

wwPDB EM Validation Summary Report (i)

Nov 28, 2022 – 10:42 PM EST

PDB ID	:	7TGH
EMDB ID	:	EMD-25882
Title	:	Cryo-EM structure of respiratory super-complex CI+III2 from Tetrahymena
		thermophila
Authors	:	Zhou, L.; Maldonado, M.; Padavannil, A.; Guo, F.; Letts, J.A.
Deposited on	:	2022-01-07
Resolution	:	2.60 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value
Ramachandran outliers		0.0%
Sidechain outliers		0.2%
Worse		Better
Percentile		
Percentile	elative to all EM structures	
Metric	Whole archive	EM structures

Metric	(#Entries)	(#Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	1	284	100%					
2	1B	59	100%					
3	2	360	99%					
4	2B	178	100%					
5	3	121	99%					
6	3A	482	94%	6%				
6	3a	482	94%	6%				
7	3B	513	93%	7%				
7	3b	513	93%	7%				

Mol	Chain	Length	Quality of chain	
8	3C	426	7%	
8	3c	426	7%100%	
9	3D	319	92%	8%
9	3d	319	89%	11%
10	3E	269	85%	• 14%
10	3e	269	38% 61%	
11	3F	90	99%	
11	3f	90	83%	17%
12	3G	328	94%	6%
12	3g	328	96%	••
13	3H	130	98%	
13	3h	130	12%	5%
14	31	110	96%	
14	3i	110	5%	7%
15	31	62	5%	6.0/
15	2;	62	94%	0%
10	- Э <u>ј</u> ЭМ	10	82%	18%
10	51/1	19	100% 58%	
17	31	24	100%	
18	3m	17	100%	
19	4	505	100%	
20	4L	116	100%	
21	5	750	78%	22%
22	5B	100	100%	
23	6	255	96%	·
24	A2	103	9%	11%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
25	A5	206	75%	25%
26	A6	172	•	
		202	16%	
27	A'í	282	99%	
28	A9	362	93%	7%
29	AB	138	80%	• 19%
30	AC	133	74%	26%
31	AL	194	99%	•
32	AM	175	91%	• 9%
33	B7	120	96%	•
34	B8	207	82%	18%
35	BL	188	93%	7%
36	С	209	17%	
27	C1	957	•	
57	01	201	12%	11%
38	C2	233	95%	• •
39	C3	346	100%	
40	TD	73	42% 97%	•
41	J1	317	83%	17%
42	FX	172	85%	15%
43	Τ2	333	6%81%	19%
44	T1	516	93%	7%
45	A1	94	97%	•••
46	X1	150	5% 99%	
47	Т6	144	•	24%
48	T5	205	65%	35%
49	R	124	5%	

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
50	S1	718	96%	·
51	S2	442	100%	
52	S3	198	99%	·
53	S4	185	5% 95%	
54	$\mathbf{S6}$	132	68% 32%	6
55	S7	162	99%	·
56	S8	236	92%	8%
57	B9	189	98%	·
58	ΤХ	166	8%	13%
59	A8	238	55% 45%	
60	TB	113	85%	15%
61	V1	474	93%	7%
62	V2	274	84%	16%
63	B6	129	54% 46%	
64	ВМ	214	7% 68% 329	6
65	C4	102	99%	•
66	AN	231	6%	
67	B4	108	5%	
68	Τ4	212	80%	20%
69	Т8	135	96%	·
70	B2	126	94%	6%
71	Т3	311	45%	••
72	P1	251	90%	9%
73	B3	83	82%	18%
74	ТА	102	14%	

Continued from previous page...

Mol	Chain	Length	Quality of chain						
		0.4	5%						
75	$\mathbf{S5}$	94	90%	10%					
-	-		📥						
76	TC	93	98% •						
			14%						
77	P2	189	88%	12%					
78	A3	135	94%	6%					
			7%						
79	T9	135	98%	•					
			8%						
80	TE	71	69%	31%					
			35%						
81	T7	143	99%	••					

2 Entry composition (i)

There are 94 unique types of molecules in this entry. The entry contains 153366 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	1	284	Total 2313	C 1586	N 335	O 379	S 13	0	0

• Molecule 2 is a protein called NADH dehydrogenase subunit 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	1B	59	Total 516	C 362	N 78	O 73	${ m S} { m 3}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1B	49	VAL	LEU	conflict	UNP Q09FB0
1B	56	THR	SER	conflict	UNP Q09FB0

• Molecule 3 is a protein called Ymf65.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	359	Total 3065	C 2129	N 435	0 494	S 7	0	0

• Molecule 4 is a protein called NADH dehydrogenase subunit 2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
4	2B	178	Total 1483	C 1015	N 215	0 248	${ m S}{ m 5}$	0	0

• Molecule 5 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	3	120	Total 1017	C 705	N 142	0 166	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 6 is a protein called M16 family peptidase, putative.

Mol	Chain	Residues		Atoms					Trace
6	3A	453	Total 3511	C 2210	N 598	O 697	S 6	0	0
6	3a	451	Total 3495	C 2199	N 595	O 695	${ m S}{ m 6}$	0	0

• Molecule 7 is a protein called Peptidase M16 inactive domain protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
7	3B	479	Total 3826	C 2426	N 667	0 728	${ m S}{ m 5}$	0	0
7	3b	478	Total 3815	C 2420	N 663	0 727	${ m S}{ m 5}$	0	0

• Molecule 8 is a protein called Apocytochrome b.

Mol	Chain	Residues		Atoms					Trace
8	3C	426	Total 3590	С 2417	N 541	O 610	S 22	0	0
8	3c	426	Total 3589	C 2417	N 541	O 609	S 22	0	0

• Molecule 9 is a protein called Cytochrome protein c1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
0	2D	205	Total	С	Ν	0	\mathbf{S}	0	0
9	3D	290	2488	1627	418	430	13	0	0
0	24	285	Total	С	Ν	0	S	0	0
9	Ju	260	2403	1569	405	416	13	0	0

• Molecule 10 is a protein called Rieske iron-sulfur protein, ubiquinol-cytochrome C reductase iron-sulfur subunit.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	3E	230	Total 1846	C 1178	N 325	0 334	${f S}$ 9	0	0
10	3e	104	Total 882	$\begin{array}{c} \mathrm{C} \\ 567 \end{array}$	N 162	O 152	S 1	0	0

• Molecule 11 is a protein called Ubiquinol-cytochrome C reductase hinge protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
11	<u>२</u> म	80	Total	С	Ν	0	S	0	0
11	51	09	703	439	125	130	9	0	0
11	3f	75	Total	С	Ν	0	S	0	0
11	51	15	597	374	105	109	9	0	0

• Molecule 12 is a protein called UQCRB.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	3G	307	Total	С	Ν	Ο	\mathbf{S}	0	0
12	50	001	2595	1676	450	463	6	Ŭ	0
10		917	Total	С	Ν	0	\mathbf{S}	0	0
	Jog	517	2682	1738	464	474	6	0	0

