

Full wwPDB X-ray Structure Validation Report (i)

Jan 15, 2024 – 12:02 pm GMT

PDB ID	:	6TGE
Title	:	NADP dependent methylene-tetrahydromethanopterin dehydrogenase-NADP
		+-methenyl-H4MPT $+$ complex
Authors	:	Ermler, U.; Shima, S.
Deposited on	:	2019-11-15
Resolution	:	1.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$				
	$(\# { m Entries})$					
R_{free}	130704	2936 (1.50-1.50)				
Clashscore	141614	3144(1.50-1.50)				
Ramachandran outliers	138981	3066 (1.50-1.50)				
Sidechain outliers	138945	3064 (1.50-1.50)				
RSRZ outliers	127900	2884 (1.50-1.50)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	288	97%	1
1	В	288	97%	1
1	С	288	.% 96% •	
1	D	288	97%	
1	Е	288	96% •	

Mol	Chain	Length	Quality of chain	
1	F	288	% 96%	•
1	G	288	97%	•
1	Н	288	95%	•
1	Ι	288	% 96%	•
1	J	288	97%	·
1	Κ	288	96%	•
1	L	288	% 96%	•••
1	М	288	99%	·
1	Ν	288	97%	•
1	Ο	288	2% 9 7%	•
1	Р	288	98%	•
1	Q	288	% 97%	•
1	R	288	5% 94%	6%
1	S	288	% 92%	7%
1	Т	288	97%	•
1	U	288	<u>94%</u>	5%
1	V	288	88%	11%
1	W	288	94%	6%
1	Х	288	85%	14% •

$6 \mathrm{TGE}$

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 60219 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Bifunctional NADP-dependent methylenetetrahydromethano pterin dehydrogenase/methylenetetrahydrofolate dehydrogenase.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	Δ	287	Total	С	Ν	0	S	0	0	0
1	11	201	2084	1313	361	403	7	0	0	0
1	В	287	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
-	D	201	2084	1313	361	403	7	0	0	0
1	С	287	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
	0	201	2091	1317	362	405	7	Ŭ	*	0
1	Л	287	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
		201	2092	1317	363	405	7	Ŭ	-	0
1	E	287	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
		201	2091	1317	362	405	7	0	-	
1	F	287	Total	С	Ν	Ο	S	0	0	0
	-	201	2084	1313	361	403	7	Ŭ		Ŭ
1	G	287	Total	С	Ν	Ο	S	0	0	0
		201	2084	1313	361	403	7	Ŭ		Ŭ
1	Н	287	Total	С	Ν	0	S	0	4	0
			2113	1328	365	413	7		_	
1	Ι	287	Total	C	N	0	S	0	1	0
			2091	1317	362	405	7		1	
1	J	287	Total	С	N	0	S	0	0	0
	_		2084	1313	361	403	7	_	_	
1	K	287	Total	С	N	0	S	0	1	0
			2090	1316	362	405	<u>'</u> 7 			
1	L	287	Total	C	N	0	S	0	3	0
			2105	1324	364	410	<u>'</u> 7 			
1	М	287	Total	C	N	0	S	0	0	0
			2084	1313	361	403	<u>'</u> 7 			
1	Ν	287	Total	C	N	0	S	0	3	0
			2105	1325	365	408	<u>'</u> 7 			
1	Ο	287	Total	C	N	O to t	S	0	1	0
			2093	1319	363	404	<u>''</u>			
1	Р	287	Total	C	N	0	S	0	1	0
			2090	1316	362	405	7	0	1	

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	0	297	Total	С	Ν	0	S	0	0	0
	Q	201	2084	1313	361	403	7	0	0	0
1	D	297	Total	С	Ν	0	S	0	9	0
	n	201	2104	1323	364	410	7	0	J	0
1	C	287	Total	С	Ν	0	S	0	1	0
	1 5	201	2093	1319	363	404	$\overline{7}$	0	1	
1	1 T	287	Total	С	Ν	0	S	0	0	0
	1		2084	1313	361	403	$\overline{7}$	0	0	0
1	II	007	Total	С	Ν	0	\mathbf{S}	0	1	0
	U	201	2095	1319	365	404	7	0	I	0
1	V	287	Total	С	Ν	Ο	S	0	9	0
1	v	201	2099	1321	363	408	7	0	2	U
1	W	287	Total	С	Ν	Ο	\mathbf{S}	0	9	0
1 VV	vv	201	2096	1319	363	407	7	0	2	0
1 V	287	Total	С	Ν	0	S	0	0	0	
	~	201	2084	1313	361	403	7		U	

• Molecule 2 is NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (threeletter code: NAP) (formula: C₂₁H₂₈N₇O₁₇P₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	
9	Λ	1	Total	С	Ν	Ο	Р	0	0	
	Л	1	48	21	7	17	3	0	0	
0	р	D	1	Total	С	Ν	Ο	Р	0	0
	D	1	48	21	7	17	3	0	0	
0	2 C	1	Total	С	Ν	Ο	Р	0	0	
2		1	48	21	7	17	3	0	0	

$\alpha \cdot \cdot \cdot$	c	•	
Continued	trom	nromanic	naae
Continucu	11011	preduous	puyc
	9	1	1 0

Mol	Chain	Residues	0	Ate	oms			ZeroOcc	AltConf			
0	D	1	Total	С	Ν	Ο	Р	0	0			
	D	1	48	21	7	17	3	0	0			
0	F	1	Total	С	Ν	Ο	Р	0	0			
	Ľ	1	48	21	$\overline{7}$	17	3	0	0			
0	F	1	Total	С	Ν	Ο	Р	0	0			
		1	48	21	7	17	3	0	0			
0	С	1	Total	С	Ν	Ο	Р	0	0			
	G	1	48	21	7	17	3	0	0			
0	Ц	1	Total	С	Ν	Ο	Р	0	0			
	11	1	48	21	7	17	3	0	0			
0	т	1	Total	С	Ν	Ο	Р	0	0			
	1	1	48	21	7	17	3	0	0			
2	Т	1	Total	С	Ν	Ο	Р	0	0			
2	0	T	48	21	7	17	3	0	0			
2	K	1	Total	С	Ν	Ο	Р	0	0			
	17	1	48	21	7	17	3	0	0			
2	T.	1	Total	\mathbf{C}	Ν	Ο	Р	0	0			
	L	Ĩ	48	21	7	17	3	0	0			
2	М	М	М	1	Total	С	Ν	Ο	Р	0	0	
			1	48	21	7	17	3	0	0		
2	Ν	N 1	Total	С	Ν	Ο	Р	0	0			
	11	1	48	21	7	17	3	0	0			
2	0	0 1	Total	С	Ν	Ο	Р	0	0			
		1	48	21	7	17	3	Ŭ				
2	Р	Р	Р	1	Total	С	Ν	Ο	Р	0	0	
	-	-	48	21	7	17	3	Ŭ				
2	Q	1	Total	С	Ν	Ο	Р	0	0			
	~~	-	48	21	7	17	3	Ŭ				
2	R	1	Total	C	N	0	Р	0	0			
			48	21	7	17	3		_			
2	S	1	Total	C	N	0	Р	0	0			
			48	21	<u>'</u> /	17	3					
2	Т	1	Total	C	N	0	Р	0	0			
			48	21	-7 	<u> </u>	3					
2	U	1	Total	\mathbf{C}	N	U 17	۲ م	0	0			
			48	21	(17	<u>კ</u> 					
2	2 V	1	Total	U	IN 17	U 17	Р о	0	0			
			48 Tratal	$\frac{21}{C}$		11	ა 					
2	W	1	Lotal	U	IN 17	U 17	Г о	0	0			
		vv	vv			48 Tetal	$\frac{21}{C}$		$\frac{1}{0}$	ა 		
2	Х	1	Total	U 01	1N -7	17	Г о	0	0			
			48	21	(17	ა					

• Molecule 3 is 5,10-DIMETHYLENE TETRAHYDROMETHANOPTERIN (three-letter code: H4M) (formula: $C_{31}H_{45}N_6O_{16}P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
9	٨	1	Total	С	Ν	0	Р	0	0
3	5 Л	1	45	26	6	12	1	0	0
9	9 D	1	Total	С	Ν	0	Р	1.4	0
3	D	L	45	26	6	12	1	14	0
3	С	C 1	Total	С	Ν	Ο	Р	0	0
5	U	1	45	26	6	12	1	0	0
3	Л	1	Total	С	Ν	Ο	Р	0	0
5	D	1	45	26	6	12	1	0	0
3	E	1	Total	С	Ν	Ο	Р	14	0
5	Ľ	T	45	26	6	12	1	14	
3	F	1	Total	\mathbf{C}	Ν	Ο	Р	14	0
0	1	1	45	26	6	12	1		0
3	G	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
0	<u> </u>	1	45	26	6	12	1	0	0
3	н	1	Total	С	Ν	Ο	Р	14	0
0	11	1	45	26	6	12	1	11	0
3	T	1	Total	С	Ν	Ο	Р	13	0
0	1	1	45	26	6	12	1	10	0
3	I	1	Total	С	Ν	Ο	Р	0	0
0		1	45	26	6	12	1	0	0
3 K	K	1	Total	\mathbf{C}	Ν	Ο	Р	13	0
	17	L	45	26	6	12	1	10	0
3 L	L	1	Total	\mathbf{C}	Ν	Ο	Р	13	0
		45	26	6	12	1	10	U	

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf		
9	м	1	Total	С	Ν	Ο	Р	0	0		
3	5 111	L	45	26	6	12	1	0	0		
9	N	1	Total	С	Ν	Ο	Р	19	0		
5	IN	T	45	26	6	12	1	15	0		
2	0	1	Total	С	Ν	Ο	Р	12	0		
5	0	L	45	26	6	12	1	10	0		
3	D	1	Total	С	Ν	Ο	Р	0	0		
5	1	T	45	26	6	12	1	0	0		
3	3 Q	0	0	1	Total	С	Ν	Ο	Р	0	0
0		T	45	26	6	12	1	0	0		
3	B	1	Total	С	Ν	Ο	Р	13	0		
0	п	I	45	26	6	12	1	10	0		
3	S	S	1	Total	С	Ν	Ο	Р	0	0	
0	5	T	45	26	6	12	1	0	0		
3	Т	1	Total	\mathbf{C}	Ν	Ο	Р	13	0		
	-	1	45	26	6	12	1	10	0		
3	U	1	Total	\mathbf{C}	Ν	Ο	Р	13	0		
	0	1	45	26	6	12	1	10	0		
3	V	1	Total	С	Ν	Ο	Р	0	0		
0	v	T	45	26	6	12	1	0	0		
3	W	1	Total	\mathbf{C}	Ν	Ο	Р	0	0		
o W		V L	45	26	6	12	1				
3	x	1	Total	\mathbf{C}	Ν	Ο	Р	13	0		
∂ Λ	1	45	26	6	12	1	10	U			

• Molecule 4 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

6TGE	GE
------	----

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total O S	0	0
			$\begin{array}{ccc} 5 & 4 & 1 \\ \hline Total & O & S \end{array}$		
4	D	1	5 4 1	0	0
4	н	1	Total O S	0	0
	11	1	5 4 1	0	0
4	J	1	Total O S	0	0
		1	5 4 1		0
4	М	1	Total O S	0	0
		1	5 4 1		
4	Р	1	Total O S	0	0
	1	1	5 4 1	0	0
4	S	1	Total O S	0	0
	0	1	5 4 1	0	0
	V	1	Total O S	0	0
<u> </u>	v	1	5 4 1		

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	386	Total O 387 387	0	1
5	В	349	Total O 354 354	0	5
5	С	339	Total O 341 341	0	2
5	D	329	Total O 331 331	0	2
5	Е	387	Total O 390 390	0	3
5	F	365	Total O 368 368	0	3
5	G	379	Total O 385 385	0	6
5	Н	401	Total O 404 404	0	3
5	Ι	347	Total O 350 350	0	3
5	J	349	Total O 352 352	0	3
5	K	348	Total O 352 352	0	4
5	L	308	$\begin{array}{cc} \text{Total} & \overline{\text{O}} \\ 309 & 309 \end{array}$	0	1

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	М	381	Total O 382 382	0	1
5	Ν	362	Total O 363 363	0	1
5	О	331	Total O 334 334	0	3
5	Р	310	Total O 310 310	0	0
5	Q	378	Total O 381 381	0	3
5	R	227	Total O 232 232	0	5
5	S	253	Total O 257 257	0	4
5	Т	328	Total O 330 330	0	2
5	U	194	Total O 194 194	0	0
5	V	197	Total O 197 197	0	0
5	W	320	Total O 323 323	0	3
5	X	116	Total O 117 117	0	1

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethan
opterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain D: 97% .

Chain E: 96%

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain F:	.%							96%	 ·
MET S2 K3 V22 K56	E57 K58	D155 K156	V170 N171	K256 H260	s270	E278	K282		

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain	G:					97%	·
MET S2 F18	D155 K156	Y221	K256	L283	M2 <mark>87</mark> A288		

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Cha	in	H	-											95%						•
MET S2	F18	V22	F88	R89	K1 <mark>53</mark>	11 <mark>99</mark>	E202	V218	1229	L250	K256	H260	<mark>\$271</mark>	A288						

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain J: 97% •

96%

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain K:

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Ch	ain	L	:	%												90	;%									•	•
MET S2	N171	A178	D179	E185	K188	S213	V218	1229	Y241	G242	L250	KORG	L257	K258	8270	A288											

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain M:	99%	·

MET 82 82 85 84 721 721 725 88 8256 A288

 \bullet Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethan
opterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Ch	ain	N										97%				·
MET S2	F18	V22	K56	R89	K153	V218	1229	K256	H260	S271	A288					

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

 \bullet Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethan
opterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

 \bullet Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethan
opterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain R:	5%			94%		6%
MET S2 F18 K58	F85 F888 R89	G115	F168 K169 V170 V172 V172 T173 A174	G200 L201 q206 q210	213 • 213 • 213 • 213 • 215 • 225 • 225 • 2240 • 7241 • 7241 • 6243 • 6244 • 6245 • 6245 • 6245 • 6245 • 6245 • 6245 • 6245 • 6245 • 6245 • 6245 • 6245 • 62455 • 6245 • 6245 • 6245 • 6	L250 K256 S271 E278 K282 K282 K282

 \bullet Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethan
opterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

Chain T:						97%	·
	ю 	23 Dia	24	20	<mark>2 _ @</mark>		

MET **F18 F18 F18 F85 F18 F18**

 \bullet Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethan
opterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

• Molecule 1: Bifunctional NADP-dependent methylenetetrahydromethanopterin dehydrogenase /methylenetetrahydrofolate dehydrogenase

			29	6																			
Chair	n	W	:											94	.%								6%
H		2		9	2			23 23	8	84		8	42	56	09	20	5 <u>7</u> 9	82	88				
ME S2		V2	YE	KE	K	Ρ	F8	K1	D1	A	8 I	EX.	G2	K2	H	S	B	K2	A2				

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	98.64Å 123.50Å 167.30Å	Deperitor
a, b, c, α , β , γ	94.79° 100.39° 108.97°	Depositor
Bosolution(A)	48.76 - 1.50	Depositor
Resolution (A)	48.76 - 1.50	EDS
% Data completeness	95.4 (48.76-1.50)	Depositor
(in resolution range)	95.5(48.76-1.50)	EDS
R_{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.00 (at 1.50 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.14_3260	Depositor
B B.	0.186 , 0.216	Depositor
II, II, <i>free</i>	0.192 , 0.221	DCC
R_{free} test set	55363 reflections (4.99%)	wwPDB-VP
Wilson B-factor $(Å^2)$	19.9	Xtriage
Anisotropy	0.514	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 46.0	EDS
L-test for $twinning^2$	$ < L >=0.51, < L^2>=0.35$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	60219	wwPDB-VP
Average B, all atoms $(Å^2)$	31.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 47.59 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 9.7090e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAP, H4M, SO4 $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles			
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.39	0/2116	0.57	0/2850		
1	В	0.38	0/2116	0.55	0/2850		
1	С	0.34	0/2123	0.53	0/2860		
1	D	0.37	0/2124	0.57	0/2861		
1	Е	0.38	0/2123	0.56	0/2860		
1	F	0.36	0/2116	0.56	0/2850		
1	G	0.41	0/2116	0.58	0/2850		
1	Н	0.39	0/2145	0.58	0/2889		
1	Ι	0.35	0/2123	0.55	0/2860		
1	J	0.35	0/2116	0.55	0/2850		
1	Κ	0.35	0/2122	0.55	0/2858		
1	L	0.33	0/2137	0.55	1/2878~(0.0%)		
1	М	0.39	0/2116	0.61	0/2850		
1	Ν	0.38	0/2137	0.57	0/2877		
1	0	0.34	0/2125	0.53	0/2861		
1	Р	0.37	0/2122	0.55	0/2858		
1	Q	0.37	0/2116	0.55	0/2850		
1	R	0.34	0/2136	0.53	0/2877		
1	S	0.32	0/2125	0.52	0/2861		
1	Т	0.32	0/2116	0.54	0/2850		
1	U	0.35	1/2127~(0.0%)	0.51	0/2864		
1	V	0.35	0/2131	0.53	0/2870		
1	W	0.33	0/2128	0.53	0/2866		
1	Х	0.32	0/2116	0.51	0/2850		
All	All	0.36	$1/5\overline{0972}\ (0.0\%)$	0.55	$1/6\overline{8650}\ (0.0\%)$		

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	U	92	CYS	CB-SG	-5.59	1.72	1.81

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	L	179	ASP	CB-CA-C	-6.62	97.15	110.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2084	0	2086	4	0
1	В	2084	0	2086	5	0
1	С	2091	0	2092	8	0
1	D	2092	0	2091	9	0
1	Е	2091	0	2092	9	0
1	F	2084	0	2086	10	0
1	G	2084	0	2086	4	0
1	Н	2113	0	2102	11	0
1	Ι	2091	0	2092	8	0
1	J	2084	0	2086	6	0
1	K	2090	0	2090	8	0
1	L	2105	0	2099	7	0
1	М	2084	0	2086	5	0
1	N	2105	0	2106	4	0
1	0	2093	0	2098	6	0
1	Р	2090	0	2090	4	0
1	Q	2084	0	2086	7	0
1	R	2104	0	2097	11	0
1	S	2093	0	2098	21	0
1	Т	2084	0	2086	5	0
1	U	2095	0	2098	7	0
1	V	2099	0	2095	34	0
1	W	2096	0	2094	14	0
1	Х	2084	0	2086	31	0
2	A	48	0	25	8	0
2	В	48	0	25	1	0
2	C	48	0	25	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	D	48	0	25	5	0
2	Е	48	0	25	1	0
2	F	48	0	25	2	0
2	G	48	0	25	6	0
2	Н	48	0	25	1	0
2	Ι	48	0	25	1	0
2	J	48	0	25	5	0
2	K	48	0	25	1	0
2	L	48	0	25	2	0
2	М	48	0	25	6	0
2	N	48	0	25	1	0
2	0	48	0	25	1	0
2	Р	48	0	25	4	0
2	Q	48	0	25	1	0
2	R	48	0	25	1	0
2	S	48	0	25	7	0
2	Т	48	0	25	1	0
2	U	48	0	25	2	0
2	V	48	0	25	3	0
2	W	48	0	25	1	0
2	Х	48	0	25	1	0
3	А	45	0	37	8	0
3	В	45	0	37	5	0
3	С	45	0	37	4	0
3	D	45	0	37	6	0
3	Е	45	0	37	3	0
3	F	45	0	37	3	0
3	G	45	0	37	7	0
3	Н	45	0	37	6	0
3	I	45	0	37	3	0
3	J	45	0	37	7	0
3	K	45	0	37	5	0
3	L	45	0	37	4	0
3	М	45	0	37	5	0
3	N	45	0	37	3	0
3	0	45	0	37	4	0
3	Р	45	0	37	8	0
3	Q	45	0	37	3	0
3	R	45	0	37	7	0
3	S	45	0	37	8	0
3	Т	45	0	37	3	0
3	U	45	0	37	3	0
					Continu	ued on next page

W O R L D W I D E PROTEIN DATA BANK

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	V	45	0	37	7	0
3	W	45	0	37	3	0
3	Х	45	0	37	4	0
4	А	5	0	0	0	0
4	D	5	0	0	0	0
4	Н	5	0	0	0	0
4	J	5	0	0	0	0
4	М	5	0	0	0	0
4	Р	5	0	0	0	0
4	S	5	0	0	0	0
4	V	5	0	0	0	0
5	А	387	0	0	1	0
5	В	354	0	0	0	0
5	С	341	0	0	2	0
5	D	331	0	0	1	0
5	Е	390	0	0	3	0
5	F	368	0	0	4	0
5	G	385	0	0	0	0
5	Н	404	0	0	3	0
5	Ι	350	0	0	0	0
5	J	352	0	0	0	0
5	Κ	352	0	0	2	0
5	L	309	0	0	2	0
5	М	382	0	0	1	0
5	Ν	363	0	0	0	0
5	0	334	0	0	1	0
5	Р	310	0	0	1	0
5	Q	381	0	0	0	0
5	R	232	0	0	0	0
5	S	257	0	0	3	0
5	Т	330	0	0	2	0
5	U	194	0	0	0	0
5	V	197	0	0	5	0
5	W	323	0	0	2	0
5	Х	117	0	0	3	0
All	All	60219	0	51696	302	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (302) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

