	1.39	3 (13%)	$26,\!27,\!48$	1.17	2 (7%)	
23	TRT	М	202	-	25,25,25	0.54	0	33,33,33	0.79	1 (3%)	
21	LMT	D	203	-	36,36,36	1.19	5 (13%)	47,47,47	0.91	1 (2%)	
23	TRT	n	202	-	25,25,25	0.51	0	33,33,33	0.87	1 (3%)	
22	LPP	f	301	-	23,23,43	1.37	3 (13%)	27,28,48	1.20	2 (7%)	
22	LPP	0	203	-	31,31,43	1.26	4 (12%)	35,36,48	1.11	2 (5%)	
23	TRT	g	202	-	25,25,25	0.60	0	33,33,33	0.69	0	
23	TRT	m	203	-	25,25,25	0.55	0	$33,\!33,\!33$	0.70	1 (3%)	
20	CDL	R	101	-	75,75,99	1.00	8 (10%)	81,87,111	1.05	4 (4%)	
21	LMT	Q	101	-	36,36,36	1.17	6 (16%)	47,47,47	1.01	2 (4%)	
20	CDL	р	202	-	47,47,99	1.23	8 (17%)	53,59,111	1.28	5 (9%)	
20	CDL	r	101	-	75,75,99	1.00	8 (10%)	81,87,111	1.03	4 (4%)	
22	LPP	Р	202	-	25,25,43	1.33	3 (12%)	29,30,48	1.24	2 (6%)	
20	CDL	е	101	-	62,62,99	1.08	8 (12%)	68,74,111	1.11	4 (5%)	
21	LMT	q	101	-	36,36,36	1.17	6 (16%)	47,47,47	1.00	2 (4%)	
20	CDL	D	202	-	84,84,99	0.95	8 (9%)	90,96,111	1.03	4 (4%)	
23	TRT	Р	203	-	25,25,25	1.25	3 (12%)	33,33,33	4.75	8 (24%)	
20	CDL	d	201	-	90,90,99	0.91	8 (8%)	96,102,111	1.04	4 (4%)	
23	TRT	G	201	-	25,25,25	0.53	0	33,33,33	0.79	1 (3%)	
21	LMT	f	302	-	36,36,36	1.18	5 (13%)	47,47,47	0.95	2 (4%)	
22	LPP	i	101	-	43,43,43	1.11	3 (6%)	47,48,48	0.98	2 (4%)	
20	CDL	a	501	-	80,80,99	0.96	7 (8%)	86,92,111	1.11	5 (5%)	
22	LPP	0	203	_	31,31,43	1.25	3 (9%)	35,36,48	1.11	2 (5%)	
21	LMT	N	204	-	36,36,36	1.20	6 (16%)	47,47,47	1.02	5 (10%)	
20	CDL	р	201	-	97,97,99	0.89	8 (8%)	103,109,111	1.00	4 (3%)	
23	TRT	N	202	-	25,25,25	0.61	0	33,33,33	0.64	0	
20	CDL	А	504	-	62,62,99	1.09	8 (12%)	68,74,111	1.17	4 (5%)	
20	CDL	М	204	-	52,52,99	1.19	8 (15%)	58,64,111	1.25	4 (6%)	
22	LPP	Ι	101	-	43,43,43	1.11	2 (4%)	47,48,48	0.98	2 (4%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
22	LPP	Ν	203	-	-	12/27/27/45	-
22	LPP	F	301	-	-	5/25/25/45	-
23	TRT	М	201	-	-	10/23/23/23	0/1/1/1
21	LMT	d	203	-	-	8/21/61/61	0/2/2/2
23	TRT	g	201	-	-	8/23/23/23	0/1/1/1
23	TRT	Ν	201	-	-	7/23/23/23	0/1/1/1
20	CDL	a	503	-	-	34/89/89/110	-
22	LPP	R	102	-	-	13/32/32/45	-
23	TRT	r	103	-	-	9/23/23/23	0/1/1/1
20	CDL	А	501	-	-	29/91/91/110	-
20	CDL	a	504	-	-	34/73/73/110	-
20	CDL	А	502	-	-	31/91/91/110	-
23	TRT	р	203	-	-	15/23/23/23	0/1/1/1
23	TRT	m	204	-	-	8/23/23/23	0/1/1/1
20	CDL	Р	201	-	-	27/57/57/110	-
23	TRT	G	202	-	-	16/23/23/23	0/1/1/1
20	CDL	М	203	-	-	41/87/87/110	-
20	CDL	0	201	-	-	34/75/75/110	-
20	CDL	a	502	-	-	33/91/91/110	-
23	TRT	R	103	-	-	9/23/23/23	0/1/1/1
20	CDL	А	503	-	-	34/89/89/110	-
22	LPP	r	102	-	-	13/32/32/45	-
20	CDL	Е	101	-	-	42/73/73/110	-
20	CDL	m	201	-	-	41/87/87/110	-
20	CDL	d	202	-	-	44/95/95/110	-
20	CDL	D	201	-	-	39/101/101/110	-
21	LMT	n	201	-	-	9/21/61/61	0/2/2/2
22	LPP	0	202	-	-	10/24/24/45	-
20	CDL	О	201	-	-	37/75/75/110	-
23	TRT	n	203	-	-	14/23/23/23	0/1/1/1
21	LMT	F	302	-	-	8/21/61/61	0/2/2/2