• Molecule 13 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	<u>а</u> П	120	Total	С	Ν	0	S	0	0
10	- 511	129	1098	708	195	187	8	0	0
12	2h	194	Total	С	Ν	0	S	0	0
10	511	124	1046	669	190	179	8	0	0

• Molecule 14 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		Atoms					Trace
14	31	114	Total	С	Ν	Ο	\mathbf{S}	0	0
14	51	114	971	651	161	158	1	0	0
14	2;	111	Total	С	Ν	Ο	\mathbf{S}	0	0
14	51	111	948	638	157	152	1	0	0

• Molecule 15 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
15	5 I	59	Total	С	Ν	0	S	0	0
10	- 29	- 10	501	341	79	79	2	0	0
15	2;	51	Total	С	Ν	0	S	0	0
10	၁၂	51	443	306	65	70	2	0	0

• Molecule 16 is a protein called UNK1.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
16	3M	19	Total 150	C 94	N 27	O 27	${ m S} { m 2}$	0	0

• Molecule 17 is a protein called UNK2.

Mol	Chain	Residues	L	Ator	\mathbf{ns}	AltConf	Trace	
17	31	24	Total 124	С 74	N 24	O 26	0	0

• Molecule 18 is a protein called UNK3.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
18	3m	17	Total 121	C 78	N 25	0 18	0	0

• Molecule 19 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues		At	AltConf	Trace			
19	4	505	Total 4170	C 2859	N 601	O 692	S 18	0	0

• Molecule 20 is a protein called Ymf58.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	4L	116	Total 957	C 648	N 142	0 163	${S \atop 4}$	0	0

• Molecule 21 is a protein called NADH dehydrogenase subunit 5.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	5	587	Total 4844	C 3313	N 696	0 819	S 16	0	0

• Molecule 22 is a protein called Ymf57.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	$5\mathrm{B}$	100	Total 888	C 620	N 128	0 137	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called Ymf62.

Mol	Chain	Residues		At	AltConf	Trace			
23	6	244	Total 2076	C 1419	N 295	O 358	$\frac{S}{4}$	0	0

• Molecule 24 is a protein called Ribosomal protein L51/S25/CI-B8 domain protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	A2	92	Total 765	C 486	N 136	0 141	${ m S} { m 2}$	0	0

• Molecule 25 is a protein called ETC complex I subunit motif protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	A5	155	Total 1307	C 838	N 219	0 244	S 6	0	0

• Molecule 26 is a protein called NADH dehydrogenase, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	A6	172	Total 1421	C 903	N 253	0 257	S 8	0	0

• Molecule 27 is a protein called NDUA7.

Mol	Chain	Residues		At	AltConf	Trace			
27	A7	281	Total 2339	C 1473	N 412	0 452	${S \over 2}$	0	0

• Molecule 28 is a protein called NAD-dependent epimerase/dehydratase family protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	A9	338	Total 2718	C 1737	N 475	0 494	S 12	0	0

• Molecule 29 is a protein called Acyl carrier protein.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
29	AB	112	Total 926	C 586	N 158	0 182	0	0

• Molecule 30 is a protein called Acyl carrier protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	AC	98	Total 806	C 513	N 134	0 158	S 1	0	0

• Molecule 31 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues		At	AltConf	Trace			
31	AL	193	Total 1612	C 1019	N 303	O 285	${ m S}{ m 5}$	0	0

• Molecule 32 is a protein called NDUA13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	AM	160	Total 1349	C 858	N 256	0 227	S 8	0	0

• Molecule 33 is a protein called NDUB7.

Mol	Chain	Residues		At	AltConf	Trace			
33	B7	115	Total 937	C 593	N 162	0 176	S 6	0	0

• Molecule 34 is a protein called NDUB8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	B8	169	Total	С	N	0	S	0	0
			1408	904	238	260	6		

• Molecule 35 is a protein called NDUB10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	BL	175	Total 1461	C 925	N 264	0 268	S 4	0	0

• Molecule 36 is a protein called UNK4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
36	С	209	Total 1045	$\begin{array}{c} \mathrm{C} \\ 627 \end{array}$	N 209	O 209	0	0

• Molecule 37 is a protein called Gamma-carbonic anhydrase.

Mol	Chain	Residues		Ate	AltConf	Trace			
37	C1	229	Total 1769	C 1110	N 304	O 350	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called Gamma-carbonic anhydrase.

Mol	Chain	Residues		At	AltConf	Trace			
38	C2	223	Total 1624	C 1020	N 294	O 303	${ m S} 7$	0	0

• Molecule 39 is a protein called Transcription factor apfi protein, putative.

Mol	Chain	Residues		Ate	AltConf	Trace			
39	C3	346	Total 2804	C 1766	N 481	O 549	S 8	0	0

• Molecule 40 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
40	TD	71	Total 608	C 399	N 108	O 101	0	0

• Molecule 41 is a protein called DnaJ domain protein.

Mol	Chain	Residues		At	AltConf	Trace			
41	J1	262	Total 2146	C 1361	N 396	O 386	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called 2 iron, 2 sulfur cluster-binding protein.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
42	FX	146	Total 1162	C 722	N 207	0 223	S 10	0	0

• Molecule 43 is a protein called Acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II.

Mol	Chain	Residues		At	AltConf	Trace			
43	Τ2	271	Total 2117	C 1347	N 362	O 407	S 1	0	0

• Molecule 44 is a protein called Lipid-A-disaccharide synthase.

Mol	Chain	Residues		At	AltConf	Trace			
44	T1	481	Total 3884	C 2492	N 662	0 717	S 13	0	0

• Molecule 45 is a protein called NDUA1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
45	A1	92	Total 799	C 526	N 138	O 135	0	0

• Molecule 46 is a protein called NADH-ubiquinone oxidoreductase complex I, 21 kDa subunit.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
46	X1	149	Total 1227	C 800	N 213	0 214	0	0

• Molecule 47 is a protein called NDUTT6.

Mol	Chain	Residues		At	AltConf	Trace			
47	Т6	109	Total 903	C 562	N 161	0 174	S 6	0	0

• Molecule 48 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	ТS	134	Total	С	Ν	Ο	\mathbf{S}	0	0
40	10	104	1088	699	193	194	2	0	0

• Molecule 49 is a protein called UNK5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	R	124	Total 943	C 613	N 160	0 167	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called NADH-ubiquinone oxidoreductase 75 kDa subunit.

Mol	Chain	Residues		A	AltConf	Trace			
50	S1	687	Total 5394	C 3404	N 933	O 1029	S 28	0	0

• Molecule 51 is a protein called NADH dehydrogenase subunit 7.