67	FGE	
~ -		

A + 1	A + 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:A:301:NAP:C4N	3:A:302:H4M:H16	1.36	1.51
2:M:301:NAP:C4N	3:M:302:H4M:H16	1.54	1.38
2:G:301:NAP:C4N	3:G:302:H4M:H16	1.61	1.29
2:P:301:NAP:C4N	3:P:302:H4M:H16	1.72	1.19
2:S:301:NAP:C4N	3:S:302:H4M:H16	1.73	1.17
3:D:301:H4M:H16	2:D:302:NAP:C4N	1.75	1.17
2:J:301:NAP:C4N	3:J:302:H4M:H16	1.78	1.12
2:A:301:NAP:C4N	3:A:302:H4M:C10	2.28	1.10
2:M:301:NAP:H4N	3:M:302:H4M:H16	1.30	1.09
2:P:301:NAP:H4N	3:P:302:H4M:H16	1.34	1.08
2:S:301:NAP:H4N	3:S:302:H4M:H16	1.35	1.04
2:G:301:NAP:H4N	3:G:302:H4M:H16	1.36	1.03
2:A:301:NAP:H4N	3:A:302:H4M:H16	1.03	1.02
3:D:301:H4M:H16	2:D:302:NAP:H4N	1.45	0.95
2:M:301:NAP:C4N	3:M:302:H4M:C10	2.45	0.94
2:A:301:NAP:H4N	3:A:302:H4M:C10	1.95	0.93
2:J:301:NAP:H4N	3:J:302:H4M:H16	1.49	0.93
1:T:153:LYS:HE3	5:T:490:HOH:O	1.70	0.91
2:G:301:NAP:C4N	3:G:302:H4M:C10	2.49	0.89
2:S:301:NAP:C4N	3:S:302:H4M:C10	2.53	0.87
2:P:301:NAP:C4N	3:P:302:H4M:C10	2.56	0.84
1:J:256:LYS:HE3	1:J:256:LYS:O	1.82	0.80
1:V:256:LYS:NZ	1:V:260:HIS:ND1	2.31	0.79
2:J:301:NAP:C4N	3:J:302:H4M:C10	2.61	0.79
3:D:301:H4M:C10	2:D:302:NAP:C4N	2.60	0.78
1:R:168:PHE:O	1:R:169:LYS:HG2	1.83	0.77
3:K:302:H4M:OX4	3:K:302:H4M:OX2	1.99	0.74
2:H:301:NAP:O7N	3:H:302:H4M:H16	1.88	0.72
2:N:301:NAP:O7N	3:N:302:H4M:H16	1.89	0.72
3:N:302:H4M:OX4	3:N:302:H4M:OX2	2.07	0.72
2:A:301:NAP:C3N	3:A:302:H4M:H16	2.16	0.70
2:K:301:NAP:O7N	3:K:302:H4M:H16	1.91	0.70
1:E:119:LYS:NZ	5:E:401:HOH:O	2.24	0.70
1:S:3:LYS:NZ	5:S:401:HOH:O	2.25	0.69
2:B:301:NAP:O7N	3:B:302:H4M:H16	1.93	0.69
2:F:301:NAP:N7N	3:F:302:H4M:H16	2.08	0.69
1:H:199:ILE:HD11	5:H:567[B]:HOH:O	1.94	0.68
2:C:301:NAP:O7N	3:C:302:H4M:H16	1.94	0.68
1:U:155:ASP:OD1	1:U:156:LYS:N	2.25	0.67
1:F:58:LYS:HG3	5:F:522:HOH:O	1.95	0.67
3:L:302:H4M:H18	3:L:302:H4M:H12	1.77	0.67
1:X:119:LYS:HD3	1:X:144:GLY:HA3	1.76	0.67

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:C:155:ASP:OD1	1:C:156:LYS:N	2.29	0.66		
2:T:301:NAP:O7N	3:T:302:H4M:H16	1.97	0.65		
1:S:221:TYR:O	2:S:301:NAP:H2N	1.95	0.65		
1:M:256:LYS:HE3	1:M:256:LYS:O	1.96	0.64		
2:Q:301:NAP:N7N	3:Q:302:H4M:H16	2.12	0.64		
2:V:301:NAP:C4N	3:V:302:H4M:H16	2.27	0.64		
2:L:301:NAP:N7N	3:L:302:H4M:H16	2.13	0.64		
1:S:122:LYS:NZ	5:S:403:HOH:O	2.30	0.64		
3:B:302:H4M:OX4	3:B:302:H4M:OX2	2.13	0.64		
2:R:301:NAP:O7N	3:R:302:H4M:H16	1.98	0.63		
1:A:259:LEU:HD11	1:A:284:ALA:HB2	1.80	0.63		
2:I:301:NAP:O7N	3:I:302:H4M:H16	1.98	0.63		
1:X:56:LYS:H	1:X:56:LYS:HD3	1.64	0.62		
1:X:220:ASP:HB2	1:X:229:ILE:HD12	1.82	0.62		
1:I:155:ASP:OD1	1:I:156:LYS:N	2.33	0.62		
1:W:153:LYS:HE3	5:W:622:HOH:O	2.00	0.62		
1:W:256:LYS:NZ	3:W:302:H4M:OH4	2.30	0.62		
3:R:302:H4M:OX2	3:R:302:H4M:H17	1.99	0.61		
1:S:253:GLY:HA2	2:S:301:NAP:H72N	1.65	0.61		
2:M:301:NAP:C3N	3:M:302:H4M:H16	2.29	0.60		
1:V:256:LYS:HE2	3:V:302:H4M:OH4	2.00	0.60		
2:U:301:NAP:N7N	3:U:302:H4M:H16	2.17	0.60		
1:V:258:LYS:CD	5:V:417:HOH:O	2.50	0.60		
1:H:18:PHE:CE2	3:H:302:H4M:H15	2.36	0.60		
1:S:256:LYS:HE2	3:S:302:H4M:OH4	2.02	0.59		
1:E:153:LYS:HD2	5:E:427:HOH:O	2.01	0.59		
2:E:301:NAP:O7N	3:E:302:H4M:H16	2.02	0.59		
2:O:301:NAP:O7N	3:O:302:H4M:H16	2.03	0.59		
1:W:88:PHE:CZ	3:X:302:H4M:H25	2.38	0.58		
1:P:221:TYR:O	2:P:301:NAP:H2N	2.02	0.58		
1:V:18:PHE:CZ	3:V:302:H4M:H15	2.37	0.58		
1:Q:256:LYS:HE2	3:Q:302:H4M:OH4	2.04	0.57		
2:W:301:NAP:O7N	3:W:302:H4M:H16	2.05	0.57		
1:L:250:LEU:O	3:L:302:H4M:OX3	2.23	0.57		
1:V:122:LYS:HA	1:V:146:GLU:HB2	1.87	0.56		
1:L:171:ASN:ND2	5:L:401:HOH:O	2.38	0.56		
1:B:256:LYS:HE2	3:B:302:H4M:OH4	2.06	0.56		
1:W:279:GLU:HA	1:W:282:LYS:HD2	1.87	0.56		
1:R:282:LYS:HD3	1:R:282:LYS:N	2.20	0.56		
1:D:221:TYR:O	2:D:302:NAP:H2N	2.05	0.55		
1:C:58:LYS:HE2	5:C:403:HOH:O	2.05	0.55		

	o ao pago	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:V:221:TYR:O	2:V:301:NAP:H2N	2.07	0.55		
1:H:256:LYS:HE2	3:H:302:H4M:OH4	2.06	0.55		
1:B:18:PHE:CE2	3:B:302:H4M:H15	2.42	0.55		
1:R:278:GLU:O	1:R:282:LYS:HD3	2.07	0.55		
1:T:256:LYS:HE2	3:T:302:H4M:OH4	2.07	0.54		
1:A:221:TYR:O	2:A:301:NAP:H2N	2.06	0.54		
2:G:301:NAP:C3N	3:G:302:H4M:H16	2.30	0.54		
2:S:301:NAP:C2N	3:S:302:H4M:H13	2.38	0.54		
1:W:22:VAL:HG11	1:W:260:HIS:CG	2.42	0.54		
1:J:221:TYR:O	2:J:301:NAP:H2N	2.08	0.54		
2:A:301:NAP:C2N	3:A:302:H4M:H13	2.37	0.54		
1:H:256:LYS:CE	3:H:302:H4M:OH4	2.55	0.54		
1:N:18:PHE:CE2	3:N:302:H4M:H15	2.43	0.54		
1:V:256:LYS:HG3	1:V:257:LEU:N	2.18	0.54		
1:M:221:TYR:O	2:M:301:NAP:H2N	2.08	0.53		
1:D:162:ASP:O	1:D:166:LYS:HE3	2.08	0.53		
1:F:58:LYS:CG	5:F:522:HOH:O	2.55	0.53		
1:H:202:GLU:HG2	5:H:445:HOH:O	2.07	0.53		
1:N:22:VAL:HG11	1:N:260:HIS:CG	2.44	0.53		
1:V:257:LEU:HD13	3:V:302:H4M:H20	1.89	0.53		
1:X:165:ASN:HA	1:X:170:VAL:HG23	1.89	0.53		
1:N:89:ARG:HG3	1:N:271:SER:O	2.09	0.53		
3:P:302:H4M:H18	3:P:302:H4M:H12	1.90	0.53		
1:E:82:LYS:HE3	5:E:481:HOH:O	2.09	0.53		
1:H:250:LEU:HB3	3:H:302:H4M:H26	1.91	0.52		
1:P:18:PHE:CZ	3:P:302:H4M:H15	2.43	0.52		
1:O:250:LEU:HB3	3:O:302:H4M:H27	1.90	0.52		
1:R:18:PHE:CE2	3:R:302:H4M:H15	2.45	0.52		
1:W:56:LYS:HD3	1:W:56:LYS:H	1.75	0.52		
1:D:18:PHE:CZ	3:D:301:H4M:H15	2.44	0.52		
1:O:218:VAL:HB	1:O:229:ILE:HD13	1.92	0.52		
1:V:18:PHE:CE2	3:V:302:H4M:H15	2.45	0.51		
1:R:218:VAL:HB	1:R:229:ILE:HD13	1.93	0.51		
3:S:302:H4M:H12	3:S:302:H4M:H18	1.93	0.51		
1:L:185[A]:GLU:HA	1:L:188:LYS:HD2	1.94	0.51		
1:S:85:PHE:CD2	1:V:119:LYS:HG3	2.46	0.50		
1:F:278:GLU:HG2	5:F:482:HOH:O	2.11	0.50		
1:K:22:VAL:HG11	1:K:260:HIS:CG	2.47	0.50		
1:D:89:ARG:HG3	1:D:271:SER:O	2.12	0.50		
1:W:57:GLU:OE2	1:W:57:GLU:HA	2.12	0.50		
1:S:119:LYS:HD3	1:V:85:PHE:CZ	2.47	0.50		

	h i c	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:S:169:LYS:O	1:V:82:LYS:HE3	2.12	0.50	
1:G:221:TYR:O	2:G:301:NAP:H2N	2.10	0.49	
1:V:188:LYS:HG2	1:V:212:GLU:OE1	2.12	0.49	
1:V:200:GLY:O	1:V:201:LEU:HD23	2.12	0.49	
1:S:259:LEU:HA	1:S:287:MET:HE1	1.92	0.49	
1:V:126:LEU:HD12	1:V:195:THR:HG22	1.93	0.49	
1:C:18:PHE:CZ	3:C:302:H4M:H15	2.47	0.49	
1:Q:22:VAL:HG11	1:Q:260:HIS:CG	2.47	0.49	
1:X:101:THR:OG1	1:X:256:LYS:HE2	2.13	0.49	
1:X:155:ASP:OD1	1:X:156:LYS:N	2.46	0.49	
1:C:113:ALA:O	1:C:245:ARG:NH2	2.46	0.48	
1:K:256:LYS:HE3	3:K:302:H4M:OH4	2.13	0.48	
1:L:185[B]:GLU:HA	1:L:188:LYS:HD2	1.96	0.48	
1:F:3:LYS:NZ	5:F:403:HOH:O	2.38	0.48	
1:X:259:LEU:HD12	1:X:283:LEU:HD23	1.95	0.48	
3:V:302:H4M:H12	3:V:302:H4M:H18	1.95	0.48	
1:L:258:LYS:NZ	5:L:405:HOH:O	2.46	0.48	
1:V:258:LYS:HD3	5:V:417:HOH:O	2.14	0.48	
1:X:165:ASN:HA	1:X:170:VAL:CG2	2.44	0.48	
1:V:200:GLY:C	1:V:201:LEU:HD23	2.33	0.48	
1:W:56:LYS:H	1:W:56:LYS:CD	2.27	0.48	
1:K:112:LYS:NZ	5:K:402:HOH:O	2.31	0.48	
1:S:85:PHE:CE2	1:V:119:LYS:HG3	2.48	0.47	
1:U:119:LYS:HD3	1:U:119:LYS:C	2.34	0.47	
1:K:18:PHE:CE2	3:K:302:H4M:H15	2.50	0.47	
1:X:192:PHE:CD1	1:X:217:ILE:HD12	2.50	0.47	
1:J:18:PHE:CZ	3:J:302:H4M:H15	2.50	0.47	
5:T:524:HOH:O	3:U:302:H4M:H8	2.14	0.47	
1:H:250:LEU:HD22	3:H:302:H4M:H21	1.96	0.47	
3:B:302:H4M:H28	3:B:302:H4M:H30	1.58	0.47	
1:C:88:PHE:HA	5:C:403:HOH:O	2.14	0.47	
1:O:266:LYS:NZ	5:O:404:HOH:O	2.47	0.47	
1:F:256:LYS:HE2	3:F:302:H4M:OH4	2.15	0.47	
2:M:301:NAP:C2N	3:M:302:H4M:H13	2.45	0.47	
1:V:227:LEU:HD12	5:V:563:HOH:O	2.15	0.47	
1:W:56:LYS:HD3	1:W:56:LYS:N	2.31	0.47	
1:W:82:LYS:NZ	5:W:413:HOH:O	2.48	0.47	
1:E:153:LYS:HD3	1:E:153:LYS:N	2.31	0.46	
1:S:89:ARG:HD2	1:S:272:GLU:HG2	1.97	0.46	
1:B:22:VAL:HG11	1:B:260:HIS:CG	2.50	0.46	
1:D:18:PHE:CE2	3:D:301:H4M:H15	2.51	0.46	

	l l l l l l l l l l l l l l l l l l l	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:X:57:GLU:OE1	1:X:57:GLU:HA	2.15	0.46	
1:X:240:GLU:HA	1:X:244:LYS:O	2.16	0.46	
1:X:278:GLU:O	1:X:282:LYS:HG2	2.16	0.46	
1:F:282:LYS:HB3	1:F:282:LYS:HE3	1.71	0.46	
1:H:22:VAL:HG11	1:H:260:HIS:CG	2.50	0.46	
1:T:18:PHE:CZ	3:T:302:H4M:H15	2.50	0.46	
1:C:18:PHE:CE2	3:C:302:H4M:H15	2.51	0.46	
1:L:256:LYS:HD2	2:L:301:NAP:N7N	2.31	0.46	
1:W:180:ASP:OD1	1:W:180:ASP:N	2.47	0.46	
1:X:56:LYS:H	1:X:56:LYS:CD	2.27	0.46	
1:W:18:PHE:CZ	3:W:302:H4M:H15	2.50	0.46	
1:D:56:LYS:HE3	5:D:434:HOH:O	2.16	0.46	
1:I:218:VAL:HB	1:I:229:ILE:HD13	1.97	0.46	
1:K:256:LYS:CE	3:K:302:H4M:OH4	2.64	0.46	
1:R:200:GLY:O	1:R:201:LEU:HD23	2.15	0.46	
1:S:206:GLN:HG3	1:S:210:GLN:NE2	2.30	0.46	
1:I:58:LYS:HE2	1:I:87:PRO:O	2.16	0.46	
1:V:102:THR:OG1	2:V:301:NAP:H4N	2.16	0.46	
1:S:89:ARG:HG3	1:S:271:SER:O	2.16	0.45	
3:A:302:H4M:H18	3:A:302:H4M:H12	1.97	0.45	
1:P:18:PHE:CE2	3:P:302:H4M:H15	2.51	0.45	
1:B:89:ARG:HG3	1:B:271:SER:O	2.16	0.45	
1:O:256:LYS:HE2	3:O:302:H4M:OH4	2.17	0.45	
1:B:256:LYS:HD3	1:B:256:LYS:C	2.37	0.45	
1:S:9:PHE:HB3	1:S:37:VAL:HG11	1.99	0.45	
1:A:82:LYS:NZ	5:A:408:HOH:O	2.49	0.45	
1:E:18:PHE:CZ	3:E:302:H4M:H15	2.51	0.45	
1:I:250:LEU:HD22	3:I:302:H4M:H22	1.99	0.45	
1:G:18:PHE:CZ	3:G:302:H4M:H15	2.52	0.45	
1:R:250:LEU:CD2	3:R:302:H4M:H23	2.47	0.44	
1:X:136:SER:O	1:X:140:LEU:HG	2.17	0.44	
1:C:218:VAL:HB	1:C:229:ILE:HD13	1.99	0.44	
2:G:301:NAP:C2N	3:G:302:H4M:H13	2.46	0.44	
1:H:199:ILE:HG13	5:H:569:HOH:O	2.16	0.44	
3:J:302:H4M:H18	3:J:302:H4M:H12	1.98	0.44	
1:C:256:LYS:CE	3:C:302:H4M:OH4	2.65	0.44	
1:U:147:VAL:HB	1:U:172:VAL:HG22	2.00	0.44	
1:D:162:ASP:O	1:D:166:LYS:HG3	2.17	0.44	
1:K:169:LYS:N	1:K:169:LYS:HD2	2.33	0.44	
1:X:58:LYS:NZ	1:X:88:PHE:HA	2.32	0.44	
1:U:262:ALA:O	1:U:266:LYS:HG2	2.16	0.44	

• · · · · ·			
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:155:ASP:OD1	1:G:156:LYS:N	2.51	0.44
1:X:282:LYS:O	1:X:286:GLU:HG3	2.17	0.44
1:G:283:LEU:O	1:G:287:MET:HG3	2.18	0.44
1:K:82:LYS:NZ	5:K:405:HOH:O	2.45	0.44
2:U:301:NAP:C3N	3:U:302:H4M:H13	2.48	0.44
1:D:162:ASP:C	1:D:166:LYS:HE3	2.39	0.43
1:I:58:LYS:NZ	1:I:58:LYS:HB3	2.33	0.43
1:F:22:VAL:HG11	1:F:260:HIS:CG	2.53	0.43
1:O:256:LYS:CE	3:O:302:H4M:OH4	2.65	0.43
1:D:163:SER:HA	1:D:166:LYS:HE3	2.00	0.43
1:W:51:TYR:HB3	3:X:302:H4M:C16	2.49	0.43
1:A:22:VAL:HG11	1:A:260:HIS:CG	2.53	0.43
3:P:302:H4M:H27	3:P:302:H4M:H23	1.69	0.43
1:X:121:LYS:HD3	1:X:191:HIS:ND1	2.33	0.43
1:I:113:ALA:HB3	1:I:217:ILE:HD13	2.01	0.43
1:V:9:PHE:HB3	1:V:37:VAL:HG11	2.00	0.43
1:V:240:GLU:HG2	5:V:543:HOH:O	2.18	0.43
1:X:192:PHE:CE1	1:X:217:ILE:HD12	2.53	0.43
1:J:18:PHE:CE2	3:J:302:H4M:H15	2.54	0.43
1:P:22:VAL:HG11	1:P:260:HIS:CG	2.53	0.43
3:P:302:H4M:OX3	5:P:401:HOH:O	2.21	0.43
1:Q:256:LYS:HD3	1:Q:256:LYS:C	2.40	0.43
1:S:18:PHE:CZ	3:S:302:H4M:H15	2.54	0.43
1:S:256:LYS:HD3	1:S:256:LYS:C	2.40	0.43
1:V:257:LEU:CD1	3:V:302:H4M:H20	2.48	0.43
1:X:58:LYS:HE2	5:X:433:HOH:O	2.19	0.43
1:X:134:MET:CE	5:X:466:HOH:O	2.66	0.43
1:X:143:GLU:OE1	1:X:285:LYS:HE3	2.18	0.43
1:F:256:LYS:HD3	1:F:256:LYS:C	2.39	0.42
1:M:256:LYS:C	1:M:256:LYS:CD	2.86	0.42
1:S:128:GLY:HA2	1:S:133:GLY:HA3	2.01	0.42
1:S:18:PHE:CE2	3:S:302:H4M:H15	2.54	0.42
1:X:85:PHE:O	1:X:88:PHE:HB2	2.20	0.42
1:J:22:VAL:HG11	1:J:260:HIS:CG	2.55	0.42
1:J:102:THR:HA	1:J:256:LYS:HG3	2.01	0.42
1:Q:18:PHE:CZ	3:Q:302:H4M:H15	2.54	0.42
1:V:259:LEU:HB2	1:V:287:MET:HE1	2.01	0.42
1:V:259:LEU:HD12	1:V:283:LEU:HD23	2.01	0.42
1:R:89:ARG:HG3	1:R:271:SER:O	2.20	0.42
1:X:134:MET:HE1	5:X:466:HOH:O	2.19	0.42
1:E:22:VAL:HG11	1:E:260:HIS:CG	2.53	0.42

			Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:58:LYS:HB2	1:F:58:LYS:HE3	1.79	0.42
2:J:301:NAP:C2N	3:J:302:H4M:H13	2.50	0.42
1:N:218:VAL:HB	1:N:229:ILE:HD13	2.02	0.42
1:Q:82:LYS:HA	1:Q:82:LYS:HD2	1.93	0.42
1:R:18:PHE:HE1	1:R:256:LYS:HZ3	1.67	0.42
1:S:119:LYS:HD3	1:V:85:PHE:CE2	2.54	0.42
1:X:6:LEU:HB3	1:X:31:ILE:HG12	2.01	0.42
1:X:281:TYR:CD2	1:X:282:LYS:HE3	2.55	0.42
1:I:58:LYS:HB3	1:I:58:LYS:HZ2	1.84	0.42
1:O:58:LYS:HE2	1:O:58:LYS:HB2	1.80	0.42
1:V:102:THR:OG1	1:V:256:LYS:HD3	2.20	0.42
1:X:87:PRO:HG2	1:X:88:PHE:CD1	2.54	0.42
1:V:225:PRO:HA	1:V:226:PRO:C	2.40	0.42
1:V:258:LYS:CE	5:V:417:HOH:O	2.67	0.42
1:W:185:GLU:HA	1:W:188:LYS:HD2	2.00	0.42
2:X:301:NAP:O7N	3:X:302:H4M:H16	2.19	0.42
1:E:256:LYS:CE	3:E:302:H4M:OH4	2.68	0.41
1:H:218:VAL:HB	1:H:229:ILE:HD13	2.02	0.41
1:X:51:TYR:HE1	1:X:88:PHE:CE2	2.38	0.41
3:D:301:H4M:H13	2:D:302:NAP:C2N	2.51	0.41
1:H:89:ARG:HG3	1:H:271:SER:O	2.21	0.41
1:R:206:GLN:HG3	1:R:210:GLN:CD	2.39	0.41
2:S:301:NAP:H6N	5:S:488:HOH:O	2.20	0.41
1:T:56:LYS:O	1:T:56:LYS:HD3	2.20	0.41
1:L:218:VAL:HB	1:L:229:ILE:HD13	2.01	0.41
1:R:250:LEU:HD22	3:R:302:H4M:H23	2.02	0.41
3:L:302:H4M:H12	3:L:302:H4M:C13	2.49	0.41
1:S:206:GLN:HG3	1:S:210:GLN:CD	2.41	0.41
1:F:155:ASP:OD1	1:F:156:LYS:N	2.53	0.41
2:A:301:NAP:C4N	3:A:302:H4M:N5	2.76	0.41
1:V:259:LEU:CD1	1:V:287:MET:HE1	2.50	0.41
1:S:148:VAL:HG22	1:S:173:THR:HG23	2.02	0.41
3:X:302:H4M:H15	3:X:302:H4M:H19	1.81	0.41
3:G:302:H4M:H18	3:G:302:H4M:H12	2.01	0.41
1:M:84:PHE:O	5:M:401:HOH:O	2.22	0.41
1:U:204:LEU:HD21	1:U:209:TRP:HB3	2.03	0.41
1:X:50:ILE:HD12	1:X:88:PHE:HB3	2.03	0.41
1:X:89:ARG:HG3	1:X:271:SER:O	2.21	0.41
1:T:22:VAL:HG11	1:T:260:HIS:CG	2.55	0.41
1:V:128:GLY:HA2	1:V:133:GLY:HA3	2.03	0.41
1:V:258:LYS:HD3	1:V:258:LYS:HA	1.91	0.41

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:155:ASP:OD1	1:E:156:LYS:N	2.54	0.40
1:I:18:PHE:CZ	3:I:302:H4M:H15	2.57	0.40
1:K:89:ARG:HG3	1:K:271:SER:O	2.21	0.40
1:Q:88:PHE:CE2	3:R:302:H4M:H24	2.56	0.40
1:X:84:PHE:CD2	1:X:89:ARG:HB2	2.56	0.40
1:M:256:LYS:C	1:M:256:LYS:HD3	2.42	0.40
1:U:140:LEU:HD11	1:U:194:PHE:CE1	2.56	0.40
2:F:301:NAP:C7N	3:F:302:H4M:H13	2.52	0.40
1:U:138:ALA:HB2	1:U:164:VAL:HG13	2.04	0.40
1:X:164:VAL:HG12	1:X:170:VAL:HG21	2.02	0.40
1:E:180:ASP:OD1	1:E:180:ASP:N	2.55	0.40
1:Q:88:PHE:HE2	3:R:302:H4M:H24	1.87	0.40
1:V:122:LYS:HZ3	1:V:190:ALA:N	2.20	0.40
1:V:217:ILE:HG12	1:V:245:ARG:HB2	2.02	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	285/288~(99%)	280~(98%)	5 (2%)	0	100	100
1	В	285/288~(99%)	281 (99%)	4 (1%)	0	100	100
1	С	286/288~(99%)	281 (98%)	5 (2%)	0	100	100
1	D	286/288~(99%)	281 (98%)	5 (2%)	0	100	100
1	Е	286/288~(99%)	281 (98%)	5 (2%)	0	100	100
1	F	285/288~(99%)	281 (99%)	4 (1%)	0	100	100
1	G	285/288~(99%)	279~(98%)	6 (2%)	0	100	100
1	Н	289/288~(100%)	285 (99%)	4 (1%)	0	100	100
1	Ι	286/288~(99%)	282 (99%)	4 (1%)	0	100	100

6TGE

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	J	285/288~(99%)	279~(98%)	6(2%)	0	100 100
1	Κ	286/288~(99%)	282~(99%)	4 (1%)	0	100 100
1	L	288/288~(100%)	284 (99%)	4 (1%)	0	100 100
1	М	285/288~(99%)	279~(98%)	6(2%)	0	100 100
1	Ν	$288/288 \ (100\%)$	284 (99%)	4 (1%)	0	100 100
1	Ο	286/288~(99%)	281 (98%)	5 (2%)	0	100 100
1	Р	286/288~(99%)	279~(98%)	7 (2%)	0	100 100
1	Q	285/288~(99%)	280 (98%)	5 (2%)	0	100 100
1	R	288/288~(100%)	284 (99%)	4 (1%)	0	100 100
1	S	286/288~(99%)	280 (98%)	6 (2%)	0	100 100
1	Т	285/288~(99%)	280 (98%)	5 (2%)	0	100 100
1	U	286/288~(99%)	281 (98%)	5 (2%)	0	100 100
1	V	287/288~(100%)	278 (97%)	9(3%)	0	100 100
1	W	287/288~(100%)	282 (98%)	5 (2%)	0	100 100
1	Х	285/288~(99%)	278~(98%)	7 (2%)	0	100 100
All	All	6866/6912~(99%)	6742 (98%)	124 (2%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	204/205~(100%)	203~(100%)	1 (0%)	88	78
1	В	204/205~(100%)	203~(100%)	1 (0%)	88	78
1	С	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	D	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	Ε	205/205~(100%)	205 (100%)	0	100	100
1	F	204/205~(100%)	202 (99%)	2(1%)	76	57

6T	GE

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	G	204/205~(100%)	203~(100%)	1 (0%)	88	78
1	Н	208/205~(102%)	207~(100%)	1 (0%)	88	78
1	Ι	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	J	204/205~(100%)	202~(99%)	2(1%)	76	57
1	Κ	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	L	207/205~(101%)	202~(98%)	5 (2%)	49	19
1	М	204/205~(100%)	203 (100%)	1 (0%)	88	78
1	Ν	207/205~(101%)	205~(99%)	2(1%)	76	57
1	Ο	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	Р	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	Q	204/205~(100%)	202~(99%)	2(1%)	76	57
1	R	207/205~(101%)	204~(99%)	3~(1%)	67	42
1	S	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	Т	204/205~(100%)	203~(100%)	1 (0%)	88	78
1	U	205/205~(100%)	204 (100%)	1 (0%)	88	78
1	V	206/205~(100%)	204~(99%)	2(1%)	76	57
1	W	206/205~(100%)	203~(98%)	3 (2%)	65	39
1	Х	204/205~(100%)	199 (98%)	5 (2%)	47	18
All	All	4922/4920~(100%)	4882 (99%)	40 (1%)	81	66

All (40) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	256	LYS
1	В	56	LYS
1	С	180	ASP
1	D	256	LYS
1	F	57	GLU
1	F	270	SER
1	G	256	LYS
1	Н	153	LYS
1	Ι	256	LYS
1	J	256	LYS
1	J	270	SER
1	Κ	239	LYS
1	L	179	ASP

Mol	Chain	Res	Type
1	L	213[A]	SER
1	L	213[B]	SER
1	L	256	LYS
1	L	270	SER
1	М	256	LYS
1	Ν	153	LYS
1	Ν	256	LYS
1	0	182	SER
1	Р	256	LYS
1	Q	82	LYS
1	Q	180	ASP
1	R	58	LYS
1	R	239	LYS
1	R	256	LYS
1	S	122	LYS
1	Т	224	GLN
1	U	239	LYS
1	V	56	LYS
1	V	256	LYS
1	W	2	SER
1	W	256	LYS
1	W	270	SER
1	Х	56	LYS
1	Х	58	LYS
1	Х	119	LYS
1	Х	171	ASN
1	Х	270	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such sidechains are listed below:

Mol	Chain	Res	Type
1	F	206	GLN
1	Н	171	ASN
1	Р	206	GLN
1	Q	206	GLN
1	Т	171	ASN
1	Т	210	GLN
1	W	171	ASN
1	Х	171	ASN
1	Х	206	GLN
1	Х	260	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

56 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bog	Link	B	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
4	SO4	А	303	-	4,4,4	0.11	0	$6,\!6,\!6$	0.12	0	
4	SO4	Р	303	-	4,4,4	0.13	0	$6,\!6,\!6$	0.15	0	
3	H4M	G	302	-	47,49,58	5.79	9 (19%)	62,74,86	1.85	8 (12%)	
3	H4M	Е	302	-	47,49,58	<mark>5.66</mark>	6 (12%)	62,74,86	1.45	10 (16%)	
2	NAP	S	301	-	45,52,52	1.86	14 (31%)	56,80,80	1.48	6 (10%)	
3	H4M	Н	302	-	47,49,58	<mark>5.81</mark>	7 (14%)	62,74,86	1.69	11 (17%)	
2	NAP	Е	301	-	45,52,52	1.97	13 (28%)	56,80,80	1.39	6 (10%)	
3	H4M	L	302	-	47,49,58	5.90	6 (12%)	62,74,86	1.66	13 (20%)	
3	H4M	С	302	-	47,49,58	5.62	6 (12%)	62,74,86	1.62	10 (16%)	
3	H4M	J	302	-	47,49,58	5.70	7 (14%)	62,74,86	1.87	11 (17%)	
3	H4M	Ο	302	-	47,49,58	5.84	7 (14%)	62,74,86	1.81	11 (17%)	
3	H4M	S	302	-	47,49,58	<mark>5.79</mark>	7 (14%)	62,74,86	1.84	10 (16%)	
2	NAP	L	301	-	45,52,52	1.84	12 (26%)	56,80,80	1.60	7 (12%)	
4	SO4	D	303	-	4,4,4	0.18	0	6,6,6	0.14	0	
3	H4M	В	302	-	47,49,58	<mark>5.81</mark>	7 (14%)	62,74,86	1.72	11 (17%)	

	T a	Chain	Dec	T :1-	Bond lengths		Bond angles			
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
3	H4M	Q	302	-	47,49,58	5.70	6 (12%)	62,74,86	1.49	8 (12%)
2	NAP	Р	301	-	45,52,52	1.86	12 (26%)	56,80,80	1.52	8 (14%)
2	NAP	В	301	-	45,52,52	1.76	11 (24%)	56,80,80	1.39	6 (10%)
4	SO4	V	303	-	4,4,4	0.16	0	$6,\!6,\!6$	0.13	0
3	H4M	R	302	-	47,49,58	5.61	7 (14%)	62,74,86	1.83	10 (16%)
3	H4M	Т	302	-	47,49,58	5.66	6 (12%)	62,74,86	1.45	8 (12%)
3	H4M	М	302	-	47,49,58	<mark>5.68</mark>	6 (12%)	62,74,86	1.92	13 (20%)
3	H4M	U	302	-	47,49,58	6.14	6 (12%)	62,74,86	1.66	12 (19%)
3	H4M	W	302	-	47,49,58	5.68	6 (12%)	62,74,86	1.47	9 (14%)
3	H4M	N	302	-	47,49,58	5.98	7 (14%)	62,74,86	1.70	9 (14%)
2	NAP	D	302	-	45,52,52	1.79	12 (26%)	56,80,80	1.59	7 (12%)
3	H4M	V	302	-	47,49,58	5.37	7 (14%)	62,74,86	2.10	13 (20%)
2	NAP	K	301	-	45,52,52	1.73	10 (22%)	56,80,80	1.50	7 (12%)
2	NAP	V	301	-	45,52,52	1.93	13 (28%)	56,80,80	1.60	5 (8%)
2	NAP	Н	301	-	45,52,52	1.72	12 (26%)	56,80,80	1.41	7 (12%)
3	H4M	А	302	-	47,49,58	<mark>5.58</mark>	7 (14%)	62,74,86	1.70	11 (17%)
2	NAP	Х	301	-	45,52,52	1.92	13 (28%)	56,80,80	1.51	5 (8%)
3	H4M	Ι	302	-	47,49,58	5.73	6 (12%)	62,74,86	1.55	8 (12%)
2	NAP	Q	301	-	45,52,52	1.81	13 (28%)	56,80,80	1.42	8 (14%)
3	H4M	F	302	-	47,49,58	<mark>6.08</mark>	6 (12%)	62,74,86	1.64	13 (20%)
2	NAP	F	301	-	45,52,52	1.82	14 (31%)	56,80,80	1.62	7 (12%)
2	NAP	Ι	301	-	45,52,52	1.82	13 (28%)	56,80,80	1.63	8 (14%)
2	NAP	Т	301	-	45,52,52	1.91	13 (28%)	56,80,80	1.52	8 (14%)
4	SO4	J	303	-	4,4,4	0.16	0	6,6,6	0.15	0
4	SO4	S	303	-	4,4,4	0.17	0	$6,\!6,\!6$	0.10	0
2	NAP	М	301	-	$45,\!52,\!52$	1.72	10 (22%)	56,80,80	1.32	8 (14%)
2	NAP	Ο	301	-	45,52,52	1.87	12 (26%)	56,80,80	1.59	8 (14%)
2	NAP	А	301	-	45,52,52	1.87	13 (28%)	56,80,80	1.48	7 (12%)
3	H4M	Р	302	-	47,49,58	<mark>5.56</mark>	7 (14%)	62,74,86	1.98	10 (16%)
2	NAP	R	301	-	45,52,52	1.88	15 (33%)	56,80,80	1.51	6 (10%)
2	NAP	С	301	-	45,52,52	1.84	11 (24%)	56,80,80	1.59	7 (12%)
2	NAP	J	301	-	45,52,52	1.92	14 (31%)	56,80,80	1.47	6 (10%)
2	NAP	U	301	-	45,52,52	1.93	13 (28%)	56,80,80	1.66	7 (12%)
3	H4M	К	302	-	47,49,58	<mark>5.85</mark>	7 (14%)	62,74,86	1.70	8 (12%)
3	H4M	D	301	-	47,49,58	<mark>5.55</mark>	7 (14%)	62,74,86	1.73	8 (12%)

Mal	ol Type Chain Bo		Dec	Tink	B	Bond lengths			Bond angles		
	туре	ype Cham r	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
3	H4M	Х	302	-	47,49,58	5.84	7 (14%)	62,74,86	1.82	13 (20%)	
2	NAP	W	301	-	45,52,52	1.97	14 (31%)	56,80,80	1.48	8 (14%)	
4	SO4	Н	303	-	4,4,4	0.13	0	6,6,6	0.12	0	
2	NAP	N	301	-	45,52,52	1.78	11 (24%)	56,80,80	1.52	7 (12%)	
2	NAP	G	301	-	45,52,52	1.84	12 (26%)	56,80,80	1.44	8 (14%)	
4	SO4	М	303	-	4,4,4	0.19	0	6,6,6	0.25	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	H4M	G	302	-	-	16/27/71/85	0/5/5/5
3	H4M	Е	302	-	-	10/27/71/85	0/5/5/5
2	NAP	S	301	-	-	7/31/67/67	0/5/5/5
3	H4M	Н	302	-	-	18/27/71/85	0/5/5/5
2	NAP	Е	301	-	-	3/31/67/67	0/5/5/5
3	H4M	L	302	-	-	18/27/71/85	0/5/5/5
3	H4M	С	302	-	-	8/27/71/85	0/5/5/5
3	H4M	J	302	-	-	8/27/71/85	0/5/5/5
3	H4M	0	302	-	-	17/27/71/85	0/5/5/5
3	H4M	S	302	-	-	12/27/71/85	0/5/5/5
2	NAP	L	301	-	-	7/31/67/67	0/5/5/5
3	H4M	В	302	-	-	15/27/71/85	0/5/5/5
3	H4M	Q	302	-	-	8/27/71/85	0/5/5/5
2	NAP	Р	301	-	-	7/31/67/67	0/5/5/5
2	NAP	В	301	-	-	3/31/67/67	0/5/5/5
3	H4M	R	302	-	-	12/27/71/85	0/5/5/5
3	H4M	Т	302	-	-	6/27/71/85	0/5/5/5
3	H4M	М	302	-	-	5/27/71/85	0/5/5/5
3	H4M	U	302	-	-	15/27/71/85	0/5/5/5
3	H4M	W	302	-	-	12/27/71/85	0/5/5/5
3	H4M	Ν	302	-	-	18/27/71/85	0/5/5/5
2	NAP	D	302	-	-	7/31/67/67	0/5/5/5
3	H4M	V	302	-	-	10/27/71/85	0/5/5/5

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAP	K	301	-	-	2/31/67/67	0/5/5/5
2	NAP	V	301	-	-	8/31/67/67	0/5/5/5
2	NAP	Н	301	-	-	4/31/67/67	0/5/5/5
3	H4M	А	302	-	-	7/27/71/85	0/5/5/5
2	NAP	Х	301	-	-	4/31/67/67	0/5/5/5
3	H4M	Ι	302	-	-	14/27/71/85	0/5/5/5
2	NAP	Q	301	-	-	4/31/67/67	0/5/5/5
3	H4M	F	302	-	-	15/27/71/85	0/5/5/5
2	NAP	F	301	-	-	5/31/67/67	0/5/5/5
2	NAP	Ι	301	-	-	3/31/67/67	0/5/5/5
2	NAP	Т	301	-	-	4/31/67/67	0/5/5/5
2	NAP	М	301	-	-	7/31/67/67	0/5/5/5
2	NAP	0	301	-	-	3/31/67/67	0/5/5/5
2	NAP	А	301	-	-	6/31/67/67	0/5/5/5
3	H4M	Р	302	-	-	19/27/71/85	0/5/5/5
2	NAP	R	301	-	-	4/31/67/67	0/5/5/5
2	NAP	С	301	-	-	3/31/67/67	0/5/5/5
2	NAP	J	301	-	-	8/31/67/67	0/5/5/5
2	NAP	U	301	-	-	4/31/67/67	0/5/5/5
3	H4M	K	302	-	-	18/27/71/85	0/5/5/5
3	H4M	D	301	-	-	12/27/71/85	0/5/5/5
3	H4M	Х	302	-	-	21/27/71/85	0/5/5/5
2	NAP	W	301	-	-	4/31/67/67	0/5/5/5
2	NAP	Ν	301	-	-	3/31/67/67	0/5/5/5
2	NAP	G	301	-	-	6/31/67/67	0/5/5/5

All (460) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
3	U	302	H4M	C10-N5	-40.53	1.23	1.46
3	F	302	H4M	C10-N5	-40.16	1.23	1.46
3	Ν	302	H4M	C10-N5	-39.42	1.24	1.46
3	L	302	H4M	C10-N5	-38.96	1.24	1.46
3	Κ	302	H4M	C10-N5	-38.49	1.24	1.46
3	0	302	H4M	C10-N5	-38.38	1.24	1.46
3	В	302	H4M	C10-N5	-38.33	1.24	1.46