	J	I I I I I I I I I I I I I I I I I I I	1.5				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
20	CDL	m	202	-	-	31/63/63/110	-
22	LPP	Ο	202	-	-	10/24/24/45	-
23	TRT	М	202	-	-	8/23/23/23	0/1/1/1
21	LMT	D	203	-	-	8/21/61/61	0/2/2/2
23	TRT	n	202	-	-	7/23/23/23	0/1/1/1
22	LPP	f	301	-	-	5/25/25/45	-
22	LPP	0	203	-	-	14/33/33/45	-
23	TRT	g	202	-	-	16/23/23/23	0/1/1/1
23	TRT	m	203	-	-	10/23/23/23	0/1/1/1
20	CDL	R	101	-	-	36/86/86/110	-
21	LMT	Q	101	-	-	6/21/61/61	0/2/2/2
20	CDL	р	202	-	-	25/57/57/110	_
20	CDL	r	101	-	-	37/86/86/110	_
22	LPP	Р	202	-	-	12/27/27/45	-
20	CDL	е	101	-	-	43/73/73/110	-
21	LMT	q	101	-	-	6/21/61/61	0/2/2/2
20	CDL	D	202	-	-	43/95/95/110	-
23	TRT	Р	203	-	-	15/23/23/23	0/1/1/1
20	CDL	d	201	-	-	36/101/101/110	-
23	TRT	G	201	-	-	8/23/23/23	0/1/1/1
21	LMT	f	302	-	-	8/21/61/61	0/2/2/2
22	LPP	i	101	-	-	14/45/45/45	-
20	CDL	a	501	-	-	30/91/91/110	-
22	LPP	Ο	203	-	-	14/33/33/45	-
21	LMT	Ν	204	-	-	9/21/61/61	0/2/2/2
20	CDL	р	201	-	-	46/108/108/110	-
23	TRT	N	202	-	-	14/23/23/23	0/1/1/1
20	CDL	А	504	-	-	34/73/73/110	-
20	CDL	М	204	-	-	31/63/63/110	-
22	LPP	Ι	101	-	-	14/45/45/45	-

Continued from previous page...

The worst 5 of 284 bond length outliers are listed below:

23 P 203 TRT C6-C9 4.14 1.60 1.53	Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
	23	Р	203	TRT	C6-C9	4.14	1.60	1.53

001000	contract frequencies fragen						
Mol	Chain	\mathbf{Res}	Type	Atoms	\mathbf{Z}	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
23	р	203	TRT	C6-C9	4.14	1.60	1.53
22	Р	202	LPP	O9-C11	3.36	1.43	1.34
22	Ν	203	LPP	O9-C11	3.34	1.43	1.34
22	Ι	101	LPP	O9-C11	3.25	1.43	1.34

Continued from previous page...

The worst 5 of 172 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
23	Р	203	TRT	C7-C6-C8	16.40	152.16	107.28
23	р	203	TRT	C7-C6-C8	16.39	152.14	107.28
23	Р	203	TRT	C5-C6-C9	12.47	139.47	111.93
23	р	203	TRT	C5-C6-C9	12.47	139.46	111.93
23	р	203	TRT	C8-C6-C9	-11.32	81.81	110.20

There are no chirality outliers.

5 of 1264 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
20	А	501	CDL	CB2-OB2-PB2-OB3
20	А	501	CDL	CB3-OB5-PB2-OB3
20	А	501	CDL	C51-CB5-OB6-CB4
20	А	502	CDL	O1-C1-CB2-OB2
20	А	502	CDL	CA3-OA5-PA1-OA3

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10468. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 220

Y Index: 220

Z Index: 220

6.2.2 Raw map

X Index: 220

Y Index: 220

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 158

Y Index: 210

Z Index: 214

6.3.2 Raw map

X Index: 157

Y Index: 209

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.025. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is $192~{\rm nm^3};$ this corresponds to an approximate mass of 173 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	2.80	-	-		
Author-provided FSC curve	-	-	-		
Unmasked-calculated*	3.38	3.95	3.44		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.38 differs from the reported value 2.8 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-10468 and PDB model 6TDV. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.025 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.025).

9.4 Atom inclusion (i)

At the recommended contour level, 67% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.025) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.6636	0.5580
А	0.6967	0.5680
В	0.1215	0.3190
D	0.7071	0.5750
Ε	0.6790	0.5630
F	0.7502	0.5880
G	0.6711	0.5590
Н	0.5713	0.5090
Ι	0.7139	0.5740
J	0.7451	0.5960
Κ	0.7148	0.5710
L	0.7067	0.5760
М	0.6165	0.5500
Ν	0.6528	0.5720
Ο	0.6211	0.5540
Р	0.7079	0.5750
Q	0.5481	0.4960
R	0.6093	0.5520
S	0.7361	0.5960
Т	0.7058	0.5710
a	0.6974	0.5700
b	0.1215	0.3130
d	0.7083	0.5750
e	0.6782	0.5630
f	0.7495	0.5880
g	0.6711	0.5580
h	0.5730	0.5080
i	0.7139	0.5770
j	0.7451	0.5930
k	0.7136	0.5740
1	0.7067	0.5750
m	0.6218	0.5480
n	0.6571	0.5760
0	0.6211	0.5540
р	0.6642	0.5740

Continued from previous page...

Chain	Atom inclusion	Q-score
q	0.5481	0.4990
r	0.6093	0.5530
s	0.7342	0.5990
t	0.7115	0.5730