Mol	Chain	Residues		At			AltConf	Trace	
51	S2	442	Total 3599	C 2291	N 624	O 660	S 24	0	0

• Molecule 52 is a protein called NADH dehydrogenase subunit 9.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	S3	198	Total 1681	C 1096	N 267	0 312	S 6	0	0

• Molecule 53 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	S4	177	Total 1463	C 928	N 257	O 269	${ m S} 9$	0	0

• Molecule 54 is a protein called Zinc-finger protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	S6	90	Total 722	C 456	N 128	0 134	${S \atop 4}$	0	0

• Molecule 55 is a protein called NADH dehydrogenase subunit 10.

Mol	Chain	Residues		A	toms			AltConf	Trace
55	S7	162	Total 1286	C 827	N 221	0 227	S 11	0	0

• Molecule 56 is a protein called NADH-ubiquinone oxidoreductase 1, chain, putative.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
56	$\mathbf{S8}$	218	Total 1812	C 1155	N 299	О 347	S 11	0	0

• Molecule 57 is a protein called NDUB9.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	B9	186	Total 1579	C 1021	N 252	O 302	${S \atop 4}$	0	0

• Molecule 58 is a protein called Thioredoxin.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	TX	144	Total 1206	C 767	N 205	0 227	${ m S} 7$	0	0

• Molecule 59 is a protein called NDUA8.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
59	A8	132	Total 1075	C 676	N 180	O 208	S 11	0	0

• Molecule 60 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
60	ΤВ	96	Total 801	C 515	N 139	0 147	0	0

• Molecule 61 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	V1	442	Total 3410	C 2146	N 600	O 640	S 24	0	0

• Molecule 62 is a protein called NADH-ubiquinone oxidoreductase 24 kDa subunit.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	V2	231	Total 1858	C 1173	N 318	O 357	S 10	0	0

• Molecule 63 is a protein called NDUB6.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
62	P6	70	Total	С	Ν	Ο	S	0	0
05	DU	10	596	400	98	94	4	0	0

• Molecule 64 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	BM	145	Total 1163	C 737	N 195	O 226	${ m S}{ m 5}$	0	0

• Molecule 65 is a protein called NDUC2.

Mol	Chain	Residues		At	oms			AltConf	Trace
65	C4	101	Total 842	C 548	N 138	0 149	${ m S} 7$	0	0

• Molecule 66 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		At	AltConf	Trace			
66	AN	231	Total 1879	C 1219	N 317	O 336	${f S}{7}$	0	0

• Molecule 67 is a protein called NDUB4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	B4	108	Total 898	C 601	N 138	0 157	${ m S}{ m 2}$	0	0

• Molecule 68 is a protein called NDUTT4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	Τ4	170	Total 1408	C 918	N 242	0 245	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called NDUTT8.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
69	Т8	129	Total	C	N	0	0	0
			1064	691	189	184		

• Molecule 70 is a protein called NDUB2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	B2	118	Total 955	C 615	N 165	0 172	${ m S} { m 3}$	0	0

• Molecule 71 is a protein called NDUTT3.

Mol	Chain	Residues		At	AltConf	Trace			
71	Т3	305	Total 2442	$\begin{array}{c} \mathrm{C} \\ 1555 \end{array}$	N 426	0 455	S 6	0	0

• Molecule 72 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		Ate	AltConf	Trace			
72	P1	228	Total 1896	C 1235	N 320	O 336	${ m S}{ m 5}$	0	0

• Molecule 73 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
73	B3	68	Total 594	C 392	N 104	O 97	S 1	0	0

• Molecule 74 is a protein called NDUTT10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	ТА	102	Total 854	C 553	N 141	0 155	${ m S}{ m 5}$	0	0

• Molecule 75 is a protein called GRAM domain protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
75	S5	85	Total 693	C 440	N 118	0 129	S 6	0	0

• Molecule 76 is a protein called NDUTT12.

Mol	Chain	Residues	Atoms					AltConf	Trace
76	TC	91	Total 781	C 491	N 145	0 144	S 1	0	0

• Molecule 77 is a protein called NDUPH2.

Mol	Chain	Residues	Atoms					AltConf	Trace
77	Ρ2	167	Total 1414	C 926	N 225	0 258	${ m S}{ m 5}$	0	0

• Molecule 78 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
78	A3	127	Total 1065	C 691	N 193	0 178	${ m S} { m 3}$	0	0

• Molecule 79 is a protein called NDUTT9.

Mol	Chain	Residues		A	AltConf	Trace			
79	Т9	132	Total 1066	C 670	N 185	0 201	S 10	0	0

• Molecule 80 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
80	TF	40	Total	С	Ν	Ο	\mathbf{S}	0	0
00		49	413	277	63	71	2	0	0

• Molecule 81 is a protein called Transmembrane protein, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
81	Τ7	142	Total 1187	C 770	N 202	O 209	S 6	0	0

• Molecule 82 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Aton	ns		AltConf
82	1	1	Total	С	Ο	Р	0
02	T	I	50	31	17	2	0
82	эв	1	Total	С	Ο	Р	0
02	$^{2}\mathrm{D}$	I	53	34	17	2	0
82	2	1	Total	С	Ο	Р	0
02	5	1	44	25	17	2	0
82	зВ	1	Total	С	Ο	Р	0
02	3D	1	78	59	17	2	0
20	30	1	Total	С	Ο	Р	0
02	30	1	65	46	17	2	0
20	20	1	Total	С	Ο	Р	0
02	96		66	47	17	2	
82	<u>а</u> П	1	Total	С	Ο	Р	0
02	511	1	128	90	34	4	0

Continued from previous page...

Mol	Chain	Residues	1	Aton	ns		AltConf
00	211	1	Total	С	Ο	Р	0
82	311	1	128	90	34	4	0
00	от	1	Total	С	0	Р	0
82	51	1	108	70	34	4	0
00	्य	1	Total	С	0	Р	0
82	- 31	1	108	70	34	4	0
0.0	0L	1	Total	С	0	Р	0
82	30	1	68	49	17	2	0
00	2.0	1	Total	С	Ο	Р	0
02	30	1	120	82	34	4	0
0.0	2.	1	Total	С	0	Р	0
82	30	1	120	82	34	4	0
00	2:	1	Total	С	0	Р	0
02	- 51	1	71	52	17	2	0
00	F	1	Total	С	Ο	Р	0
02	0	1	186	148	34	4	0
00	F	1	Total	С	Ο	Р	0
02	0	1	186	148	34	4	0
00	ΔT	1	Total	С	Ο	Р	0
02	AL	1	53	34	17	2	0
00	AM	1	Total	С	Ο	Р	0
02	AM	1	62	43	17	2	0
<u></u>	D٥	1	Total	С	Ο	Р	0
02	Do	1	45	26	17	2	0
<u></u>	ТЪ	1	Total	С	0	Р	0
02	1D	1	66	47	17	2	0
82	Т1	1	Total	С	0	Р	0
02	11	I	55	36	17	2	0
82	Δ 1	1	Total	С	Ο	Р	0
02		1	53	34	17	2	0
82	В	1	Total	С	Ο	Р	0
02	10	1	84	65	17	2	0
82	BM	1	Total	С	Ο	Р	0
02	DM	1	86	67	17	2	0
82	C4	1	Total	С	Ο	Р	0
02	04	I	98	79	17	2	0
82	AN	1	Total	С	Ο	Р	
	1111	1	53	34	17	2	0
82	R/	1	Total	\mathbf{C}	Ο	P	0
	D4	1	40	21	17	2	0
82	P9	1	Total	\mathbf{C}	Ο	P	0
02	14	L	82	63	17	2	

Continued from previous page...