6T	GE

Conti	Continued from previous page								
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)		
3	Х	302	H4M	C10-N5	-38.26	1.24	1.46		
3	Н	302	H4M	C10-N5	-38.24	1.24	1.46		
3	S	302	H4M	C10-N5	-38.06	1.24	1.46		
3	G	302	H4M	C10-N5	-38.02	1.24	1.46		
3	Ι	302	H4M	C10-N5	-37.61	1.25	1.46		
3	Q	302	H4M	C10-N5	-37.59	1.25	1.46		
3	J	302	H4M	C10-N5	-37.58	1.25	1.46		
3	W	302	H4M	C10-N5	-37.37	1.25	1.46		
3	М	302	H4M	C10-N5	-37.34	1.25	1.46		
3	Ε	302	H4M	C10-N5	-37.29	1.25	1.46		
3	Т	302	H4M	C10-N5	-37.29	1.25	1.46		
3	С	302	H4M	C10-N5	-36.96	1.25	1.46		
3	А	302	H4M	C10-N5	-36.78	1.25	1.46		
3	R	302	H4M	C10-N5	-36.70	1.25	1.46		
3	D	301	H4M	C10-N5	-36.53	1.25	1.46		
3	Р	302	H4M	C10-N5	-36.48	1.25	1.46		
3	V	302	H4M	C10-N5	-35.16	1.26	1.46		
3	Х	302	H4M	C8A-N8	7.61	1.43	1.35		
3	Ι	302	H4M	C8A-N8	7.59	1.43	1.35		
3	R	302	H4M	C8A-N8	7.34	1.43	1.35		
3	U	302	H4M	C8A-N8	7.32	1.43	1.35		
3	Κ	302	H4M	C8A-N8	7.19	1.43	1.35		
3	0	302	H4M	C8A-N8	7.09	1.43	1.35		
3	F	302	H4M	C8A-N8	7.04	1.43	1.35		
2	J	301	NAP	C7N-N7N	6.99	1.46	1.33		
2	Р	301	NAP	C7N-N7N	6.96	1.46	1.33		
3	N	302	H4M	C8A-N8	6.93	1.43	1.35		
3	Т	302	H4M	C8A-N8	6.91	1.43	1.35		
2	Х	301	NAP	C7N-N7N	6.81	1.46	1.33		
2	U	301	NAP	C7N-N7N	6.81	1.46	1.33		
3	W	302	H4M	C8A-N8	6.81	1.42	1.35		
2	А	301	NAP	C7N-N7N	6.78	1.45	1.33		
3	L	302	H4M	C8A-N8	6.77	1.42	1.35		
3	E	302	H4M	C8A-N8	6.77	1.42	1.35		
2	G	301	NAP	C7N-N7N	6.77	1.45	1.33		
2	V	301	NAP	C7N-N7N	6.74	1.45	1.33		
2	W	301	NAP	C7N-N7N	6.70	1.45	1.33		
2	E	301	NAP	C7N-N7N	6.67	1.45	1.33		
3	С	302	H4M	C8A-N8	6.66	1.42	1.35		
2	R	301	NAP	C7N-N7N	6.60	1.45	1.33		
2	F	301	NAP	C7N-N7N	6.58	1.45	1.33		
3	М	302	H4M	C8A-N8	6.57	1.42	1.35		

	nuea fron	$\frac{1}{1}$ previo	ous page		77		TI 1(8)
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
2	C	301	NAP	C7N-N7N	6.55	1.45	1.33
2	М	301	NAP	C7N-N7N	6.55	1.45	1.33
2	Q	301	NAP	C7N-N7N	6.54	1.45	1.33
2	Т	301	NAP	C7N-N7N	6.53	1.45	1.33
3	Q	302	H4M	C8A-N8	6.53	1.42	1.35
2	Ν	301	NAP	C7N-N7N	6.53	1.45	1.33
2	Ι	301	NAP	C7N-N7N	6.51	1.45	1.33
3	Н	302	H4M	C8A-N8	6.49	1.42	1.35
2	S	301	NAP	C7N-N7N	6.46	1.45	1.33
2	0	301	NAP	C7N-N7N	6.46	1.45	1.33
3	S	302	H4M	C8A-N8	6.39	1.42	1.35
2	В	301	NAP	C7N-N7N	6.37	1.45	1.33
2	L	301	NAP	C7N-N7N	6.30	1.45	1.33
3	D	301	H4M	C8A-N8	6.29	1.42	1.35
2	D	302	NAP	C7N-N7N	6.26	1.44	1.33
3	В	302	H4M	C8A-N8	6.23	1.42	1.35
2	Н	301	NAP	C7N-N7N	6.11	1.44	1.33
3	Р	302	H4M	C8A-N8	6.08	1.42	1.35
2	K	301	NAP	C7N-N7N	6.06	1.44	1.33
3	V	302	H4M	C8A-N8	5.99	1.42	1.35
3	G	302	H4M	C8A-N8	5.98	1.42	1.35
3	J	302	H4M	C8A-N8	5.82	1.41	1.35
3	А	302	H4M	C8A-N8	5.73	1.41	1.35
3	Х	302	H4M	CX1-C11	-5.23	1.38	1.51
3	F	302	H4M	CX1-C11	-5.03	1.39	1.51
3	U	302	H4M	CX1-C11	-4.98	1.39	1.51
3	S	302	H4M	CX1-C11	-4.89	1.39	1.51
3	Н	302	H4M	CX1-C11	-4.79	1.39	1.51
3	0	302	H4M	CX1-C11	-4.78	1.39	1.51
3	L	302	H4M	CX1-C11	-4.73	1.39	1.51
3	N	302	H4M	CX1-C11	-4.67	1.40	1.51
3	J	302	H4M	CX1-C11	-4.66	1.40	1.51
3	K	302	H4M	CX1-C11	-4.58	1.40	1.51
3	М	302	H4M	CX1-C11	-4.56	1.40	1.51
3	Е	302	H4M	CX1-C11	-4.52	1.40	1.51
3	G	302	H4M	CX1-C11	-4.51	1.40	1.51
3	Р	302	H4M	CX1-C11	-4.47	1.40	1.51
3	W	302	H4M	CX1-C11	-4.45	1.40	1.51
3	A	302	H4M	CX1-C11	-4.45	1.40	1.51
3	V	302	H4M	CX1-C11	-4.42	1.40	1.51
3	В	302	H4M	CX1-C11	-4.40	1.40	1.51
3	D	301	H4M	CX1-C11	-4.39	1.40	1.51

67	ГGE
-	-

Conti	nuea fron	i previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
3	Ι	302	H4M	CX1-C11	-4.38	1.40	1.51
3	Т	302	H4M	CX1-C11	-4.36	1.40	1.51
3	R	302	H4M	CX1-C11	-4.35	1.40	1.51
3	С	302	H4M	CX1-C11	-4.23	1.41	1.51
3	Р	302	H4M	C7-N8	-4.10	1.42	1.47
3	Q	302	H4M	CX1-C11	-4.08	1.41	1.51
3	Н	302	H4M	C7-N8	-3.85	1.43	1.47
3	G	302	H4M	C7-N8	-3.76	1.43	1.47
3	V	302	H4M	C7-N8	-3.63	1.43	1.47
3	S	302	H4M	C7-N8	-3.57	1.43	1.47
3	G	302	H4M	PA-O3A	3.45	1.68	1.54
3	D	301	H4M	C7-N8	-3.45	1.43	1.47
3	J	302	H4M	PA-O3A	3.43	1.68	1.54
3	Р	302	H4M	PA-O3A	3.41	1.68	1.54
3	М	302	H4M	PA-O3A	3.39	1.67	1.54
3	V	302	H4M	PA-O3A	3.39	1.67	1.54
3	W	302	H4M	PA-O3A	3.37	1.67	1.54
3	А	302	H4M	PA-O3A	3.34	1.67	1.54
3	S	302	H4M	PA-O3A	3.34	1.67	1.54
2	W	301	NAP	C5A-N7A	-3.32	1.27	1.39
2	V	301	NAP	C3N-C7N	3.31	1.55	1.50
2	J	301	NAP	C5A-N7A	-3.30	1.27	1.39
2	А	301	NAP	C5A-N7A	-3.29	1.27	1.39
3	Q	302	H4M	PA-O3A	3.29	1.67	1.54
3	С	302	H4M	PA-O3A	3.27	1.67	1.54
2	R	301	NAP	C5A-N7A	-3.27	1.27	1.39
3	D	301	H4M	PA-O3A	3.27	1.67	1.54
2	R	301	NAP	C4A-N3A	-3.25	1.31	1.35
2	U	301	NAP	C5A-N7A	-3.24	1.28	1.39
3	R	302	H4M	PA-O3A	3.24	1.67	1.54
2	Х	301	NAP	P2B-O1X	-3.24	1.40	1.50
3	N	302	H4M	PA-O3A	3.24	1.67	1.54
2	S	301	NAP	C5A-N7A	-3.23	1.28	1.39
2	С	301	NAP	C5A-N7A	-3.23	1.28	1.39
3	Н	302	H4M	PA-O3A	3.23	1.67	1.54
2	J	301	NAP	P2B-O1X	-3.23	1.40	1.50
3	В	302	H4M	PA-O3A	3.23	1.67	1.54
2	Х	301	NAP	C5A-N7A	-3.23	1.28	1.39
2	В	301	NAP	C5A-N7A	-3.23	1.28	1.39
3	0	302	H4M	PA-O3A	3.22	1.67	1.54
2	D	302	NAP	C5A-N7A	-3.22	1.28	1.39
3	Е	302	H4M	PA-O3A	3.22	1.67	1.54

Jfa α n tin

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	U	301	NAP	C3N-C7N	3.22	1.55	1.50
3	L	302	H4M	PA-O3A	3.22	1.67	1.54
3	F	302	H4M	PA-O3A	3.22	1.67	1.54
3	Ι	302	H4M	PA-O3A	3.22	1.67	1.54
2	F	301	NAP	C3N-C7N	3.22	1.55	1.50
3	Х	302	H4M	PA-O3A	3.21	1.67	1.54
2	L	301	NAP	C5A-N7A	-3.21	1.28	1.39
2	U	301	NAP	C4A-N3A	-3.21	1.31	1.35
3	Т	302	H4M	PA-O3A	3.21	1.67	1.54
2	М	301	NAP	C5A-N7A	-3.20	1.28	1.39
2	Κ	301	NAP	C5A-N7A	-3.20	1.28	1.39
3	U	302	H4M	PA-O3A	3.20	1.67	1.54
2	Т	301	NAP	C5A-N7A	-3.20	1.28	1.39
3	Κ	302	H4M	PA-O3A	3.20	1.67	1.54
2	0	301	NAP	P2B-O1X	-3.19	1.40	1.50
2	Q	301	NAP	C5A-N7A	-3.19	1.28	1.39
2	0	301	NAP	C5A-N7A	-3.18	1.28	1.39
2	Р	301	NAP	C5A-N7A	-3.18	1.28	1.39
2	W	301	NAP	P2B-O1X	-3.18	1.40	1.50
3	А	302	H4M	C7-N8	-3.17	1.43	1.47
3	L	302	H4M	C7-N8	-3.17	1.43	1.47
2	0	301	NAP	C3N-C7N	3.16	1.55	1.50
2	Н	301	NAP	C5A-N7A	-3.16	1.28	1.39
2	G	301	NAP	C5A-N7A	-3.15	1.28	1.39
2	Т	301	NAP	P2B-O1X	-3.15	1.40	1.50
3	J	302	H4M	C7-N8	-3.15	1.43	1.47
2	Е	301	NAP	P2B-O1X	-3.15	1.40	1.50
2	С	301	NAP	C3N-C7N	3.15	1.55	1.50
2	Х	301	NAP	P2B-O2X	-3.14	1.42	1.54
2	V	301	NAP	C5A-N7A	-3.14	1.28	1.39
2	U	301	NAP	P2B-O1X	-3.14	1.40	1.50
2	S	301	NAP	P2B-O1X	-3.13	1.40	1.50
2	Р	301	NAP	C3N-C7N	3.13	1.55	1.50
2	Т	301	NAP	C3N-C7N	3.11	1.55	1.50
2	Е	301	NAP	C5A-N7A	-3.10	1.28	1.39
2	Ι	301	NAP	C5A-N7A	-3.09	1.28	1.39
2	Ι	301	NAP	C3N-C7N	3.09	1.55	1.50
2	L	301	NAP	P2B-O1X	-3.05	1.40	1.50
2	F	301	NAP	C5A-N7A	-3.04	1.28	1.39
2	Ν	301	NAP	C5A-N7A	-3.03	1.28	1.39
2	V	301	NAP	P2B-O1X	-3.02	1.40	1.50
3	Κ	302	H4M	C7-N8	-3.02	1.43	1.47

Continued from previous page...

67	GE

			bus puge	•••			TI 1 (8)
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
3	В	302	H4M	C7-N8	-3.01	1.43	1.47
2	E	301	NAP	PA-O2A	-3.01	1.41	1.55
3	Х	302	H4M	C7-N8	-3.00	1.43	1.47
2	I	301	NAP	P2B-O1X	-2.99	1.40	1.50
3	М	302	H4M	C7-N8	-2.98	1.44	1.47
3	W	302	H4M	C7-N8	-2.98	1.44	1.47
2	Е	301	NAP	PN-O1N	-2.98	1.40	1.50
3	0	302	H4M	C7-N8	-2.98	1.44	1.47
2	М	301	NAP	C4A-N3A	-2.95	1.31	1.35
2	Х	301	NAP	C3N-C7N	2.94	1.55	1.50
2	L	301	NAP	C4A-N3A	-2.92	1.31	1.35
2	А	301	NAP	P2B-O1X	-2.91	1.41	1.50
2	Т	301	NAP	PN-O1N	-2.91	1.40	1.50
2	Х	301	NAP	C4A-N3A	-2.91	1.31	1.35
2	Е	301	NAP	PA-O1A	-2.91	1.40	1.50
2	W	301	NAP	PA-O1A	-2.90	1.40	1.50
3	U	302	H4M	C7-N8	-2.90	1.44	1.47
2	W	301	NAP	P2B-O2X	-2.90	1.43	1.54
2	K	301	NAP	C4A-N3A	-2.89	1.31	1.35
2	N	301	NAP	C3N-C7N	2.88	1.54	1.50
2	N	301	NAP	O7N-C7N	-2.88	1.18	1.24
2	Т	301	NAP	C4A-N3A	-2.87	1.31	1.35
2	Е	301	NAP	C3N-C7N	2.87	1.54	1.50
2	R	301	NAP	C3N-C7N	2.87	1.54	1.50
2	С	301	NAP	P2B-O1X	-2.87	1.41	1.50
2	W	301	NAP	C4A-N3A	-2.86	1.31	1.35
2	W	301	NAP	PN-O1N	-2.86	1.40	1.50
2	Н	301	NAP	C3N-C7N	2.86	1.54	1.50
2	N	301	NAP	PA-O2A	-2.85	1.41	1.55
2	0	301	NAP	C4A-N3A	-2.85	1.31	1.35
2	N	301	NAP	C4A-N3A	-2.84	1.31	1.35
2	Е	301	NAP	O4B-C4B	-2.84	1.38	1.45
3	F	302	H4M	C7-N8	-2.82	1.44	1.47
3	Q	302	H4M	C7-N8	-2.82	1.44	1.47
2	V	301	NAP	PA-O2A	-2.82	1.42	1.55
2	V	301	NAP	C4A-N3A	-2.81	1.31	1.35
3	N	302	H4M	C7-N8	-2.81	1.44	1.47
2	F	301	NAP	C4A-N3A	-2.80	1.31	1.35
$\frac{1}{2}$	E	301	NAP	C4A-N3A	-2.80	1.31	1.35
2	D	302	NAP	O4D-C1D	2.80	1.45	1.41
2	 	301	NAP	C3N-C7N	2.80	1.54	1.50
2	A	301	NAP	PA-O2A	-2.79	1.42	1.55

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	G	301	NAP	O7N-C7N	-2.79	1.18	1.24
2	Н	301	NAP	C4A-N3A	-2.79	1.31	1.35
2	G	301	NAP	O4D-C1D	2.79	1.45	1.41
2	D	302	NAP	C4A-N3A	-2.78	1.31	1.35
2	S	301	NAP	C4A-N3A	-2.77	1.31	1.35
2	J	301	NAP	C3N-C7N	2.77	1.54	1.50
2	U	301	NAP	PA-O2A	-2.77	1.42	1.55
3	Ι	302	H4M	C7-N8	-2.76	1.44	1.47
2	Ι	301	NAP	C4A-N3A	-2.73	1.31	1.35
2	W	301	NAP	C3N-C7N	2.73	1.54	1.50
2	L	301	NAP	P2B-O2X	-2.73	1.44	1.54
2	Е	301	NAP	P2B-O2X	-2.72	1.44	1.54
2	W	301	NAP	O7N-C7N	-2.71	1.19	1.24
2	Р	301	NAP	PA-O2A	-2.71	1.42	1.55
2	Т	301	NAP	O7N-C7N	-2.71	1.19	1.24
2	D	302	NAP	P2B-O2X	-2.70	1.44	1.54
2	0	301	NAP	PA-O1A	-2.70	1.41	1.50
3	R	302	H4M	C7-N8	-2.69	1.44	1.47
3	G	302	H4M	OH4-C4	-2.69	1.18	1.23
2	J	301	NAP	P2B-O2X	-2.69	1.44	1.54
2	K	301	NAP	O7N-C7N	-2.69	1.19	1.24
2	Х	301	NAP	PA-O2A	-2.68	1.42	1.55
2	S	301	NAP	O4B-C4B	-2.68	1.39	1.45
2	G	301	NAP	C3N-C7N	2.68	1.54	1.50
2	F	301	NAP	P2B-O1X	-2.67	1.41	1.50
2	L	301	NAP	C3N-C7N	2.67	1.54	1.50
2	D	302	NAP	PA-O1A	-2.66	1.41	1.50
2	W	301	NAP	PA-O2A	-2.66	1.42	1.55
2	R	301	NAP	P2B-O2X	-2.66	1.44	1.54
2	Е	301	NAP	O4D-C1D	2.66	1.44	1.41
2	G	301	NAP	PA-O2A	-2.66	1.42	1.55
2	Н	301	NAP	O7N-C7N	-2.65	1.19	1.24
2	А	301	NAP	C3N-C7N	2.64	1.54	1.50
2	J	301	NAP	C4A-N3A	-2.64	1.32	1.35
3	N	302	H4M	C6-N5	-2.64	1.43	1.47
3	0	302	H4M	OX5-C1J	2.64	1.44	1.40
2	L	301	NAP	PA-O2A	-2.63	1.43	1.55
2	Т	301	NAP	O4B-C4B	-2.63	1.39	1.45
3	S	302	H4M	OX5-C1J	2.62	1.44	1.40
2	С	301	NAP	O7N-C7N	-2.62	1.19	1.24
2	U	301	NAP	PN-O1N	-2.61	1.41	1.50
3	G	302	H4M	OX5-C1J	2.61	1.44	1.40

Continued from previous page...

67	ΓGE

Mol	Chain		Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	P	302	Ним	C6 N5	2.61	1 /3	1.47
$\frac{3}{2}$	I S	302	NAP	$P2B_{-}O2X$	-2.01	1.45	1.47
$\frac{2}{2}$	0	301	NAP	C4A-N3A	-2.61	1.44	1.34
3	C C	302	H4M	C7-N8	-2.60	1.52	1.55
$\frac{0}{2}$	S	301	NAP	PA-01A	-2.60	1.11	1.47
$\frac{2}{2}$	V	301	NAP	PN-01N	-2.60	1.41	1.50
$\frac{2}{2}$	і А	301	NAP	04D-C1D	2.00 2.59	1.41	1.50
$\frac{2}{2}$	0	301	NAP	P2B-01X	-2.59	1.44	1.41
2	T	301	NAP	PA-01A	-2.59	1.12	1.50
3	S	302	H4M	C6-N5	-2.58	1.11	1.50
2	J	301	NAP	04D-C1D	2.00 2.57	1.13	1.11
2	W	301	NAP	O4B-C4B	-2.57	1.11	1.11
$\frac{2}{2}$	B	301	NAP	C3N-C7N	$\frac{2.01}{2.57}$	1.50	1.10
2	X	301	NAP	PA-O1A	-2.57	1.01	1.50
3	N	302	H4M	OX5-C1J	2.57	1.44	1.40
3	R	302	H4M	C6-N5	-2.57	1.43	1.47
2	X	301	NAP	O4B-C4B	-2.57	1.39	1.45
2	S	301	NAP	PA-O2A	-2.56	1.43	1.55
2	A	301	NAP	P2B-O2X	-2.55	1.45	1.54
2	L	301	NAP	PA-O1A	-2.54	1.41	1.50
2	J	301	NAP	PA-O1A	-2.54	1.41	1.50
3	Н	302	H4M	C6-N5	-2.54	1.43	1.47
2	S	301	NAP	PN-O1N	-2.54	1.41	1.50
2	K	301	NAP	C3N-C7N	2.54	1.54	1.50
3	R	302	H4M	OX5-C1J	2.54	1.44	1.40
3	С	302	H4M	OX5-C1J	2.54	1.44	1.40
2	Q	301	NAP	P2B-O2X	-2.53	1.45	1.54
3	V	302	H4M	C6-N5	-2.53	1.43	1.47
2	F	301	NAP	PA-O1A	-2.53	1.41	1.50
2	U	301	NAP	PA-O1A	-2.53	1.41	1.50
2	D	302	NAP	PA-O2A	-2.52	1.43	1.55
2	В	301	NAP	PA-O2A	-2.52	1.43	1.55
2	K	301	NAP	PN-O1N	-2.52	1.42	1.50
2	V	301	NAP	PA-O1A	-2.52	1.42	1.50
2	V	301	NAP	C2D-C1D	-2.52	1.49	1.53
2	В	301	NAP	O7N-C7N	-2.52	1.19	1.24
2	С	301	NAP	C4A-N3A	-2.52	1.32	1.35
2	R	301	NAP	P2B-O1X	-2.51	1.42	1.50
2	Q	301	NAP	PN-O1N	-2.51	1.42	1.50
2	Р	301	NAP	P2B-O2X	-2.51	1.45	1.54
2	В	301	NAP	C4A-N3A	-2.51	1.32	1.35
2	М	301	NAP	O4D-C1D	2.51	1.44	1.41

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	N	301	NAP	P2B-O1X	-2.50	1.42	1.50
3	D	301	H4M	C6-N5	-2.50	1.43	1.47
2	L	301	NAP	PN-O1N	-2.50	1.42	1.50
3	В	302	H4M	OX5-C1J	2.50	1.44	1.40
2	A	301	NAP	C4A-N3A	-2.49	1.32	1.35
2	Р	301	NAP	C4A-N3A	-2.49	1.32	1.35
2	R	301	NAP	PA-O2A	-2.49	1.43	1.55
2	G	301	NAP	C4A-N3A	-2.49	1.32	1.35
2	J	301	NAP	PA-O2A	-2.49	1.43	1.55
2	R	301	NAP	O7N-C7N	-2.48	1.19	1.24
3	A	302	H4M	OX5-C1J	2.48	1.44	1.40
3	Q	302	H4M	OX5-C1J	2.47	1.44	1.40
2	I	301	NAP	O4B-C4B	-2.47	1.39	1.45
2	R	301	NAP	PA-O1A	-2.47	1.42	1.50
2	Т	301	NAP	PA-O2A	-2.47	1.43	1.55
2	Р	301	NAP	P2B-O1X	-2.47	1.42	1.50
2	N	301	NAP	P2B-O2X	-2.47	1.45	1.54
2	D	302	NAP	P2B-O1X	-2.47	1.42	1.50
3	Е	302	H4M	C7-N8	-2.46	1.44	1.47
2	L	301	NAP	O7N-C7N	-2.46	1.19	1.24
2	Ι	301	NAP	PA-O1A	-2.46	1.42	1.50
2	0	301	NAP	PA-O2A	-2.45	1.43	1.55
2	D	302	NAP	O7N-C7N	-2.45	1.19	1.24
2	V	301	NAP	O4B-C4B	-2.45	1.39	1.45
3	L	302	H4M	OX5-C1J	2.45	1.44	1.40
2	Н	301	NAP	PA-O1A	-2.45	1.42	1.50
2	N	301	NAP	PN-O1N	-2.45	1.42	1.50
2	R	301	NAP	PN-O1N	-2.45	1.42	1.50
2	С	301	NAP	P2B-O2X	-2.44	1.45	1.54
2	U	301	NAP	O4B-C4B	-2.44	1.39	1.45
2	Т	301	NAP	P2B-O2X	-2.44	1.45	1.54
3	Ι	302	H4M	OX5-C1J	2.44	1.44	1.40
2	V	301	NAP	P2B-O2X	-2.44	1.45	1.54
2	K	301	NAP	PA-O2A	-2.44	1.43	1.55
2	0	301	NAP	O4B-C4B	-2.44	1.39	1.45
2	А	301	NAP	O4B-C4B	-2.44	1.39	1.45
2	В	301	NAP	P2B-O1X	-2.44	1.42	1.50
2	Р	301	NAP	O7N-C7N	-2.43	1.19	1.24
2	Ι	301	NAP	PN-O1N	-2.43	1.42	1.50
2	J	301	NAP	O7N-C7N	-2.42	1.19	1.24
3	J	302	H4M	OX5-C1J	2.42	1.44	1.40
3	Р	302	H4M	OX5-C1J	2.42	1.44	1.40

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	0	302	H4M	C6-N5	-2.42	1.44	1.47
2	А	301	NAP	O7N-C7N	-2.42	1.19	1.24
2	U	301	NAP	P2B-O2X	-2.41	1.45	1.54
2	Н	301	NAP	P2B-O1X	-2.41	1.42	1.50
2	Ι	301	NAP	O7N-C7N	-2.41	1.19	1.24
2	С	301	NAP	PA-O2A	-2.41	1.44	1.55
2	Κ	301	NAP	O4B-C4B	-2.40	1.39	1.45
2	F	301	NAP	PA-O2A	-2.39	1.44	1.55
2	F	301	NAP	PN-O1N	-2.38	1.42	1.50
2	0	301	NAP	PN-O1N	-2.38	1.42	1.50
2	W	301	NAP	O5B-C5B	-2.37	1.35	1.44
2	В	301	NAP	O4B-C4B	-2.37	1.39	1.45
2	В	301	NAP	P2B-O2X	-2.36	1.45	1.54
2	D	302	NAP	C3N-C7N	2.36	1.54	1.50
2	С	301	NAP	PN-O1N	-2.36	1.42	1.50
2	М	301	NAP	O7N-C7N	-2.36	1.19	1.24
2	G	301	NAP	O4B-C4B	-2.36	1.39	1.45
2	Н	301	NAP	P2B-O2X	-2.35	1.45	1.54
2	0	301	NAP	O7N-C7N	-2.35	1.19	1.24
2	F	301	NAP	O4B-C4B	-2.35	1.39	1.45
2	Q	301	NAP	O4D-C1D	2.34	1.44	1.41
2	Х	301	NAP	O7N-C7N	-2.34	1.19	1.24
2	Р	301	NAP	PA-O1A	-2.34	1.42	1.50
2	0	301	NAP	P2B-O2X	-2.34	1.45	1.54
3	Х	302	H4M	OX5-C1J	2.34	1.44	1.40
3	F	302	H4M	OX5-C1J	2.33	1.44	1.40
3	V	302	H4M	OX5-C1J	2.33	1.44	1.40
3	А	302	H4M	C6-C7	-2.33	1.48	1.53
2	L	301	NAP	O4B-C4B	-2.33	1.39	1.45
2	Κ	301	NAP	P2B-O2X	-2.33	1.45	1.54
2	Ι	301	NAP	PA-O2A	-2.32	1.44	1.55
2	Х	301	NAP	PN-O1N	-2.32	1.42	1.50
2	С	301	NAP	O4B-C4B	-2.32	1.39	1.45
3	В	302	H4M	C6-N5	-2.32	1.44	1.47
3	Κ	302	H4M	OX5-C1J	2.31	1.44	1.40
3	X	302	H4M	C6-N5	-2.31	1.44	1.47
3	Т	302	H4M	C7-N8	-2.31	1.44	1.47
2	F	301	NAP	O4D-C1D	2.31	1.44	1.41
2	K	301	NAP	P2B-O1X	-2.31	1.43	1.50
2	А	301	NAP	PA-O1A	-2.31	1.42	1.50
2	М	301	NAP	C3N-C7N	2.30	1.54	1.50
2	R	301	NAP	O4B-C1B	-2.30	1.37	1.41

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	J	301	NAP	O4B-C4B	-2.30	1.39	1.45
3	G	302	H4M	C6-N5	-2.30	1.44	1.47
2	W	301	NAP	C2D-C1D	-2.29	1.50	1.53
2	Е	301	NAP	O5B-C5B	-2.29	1.36	1.44
3	W	302	H4M	OX5-C1J	2.28	1.44	1.40
2	Q	301	NAP	PA-O2A	-2.27	1.44	1.55
2	F	301	NAP	O7N-C7N	-2.27	1.19	1.24
2	Х	301	NAP	C2D-C1D	-2.27	1.50	1.53
2	Н	301	NAP	PA-O2A	-2.26	1.44	1.55
3	D	301	H4M	OX5-C1J	2.25	1.44	1.40
3	М	302	H4M	OX5-C1J	2.25	1.44	1.40
2	D	302	NAP	O4B-C4B	-2.25	1.40	1.45
2	J	301	NAP	O5B-C5B	-2.24	1.36	1.44
2	G	301	NAP	P2B-O2X	-2.24	1.46	1.54
2	Т	301	NAP	O5B-C5B	-2.24	1.36	1.44
2	S	301	NAP	C3N-C7N	2.24	1.53	1.50
3	U	302	H4M	OX5-C1J	2.23	1.44	1.40
3	J	302	H4M	OH4-C4	-2.23	1.19	1.23
2	Q	301	NAP	O4B-C1B	-2.23	1.38	1.41
3	Κ	302	H4M	C6-N5	-2.21	1.44	1.47
2	J	301	NAP	C2D-C1D	-2.21	1.50	1.53
2	М	301	NAP	C2D-C1D	-2.21	1.50	1.53
2	V	301	NAP	O5B-C5B	-2.21	1.36	1.44
2	S	301	NAP	O7N-C7N	-2.21	1.19	1.24
2	V	301	NAP	O7N-C7N	-2.20	1.19	1.24
2	G	301	NAP	P2B-O1X	-2.20	1.43	1.50
2	L	301	NAP	O5B-C5B	-2.20	1.36	1.44
2	G	301	NAP	PA-O1A	-2.19	1.43	1.50
3	G	302	H4M	C6-C7	-2.19	1.48	1.53
2	R	301	NAP	C2D-C1D	-2.19	1.50	1.53
2	U	301	NAP	O4B-C1B	-2.18	1.38	1.41
2	P	301	NAP	O5B-C5B	-2.17	1.36	1.44
3	T -	302	H4M	OX5-C1J	2.17	1.43	1.40
2		301	NAP	P2B-O2X	-2.16	1.46	1.54
2	P	301	NAP	C2D-C1D	-2.16	1.50	1.53
2	G	301	NAP	C2D-C1D	-2.15	1.50	1.53
2	J	301	NAP	PN-01N	-2.15	1.43	1.50
2	U	301	NAP	U5B-C5B	-2.14	1.36	1.44
$\frac{2}{2}$		301	NAP HANA	OVE C11	-2.14	1.50	1.53
	H	302	H4M NAD	OTN CTN	2.13	1.43	1.40
$\frac{2}{2}$	E II	301	NAP NAD	DN O1N	-2.13	1.20	1.24
2	Н	301	NAP	PN-OIN	-2.13	1.43	1.50

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Q	301	NAP	C2D-C1D	-2.13	1.50	1.53
2	Q	301	NAP	PA-O1A	-2.13	1.43	1.50
2	Р	301	NAP	O4D-C1D	2.12	1.44	1.41
3	Е	302	H4M	OX5-C1J	2.12	1.43	1.40
2	Т	301	NAP	C2D-C1D	-2.11	1.50	1.53
2	Х	301	NAP	O5B-C5B	-2.11	1.36	1.44
2	F	301	NAP	O5B-C5B	-2.11	1.36	1.44
2	R	301	NAP	O5B-C5B	-2.10	1.36	1.44
2	S	301	NAP	O5B-C5B	-2.10	1.36	1.44
2	Q	301	NAP	O7N-C7N	-2.10	1.20	1.24
2	Ν	301	NAP	O4B-C4B	-2.10	1.40	1.45
2	F	301	NAP	P2B-O2X	-2.08	1.46	1.54
2	Ν	301	NAP	PA-O1A	-2.07	1.43	1.50
2	М	301	NAP	PA-O2A	-2.07	1.45	1.55
2	D	302	NAP	PN-O1N	-2.06	1.43	1.50
2	Ι	301	NAP	O5B-C5B	-2.06	1.36	1.44
2	R	301	NAP	O4D-C1D	2.06	1.44	1.41
2	S	301	NAP	O4B-C1B	-2.06	1.38	1.41
2	0	301	NAP	O5B-C5B	-2.06	1.36	1.44
2	U	301	NAP	O7N-C7N	-2.05	1.20	1.24
2	В	301	NAP	PN-O1N	-2.05	1.43	1.50
2	S	301	NAP	C2D-C1D	-2.05	1.50	1.53
2	Ι	301	NAP	O4D-C1D	2.05	1.43	1.41
2	R	301	NAP	O4B-C4B	-2.04	1.40	1.45
2	Н	301	NAP	C2D-C1D	-2.04	1.50	1.53
2	F	301	NAP	O4B-C1B	-2.03	1.38	1.41
2	W	301	NAP	O4B-C1B	-2.03	1.38	1.41
2	М	301	NAP	P2B-O2X	-2.03	1.47	1.54
2	А	301	NAP	O5B-C5B	-2.02	1.37	1.44
2	М	301	NAP	PN-O1N	-2.02	1.43	1.50
2	Н	301	NAP	O4D-C1D	2.02	1.43	1.41
2	В	301	NAP	O4D-C1D	2.02	1.43	1.41
2	А	301	NAP	O4B-C1B	-2.01	1.38	1.41

All (415) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	С	301	NAP	C5A-C6A-N6A	6.99	130.97	120.35
2	L	301	NAP	C5A-C6A-N6A	6.98	130.96	120.35
2	Ι	301	NAP	C5A-C6A-N6A	6.83	130.73	120.35
2	V	301	NAP	C5A-C6A-N6A	6.80	130.69	120.35
2	0	301	NAP	C5A-C6A-N6A	6.78	130.66	120.35

67	ГGE
-	-

Mol	Chain	Res	Type	Atoms	Ζ	Observed(°)	$Ideal(^{o})$
2	S	301	NAP	C5A-C6A-N6A	6.75	130.61	120.35
3	N	302	H4M	N10-C10-N5	6.74	112.60	103.03
2	D	302	NAP	C5A-C6A-N6A	6.74	130.59	120.35
2	F	301	NAP	C5A-C6A-N6A	6.73	130.58	120.35
2	U	301	NAP	C5A-C6A-N6A	6.70	130.53	120.35
3	В	302	H4M	N10-C10-N5	6.66	112.48	103.03
3	0	302	H4M	N10-C10-N5	6.55	112.33	103.03
2	J	301	NAP	C5A-C6A-N6A	6.51	130.25	120.35
3	Р	302	H4M	C7-C6-N5	6.48	115.07	108.61
3	А	302	H4M	C7-C6-N5	6.47	115.06	108.61
3	R	302	H4M	N10-C10-N5	6.44	112.17	103.03
3	V	302	H4M	N10-C10-N5	6.40	112.11	103.03
2	Х	301	NAP	C5A-C6A-N6A	6.39	130.07	120.35
2	R	301	NAP	C5A-C6A-N6A	6.36	130.01	120.35
3	G	302	H4M	C7-C6-N5	6.31	114.89	108.61
3	S	302	H4M	C7-C6-N5	6.29	114.88	108.61
3	K	302	H4M	N10-C10-N5	6.27	111.93	103.03
3	Р	302	H4M	N10-C10-N5	6.24	111.89	103.03
3	V	302	H4M	C7-C6-N5	6.23	114.82	108.61
3	М	302	H4M	C7-C6-N5	6.22	114.80	108.61
2	W	301	NAP	C5A-C6A-N6A	6.16	129.72	120.35
3	V	302	H4M	C10-N5-C4A	6.16	133.11	127.47
2	Т	301	NAP	C5A-C6A-N6A	6.15	129.71	120.35
3	J	302	H4M	N10-C10-N5	6.12	111.71	103.03
2	Κ	301	NAP	C5A-C6A-N6A	6.06	129.56	120.35
2	А	301	NAP	C5A-C6A-N6A	6.03	129.52	120.35
3	G	302	H4M	C4A-C4-N3	5.98	121.52	110.99
2	Ν	301	NAP	C5A-C6A-N6A	5.97	129.43	120.35
3	Н	302	H4M	N10-C10-N5	5.93	111.45	103.03
3	D	301	H4M	N10-C10-N5	5.86	111.34	103.03
3	Р	302	H4M	C4A-C4-N3	5.85	121.31	110.99
2	Р	301	NAP	C5A-C6A-N6A	5.85	129.24	120.35
3	J	302	H4M	C4A-C4-N3	5.81	121.23	110.99
2	В	301	NAP	C5A-C6A-N6A	5.76	129.10	120.35
3	D	301	H4M	C7-C6-N5	5.74	114.33	108.61
3	S	302	H4M	N10-C10-N5	5.74	111.18	103.03
2	E	301	NAP	C5A-C6A-N6A	5.67	128.96	120.35
3	С	302	H4M	N10-C10-N5	5.60	110.98	103.03
2	Q	301	NAP	C5A-C6A-N6A	5.57	128.81	120.35
2	G	301	NAP	C5A-C6A-N6A	5.51	128.72	120.35
3	Х	302	H4M	C10-N5-C4A	5.51	132.51	127.47
2	U	301	NAP	C1B-N9A-C4A	-5.40	117.15	126.64

67	ГGE
U	чц

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
3	V	302	H4M	C4A-C4-N3	5.30	120.34	110.99
3	, O	302	H4M	C4A-C4-N3	5.29	120.31	110.99
2	V	301	NAP	C1B-N9A-C4A	-5.28	117.37	126.64
3	R	302	H4M	C6-C9-N10	5.27	106.50	102.56
3	V	302	H4M	C2-N1-C8A	5.21	122.83	113.43
3	K	302	H4M	C2-N1-C8A	5.20	122.82	113.43
3	С	302	H4M	C4A-C4-N3	5.20	120.15	110.99
3	G	302	H4M	N10-C10-N5	5.19	110.40	103.03
3	S	302	H4M	C4A-C4-N3	5.19	120.13	110.99
3	Х	302	H4M	N10-C10-N5	5.18	110.38	103.03
3	0	302	H4M	C2-N1-C8A	5.14	122.70	113.43
3	J	302	H4M	C7-C6-N5	5.12	113.71	108.61
3	Т	302	H4M	C4A-C4-N3	5.10	119.99	110.99
2	Н	301	NAP	C5A-C6A-N6A	5.10	128.10	120.35
3	L	302	H4M	C2-N1-C8A	5.05	122.54	113.43
3	М	302	H4M	N10-C10-N5	5.04	110.19	103.03
3	В	302	H4M	C2-N1-C8A	5.04	122.53	113.43
3	Q	302	H4M	C4A-C4-N3	5.04	119.86	110.99
3	Ι	302	H4M	C2-N1-C8A	5.04	122.52	113.43
3	В	302	H4M	C4A-C4-N3	5.02	119.84	110.99
3	S	302	H4M	C2-N1-C8A	5.02	122.49	113.43
3	R	302	H4M	C10-N5-C4A	4.95	132.01	127.47
3	Е	302	H4M	C4A-C4-N3	4.93	119.69	110.99
3	D	301	H4M	C2-N1-C8A	4.92	122.31	113.43
2	М	301	NAP	C5A-C6A-N6A	4.90	127.80	120.35
3	Ι	302	H4M	C4A-C4-N3	4.90	119.62	110.99
3	Т	302	H4M	C2-N1-C8A	4.90	122.27	113.43
3	F	302	H4M	C2-N1-C8A	4.88	122.24	113.43
3	U	302	H4M	C2-N1-C8A	4.86	122.20	113.43
3	Ν	302	H4M	C6-C9-N10	4.85	106.19	102.56
3	L	302	H4M	C4A-C4-N3	4.84	119.52	110.99
3	G	302	H4M	C2-N1-C8A	4.82	122.12	113.43
3	F	302	H4M	C4A-C4-N3	4.81	119.47	110.99
3	Κ	302	H4M	C4A-C4-N3	4.81	119.46	110.99
3	Q	302	H4M	C2-N1-C8A	4.79	122.08	113.43
3	N	302	H4M	C2-N1-C8A	4.75	$1\overline{22.00}$	113.43
3	E	302	H4M	C2-N1-C8A	4.74	121.98	113.43
3	W	302	H4M	C2-N1-C8A	$4.7\overline{3}$	121.97	113.43
3	D	301	H4M	$C4A-\overline{C4-N3}$	4.73	119.33	110.99
3	С	302	H4M	C2-N1-C8A	4.71	121.92	113.43
3	R	302	H4M	C2-N1-C8A	4.69	$1\overline{21.90}$	113.43
2	F	301	NAP	C1B-N9A-C4A	-4.69	118.40	126.64

67	ГGE
-	-

Mol	Chain	Res	Type	Atoms	Ζ	Observed(°)	$Ideal(^{o})$
3	Х	302	H4M	C2-N1-C8A	4.68	121.88	113.43
3	Н	302	H4M	C2-N1-C8A	4.68	121.88	113.43
3	R	302	H4M	C4A-C4-N3	4.60	119.10	110.99
3	М	302	H4M	CX5-CX4-CX3	-4.59	103.33	112.20
3	J	302	H4M	C10-N5-C4A	4.58	131.67	127.47
3	W	302	H4M	C4A-C4-N3	4.55	119.00	110.99
2	L	301	NAP	C1B-N9A-C4A	-4.51	118.72	126.64
3	А	302	H4M	C2-N1-C8A	4.46	121.49	113.43
3	U	302	H4M	C4A-C4-N3	4.46	118.84	110.99
3	Р	302	H4M	C10-N5-C4A	4.44	131.54	127.47
3	А	302	H4M	C4A-C4-N3	4.43	118.80	110.99
2	Х	301	NAP	C1B-N9A-C4A	-4.42	118.88	126.64
3	Ν	302	H4M	C4A-C4-N3	4.40	118.75	110.99
3	Р	302	H4M	C2-N1-C8A	4.37	121.31	113.43
3	L	302	H4M	N10-C10-N5	4.36	109.22	103.03
3	Ι	302	H4M	C10-N5-C4A	4.35	131.46	127.47
2	Р	301	NAP	C1B-N9A-C4A	-4.33	119.03	126.64
2	K	301	NAP	N3A-C2A-N1A	-4.30	121.95	128.68
3	Х	302	H4M	C4A-C4-N3	4.27	118.52	110.99
2	Ν	301	NAP	N3A-C2A-N1A	-4.27	122.01	128.68
3	Н	302	H4M	C4A-C4-N3	4.26	118.49	110.99
3	J	302	H4M	C2-N1-C8A	4.24	121.08	113.43
2	0	301	NAP	C1B-N9A-C4A	-4.24	119.19	126.64
2	U	301	NAP	N3A-C2A-N1A	-4.24	122.06	128.68
3	Н	302	H4M	C10-N5-C4A	4.19	131.31	127.47
2	R	301	NAP	C1B-N9A-C4A	-4.13	119.39	126.64
3	М	302	H4M	C2-N1-C8A	4.12	120.86	113.43
2	R	301	NAP	N3A-C2A-N1A	-4.11	122.26	128.68
3	D	301	H4M	C10-N5-C4A	4.04	131.18	127.47
2	Х	301	NAP	N3A-C2A-N1A	-4.04	122.36	128.68
2	L	301	NAP	N6A-C6A-N1A	-4.04	110.19	118.57
3	М	302	H4M	C4A-C4-N3	4.04	118.10	110.99
3	V	302	H4M	C6-C9-N10	4.03	105.58	102.56
3	K	302	H4M	C6-C9-N10	4.03	105.58	102.56
3	М	302	H4M	O4J-C1J-OX5	-4.02	107.55	111.95
2	S	301	NAP	C1B-N9A-C4A	-3.95	119.69	126.64
2	Р	301	NAP	N3A-C2A-N1A	-3.92	122.56	128.68
2	F	301	NAP	N3A-C2A-N1A	-3.90	122.59	128.68
2	V	301	NAP	N3A-C2A-N1A	-3.89	122.59	128.68
2	0	301	NAP	N3A-C2A-N1A	-3.88	122.61	128.68
3	Т	302	H4M	N10-C10-N5	3.88	108.53	103.03
2	Н	301	NAP	N3A-C2A-N1A	-3.88	122.62	128.68