Mol	Chain	Residues	At	AltConf			
89	T7	1	Total	С	Ο	Р	0
02	11	1	48 2	29	17	2	0

• Molecule 83 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: PC1) (formula: $C_{44}H_{88}NO_8P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ato	oms			AltConf
02	1	1	Total	С	Ν	Ο	Р	0
00	1	1	36	26	1	8	1	0
83	2	1	Total	С	Ν	Ο	Р	0
00	5	1	31	21	1	8	1	0
83	30	1	Total	С	Ν	Ο	Р	0
00	30	1	119	89	3	24	3	0
83	30	1	Total	С	Ν	Ο	Р	0
00	30	1	119	89	3	24	3	0
02	20	1	Total	С	Ν	Ο	Р	0
00	30	1	119	89	3	24	3	0
02	2F	1	Total	С	Ν	Ο	Р	0
00	JE	1	78	58	2	16	2	0
02	2F	1	Total	С	Ν	Ο	Р	0
00	JE	1	78	58	2	16	2	0
83	<u>२</u> म	1	Total	С	Ν	Ο	Р	0
00	51	1	22	12	1	8	1	0
83	्य	1	Total	С	Ν	Ο	Р	0
00	51	L	78	58	2	16	2	0
83	्य	1	Total	С	Ν	Ο	Р	0
00	51	L	78	58	2	16	2	

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf
02	9 T	1	Total	С	Ν	Ο	Р	0
83	21	1	37	27	1	8	1	0
0.2	9h	1	Total	С	Ν	Ο	Р	0
00	30	1	30	20	1	8	1	0
02	30	1	Total	С	Ν	Ο	Р	0
00	30	1	69	49	2	16	2	0
83	30	1	Total	С	Ν	Ο	Р	0
00	50	1	69	49	2	16	2	0
83	30	1	Total	С	Ν	Ο	Р	0
00		I	50	40	1	8	1	0
83	30	1	Total	С	Ν	Ο	Р	0
		1	33	23	1	8	1	0
83	3i	1	Total	С	Ν	Ο	Р	0
	J	Ŧ	36	26	1	8	1	0
83	5	1	Total	С	Ν	Ο	Р	0
00	0	Ĩ	147	117	3	24	3	0
83	5	1	Total	С	Ν	Ο	Р	0
	0	I	147	117	3	24	3	0
83	5	1	Total	С	Ν	Ο	Р	0
00	5	1	147	117	3	24	3	0
83	6	1	Total	С	Ν	Ο	Р	0
00	0	1	93	73	2	16	2	0
83	6	1	Total	С	Ν	Ο	Р	0
	0	1	93	73	2	16	2	0
83	АМ	1	Total	С	Ν	Ο	Р	0
		1	30	20	1	8	1	Ŭ
83	.J1	1	Total	С	Ν	Ο	Р	0
	01	1	40	30	1	8	1	0
83	Т1	1	Total	С	Ν	Ο	Р	0
	**	1	26	16	1	8	1	Ŭ
83	X1	1	Total	С	Ν	Ο	Р	0
		1	49	39	1	8	1	Ŭ
83	B6	1	Total	С	Ν	Ο	Р	0
	D0	Ŧ	52	42	1	8	1	0
83	C4	1	Total	С	Ν	Ο	Р	0
		Ŧ	32	22	1	8	1	0
83	AN	1	Total	С	Ν	Ο	Р	0
		Ŧ	36	26	1	8	1	0
83	R9	1	Total	\mathbf{C}	Ν	0	Р	0
		1	48	38	1	8	1	
83	P1	1	Total	$\overline{\mathrm{C}}$	Ν	0	P	0
00	11	1	40	30	1	8	1	0

Continued from previous page...

Mol	Chain	Residues	At	AltConf			
02	тС	1	Total C	Ν	Ο	Р	0
00	10		42 32	1	8	1	

• Molecule 84 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C₃₄H₃₂FeN₄O₄) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Atoms				
84 3C	30	1	Total	С	Fe	Ν	Ο	0
	30	L	86	68	2	8	8	0
Q1	24 20	3C 1	Total	С	Fe	Ν	0	0
	30		86	68	2	8	8	0
Q1	84 3c	1	Total	С	Fe	Ν	0	0
04			86	68	2	8	8	0
Q1	30	3c 1	Total	С	Fe	Ν	0	0
04	<u>эс</u>		86	68	2	8	8	0

• Molecule 85 is UBIQUINONE-10 (three-letter code: U10) (formula: $C_{59}H_{90}O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
85	3C	1	$\begin{array}{cc} \text{Total} & \text{C} \\ 26 & 26 \end{array}$	0
85	3H	1	Total C O 29 25 4	0
85	$5\mathrm{B}$	1	Total C O 63 59 4	0

• Molecule 86 is HEME C (three-letter code: HEC) (formula: $C_{34}H_{34}FeN_4O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf
86	3D	1	Total	С	Fe	Ν	Ο	0
80	3D	T	43	34	1	4	4	0
86	3d	3d 1	Total	С	Fe	Ν	Ο	0
80			43	34	1	4	4	0

• Molecule 87 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
87	3E	1	Total Fe S	0
0.	0L	1	4 2 2	0
87	FV	1	Total Fe S	0
01	ΓΛ	L	4 2 2	0
07	C1	1	Total Fe S	0
01	51	L	4 2 2	0
97	V9	1	Total Fe S	0
01	V Z	L	4 2 2	0

• Molecule 88 is 1,2-Distearoyl-sn-glycerophosphoethanolamine (three-letter code: 3PE) (formula: $C_{41}H_{82}NO_8P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ato	oms			AltConf
0.0	917	1	Total	С	Ν	Ο	Р	0
88	3E	1	34	24	1	8	1	0
00	0.1	1	Total	С	Ν	Ο	Р	0
88	30	1	47	37	1	8	1	0
88	4	1	Total	С	Ν	0	Р	0
00	4	T	83	63	2	16	2	0
00	4	1	Total	С	Ν	Ο	Р	0
00	4	L	83	63	2	16	2	0
00	F	1	Total	С	Ν	Ο	Р	0
00	9	L	72	52	2	16	2	0
00	F	1	Total	С	Ν	Ο	Р	0
00	9	L	72	52	2	16	2	0
00	۶D	1	Total	С	Ν	Ο	Р	0
00	5D	L	24	14	1	8	1	0
88	B8	1	Total	С	Ν	Ο	Р	0
00	Do	T	36	26	1	8	1	0
88	58	1	Total	С	Ν	Ο	Р	0
00	00	T	41	31	1	8	1	0
88	\mathbf{C}^{A}	1	Total	С	Ν	Ο	Р	0
00	04	T	51	41	1	8	1	0
88	ΔN	1	Total	С	Ν	Ο	Р	0
00	AN	T	80	60	2	16	2	0
88	ΔN	1	Total	С	Ν	Ο	Р	0
		1	80	60	2	16	2	0
88	Т4	1	Total	\mathbf{C}	Ν	Ο	Р	0
	14	L	25	15	1	8	1	0
88	Т8	1	Total	\mathbf{C}	Ν	Ο	Р	0
00	38 T8	1	39	29	1	8	1	U