67	ГGE
-	-

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
3	X	302	H4M	C7M-C7-N8	3.86	113.23	109.39
$\frac{3}{2}$	C	301	NAP	N6A-C6A-N1A	-3.86	110.56	118.57
2	D	302	NAP	N3A-C2A-N1A	-3.85	122.65	128.68
2	Т	301	NAP	N3A-C2A-N1A	-3.83	122.69	128.68
2	L	301	NAP	N3A-C2A-N1A	-3.82	122.70	128.68
3	0	302	H4M	C6-C9-N10	3.81	105.41	102.56
2	0	301	NAP	N6A-C6A-N1A	-3.78	110.72	118.57
3	Ι	302	H4M	N10-C10-N5	3.78	108.39	103.03
2	W	301	NAP	N3A-C2A-N1A	-3.78	122.78	128.68
2	Ι	301	NAP	C1B-N9A-C4A	-3.77	120.02	126.64
2	Ι	301	NAP	N6A-C6A-N1A	-3.77	110.75	118.57
2	V	301	NAP	N6A-C6A-N1A	-3.76	110.76	118.57
2	С	301	NAP	C1B-N9A-C4A	-3.75	120.06	126.64
2	G	301	NAP	N3A-C2A-N1A	-3.73	122.85	128.68
3	U	302	H4M	C15-C14-N10	-3.71	114.11	121.14
2	J	301	NAP	N3A-C2A-N1A	-3.71	122.89	128.68
3	L	302	H4M	C10-N5-C4A	3.70	130.86	127.47
2	U	301	NAP	N6A-C6A-N1A	-3.69	110.91	118.57
3	S	302	H4M	C10-N5-C4A	3.69	130.85	127.47
2	А	301	NAP	N3A-C2A-N1A	-3.68	122.92	128.68
2	А	301	NAP	C1B-N9A-C4A	-3.68	120.17	126.64
2	D	302	NAP	C1B-N9A-C4A	-3.68	120.18	126.64
2	S	301	NAP	N6A-C6A-N1A	-3.68	110.94	118.57
2	Ι	301	NAP	N3A-C2A-N1A	-3.68	122.93	128.68
3	А	302	H4M	N10-C10-N5	3.67	108.24	103.03
3	G	302	H4M	C10-N5-C4A	3.64	130.81	127.47
2	F	301	NAP	N6A-C6A-N1A	-3.64	111.03	118.57
2	Ε	301	NAP	N3A-C2A-N1A	-3.63	123.01	128.68
2	S	301	NAP	N3A-C2A-N1A	-3.62	123.02	128.68
2	С	301	NAP	N3A-C2A-N1A	-3.62	123.02	128.68
3	J	302	H4M	OH4-C4-C4A	-3.61	118.68	127.54
3	F	302	H4M	C6-C9-N10	-3.61	99.85	102.56
3	Ο	302	H4M	C7-C6-N5	3.60	112.19	108.61
2	W	301	NAP	C1B-N9A-C4A	-3.59	120.33	126.64
2	Q	301	NAP	N3A-C2A-N1A	-3.59	123.06	128.68
2	R	301	NAP	N6A-C6A-N1A	-3.56	111.18	118.57
2	D	302	NAP	C6N-N1N-C2N	-3.55	118.73	121.97
2	D	302	NAP	N6A-C6A-N1A	-3.55	111.21	118.57
2	В	301	NAP	N3A-C2A-N1A	-3.54	123.15	128.68
2	Т	301	NAP	C1B-N9A-C4A	-3.52	120.45	126.64
2	Ε	301	NAP	C1B-N9A-C4A	-3.51	120.47	126.64
2	Х	301	NAP	N6A-C6A-N1A	-3.49	111.32	118.57

67	ГGE
-	-

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
2	P	301	NAP	04D-C1D-C2D	-3.49	101.83	106.93
3	W	302	H4M	C10-N5-C4A	3.48	130.66	127.47
2	K	301	NAP	C1B-N9A-C4A	-3.46	120.55	126.64
3	Q	302	H4M	N10-C10-N5	3.46	107.94	103.03
3	M	302	H4M	C6-C9-N10	3.46	105.15	102.56
3	U	302	H4M	C7M-C7-N8	3.45	112.83	109.39
3	В	302	H4M	C6-C9-N10	3.44	105.13	102.56
2	М	301	NAP	C6N-N1N-C2N	-3.43	118.85	121.97
2	K	301	NAP	N6A-C6A-N1A	-3.42	111.48	118.57
2	G	301	NAP	C1B-N9A-C4A	-3.40	120.66	126.64
2	W	301	NAP	N6A-C6A-N1A	-3.40	111.51	118.57
2	J	301	NAP	N6A-C6A-N1A	-3.40	111.52	118.57
3	Х	302	H4M	C6-C9-N10	3.38	105.09	102.56
3	Е	302	H4M	N10-C10-N5	3.38	107.82	103.03
3	А	302	H4M	C10-N5-C4A	3.36	130.55	127.47
2	Т	301	NAP	N6A-C6A-N1A	-3.35	111.62	118.57
3	Х	302	H4M	C11-CX1-CX2	-3.34	107.64	113.61
3	W	302	H4M	N10-C10-N5	3.32	107.75	103.03
3	0	302	H4M	C10-N5-C4A	3.32	130.51	127.47
3	U	302	H4M	C6-C9-N10	-3.31	100.07	102.56
2	А	301	NAP	N6A-C6A-N1A	-3.30	111.72	118.57
2	Т	301	NAP	O7N-C7N-N7N	-3.28	117.91	122.58
3	U	302	H4M	N10-C10-N5	3.28	107.68	103.03
2	N	301	NAP	N6A-C6A-N1A	-3.27	111.79	118.57
3	Ι	302	H4M	C2-N3-C4	-3.25	119.18	125.10
3	М	302	H4M	C10-N5-C4A	3.24	130.44	127.47
3	F	302	H4M	N10-C10-N5	3.24	107.63	103.03
2	Q	301	NAP	C1B-N9A-C4A	-3.23	120.96	126.64
3	G	302	H4M	OH4-C4-C4A	-3.23	119.63	127.54
2	Р	301	NAP	N6A-C6A-N1A	-3.22	111.89	118.57
3	А	302	H4M	O4J-C1J-OX5	-3.22	108.42	111.95
2	С	301	NAP	O7N-C7N-N7N	-3.21	118.02	122.58
3	L	302	H4M	C15-C14-N10	-3.21	115.06	121.14
3	0	302	H4M	C2-N3-C4	-3.20	119.26	125.10
3	Р	302	H4M	C2-N3-C4	-3.18	119.30	125.10
2	М	301	NAP	N3A-C2A-N1A	-3.17	$1\overline{23.72}$	128.68
2	F	301	NAP	C3N-C7N-N7N	3.17	121.55	117.75
3	J	302	H4M	C2-N3-C4	-3.16	119.33	125.10
3	С	302	H4M	C6-C9-N10	3.15	104.92	102.56
3	P	302	H4M	OH4-C4-C4A	-3.14	119.83	127.54
2	М	301	NAP	C1B-N9A-C4A	-3.14	121.12	126.64
2	J	301	NAP	C1B-N9A-C4A	-3.14	121.12	126.64

67	ГGE
-	-

Continued from previous page							
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	F	302	H4M	C2-N3-C4	-3.13	119.39	125.10
2	K	301	NAP	O7N-C7N-N7N	-3.12	118.14	122.58
3	G	302	H4M	C2-N3-C4	-3.12	119.41	125.10
3	U	302	H4M	C2-N3-C4	-3.11	119.43	125.10
3	F	302	H4M	C15-C14-N10	-3.10	115.27	121.14
2	N	301	NAP	C3N-C7N-N7N	3.09	121.46	117.75
3	Q	302	H4M	C10-N5-C4A	3.08	130.29	127.47
2	В	301	NAP	C1B-N9A-C4A	-3.07	121.24	126.64
3	S	302	H4M	C2-N3-C4	-3.06	119.51	125.10
3	Т	302	H4M	C2-N3-C4	-3.06	119.53	125.10
2	N	301	NAP	O7N-C7N-N7N	-3.05	118.25	122.58
2	Н	301	NAP	O7N-C7N-N7N	-3.05	118.25	122.58
3	Р	302	H4M	O4J-C1J-OX5	-3.04	108.61	111.95
2	N	301	NAP	C1B-N9A-C4A	-3.04	121.30	126.64
3	Х	302	H4M	C7-C6-N5	3.04	111.64	108.61
3	В	302	H4M	C7-C6-N5	3.03	111.63	108.61
3	Н	302	H4M	C7M-C7-N8	3.03	112.40	109.39
3	В	302	H4M	C2-N3-C4	-3.02	119.59	125.10
2	G	301	NAP	C6N-N1N-C2N	-3.02	119.22	121.97
3	L	302	H4M	C2-N3-C4	-3.02	119.59	125.10
2	Е	301	NAP	N6A-C6A-N1A	-3.00	112.34	118.57
2	А	301	NAP	C6N-N1N-C2N	-3.00	119.24	121.97
3	Q	302	H4M	C2-N3-C4	-2.99	119.64	125.10
2	Н	301	NAP	C1B-N9A-C4A	-2.98	121.40	126.64
2	В	301	NAP	N6A-C6A-N1A	-2.98	112.39	118.57
3	С	302	H4M	C2-N3-C4	-2.97	119.68	125.10
3	R	302	H4M	CX4-CX3-CX2	-2.97	107.18	113.36
3	K	302	H4M	C10-N5-C4A	2.97	130.19	127.47
2	Q	301	NAP	N6A-C6A-N1A	-2.97	112.42	118.57
3	Р	302	H4M	O4J-C1J-C2J	2.96	108.79	104.98
2	Ι	301	NAP	O7N-C7N-N7N	-2.94	118.39	122.58
2	Ι	301	NAP	C3N-C7N-N7N	2.93	121.27	117.75
2	K	301	NAP	C3N-C7N-N7N	2.92	121.26	117.75
3	W	302	H4M	C7-C6-N5	2.92	111.52	108.61
3	V	302	H4M	OH4-C4-C4A	-2.92	120.39	127.54
2	G	301	NAP	N6A-C6A-N1A	-2.91	112.53	118.57
3	Х	302	H4M	C2-N3-C4	-2.90	119.81	125.10
3	Е	302	H4M	C2-N3-C4	-2.90	119.82	125.10
3	N	302	H4M	C2-N3-C4	-2.89	119.83	125.10
3	R	302	H4M	C2-N3-C4	-2.87	119.86	125.10
3	U	302	H4M	C13-C14-N10	2.85	126.54	121.14
3	Q	302	H4M	C7-C6-N5	2.84	111.44	108.61

67	ГGE
U	L G L

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
3	Т	302	H4M	OH4-C4-C4A	-2.83	120.59	127.54
3	L	302	H4M	C13-C14-N10	2.82	126.48	121.14
3	Ι	302	H4M	C7M-C7-N8	2.81	112.19	109.39
3	Е	302	H4M	C10-N5-C4A	2.80	130.04	127.47
3	Е	302	H4M	OH4-C4-C4A	-2.79	120.69	127.54
3	Р	302	H4M	C6-C9-N10	2.78	104.64	102.56
3	D	301	H4M	OH4-C4-C4A	-2.78	120.72	127.54
3	S	302	H4M	OH4-C4-C4A	-2.78	120.72	127.54
3	W	302	H4M	CX5-CX4-CX3	-2.77	106.85	112.20
3	D	301	H4M	C2-N3-C4	-2.76	120.06	125.10
3	G	302	H4M	C6-C9-N10	2.76	104.63	102.56
2	U	301	NAP	C6N-N1N-C2N	-2.76	119.46	121.97
3	Q	302	H4M	OH4-C4-C4A	-2.76	120.77	127.54
3	Т	302	H4M	C10-N5-C4A	2.74	129.98	127.47
3	А	302	H4M	C6-C9-N10	2.74	104.61	102.56
3	K	302	H4M	C2-N3-C4	-2.74	120.10	125.10
3	U	302	H4M	OH4-C4-C4A	-2.74	120.83	127.54
3	S	302	H4M	CX5-CX4-CX3	-2.72	106.95	112.20
3	F	302	H4M	O4J-C1J-OX5	-2.71	108.98	111.95
2	J	301	NAP	O4D-C1D-C2D	-2.70	102.98	106.93
2	Р	301	NAP	C6N-N1N-C2N	-2.69	119.53	121.97
3	W	302	H4M	C2-N3-C4	-2.68	120.21	125.10
3	V	302	H4M	C2-N3-C4	-2.68	120.22	125.10
2	Т	301	NAP	C3N-C7N-N7N	2.67	120.95	117.75
3	С	302	H4M	OH4-C4-C4A	-2.65	121.03	127.54
2	F	301	NAP	O7N-C7N-N7N	-2.65	118.81	122.58
2	Н	301	NAP	N6A-C6A-N1A	-2.64	113.09	118.57
2	0	301	NAP	O7N-C7N-N7N	-2.64	118.82	122.58
2	D	302	NAP	O4D-C1D-C2D	-2.64	103.07	106.93
2	Е	301	NAP	C6N-N1N-C2N	-2.63	119.58	121.97
3	А	302	H4M	CX5-CX4-CX3	-2.60	107.19	112.20
3	L	302	H4M	O4J-C1J-C2J	2.59	108.32	104.98
2	0	301	NAP	C6N-N1N-C2N	-2.59	119.62	121.97
3	L	302	H4M	OH4-C4-C4A	-2.58	121.22	127.54
3	Н	302	H4M	C9-C6-N5	2.56	104.76	102.36
3	Т	302	H4M	C10-N10-C14	2.56	128.64	120.34
3	V	302	H4M	OX5-C1J-C2J	2.56	111.93	107.76
3	0	302	H4M	C7M-C7-N8	2.55	111.93	109.39
3	K	302	H4M	C9M-C9-N10	-2.55	108.46	112.68
3	С	302	H4M	C9M-C9-N10	-2.54	108.46	112.68
3	Е	302	H4M	C10-N10-C14	2.54	128.56	120.34
3	F	302	H4M	OH4-C4-C4A	-2.53	121.33	127.54

C ₁	DOF.
01	LGL

Mol	Chain	\mathbf{Res}	Tvpe	Atoms	Z	Observed(°)	Ideal(°)
2	Н	301	NAP	C6N-N1N-C2N	-2.53	119.67	121.97
2	A	301	NAP	04D-C1D-C2D	-2.51	103.25	106.93
3	X	302	H4M	O4J-C1J-OX5	-2.50	109.21	111.95
3	F	302	H4M	C13-C14-N10	2.50	125.88	121.14
3	М	302	H4M	CX1-CX2-CX3	-2.50	105.56	112.49
3	V	302	H4M	C7M-C7-N8	-2.50	106.91	109.39
3	J	302	H4M	C1J-C2J-C3J	2.50	105.46	102.30
2	В	301	NAP	O7N-C7N-N7N	-2.49	119.03	122.58
3	W	302	H4M	C10-N10-C14	2.49	128.42	120.34
2	N	301	NAP	C6N-N1N-C2N	-2.49	119.70	121.97
3	F	302	H4M	O4J-C1J-C2J	2.47	108.16	104.98
2	K	301	NAP	C6N-N1N-C2N	-2.47	119.73	121.97
2	W	301	NAP	O7N-C7N-N7N	-2.47	119.08	122.58
2	U	301	NAP	C3N-C7N-N7N	2.46	120.71	117.75
2	J	301	NAP	C6N-N1N-C2N	-2.46	119.73	121.97
2	М	301	NAP	C5N-C4N-C3N	-2.46	117.43	120.34
3	U	302	H4M	C10-N5-C4A	2.45	129.71	127.47
2	S	301	NAP	O4D-C1D-C2D	-2.45	103.35	106.93
2	В	301	NAP	C6N-N1N-C2N	-2.44	119.75	121.97
3	Q	302	H4M	C10-N10-C14	2.44	128.25	120.34
3	А	302	H4M	OH4-C4-C4A	-2.43	121.57	127.54
2	Х	301	NAP	C6N-N1N-C2N	-2.43	119.76	121.97
3	S	302	H4M	C6-C9-N10	2.42	104.37	102.56
2	W	301	NAP	C6N-N1N-C2N	-2.42	119.77	121.97
3	W	302	H4M	OH4-C4-C4A	-2.41	121.62	127.54
3	С	302	H4M	C10-N5-C4A	2.41	129.68	127.47
3	М	302	H4M	OH4-C4-C4A	-2.40	121.65	127.54
3	V	302	H4M	C11-CX1-CX2	2.39	117.87	113.61
3	F	302	H4M	C7M-C7-N8	2.38	111.76	109.39
2	R	301	NAP	C6N-N1N-C2N	-2.37	119.81	121.97
3	Н	302	H4M	CX4-CX3-CX2	-2.37	108.44	113.36
3	0	302	H4M	OH4-C4-C4A	-2.36	121.74	127.54
3	N	302	H4M	OH4-C4-C4A	-2.36	121.75	127.54
3	N	302	H4M	C15-C14-N10	-2.36	116.67	121.14
2	L	301	NAP	O7N-C7N-N7N	-2.36	119.23	122.58
2	L	301	NAP	C3N-C7N-N7N	2.35	120.58	117.75
3	А	302	H4M	C2-N3-C4	-2.35	120.81	125.10
3	А	302	H4M	NA2-C2-N3	2.35	121.71	116.71
3	Х	302	H4M	O4J-C1J-C2J	2.34	108.00	104.98
2	Q	301	NAP	C3N-C7N-N7N	2.34	120.56	117.75
3	S	302	H4M	O4J-C1J-OX5	-2.33	109.40	111.95
3	Н	302	H4M	C11-CX1-CX2	2.32	117.75	113.61

67	ГGE
-	-

Mol	Chain	Res	Type Atoms		7.	Observed $(^{o})$	Ideal(°)
2	C	301	NAP	04D C1D C2D	2 9 3 9	103 54	106.03
$\frac{2}{2}$	G	301	NAP	$\frac{\text{C3N-C7N-N7N}}{\text{C3N-C7N-N7N}}$	-2.02	100.54	100.93 117 75
3	I	302	H4M	C6-C9-N10	2.32 2.31	104 29	102.56
3	y V	302	H4M		2.01 2.31	104.25	102.00
3		302	H4M	C15-C14-N10	-2.01	116 76	102.50 121.14
$\frac{3}{2}$	P	302	NAP	$\frac{C3N_{C7N_{N7N}}}{C3N_{C7N_{N7N}}}$	-2.01	120.52	121.14 117 75
$\frac{2}{2}$	R	301	NAP	O7N-C7N-N7N	2.00	110.32	122 58
$\frac{2}{2}$	$\hat{\mathbf{n}}$	301	NAP	04D-C1D-C2D	-2.30	103 57	106.03
$\frac{2}{2}$	V	301	NAP	O7N-C7N-N7N	-2.30	110.31	100.50 122.58
3	I I	302	H4M	C15-C14-N10	-2.30	116.78	122.00
$\frac{0}{2}$	I	301	NAP	C6N-N1N-C2N	-2.29	110.10	121.11
3	V	302	H4M	C1J-C2J-C3J	2.29	105.20	102.30
2	A	301	NAP	C5N-C4N-C3N	-2.29	117 64	120.34
3	X	302	H4M	OH4-C4-C4A	-2.27	121.97	120.01 127.54
2	M	301	NAP	C3N-C2N-N1N	2.27	122.64	120.43
3	U	302	H4M	C11-CX1-CX2	-2.27	109.56	113.61
3	F	302	H4M	C10-N5-C4A	2.25	129.53	127.47
3	C	302	H4M	CX5-CX4-CX3	-2.25	107.86	112.20
3	V	302	H4M	CX1-CX2-CX3	-2.25	106.26	112.49
2	G	301	NAP	C3N-C2N-N1N	2.24	122.62	120.43
3	N	302	H4M	O4J-C1J-C2J	2.24	107.86	104.98
3	K	302	H4M	OX5-C1J-C2J	2.23	111.40	107.76
2	Q	301	NAP	C6N-N1N-C2N	-2.23	119.94	121.97
3	Ň	302	H4M	C9M-C9-N10	-2.22	108.99	112.68
3	D	301	H4M	C7M-C7-N8	2.22	111.60	109.39
2	L	301	NAP	C6N-N1N-C2N	-2.21	119.96	121.97
2	U	301	NAP	O7N-C7N-N7N	-2.21	119.44	122.58
2	Q	301	NAP	O7N-C7N-N7N	-2.20	119.45	122.58
3	R	302	H4M	C7M-C7-N8	2.20	111.58	109.39
2	М	301	NAP	O4D-C1D-C2D	-2.20	103.72	106.93
2	Т	301	NAP	O4D-C1D-C2D	-2.19	103.72	106.93
2	G	301	NAP	O7N-C7N-N7N	-2.19	119.47	122.58
3	R	302	H4M	C9M-C9-N10	-2.19	109.05	112.68
3	С	302	H4M	C7-C6-N5	2.17	110.77	108.61
3	R	302	H4M	OH4-C4-C4A	-2.16	122.25	127.54
3	М	302	H4M	C9M-C9-N10	-2.16	109.10	112.68
2	F	301	NAP	C6N-N1N-C2N	-2.15	120.01	121.97
2	Р	301	NAP	O7N-C7N-N7N	-2.14	119.54	122.58
3	В	302	H4M	C15-C14-N10	-2.14	117.09	121.14
3	В	302	H4M	C7M-C7-N8	2.13	111.52	109.39
3	J	302	H4M	CX5-OX5-C1J	2.13	117.91	113.74
3	L	302	H4M	O4J-C1J-OX5	-2.12	109.62	111.95

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	U	302	H4M	CX4-CX3-CX2	-2.12	108.96	113.36
3	М	302	H4M	O4J-C1J-C2J	2.12	107.71	104.98
2	S	301	NAP	C6N-N1N-C2N	-2.12	120.05	121.97
2	Ι	301	NAP	O4D-C1D-C2D	-2.11	103.84	106.93
3	L	302	H4M	CX1-CX2-CX3	-2.11	106.64	112.49
3	Е	302	H4M	CX5-CX4-CX3	-2.11	108.13	112.20
3	В	302	H4M	C9M-C9-N10	-2.11	109.19	112.68
2	М	301	NAP	N6A-C6A-N1A	-2.10	114.21	118.57
3	Т	302	H4M	C9M-C9-N10	-2.10	109.19	112.68
3	В	302	H4M	O4J-C1J-C2J	2.10	107.68	104.98
2	Е	301	NAP	O7N-C7N-N7N	-2.09	119.61	122.58
2	Н	301	NAP	O7N-C7N-C3N	2.08	122.12	119.63
2	W	301	NAP	C3N-C7N-N7N	2.08	120.24	117.75
3	Е	302	H4M	C7-C6-N5	2.07	110.67	108.61
3	Н	302	H4M	C6-C9-N10	2.07	104.11	102.56
3	L	302	H4M	C9M-C9-N10	2.07	116.11	112.68
3	В	302	H4M	OH4-C4-C4A	-2.06	122.48	127.54
2	Q	301	NAP	O4D-C1D-C2D	-2.06	103.92	106.93
2	0	301	NAP	C3N-C7N-N7N	2.06	120.22	117.75
2	D	302	NAP	O7N-C7N-C3N	2.05	122.09	119.63
3	Н	302	H4M	C2-N3-C4	-2.05	121.36	125.10
3	0	302	H4M	C1J-C2J-C3J	2.05	104.90	102.30
3	Ι	302	H4M	C1J-C2J-C3J	2.05	104.89	102.30
3	Н	302	H4M	CX1-C11-C12	-2.04	116.86	120.91
3	Е	302	H4M	OX5-C1J-C2J	2.03	111.07	107.76
3	М	302	H4M	C2-N3-C4	-2.02	121.41	125.10
3	F	302	H4M	CX1-CX2-CX3	-2.02	106.91	112.49
3	L	302	H4M	C1J-C2J-C3J	2.01	104.85	102.30
2	С	301	NAP	C4A-C5A-N7A	-2.01	107.31	109.40
2	Т	301	NAP	C6N-N1N-C2N	-2.00	120.15	121.97
2	W	301	NAP	O4D-C1D-C2D	-2.00	104.00	106.93
3	J	302	H4M	C15-C14-N10	-2.00	117.35	121.14

Continued from previous page...