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf
88 P1	D1	1	Total	С	Ν	0	Р	0
	L	47	37	1	8	1	0	
00		1	Total	С	Ν	0	Р	0
00 IA	1	26	16	1	8	1	0	
00	88 A3	1	Total	С	Ν	0	Р	0
88			45	35	1	8	1	0

• Molecule 89 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
89	$3\mathrm{F}$	1	Total Zn 1 1	0
89	A9	1	Total Zn 1 1	0
89	$\mathbf{S6}$	1	Total Zn 1 1	0

• Molecule 90 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: C₂₁H₃₀N₇O₁₇P₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf
00	10	1	Total	С	Ν	Ο	Р	0
90	A9	1	48	21	7	17	3	0

• Molecule 91 is S-[2-({N-[(2S)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta-a

lanyl}amino)ethyl] tetradecanethioate (three-letter code: ZMP) (formula: $C_{25}H_{49}N_2O_8PS$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms						AltConf
01	٨P	1	Total	С	Ν	0	Р	S	0
91	AD	I	34	23	2	7	1	1	0

• Molecule 92 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf
92	B8	1	Total 27	C 10	N 5	O 10	Р 2	0

• Molecule 93 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
93	S1	1	Total Fe S 16 8 8	0
93	S1	1	TotalFeS1688	0
93	S7	1	TotalFeS844	0
93	S8	1	TotalFeS1688	0
93	S8	1	TotalFeS1688	0
93	V1	1	TotalFeS844	0

• Molecule 94 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula: $C_{17}H_{21}N_4O_9P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ato	oms			AltConf
94	V1	1	Total 31	C 17	N 4	0 9	Р 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH-ubiquinone oxidoreductase chain 1

• Molecule 9: Cytochrome protein c1

Chain 3d:	89%	11%
	• •• •	
MET LYS SER PHE VAL ALA ALA ALA GLY ILE	11.E BAR ASN SER ASN ASN ASN ASN ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	

 \bullet Molecule 10: Rieske iron-sulfur protein, ubiquinol-cytochrome C reductase iron-sulfur sub-unit

24%		
Chain 3E:	85%	• 14%
	•• • •• • • ••	• • ••••
MET SPHE SPHE LLYS LLYS HLEU HLEU ARG ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	K36 K37 K17 R117 1133 1133 1133 1133 P138 P138 P138 C141 C149 C149 C149 T150	F153 1154 1155 7155 7158 8159 8158 8165 8165 8165 8165 8165 810 910 910 920 8288 888
•••••••		
ASN THR LEU LEU LEU LYS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	T198 H199 C200 C201 C202 T203 P204 P204 P204 P205 T205 C203 C209 C209 C209 C209 C209 C209 C209 C209	C216 C215 C215 C218 H219 C220 C220 C220 C220 C220 C220 C220 C22

A240

 \bullet Molecule 10: Rieske iron-sulfur protein, ubiquinol-cytochrome C reductase iron-sulfur sub-unit

Cl	ıa	in	3	e:	-							38	%																		6	1%	6										_	I				
MET PHF	SER	LYS	LEU	ALA	VAL	THR	ARG	SER	ASN	LYS	TEU	ASN	GLN	VAL	GLN AT A	TYR	ASN	PHE	GLY	VAL	SER	CLU	TYR	ASN	GLN	AKG LEU	SER	LYS	K37	D117		R126	ASP	TVR	SER	GLU	VAL	TLF	GLY	ALA	LEU	PRO	GLY	GLU	VAL	GLN	MET	
VAL TRP	ASN	GLY	PRO	ILE	TLE	ARG	ARG	LEU TUD	SER	ASN	GLU	VAL	LYS	GLU	N SM	IT15	LEU	PRO	SER	ASN	LEU	TEU	ASP	LYS	ASP	GLU	VAL	ILE	LEU	ASP	ALA	GLY	ASN THR	LYS	VAL	TLE	VAL	SER	ALA	VAL	THR	HIS	LEU	GLY	ILE	PRO	ILE	
PRO TVR	TEU	GL Y	TYR	LYS	TYR	VAL	CYS	TLE	HTS	GTY	SER	VAL	TYR	ASP	DHF	AT.A	ARG	VAL	ARG	GLN	PRO	ALA	LEU	LEU	ASN	PRO	ALA	ILE	ASN	SER	ILE	SIH	ASP GI II	GLY	THR	LEU	CYS	MET	GLU	q256	L257	K258		E262		GOZN	A269	

• Molecule 11: Ubiquinol-cytochrome C reductase hinge protein

Chain 3F:	99%	
MET S2 S3 R47 E48 L49 V50 N51 A52		
• Molecule 11: U	biquinol-cytochrome C reductase hinge	protein
Chain 3f:	83%	17%
MET SER SER SER GLY GLY CLD FLD FLD FLD FLI F11 SER SER SER SER SER SER	q16 ♦ D19 ♦ 125 ♦ 125 ♦ 125 ♦ 125 ♦ 125 ♦ 125 ♦ 123 ♦ 133 ♦ 134 € 134 € 134 € 134 € 134 € 134 € 134 € 134 € 134 € 134 € 134 €	A52 D53 P54 P54 M56 M56 M56 M56 M56 M54 M54 M54 M54 M54 M54 M54 M54 M54 M54

• Molecule 15: Transmembrane protein, putative

• Molecule 15: Transmembrane protein, putative

Chain 3j:	82%	18%
M1 D47 D47 D47 D47 d10 d10 d11 d11 d11 d11 d11 d11 d11 d11		
• Molecule 16: UNK1		
Chain 3M:	100%	
MI AIB AID		
• Molecule 17: UNK2		
Chain 31:	58%	
A14 A15 A16 A17 A18 A20 A20 A20 A21 A26 A21 A28 A23 A33 A33	A35 A36 A37	
• Molecule 18: UNK3		
Chain 3m:	100%	
There are no outlier residu	ues recorded for this chain.	
• Molecule 19: NADH-ubi	quinone oxidoreductase chain 4	
Chain 4:	100%	
M1 D88 H462 F505		
• Molecule 20: Ymf58		
Chain 4L:	100%	

	•
M1	Q116

• Molecule 21: NADH dehydrogenase subunit 5

Chain 5:	78%	22%
MET ILE ARG ASN LEU LYS LYS LYS ASN TYR PHE ASP PHE	PHEN LLYS CLNS CLNS CLNS CLNS CLNS ASN ASN TYR TYR TYR TYR TYR TYR TYR TYR TYR TYR	ILE PHE PHE LEU PHE PHE PHE ASN TYR PHE PHE PHE SER SER PHE PHE PHE PHE PHE
PHE ASN SER VAL TYR LYS LYS HIS ALA ALA TRP	LILL LILL PHE CHHE CHHE CHHE CHE CHE CHE CHE CHE CH	HIS SER THR THR TTR TTR TTR TTR TTR TTR TTR TT
LEU ASN THR ASN THR ASN PHE ASN VAL ASP TYR THR THR	ALIN THR LEU LEU LEU LEU LEU LEU ASR PHE ASN PHE CASN CASN CASN CASN CASN CASN CASN CASN	GLN ILE L169 L169 L760
• Molecule 22: Y	mf57	
Chain 5B:	100%	
There are no out	lier residues recorded for this chain.	
• Molecule 23: Y	mf62	
Chain 6:	96%	
MET PHE LEU LIEU THR THR THR SER PHE PHE SER	113 114 115 115 119 119	
• Molecule 24: R 9%	ibosomal protein $L51/S25/CI-B8$ don	nain protein
Chain A2:	89%	11%
MET S2 S3 S3 K6 K6 L7 T3 G9 G9 C9 N11	ego SER SER SER ASN VAL NAL NAL NAL NAL NAL NAL NAL NAL	
• Molecule 25: E	TC complex I subunit motif protein	
Chain A5:	75%	25%
MET LIBU GLN GLN GLY LIBU LISU LIBU LIBU LIBU ARM	THR ASN THR THR PHE VAL VAL ASN ASN CLU THR PHE CLU THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	E60 E115 E115 E115 E162 E165 E165 A170 A170 S171
S194 SER ASN ASN ASN ALA PRO GLN GLN GLN CIV CIV	ALIA	
• Molecule 26: N	ADH dehydrogenase, putative	
Chain A6:	100%	

• Molecule 33: NDUB7

Chain B7:	96%	•
• Molecule 34	4: NDUB8	
Chain B8:	82%	18%
MET ALA LEU LEU ARG ARG VAL LEU LEU LSN ASN	PHER PHER ASN ASN ASN ASN ASN ASN ASN ASN	
• Molecule 3	5: NDUB10	
Chain BL:	93%	7%
MET A2 D17 K176 LYS ALA SER	PRO VAL GIU SER SER ASP GLU	
• Molecule 30	6: UNK4	
Chain C:	17%	
x-3 x-2 X41 X106	X150 X151 X174 X175 X177 X177 X177 X179 X187 X181 X182 X182 X182 X184 X184 X184 X184 X184 X184 X185 X185 X186 X186 X186 X186 X186 X186 X186 X186	X203
• Molecule 3'	7: Gamma-carbonic anhydrase	
Chain C1:	900/	110/
Chain C1.	05%	1178
MET LYS LEU PHE ARG ALA ALA LEU LEU LYS SYS	21.2.1. LEU LILE CLIN CLIN CLIN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 38	8: Gamma-carbonic anhydrase	
Chain C2:	95%	
M1 R97 R194 K197 E198	E200 1201 K202 K202 F206	
• Molecule 39	9: Transcription factor apfi protein, putative	
C1 · C2	м. 	
Chain C3:	100%	
M1 L2 D8 E11 E11	V35 156 N117 Q118 Q119 E197 E239 E239 E239 E332 C3346 V346	
	WORLDWIDE PROTEIN DATA BANK	

LYS ASP ASP ASP ASP ASP ASP ASP ASP CLV CLV CLV CLV ALA ALA ALA ALA PHE
• Molecule 45: NDUA1
Chain A1: 97% ···
MET 14 R44 N85 Y94
\bullet Molecule 46: NADH-ubiquinone oxidore ductase complex I, 21 kDa subunit
Chain X1: 99%
MET 22 43 43 61 125 1125 1150
• Molecule 47: NDUTT6
Chain T6: 76% 24%
MET SER SER SER CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU
• Molecule 48: Transmembrane protein, putative
Chain T5: 65% 35%
MET MET TYR LLYS LLYS LLYS LLYS LLYS LLYS LLYS CLYS GLN PHE PHE PHE PHE PHE PHE PHE PHE PHE PHE
K188 7186 7186 7186 7186 7188 7188 7188 7188 7188 7188 7188 7188 7189 7181 <t< td=""></t<>
• Molecule 49: UNK5
Chain R: 100%
M2 E8 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
\bullet Molecule 50: NADH-ubiquinone oxidore ductase 75 kDa subunit
Chain S1: 96% .

• • • • • • • • • • • • • • • • • • •	
MET MET NAL LJVS VAL LJVS CJVS CJVS CJVS CJVS CJVS CJVS CJVS C	
\bullet Molecule 51: NADH dehydrogen ase subunit 7	
Chain S2:	
MA R267 S3095 I3112 K313 K314 K314 S320 R442 R442	
• Molecule 52: NADH dehydrogenase subunit 9	
Chain S3: 99% ·	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
• Molecule 53: NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochor	ıdrial
Chain S4: 95% · ·	
MI P4 AISN AISN AISA AISA SER AISA AISA AISA AISA AISA AISA CISS CISS	
• Molecule 54: Zinc-finger protein	
Chain S6: 68% 32%	
MET 11.1.E 0.1.N 0.1.N 0.1.N 0.1.N 1.1.N 0.1.N 1	
• Molecule 55: NADH dehydrogenase subunit 10	
Chain S7: 99%	
H C31 X162 2	
\bullet Molecule 56: NADH-ubiquinone oxidoreductase 1, chain, putative	
Chain S8: 92% 8%	
MET LYS CYS CYS CYS CYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	K66 P67 D68
• Molecule 57: NDUB9	