There are no chirality outliers.

All (430) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	301	NAP	C2B-O2B-P2B-O1X
2	А	301	NAP	O4D-C1D-N1N-C2N
2	А	301	NAP	O4D-C1D-N1N-C6N
2	А	301	NAP	C2D-C1D-N1N-C2N
2	А	301	NAP	C2D-C1D-N1N-C6N

001000	naca jion	i preco	ous page	•••
Mol	Chain	Res	Type	Atoms
2	В	301	NAP	O4D-C1D-N1N-C6N
2	С	301	NAP	O4D-C1D-N1N-C6N
2	D	302	NAP	O4D-C1D-N1N-C2N
2	D	302	NAP	O4D-C1D-N1N-C6N
2	D	302	NAP	C2D-C1D-N1N-C2N
2	D	302	NAP	C2D-C1D-N1N-C6N
2	Е	301	NAP	O4D-C1D-N1N-C6N
2	F	301	NAP	C2B-O2B-P2B-O1X
2	F	301	NAP	O4D-C1D-N1N-C2N
2	F	301	NAP	O4D-C1D-N1N-C6N
2	G	301	NAP	C2B-O2B-P2B-O1X
2	G	301	NAP	O4D-C1D-N1N-C2N
2	G	301	NAP	O4D-C1D-N1N-C6N
2	G	301	NAP	C2D-C1D-N1N-C2N
2	G	301	NAP	C2D-C1D-N1N-C6N
2	Н	301	NAP	O4D-C1D-N1N-C6N
2	Ι	301	NAP	O4D-C1D-N1N-C6N
2	J	301	NAP	O4D-C1D-N1N-C2N
2	J	301	NAP	O4D-C1D-N1N-C6N
2	J	301	NAP	C2D-C1D-N1N-C2N
2	J	301	NAP	C2D-C1D-N1N-C6N
2	K	301	NAP	C2B-O2B-P2B-O1X
2	K	301	NAP	O4D-C1D-N1N-C6N
2	L	301	NAP	O4D-C1D-N1N-C2N
2	L	301	NAP	O4D-C1D-N1N-C6N
2	М	301	NAP	C2B-O2B-P2B-O1X
2	М	301	NAP	O4D-C1D-N1N-C2N
2	М	301	NAP	O4D-C1D-N1N-C6N
2	М	301	NAP	C2D-C1D-N1N-C2N
2	М	301	NAP	C2D-C1D-N1N-C6N
2	N	301	NAP	O4D-C1D-N1N-C6N
2	0	301	NAP	O4D-C1D-N1N-C6N
2	P	301	NAP	O4D-C1D-N1N-C2N
2	P	301	NAP	O4D-C1D-N1N-C6N
2	P	301	NAP	C2D-C1D-N1N-C2N
2	P	301	NAP	C2D-C1D-N1N-C6N
2	Q	301	NAP	C2B-O2B-P2B-O1X
2	Q	301	NAP	O4D-C1D-N1N-C6N
2	R	301	NAP	O4D-C1D-N1N-C6N
2	S	301	NAP	04D-C1D-N1N-C2N
2	S	301	NAP	04D-C1D-N1N-C6N
2	S	301	NAP	C2D-C1D-N1N-C2N

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	S	301	NAP	C2D-C1D-N1N-C6N
2	T	301	NAP	O4D-C1D-N1N-C6N
2	U	301	NAP	C2B-O2B-P2B-O1X
2	U	301	NAP	O4D-C1D-N1N-C6N
2	V	301	NAP	C2B-O2B-P2B-O1X
2	V	301	NAP	O4D-C1D-N1N-C2N
2	V	301	NAP	O4D-C1D-N1N-C6N
2	V	301	NAP	C2D-C1D-N1N-C2N
2	V	301	NAP	C2D-C1D-N1N-C6N
2	W	301	NAP	O4D-C1D-N1N-C6N
2	Х	301	NAP	O4D-C1D-N1N-C6N
3	А	302	H4M	C5J-O5J-PA-O1A
3	А	302	H4M	C5J-O5J-PA-O2A
3	А	302	H4M	C5J-O5J-PA-O3A
3	В	302	H4M	CX1-CX2-CX3-OX3
3	В	302	H4M	OX2-CX2-CX3-CX4
3	В	302	H4M	OX2-CX2-CX3-OX3
3	В	302	H4M	CX3-CX4-CX5-OX5
3	В	302	H4M	OX4-CX4-CX5-OX5
3	В	302	H4M	C5J-O5J-PA-O1A
3	В	302	H4M	C5J-O5J-PA-O2A
3	В	302	H4M	C5J-O5J-PA-O3A
3	С	302	H4M	C5J-O5J-PA-O1A
3	С	302	H4M	C5J-O5J-PA-O2A
3	С	302	H4M	C5J-O5J-PA-O3A
3	С	302	H4M	O4J-C4J-C5J-O5J
3	D	301	H4M	O4J-C1J-OX5-CX5
3	D	301	H4M	C2J-C1J-OX5-CX5
3	D	301	H4M	O4J-C4J-C5J-O5J
3	D	301	H4M	C3J-C4J-C5J-O5J
3	Е	302	H4M	CX3-CX4-CX5-OX5
3	Е	302	H4M	OX4-CX4-CX5-OX5
3	Е	302	H4M	O4J-C1J-OX5-CX5
3	Е	302	H4M	C2J-C1J-OX5-CX5
3	Е	302	H4M	C5J-O5J-PA-O2A
3	Ε	302	H4M	C5J-O5J-PA-O3A
3	Е	302	H4M	O4J-C4J-C5J-O5J
3	F	302	H4M	CX1-CX2-CX3-OX3
3	F	302	H4M	OX2-CX2-CX3-CX4
3	F	302	H4M	OX2-CX2-CX3-OX3
3	F	302	H4M	CX3-CX4-CX5-OX5
3	F	302	H4M	OX4-CX4-CX5-OX5

Continued from previous page...

6T	GE

Mol	Chain	Res	Type	Atoms
3	F	302	H4M	O4J-C1J-OX5-CX5
3	F	302	H4M	C2J-C1J-OX5-CX5
3	G	302	H4M	CX1-CX2-CX3-OX3
3	G	302	H4M	OX2-CX2-CX3-CX4
3	G	302	H4M	OX2-CX2-CX3-OX3
3	G	302	H4M	CX3-CX4-CX5-OX5
3	G	302	H4M	OX4-CX4-CX5-OX5
3	Н	302	H4M	CX1-CX2-CX3-OX3
3	Н	302	H4M	OX2-CX2-CX3-CX4
3	Н	302	H4M	OX2-CX2-CX3-OX3
3	Н	302	H4M	CX3-CX4-CX5-OX5
3	Н	302	H4M	OX4-CX4-CX5-OX5
3	Н	302	H4M	O4J-C1J-OX5-CX5
3	Н	302	H4M	C2J-C1J-OX5-CX5
3	Н	302	H4M	C5J-O5J-PA-O1A
3	Н	302	H4M	C5J-O5J-PA-O2A
3	Н	302	H4M	C5J-O5J-PA-O3A
3	Н	302	H4M	C3J-C4J-C5J-O5J
3	Ι	302	H4M	CX1-CX2-CX3-CX4
3	Ι	302	H4M	CX1-CX2-CX3-OX3
3	Ι	302	H4M	OX2-CX2-CX3-CX4
3	Ι	302	H4M	OX2-CX2-CX3-OX3
3	Ι	302	H4M	CX2-CX3-CX4-OX4
3	Ι	302	H4M	OX3-CX3-CX4-CX5
3	Ι	302	H4M	OX3-CX3-CX4-OX4
3	Ι	302	H4M	C3J-C4J-C5J-O5J
3	J	302	H4M	C5J-O5J-PA-O2A
3	J	302	H4M	C5J-O5J-PA-O3A
3	K	302	H4M	CX1-CX2-CX3-OX3
3	K	302	H4M	OX2-CX2-CX3-CX4
3	K	302	H4M	OX2-CX2-CX3-OX3
3	K	302	H4M	CX2-CX3-CX4-CX5
3	K	302	H4M	CX2-CX3-CX4-OX4
3	K	302	H4M	OX3-CX3-CX4-OX4
3	K	302	H4M	O4J-C1J-OX5-CX5
3	K	302	H4M	C2J-C1J-OX5-CX5
3	K	302	H4M	C5J-O5J-PA-O1A
3	K	302	H4M	C5J-O5J-PA-O2A
3	K	302	H4M	C5J-O5J-PA-O3A
3	L	302	H4M	OX2-CX2-CX3-CX4
3	L	302	H4M	CX3-CX4-CX5-OX5
3	L	302	H4M	OX4-CX4-CX5-OX5

Continued from previous page...

6TGE

Mal	Choir	P oo	Tunc	Atoma
	Unain	nes	туре	
<u>3</u>		302	H4M	
3	M	302	H4M	O4J-C4J-C5J-O5J
3	M	302	H4M	C3J-C4J-C5J-O5J
3	N	302	H4M	CX1-CX2-CX3-OX3
3	N	302	H4M	OX2-CX2-CX3-CX4
3	N	302	H4M	OX2-CX2-CX3-OX3
3	N	302	H4M	CX2-CX3-CX4-CX5
3	N	302	H4M	CX2-CX3-CX4-OX4
3	N	302	H4M	O4J-C1J-OX5-CX5
3	N	302	H4M	C2J-C1J-OX5-CX5
3	Ν	302	H4M	C5J-O5J-PA-O1A
3	N	302	H4M	C5J-O5J-PA-O2A
3	N	302	H4M	C5J-O5J-PA-O3A
3	N	302	H4M	O4J-C4J-C5J-O5J
3	N	302	H4M	C3J-C4J-C5J-O5J
3	0	302	H4M	CX1-CX2-CX3-OX3
3	0	302	H4M	OX2-CX2-CX3-CX4
3	0	302	H4M	OX2-CX2-CX3-OX3
3	0	302	H4M	CX3-CX4-CX5-OX5
3	0	302	H4M	OX4-CX4-CX5-OX5
3	0	302	H4M	C2J-C1J-OX5-CX5
3	0	302	H4M	C5J-O5J-PA-O1A
3	0	302	H4M	C5J-O5J-PA-O2A
3	0	302	H4M	C5J-O5J-PA-O3A
3	Р	302	H4M	CX2-CX3-CX4-CX5
3	Р	302	H4M	OX3-CX3-CX4-CX5
3	Р	302	H4M	OX3-CX3-CX4-OX4
3	Р	302	H4M	O4J-C1J-OX5-CX5
3	Р	302	H4M	C2J-C1J-OX5-CX5
3	Q	302	H4M	CX3-CX4-CX5-OX5
3	Q	302	H4M	OX4-CX4-CX5-OX5
3	Q	302	H4M	O4J-C1J-OX5-CX5
3	Q	302	H4M	C2J-C1J-OX5-CX5
3	Q	302	H4M	C3J-C4J-C5J-O5J
3	R	302	H4M	OX4-CX4-CX5-OX5
3	R	302	H4M	C4J-C5J-O5J-PA
3	R	302	H4M	C5J-O5J-PA-O2A
3	S	302	H4M	04J-C1J-OX5-CX5
3	S	302	H4M	C2J-C1J-OX5-CX5
3	Ť	302	H4M	04J-C4J-C5J-05J
3	U	302	H4M	CX3-CX4-CX5-OX5
3	U	302	H4M	0X4-CX4-CX5-OX5

G

Η

H4M

H4M

Chain	Res	Type	Atoms
U	302	H4M	O4J-C1J-OX5-CX5
U	302	H4M	C2J-C1J-OX5-CX5
U	302	H4M	O4J-C4J-C5J-O5J
U	302	H4M	C3J-C4J-C5J-O5J
V	302	H4M	CX3-CX4-CX5-OX5
V	302	H4M	OX4-CX4-CX5-OX5
V	302	H4M	O4J-C1J-OX5-CX5
V	302	H4M	C2J-C1J-OX5-CX5
V	302	H4M	C5J-O5J-PA-O1A
V	302	H4M	C5J-O5J-PA-O2A
V	302	H4M	C5J-O5J-PA-O3A
V	302	H4M	O4J-C4J-C5J-O5J
V	302	H4M	C3J-C4J-C5J-O5J
W	302	H4M	CX3-CX4-CX5-OX5
W	302	H4M	OX4-CX4-CX5-OX5
W	302	H4M	O4J-C1J-OX5-CX5
W	302	H4M	C2J-C1J-OX5-CX5
W	302	H4M	C5J-O5J-PA-O1A
W	302	H4M	C5J-O5J-PA-O2A
W	302	H4M	C5J-O5J-PA-O3A
W	302	H4M	O4J-C4J-C5J-O5J
Х	302	H4M	C13-C14-N10-C9
Х	302	H4M	C15-C14-N10-C9
Х	302	H4M	CX1-CX2-CX3-CX4
Х	302	H4M	OX2-CX2-CX3-CX4
Х	302	H4M	CX2-CX3-CX4-CX5
Х	302	H4M	CX2-CX3-CX4-OX4
Х	302	H4M	OX3-CX3-CX4-OX4
Х	302	H4M	CX3-CX4-CX5-OX5
Х	302	H4M	OX4-CX4-CX5-OX5
Х	302	H4M	O4J-C1J-OX5-CX5
Х	302	H4M	C2J-C1J-OX5-CX5
Х	302	H4M	C5J-O5J-PA-O1A
Х	302	H4M	C5J-O5J-PA-O2A
L	302	H4M	OX2-CX2-CX3-OX3
Ν	302	H4M	OX3-CX3-CX4-OX4
Р	302	H4M	OX2-CX2-CX3-OX3
Х	302	H4M	OX2-CX2-CX3-OX3
С	302	H4M	C3J-C4J-C5J-O5J
G	302	H4M	O4J-C4J-C5J-O5J

Continued from previous page...

Continued on next page...

C3J-C4J-C5J-O5J

O4J-C4J-C5J-O5J

Chain	Res	Type	Atoms
Ι	302	H4M	O4J-C4J-C5J-O5J
К	302	H4M	O4J-C4J-C5J-O5J
К	302	H4M	C3J-C4J-C5J-O5J
Р	302	H4M	O4J-C4J-C5J-O5J
Р	302	H4M	OX2-CX2-CX3-CX4
В	302	H4M	CX1-CX2-CX3-CX4
F	302	H4M	CX1-CX2-CX3-CX4
G	302	H4M	CX1-CX2-CX3-CX4
Н	302	H4M	CX1-CX2-CX3-CX4
Κ	302	H4M	CX1-CX2-CX3-CX4
Ν	302	H4M	CX1-CX2-CX3-CX4
0	302	H4M	CX1-CX2-CX3-CX4
Κ	302	H4M	OX3-CX3-CX4-CX5
Ν	302	H4M	OX3-CX3-CX4-CX5
Х	302	H4M	OX3-CX3-CX4-CX5
Ι	302	H4M	CX2-CX3-CX4-CX5
А	302	H4M	O4J-C4J-C5J-O5J
F	302	H4M	O4J-C4J-C5J-O5J
L	302	H4M	O4J-C4J-C5J-O5J
Q	302	H4M	O4J-C4J-C5J-O5J
Т	302	H4M	C3J-C4J-C5J-O5J
W	302	H4M	C3J-C4J-C5J-O5J
Р	302	H4M	CX2-CX3-CX4-OX4
Ι	302	H4M	C13-C14-N10-C9
Ι	302	H4M	C15-C14-N10-C9
L	302	H4M	CX1-CX2-CX3-CX4
D	301	H4M	OX2-CX2-CX3-OX3
L	302	H4M	OX3-CX3-CX4-OX4
Р	302	H4M	CX1-CX2-CX3-CX4
L	302	H4M	OX3-CX3-CX4-CX5
G	302	H4M	CX2-CX3-CX4-CX5
R	302	H4M	C3J-C4J-C5J-O5J
D	301	H4M	OX2-CX2-CX3-CX4
G	302	H4M	OX3-CX3-CX4-CX5
F	302	H4M	C3J-C4J-C5J-O5J
Н	302	H4M	C12-C11-CX1-CX2
Н	302	H4M	C16-C11-CX1-CX2
R	302	H4M	C12-C11-CX1-CX2
G	302	H4M	CX2-CX3-CX4-OX4
L	302	H4M	CX2-CX3-CX4-OX4

Continued from previous page...

Continued on next page...

OX2-CX2-CX3-CX4

CX4-CX5-OX5-C1J

H4M

H4M

U

В

Mol

3

3

3

3

3

3

3

3

3

3

3

3

3

Atoms

H4M	CX4-CX5-OX5-C1J
H4M	CX1-CX2-CX3-CX4
H4M	C16-C11-CX1-CX2
H4M	C3J-C4J-C5J-O5J
H4M	C11-CX1-CX2-OX2
H4M	CX2-CX3-CX4-CX5
H4M	CX3-CX4-CX5-OX5
H4M	CX3-CX4-CX5-OX5
H4M	CX3-CX4-CX5-OX5
H4M	C11-CX1-CX2-CX3
H4M	O4J-C1J-OX5-CX5
H4M	O4J-C1J-OX5-CX5
H4M	C3J-C4J-C5J-O5J
H4M	O4J-C4J-C5J-O5J
H4M	CX2-CX3-CX4-OX4
H4M	C4J-C5J-O5J-PA
H4M	C4J-C5J-O5J-PA
H4M	CX2-CX3-CX4-CX5
H4M	C4J-C5J-O5J-PA
H4M	C4J-C5J-O5J-PA
H4M	C13-C14-N10-C10
H4M	OX2-CX2-CX3-OX3
H4M	OX4-CX4-CX5-OX5
H4M	C15-C14-N10-C9
H4M	C5J-O5J-PA-O3A
H4M	CX1-CX2-CX3-CX4
TTANA	CALOFI OFI DA

Continued from previous page... Chain Res Type

302

301

302

302

302

302

302

302

302

302

302

302

302

G

D

R

А

0

Р

U

Х

L

Ι

Р

R

U

3	С	302	H4M	O4J-C1J-OX5-CX5
3	0	302	H4M	O4J-C1J-OX5-CX5
3	Р	302	H4M	C3J-C4J-C5J-O5J
3	S	302	H4M	O4J-C4J-C5J-O5J
3	J	302	H4M	CX2-CX3-CX4-OX4
3	G	302	H4M	C4J-C5J-O5J-PA
3	L	302	H4M	C4J-C5J-O5J-PA
3	J	302	H4M	CX2-CX3-CX4-CX5
3	0	302	H4M	C4J-C5J-O5J-PA
3	U	302	H4M	C4J-C5J-O5J-PA
3	L	302	H4M	C13-C14-N10-C10
3	U	302	H4M	OX2-CX2-CX3-OX3
3	Ι	302	H4M	OX4-CX4-CX5-OX5
3	F	302	H4M	C15-C14-N10-C9
3	R	302	H4M	C5J-O5J-PA-O3A
3	U	302	H4M	CX1-CX2-CX3-CX4
3	В	302	H4M	C4J-C5J-O5J-PA
3	G	302	H4M	C12-C11-CX1-CX2
3	G	302	H4M	C16-C11-CX1-CX2
3	J	302	H4M	C12-C11-CX1-CX2
3	J	302	H4M	C16-C11-CX1-CX2
3	М	302	H4M	C12-C11-CX1-CX2
3	М	302	H4M	C16-C11-CX1-CX2
3	Т	302	H4M	C12-C11-CX1-CX2
3	Т	302	H4M	C16-C11-CX1-CX2
2	Ι	301	NAP	C2B-O2B-P2B-O3X
2	Т	301	NAP	C2B-O2B-P2B-O3X
3	0	302	H4M	O4J-C4J-C5J-O5J
2	S	301	NAP	PN-O3-PA-O2A
			Cor	ntinued on next page

Continued from previous page... Mol Chain Res Type

Mol	Chain	Res	Type	Atoms
3	С	302	H4M	C12-C11-CX1-CX2
3	Е	302	H4M	C12-C11-CX1-CX2
3	Q	302	H4M	C12-C11-CX1-CX2
3	Q	302	H4M	C16-C11-CX1-CX2
3	S	302	H4M	C12-C11-CX1-CX2
3	S	302	H4M	C16-C11-CX1-CX2
3	N	302	H4M	C4J-C5J-O5J-PA
3	V	302	H4M	C4J-C5J-O5J-PA
3	С	302	H4M	C16-C11-CX1-CX2
3	Е	302	H4M	C16-C11-CX1-CX2
3	F	302	H4M	C13-C14-N10-C9
3	L	302	H4M	C2J-C1J-OX5-CX5
3	R	302	H4M	C13-C14-N10-C9
3	R	302	H4M	C15-C14-N10-C9
3	S	302	H4M	CX2-CX3-CX4-OX4
3	Р	302	H4M	CX4-CX5-OX5-C1J
3	S	302	H4M	OX3-CX3-CX4-CX5
3	Ν	302	H4M	C11-CX1-CX2-OX2
3	R	302	H4M	C5J-O5J-PA-O1A
2	А	301	NAP	PN-O3-PA-O2A
2	D	302	NAP	PN-O3-PA-O2A
2	G	301	NAP	PN-O3-PA-O2A
2	J	301	NAP	PN-O3-PA-O2A
2	М	301	NAP	PN-O3-PA-O2A
2	Р	301	NAP	PN-O3-PA-O2A
2	V	301	NAP	PN-O3-PA-O2A
3	J	302	H4M	OX4-CX4-CX5-OX5
3	Р	302	H4M	OX4-CX4-CX5-OX5
3	K	302	H4M	C11-CX1-CX2-CX3
3	Ν	302	H4M	C11-CX1-CX2-CX3
3	В	302	H4M	C13-C14-N10-C9
3	Р	302	H4M	C4J-C5J-O5J-PA
3	W	302	H4M	C4J-C5J-O5J-PA
3	G	302	H4M	OX3-CX3-CX4-OX4
3	J	302	H4M	OX3-CX3-CX4-OX4
3	S	302	H4M	OX3-CX3-CX4-OX4
3	L	302	H4M	O4J-C1J-OX5-CX5
3	М	302	H4M	O4J-C1J-OX5-CX5
3	В	302	H4M	C12-C11-CX1-CX2
3	W	302	H4M	C12-C11-CX1-CX2
3	A	302	H4M	C12-C11-CX1-CX2
3	В	302	H4M	C16-C11-CX1-CX2