Chain B9:		98%		·	
MET S2 K80 F81 E82 E171 E171 D172	k185 S186 N187 HIS HIS				
• Molecule 58:	Thioredoxin				
Chain TX:	6	87%		13%	
MET ILE ASN ILE SER LYS SER ALA LYS VAL	LEU LEU LEU ASN ASN ASN ASN CLN CLN CLN CLN CLN CLN	K32 B39 B53 E59	D62 K63 D64 F65 D66 A138 A138 G139 G139 D141	R166	
• Molecule 59:	NDUA8				
Chain A8:	55%		45%		
MET SER TLE LEU ASN LEU TLE LEU ASN VAL LEU	ASN MET LEU LEU ILE ASN ILE TYR TYR TYR CLN TYR PHE CLN	GLN LEU LYR ASN ASN ASN LYS CLY LEU	ILE TYR GLN ASP ASP ASP TYR CYS CYS CYS LEU TYR VAL TYR MSM	ASN GLU SER ASN ILE PHE ILE GLN	GLU
			•	••	_
TYR VAL SER VAL VAL PHE ASN ALA ALA TLE TVS	GLU LYS GLU GLU CYS GLU CYS GLU ASP ASP GLN ILE ASP GLN TSP	LYS GLN ARG LYS LYS GLN ARG LEU LEU LYS	LYS ALA ASN ASN ASN CLN LEU LEU SER SER SER LYS SER LYS D123	N187 E210 A217	1733 g
• Molecule 60:	Transmembrane p	rotein, putativ	ve		
Chain TB:		85%		15%	
MET PHE ARG ASN VAL VAL VAL ASG GLY ASU ASU	CYS GLM GLM ALA ALA H3S A39 A39 A39 A39	1113			
• Molecule 61:	NADH dehydroger	nase [ubiquino	one] flavoprotein 1, n	nitochondr	ial
Chain V1:		93%		7%	
MET LEU SER LYS LYS TLE PHE LYS THR VAL VAL	ALA ASN LYS LYS PHE LYS ASN SER ASN SER ASN SER MET YAL	ILE TYR ASN ASN 830 831 135	K36 D48 D48 049 D50 D61 K104 V105	P107	C259
D335 ◆ H458 ◆ P459 ○ P460 ◆ 1471 ↓ 1471 ↓ H17 H17 H17	SIH				
• Molecule 62:	NADH-ubiquinone	e oxidoreducta	se 24 kDa subunit		
Chain V2:	14%	84%		16%	
MET NET SER LYS CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEU THR LYS LYS ALA ASN PHE ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	R26 E47 E51 R136	E144 A155 E200 E200 D204 K205 H211	L219 (K225 (K226 (K227 (D228 (F229 L230 \$231 \$232 €233 F236

S237 R238 F240 F240 A241 A244 A244 Q245 W245 W245 W245 C245 C245 C245 C245 C245 C245 C245 C	R255 GLU GLU CYS LYS LYS LYS ALA ALA ALA ALA ALA ALA ALA	ALA ALA ALA ALA ALA LYS LYS LYS	
• Molecule 63: NDUB6			
Chain B6: 54%		46%	
MET LEU LEU LEU LEU LEU CLU MET ALA ALA ALA ALA ALA ALA ALA CLU CYS CLUS CLUS CLUS CLUS CLUS CLUS CLUS CLU	VAL SEY SEY SEY CLYS GLU CTYR ASN TYR ASN TYR GLN CLYS	LEU LEU LEU LEU LEU CLEV CLEV CLEV CLEV CLEV ASSN ASSN ASSN ASSN ASSN ASSN ASSN CLEV CLEV CLEV CLEV CLEV CLEV CLEV CLEV	
1128 1128			
• Molecule 64: Transmembran	e protein, putative		
Chain BM:	68%	32%	
MET PRO PRO ARO ARO ARO ALU LAS ASN CLAS ASN CLAS ASN ASN ASN ASN ASN ASN ASN ASN ASN A	ALA PHE LYS ARG CLY CLY CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	HIS HIS ASP ASP ASP ASP ASP CLY CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	H81
HIS HIS ASP CLU CLU TB7 CLU TB7 D194 N195 L199 D196 L199 C200 R201 K202 R201 K202 C204	L205 B206 GUU GUU CLUU LLEU AIA SRR ASN ASN		
• Molecule 65: NDUC2			
Chain C4:	99%	:	
MET S2 1102			
• Molecule 66: Transmembran	e protein, putative		
Chain AN:	100%		
M1 H26 H26 H27 L28 H28 H28 H28 H28 H23 H23 H23 H23 H23 H23 H29 H103	E202		
• Molecule 67: NDUB4			
Chain B4:	100%		
A34 A35 A38 A38 A38 C119 G141			
• Molecule 68: NDUTT4			
Chain T4:	80%	20%	

7%

Chain T9:

• Molecule 75. 11an	sinembrane protein, putative	
Chain B3:	82%	18%
MET ASN SER PRO PRO CLN VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	V79 ASP ALA HLS HLS HLS	
• Molecule 74: NDU	JTT10	
Chain TA:	100%	
226 34 735 735 735 765 765 868 868 868	T70 K77 K77 D78 H95 L127	
• Molecule 75: GRA	M domain protein	
Chain S5:	90%	10%
MET S2 E76 E77 N78 D79 Q86 ALA ALA ALA ALA ALA ALA ALA	TLE PHE GLN	
• Molecule 76: NDU	JTT12	
Chain TC:	98%	
MET V2 E48 E89 A91 K92 K92 LEU		
• Molecule 77: NDU	JPH2	
Chain P2:	88%	12%
MET PHE PHE ILE LLE CLY CLY CLY CLY CLY CLN CLN ALA ALA ALA ALA PHE PHE SER SER TLE	THR ASN LYS SER VAL VAL VAL VAL VAL ASN ASN ASN ASN ASN ASN ASN ASN ASS A3 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47	E52 F53 Y54 E55 N56 A57 A57 A59 D58 A59 D58 T60 T60 T61
• Molecule 78: Tran	smembrane protein, putative	
Chain A3:	94%	6%
MET SER ASN ASN ASN GLY GLY F9 F9 F12 F9 F12 F9		
• Molecule 79: NDU	JTT9	

• Molecule 73: Transmembrane protein, putative

98%

• Molecule 80: Transmembrane protein, putative

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	203834	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	66.69	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	58616	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	32.050	Depositor
Minimum map value	-15.499	Depositor
Average map value	0.004	Depositor
Map value standard deviation	1.092	Depositor
Recommended contour level	6.0	Depositor
Map size (Å)	501.0, 501.0, 501.0	wwPDB
Map dimensions	600, 600, 600	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.835, 0.835, 0.835	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZMP, ADP, HEC, FMN, FES, CDL, PC1, 3PE, SF4, NDP, U10, HEM, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.27	0/2384	0.43	0/3244	
2	1B	0.27	0/536	0.41	0/727	
3	2	0.29	0/3165	0.41	0/4302	
4	2B	0.27	0/1520	0.41	0/2058	
5	3	0.27	0/1051	0.38	0/1429	
6	3A	0.26	0/3563	0.46	0/4827	
6	3a	0.25	0/3547	0.46	0/4806	
7	3B	0.26	0/3912	0.48	0/5313	
7	3b	0.27	0/3901	0.49	0/5299	
8	3C	0.27	0/3716	0.43	0/5046	
8	3c	0.27	0/3715	0.44	0/5046	
9	3D	0.28	0/2579	0.48	0/3491	
9	3d	0.27	0/2491	0.48	0/3371	
10	$3\mathrm{E}$	0.25	0/1893	0.49	0/2566	
10	3e	0.26	0/909	0.48	0/1226	
11	3F	0.24	0/717	0.45	0/969	
11	3f	0.26	0/608	0.49	0/823	
12	3G	0.26	0/2670	0.48	0/3602	
12	$3\mathrm{g}$	0.26	0/2759	0.49	0/3724	
13	3H	0.26	0/1133	0.50	0/1524	
13	3h	0.25	0/1077	0.50	0/1448	
14	3I	0.26	0/1005	0.43	0/1365	
14	3i	0.26	0/982	0.42	0/1334	
15	3J	0.27	0/522	0.47	0/712	
15	3j	0.29	0/463	0.49	0/634	
16	3M	0.26	0/151	0.55	0/198	
17	31	0.26	0/123	0.32	0/170	
18	3m	0.26	0/122	0.56	0/162	
19	4	0.28	0/4303	0.42	0/5844	
20	4L	0.26	0/982	0.41	0/1335	
21	5	0.28	0/4997	0.42	0/6794	
22	5B	0.28	0/915	0.41	0/1224	