2

Ι

Mol	Chain	Res	Type	Atoms	
3	W	302	H4M	C16-C11-CX1-CX2	
3	Е	302	H4M	C3J-C4J-C5J-O5J	
3	А	302	H4M	C16-C11-CX1-CX2	
3	Х	302	H4M	C16-C11-CX1-CX2	
3	В	302	H4M	C15-C14-N10-C9	
3	F	302	H4M	C16-C11-CX1-CX2	
2	W	301	NAP	PN-O3-PA-O2A	
3	D	301	H4M	C13-C14-N10-C10	
3	D	301	H4M	C15-C14-N10-C10	
3	Н	302	H4M	C13-C14-N10-C10	
3	Н	302	H4M	C15-C14-N10-C10	
3	K	302	H4M	C13-C14-N10-C10	
3	K	302	H4M	C15-C14-N10-C10	
3	L	302	H4M	C15-C14-N10-C10	
3	0	302	H4M	C13-C14-N10-C10	
3	0	302	H4M	C15-C14-N10-C10	
3	S	302	H4M	C13-C14-N10-C10	
3	S	302	H4M	C15-C14-N10-C10	
3	U	302	H4M	C13-C14-N10-C10	
3	U	302	H4M	C15-C14-N10-C10	
3	S	302	H4M	CX2-CX3-CX4-CX5	
3	0	302	H4M	C3J-C4J-C5J-O5J	
3	S	302	H4M	C3J-C4J-C5J-O5J	
3	Х	302	H4M	O4J-C4J-C5J-O5J	
2	В	301	NAP	C2B-O2B-P2B-O1X	
2	Н	301	NAP	C2B-O2B-P2B-O1X	
2	L	301	NAP	C2B-O2B-P2B-O1X	
2	R	301	NAP	C2B-O2B-P2B-O1X	
2	S	301	NAP	C2B-O2B-P2B-O1X	
3	Т	302	H4M	C5J-O5J-PA-O3A	
3	Х	302	H4M	C5J-O5J-PA-O3A	
3	Х	302	H4M	C12-C11-CX1-CX2	
3	Н	302	H4M	C11-CX1-CX2-OX2	
3	L	302	H4M	C11-CX1-CX2-OX2	
3	R	302	H4M	O4J-C4J-C5J-O5J	
3	F	302	H4M	C12-C11-CX1-CX2	
2	В	301	NAP	C2B-O2B-P2B-O3X	
2	С	301	NAP	C2B-O2B-P2B-O2X	
2	D	302	NAP	C2B-O2B-P2B-O3X	
2	Е	301	NAP	C2B-O2B-P2B-O2X	
2	Н	301	NAP	C2B-O2B-P2B-O3X	

Continued from previous page...

Continued on next page...

C2B-O2B-P2B-O2X

NAP

301

Mol	Chain	Res	Type	Atoms
2	J	301	NAP	C2B-O2B-P2B-O2X
2	L	301	NAP	C2B-O2B-P2B-O3X
2	L	301	NAP	C2D-C1D-N1N-C2N
2	M	301	NAP	C2B-O2B-P2B-O3X
2	N	301	NAP	C2B-O2B-P2B-O3X
2	0	301	NAP	C2B-O2B-P2B-O2X
2	P	301	NAP	C2B-O2B-P2B-O2X
2	R	301	NAP	C2B-O2B-P2B-O3X
2	S	301	NAP	C2B-O2B-P2B-O3X
2	T	301	NAP	C2B-O2B-P2B-O2X
2	U	301	NAP	C2B-O2B-P2B-O3X
2	V	301	NAP	C2B-O2B-P2B-O2X
2	W	301	NAP	C2B-O2B-P2B-O3X
2	X	301	NAP	C2B-O2B-P2B-O2X
3	Т	302	H4M	C4J-C5J-O5J-PA
3	D	301	H4M	C16-C11-CX1-CX2
3	P	302	H4M	C16-C11-CX1-CX2
2	D	302	NAP	PN-O3-PA-O1A
2	Е	301	NAP	PN-O3-PA-O2A
2	F	301	NAP	PN-O3-PA-O2A
2	Н	301	NAP	PN-O3-PA-O2A
2	J	301	NAP	PN-O3-PA-O1A
2	L	301	NAP	PN-O3-PA-O2A
2	N	301	NAP	PN-O3-PA-O2A
2	0	301	NAP	PN-O3-PA-O2A
2	Р	301	NAP	PN-O3-PA-O1A
2	Q	301	NAP	PN-O3-PA-O1A
2	Q	301	NAP	PN-O3-PA-O2A
2	R	301	NAP	PN-O3-PA-O2A
2	Т	301	NAP	PN-O3-PA-O2A
2	Х	301	NAP	PN-O3-PA-O2A
2	С	301	NAP	C5D-O5D-PN-O1N
2	F	301	NAP	C5D-O5D-PN-O1N
2	J	301	NAP	C5D-O5D-PN-O1N
2	L	301	NAP	C5D-O5D-PN-O1N
2	U	301	NAP	C5D-O5D-PN-O1N
2	V	301	NAP	C5D-O5D-PN-O1N
2	W	301	NAP	C5D-O5D-PN-O1N
2	Х	301	NAP	C5D-O5D-PN-O1N
3	D	301	H4M	CX1-CX2-CX3-OX3
3	L	302	H4M	CX1-CX2-CX3-OX3
3	Р	302	H4M	CX1-CX2-CX3-OX3

Continued from previous page...

Mol	Chain	Res	Type	Atoms
3	U	302	H4M	CX1-CX2-CX3-OX3
3	Х	302	H4M	CX1-CX2-CX3-OX3
3	F	302	H4M	C4J-C5J-O5J-PA
3	D	301	H4M	C12-C11-CX1-CX2
3	Р	302	H4M	C12-C11-CX1-CX2

Continued from previous page...

There are no ring outliers.

48 monomers are involved in 131 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	G	302	H4M	7	0
3	Е	302	H4M	3	0
2	S	301	NAP	7	0
3	Н	302	H4M	6	0
2	Е	301	NAP	1	0
3	L	302	H4M	4	0
3	С	302	H4M	4	0
3	J	302	H4M	7	0
3	0	302	H4M	4	0
3	S	302	H4M	8	0
2	L	301	NAP	2	0
3	В	302	H4M	5	0
3	Q	302	H4M	3	0
2	Р	301	NAP	4	0
2	В	301	NAP	1	0
3	R	302	H4M	7	0
3	Т	302	H4M	3	0
3	М	302	H4M	5	0
3	U	302	H4M	3	0
3	W	302	H4M	3	0
3	N	302	H4M	3	0
2	D	302	NAP	5	0
3	V	302	H4M	7	0
2	K	301	NAP	1	0
2	V	301	NAP	3	0
2	Н	301	NAP	1	0
3	A	302	H4M	8	0
2	Х	301	NAP	1	0
3	Ι	302	H4M	3	0
2	Q	301	NAP	1	0
3	F	302	H4M	3	0
2	F	301	NAP	2	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Ι	301	NAP	1	0
2	Т	301	NAP	1	0
2	М	301	NAP	6	0
2	0	301	NAP	1	0
2	А	301	NAP	8	0
3	Р	302	H4M	8	0
2	R	301	NAP	1	0
2	С	301	NAP	1	0
2	J	301	NAP	5	0
2	U	301	NAP	2	0
3	Κ	302	H4M	5	0
3	D	301	H4M	6	0
3	Х	302	H4M	4	0
2	W	301	NAP	1	0
2	N	301	NAP	1	0
2	G	301	NAP	6	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	$\# RSRZ {>}2$	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	287/288~(99%)	-0.08	0 100 100	16, 22, 35, 50	0
1	В	287/288~(99%)	-0.07	1 (0%) 94 95	16, 22, 35, 56	0
1	С	287/288~(99%)	-0.02	2 (0%) 87 90	17, 27, 45, 56	0
1	D	287/288~(99%)	0.06	1 (0%) 94 95	16, 26, 41, 57	0
1	Ε	287/288~(99%)	-0.04	1 (0%) 94 95	16, 22, 35, 49	0
1	F	287/288~(99%)	-0.09	4 (1%) 75 79	16, 23, 36, 48	0
1	G	287/288~(99%)	-0.09	0 100 100	16, 22, 37, 46	0
1	Н	287/288~(99%)	-0.16	1 (0%) 94 95	15, 20, 33, 46	0
1	Ι	287/288~(99%)	-0.01	3 (1%) 82 85	17, 25, 44, 55	0
1	J	287/288~(99%)	-0.18	0 100 100	18, 24, 37, 44	0
1	Κ	287/288~(99%)	-0.11	0 100 100	17, 23, 37, 53	0
1	L	287/288~(99%)	0.05	3 (1%) 82 85	20, 29, 48, 69	0
1	М	287/288~(99%)	-0.10	1 (0%) 94 95	15, 20, 33, 52	0
1	Ν	287/288~(99%)	-0.10	1 (0%) 94 95	16, 22, 36, 48	0
1	Ο	287/288~(99%)	0.04	6 (2%) 63 68	17, 27, 46, 60	0
1	Р	287/288~(99%)	0.26	13 (4%) 33 36	19, 29, 45, 59	0
1	Q	287/288~(99%)	0.01	2 (0%) 87 90	16, 23, 38, 56	0
1	R	287/288~(99%)	0.33	13 (4%) 33 36	20, 34, 49, 64	0
1	S	287/288~(99%)	0.32	4 (1%) 75 79	26, 39, 54, 67	0
1	Т	287/288~(99%)	0.02	1 (0%) 94 95	20, 27, 39, 55	0
1	U	287/288~(99%)	0.39	13 (4%) 33 36	25, 39, 53, 65	0
1	V	287/288 (99%)	1.14	64 (22%) 0 0	26, 56, 82, 94	0
1	W	287/288~(99%)	0.11	5 (1%) 70 75	21, 28, 41, 59	0
1	Х	287/288~(99%)	0.89	40 (13%) 2 2	28, 46, 70, 100	0

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
All	All	6888/6912~(99%)	0.11	179 (2%) 56 61	15, 27, 52, 100	0

All (179) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	V	241	TYR	7.2
1	Х	85	PHE	6.8
1	Х	88	PHE	5.6
1	V	231	GLY	5.4
1	V	232	ILE	5.1
1	Х	170	VAL	5.1
1	Р	243	GLY	5.1
1	V	250	LEU	4.8
1	V	221	TYR	4.8
1	R	243	GLY	4.7
1	Х	288	ALA	4.6
1	U	199	ILE	4.2
1	V	217	ILE	4.0
1	V	203	LEU	4.0
1	Х	174	ALA	3.9
1	U	201	LEU	3.9
1	V	209	TRP	3.9
1	Х	147	VAL	3.8
1	V	215	ILE	3.8
1	Х	199	ILE	3.8
1	Х	225	PRO	3.8
1	W	85	PHE	3.7
1	Х	118	VAL	3.7
1	V	180	ASP	3.7
1	V	210	GLN	3.7
1	Х	223	ALA	3.6
1	Р	232	ILE	3.6
1	V	226	PRO	3.6
1	V	233	ASP	3.6
1	0	207	ALA	3.6
1	V	184	ALA	3.5
1	V	199	ILE	3.5
1	V	207	ALA	3.5
1	V	242	GLY	3.5
1	V	181	ALA	3.5
1	Р	241	TYR	3.5
1	Х	113	ALA	3.4

1

Mol Chain

V

1	U	174	ALA	3.4
1	V	229	ILE	3.4
1	Х	51	TYR	3.4
1	V	227	LEU	3.3
1	Х	50	ILE	3.3
1	Х	255	LEU	3.3
1	Х	169	LYS	3.3
1	Х	171	ASN	3.3
1	U	159	ALA	3.3
1	Х	145	ALA	3.2
1	0	113	ALA	3.2
1	V	245	ARG	3.2
1	Х	155	ASP	3.2
1	U	155	ASP	3.2
1	Р	157	ALA	3.2
1	V	113	ALA	3.2
1	Х	144	GLY	3.1
1	U	175	ALA	3.1
1	V	146	GLU	3.1
1	Х	201	LEU	3.1
1	0	243	GLY	3.1
1	L	241	TYR	3.1
1	V	192	PHE	3.0
1	V	235	THR	3.0
1	V	243	GLY	3.0
1	V	204	LEU	3.0
1	V	145	ALA	3.0
1	V	149	LEU	3.0
1	Х	146	GLU	2.9
1	Р	85	PHE	2.9
1	V	205	PRO	2.9
1	Х	114	ALA	2.9
1	Х	141	ALA	2.9
1	V	283	LEU	2.9
1	V	246	ALA	2.9
1	Ι	241	TYR	2.8
1	S	243	GLY	2.8

Continued from previous page...

 Res

56

Type

LYS

RSRZ

3.4

GLU Continued on next page...

VAL

PHE

ASN

2.8

2.8

2.8

2.8

V

R

U

R

1

1

1

1

193

85

171

240

Mol	Chain	Res	Type	RSRZ
1	V	220	ASP	2.8
1	V	161	ALA	2.7
1	Х	165	ASN	2.7
1	L	178	ALA	2.7
1	R	171	ASN	2.7
1	R	242	GLY	2.7
1	R	172	VAL	2.6
1	Р	242	GLY	2.6
1	В	56	LYS	2.6
1	U	169	LYS	2.6
1	S	288	ALA	2.6
1	Х	40	ASP	2.6
1	Х	213	SER	2.6
1	L	242	GLY	2.5
1	U	56	LYS	2.5
1	V	157	ALA	2.5
1	V	109	LEU	2.5
1	Х	257	LEU	2.5
1	V	208	ALA	2.5
1	D	268	PHE	2.5
1	V	150	CYS	2.5
1	С	178	ALA	2.5
1	V	187	VAL	2.5
1	V	189	GLY	2.5
1	V	195	THR	2.5
1	Х	226	PRO	2.4
1	V	108	ALA	2.4
1	Е	85	PHE	2.4
1	V	247	PHE	2.4
1	Х	150	CYS	2.4
1	С	155	ASP	2.4
1	Х	115	GLY	2.4
1	R	155[A]	ASP	2.4
1	V	222	ASN	2.4
1	Т	85	PHE	2.4
1	V	124	VAL	2.4
1	F	56	LYS	2.4
1	W	242	GLY	2.4
1	Х	281	TYR	2.4
1	U	146	GLU	2.3
1	Р	227	LEU	2.3

LEU Continued on next page...

2.3

154

1

V

Mol	Chain	Res	Type	RSRZ
1	Р	187	VAL	2.3
1	U	224	GLN	2.3
1	Q	56	LYS	2.3
1	R	88	PHE	2.3
1	Р	229	ILE	2.3
1	V	105	ALA	2.3
1	Х	86	GLY	2.3
1	Р	235	THR	2.3
1	V	147	VAL	2.3
1	Х	84	PHE	2.3
1	Х	286	GLU	2.3
1	Р	184	ALA	2.3
1	Х	232	ILE	2.3
1	Р	209	TRP	2.3
1	U	172	VAL	2.3
1	F	155	ASP	2.3
1	V	225	PRO	2.2
1	V	280	ILE	2.2
1	S	283	LEU	2.2
1	W	180	ASP	2.2
1	V	182[A]	SER	2.2
1	V	175	ALA	2.2
1	V	236	ASP	2.2
1	Ι	242	GLY	2.2
1	R	115	GLY	2.2
1	R	213[A]	SER	2.2
1	V	126	LEU	2.2
1	Х	172	VAL	2.2
1	Ν	56	LYS	2.2
1	Q	2	SER	2.2
1	0	56	LYS	2.2
1	W	184	ALA	2.1
1	0	155	ASP	2.1
1	R	239	LYS	2.1
1	V	128	GLY	2.1
1	W	88	PHE	2.1
1	Ι	155	ASP	2.1
1	Х	56	LYS	2.1
1	0	17	VAL	2.1
1	R	174	ALA	2.1
1	V	160	ALA	2.1
1	Н	88	PHE	2.1

Mol	Chain	Res	Type	RSRZ
1	V	230	GLY	2.1
1	F	170	VAL	2.1
1	U	170	VAL	2.1
1	М	56	LYS	2.1
1	V	194	PHE	2.1
1	Х	190	ALA	2.1
1	S	287	MET	2.0
1	F	171	ASN	2.0
1	R	281	TYR	2.0
1	V	125	VAL	2.0
1	V	172	VAL	2.0
1	Х	162	ASP	2.0
1	V	257	LEU	2.0
1	Р	231	GLY	2.0
1	Х	273	GLY	2.0
1	V	219	ALA	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B} ext{-factors}({ m \AA}^2)$	Q<0.9
3	H4M	S	302	45/54	0.44	0.31	$39,\!45,\!57,\!57$	45
3	H4M	U	302	45/54	0.51	0.36	49,56,58,59	45
3	H4M	W	302	45/54	0.55	0.27	$28,\!37,\!50,\!51$	45
3	H4M	F	302	45/54	0.56	0.36	20,39,43,47	45
3	H4M	Q	302	45/54	0.59	0.28	41,47,60,62	45
3	H4M	С	302	45/54	0.63	0.29	22,33,46,48	45
3	H4M	V	302	45/54	0.63	0.23	$39,\!44,\!56,\!58$	45

Continuea from previous page									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9	
3	H4M	N	302	45/54	0.63	0.30	46,58,60,61	45	
3	H4M	R	302	45/54	0.65	0.32	30,45,60,61	45	
3	H4M	D	301	45/54	0.66	0.30	30,41,74,74	0	
3	H4M	0	302	45/54	0.68	0.30	28,42,47,49	45	
3	H4M	L	302	45/54	0.69	0.31	33,42,48,49	45	
3	H4M	Х	302	45/54	0.75	0.30	27,61,80,81	45	
3	H4M	K	302	45/54	0.76	0.26	20,35,41,44	45	
2	NAP	W	301	48/48	0.77	0.38	72,82,92,95	0	
3	H4M	Ι	302	45/54	0.78	0.28	23,38,45,47	45	
3	H4M	Р	302	45/54	0.80	0.22	$21,\!33,\!55,\!57$	45	
3	H4M	G	302	45/54	0.80	0.21	23,34,60,63	0	
3	H4M	J	302	45/54	0.82	0.19	20,32,56,58	0	
3	H4M	М	302	45/54	0.82	0.20	21,32,67,69	0	
3	H4M	Н	302	45/54	0.83	0.25	18,26,39,43	45	
3	H4M	В	302	45/54	0.83	0.23	16,24,36,37	45	
3	H4M	Т	302	45/54	0.84	0.24	43,47,53,54	45	
3	H4M	Е	302	45/54	0.85	0.20	30,42,46,47	45	
3	H4M	А	302	45/54	0.85	0.17	17,26,54,57	0	
2	NAP	V	301	48/48	0.88	0.18	43,47,51,52	0	
2	NAP	Е	301	48/48	0.92	0.18	30,38,46,49	0	
2	NAP	S	301	48/48	0.92	0.10	40,48,53,57	0	
2	NAP	U	301	48/48	0.93	0.10	42,54,60,60	0	
2	NAP	0	301	48/48	0.93	0.11	33,42,53,55	0	
2	NAP	L	301	48/48	0.93	0.10	39,42,50,53	0	
2	NAP	Т	301	48/48	0.94	0.14	28,38,46,46	0	
2	NAP	А	301	48/48	0.95	0.09	20,31,36,38	0	
2	NAP	G	301	48/48	0.95	0.10	20,27,35,38	0	
2	NAP	Q	301	48/48	0.95	0.14	23,29,37,45	0	
2	NAP	J	301	48/48	0.95	0.10	22,33,39,41	0	
2	NAP	F	301	48/48	0.96	0.10	20,27,33,36	0	
2	NAP	Р	301	48/48	0.96	0.10	25,28,35,36	0	
2	NAP	С	301	48/48	0.96	0.08	23,29,33,39	0	
2	NAP	N	301	48/48	0.96	0.09	24,27,36,41	0	
2	NAP	D	302	48/48	0.97	0.07	18,24,29,33	0	
2	NAP	Κ	301	48/48	0.97	0.07	18,23,31,38	0	
2	NAP	Ι	301	48/48	0.97	0.08	21,26,33,36	0	
2	NAP	М	301	48/48	0.97	0.07	15,19,25,26	0	
2	NAP	R	301	48/48	0.97	0.08	24,31,36,41	0	
2	NAP	Х	301	48/48	0.97	0.10	$25,\!34,\!49,\!63$	0	
4	SO4	Н	303	5/5	0.97	0.10	36,45,47,56	0	
2	NAP	Н	301	48/48	0.98	0.07	16,19,25,32	0	
4	SO4	А	303	5/5	0.98	0.08	35,43,45,51	0	

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
4	SO4	D	303	5/5	0.98	0.09	34,38,40,46	0
2	NAP	В	301	48/48	0.98	0.07	18,23,28,37	0
4	SO4	J	303	5/5	0.98	0.09	$38,\!46,\!55,\!55$	0
4	SO4	М	303	5/5	0.98	0.09	33,35,46,50	0
4	SO4	Р	303	5/5	0.98	0.06	40,43,47,53	0
4	SO4	S	303	5/5	0.98	0.09	42,43,57,57	0
4	SO4	V	303	5/5	0.98	0.09	45,46,56,60	0

6.5 Other polymers (i)

There are no such residues in this entry.