Mal	Chain	Bond	lengths	B	ond angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
23	6	0.27	0/2137	0.40	0/2906
24	A2	0.26	0/780	0.47	0/1054
25	A5	0.25	0/1336	0.47	0/1797
26	A6	0.26	0/1459	0.47	0/1965
27	A7	0.25	0/2400	0.45	0/3259
28	A9	0.26	0/2789	0.45	0/3777
29	AB	0.24	0/942	0.44	0/1272
30	AC	0.26	0/822	0.47	0/1114
31	AL	0.25	0/1667	0.49	0/2256
32	AM	0.25	0/1379	0.49	0/1841
33	B7	0.27	0/964	0.42	0/1302
34	B8	0.26	0/1445	0.45	0/1952
35	BL	0.25	0/1489	0.48	0/2000
37	C1	0.27	0/1806	0.46	0/2461
38	C2	0.26	0/1653	0.50	0/2257
39	C3	0.25	0/2865	0.46	0/3877
40	TD	0.25	0/626	0.48	0/844
41	J1	0.25	0/2194	0.47	0/2954
42	FX	0.24	0/1186	0.49	0/1607
43	Τ2	0.25	0/2160	0.46	0/2937
44	T1	0.26	0/3975	0.45	0/5380
45	A1	0.26	0/827	0.50	0/1122
46	X1	0.27	0/1261	0.50	0/1698
47	T6	0.25	0/923	0.44	0/1239
48	Τ5	0.27	0/1113	0.50	0/1507
49	R	0.27	0/962	0.45	0/1302
50	S1	0.26	0/5502	0.49	0/7454
51	S2	0.27	0/3681	0.49	0/4969
52	S3	0.26	0/1718	0.45	0/2319
53	S4	0.26	0/1505	0.48	0/2035
54	S6	0.25	0/739	0.47	0/1000
55	S7	0.26	0/1319	0.53	1/1789~(0.1%)
56	S8	0.27	0/1867	0.49	0/2538
57	B9	0.26	0/1627	0.43	0/2203
58	ΤХ	0.25	0/1235	0.44	0/1662
59	A8	0.25	0/1099	0.40	0/1477
60	TB	0.27	0/825	0.48	0/1115
61	V1	0.26	0/3485	0.49	0/4713
62	V2	0.25	0/1895	0.47	$\overline{0/2559}$
63	B6	0.26	0/623	0.42	0/850
64	BM	0.26	0/1187	0.46	0/1605
65	C4	0.26	0/865	0.43	0/1165
66	AN	0.25	0/1935	0.42	0/2616

Mol Chain		Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
67	B4	0.28	0/935	0.42	0/1277
68	Τ4	0.25	0/1447	0.43	0/1957
69	Τ8	0.25	0/1091	0.45	0/1479
70	B2	0.26	0/980	0.46	0/1318
71	Τ3	0.25	0/2488	0.46	0/3367
72	P1	0.26	0/1951	0.49	0/2642
73	B3	0.26	0/613	0.48	0/829
74	TA	0.26	0/877	0.45	0/1181
75	S5	0.26	0/710	0.44	0/959
76	TC	0.25	0/803	0.45	0/1082
77	P2	0.26	0/1454	0.43	0/1970
78	A3	0.26	0/1103	0.47	0/1491
79	Т9	0.26	0/1088	0.48	0/1458
80	TE	0.26	0/425	0.43	0/573
81	Τ7	0.26	0/1223	0.47	0/1648
All	All	0.26	0/151866	0.46	1/205593~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	S7	31	CYS	CA-CB-SG	5.01	123.02	114.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1	282/284~(99%)	272 (96%)	10 (4%)	0	100	100
2	1B	57/59~(97%)	56~(98%)	1 (2%)	0	100	100
3	2	357/360~(99%)	349 (98%)	8 (2%)	0	100	100
4	2B	176/178~(99%)	172 (98%)	4 (2%)	0	100	100
5	3	$118/121 \ (98\%)$	115 (98%)	3 (2%)	0	100	100
6	3A	449/482~(93%)	437 (97%)	12 (3%)	0	100	100
6	3a	447/482~(93%)	435 (97%)	12 (3%)	0	100	100
7	3B	477/513~(93%)	468 (98%)	9 (2%)	0	100	100
7	3b	476/513~(93%)	461 (97%)	15 (3%)	0	100	100
8	3C	424/426~(100%)	415 (98%)	9 (2%)	0	100	100
8	3c	424/426~(100%)	404 (95%)	20 (5%)	0	100	100
9	3D	293/319~(92%)	275 (94%)	18 (6%)	0	100	100
9	3d	283/319~(89%)	267 (94%)	16 (6%)	0	100	100
10	3E	226/269~(84%)	215 (95%)	10 (4%)	1 (0%)	34	57
10	3e	100/269~(37%)	91 (91%)	9 (9%)	0	100	100
11	3F	87/90~(97%)	86 (99%)	1 (1%)	0	100	100
11	3f	73/90~(81%)	73 (100%)	0	0	100	100
12	3G	305/328~(93%)	291 (95%)	14 (5%)	0	100	100
12	$3\mathrm{g}$	313/328~(95%)	298 (95%)	15 (5%)	0	100	100
13	3H	127/130~(98%)	111 (87%)	16 (13%)	0	100	100
13	3h	122/130~(94%)	108 (88%)	14 (12%)	0	100	100
14	3I	112/119~(94%)	106 (95%)	6 (5%)	0	100	100
14	3i	109/119~(92%)	101 (93%)	8 (7%)	0	100	100
15	3J	56/62~(90%)	54 (96%)	2 (4%)	0	100	100
15	3j	49/62~(79%)	47 (96%)	2 (4%)	0	100	100
16	3M	17/19~(90%)	14 (82%)	3 (18%)	0	100	100
17	31	22/24~(92%)	22 (100%)	0	0	100	100
18	3m	15/17~(88%)	14 (93%)	1 (7%)	0	100	100
19	4	503/505~(100%)	481 (96%)	22 (4%)	0	100	100
20	4L	114/116 (98%)	114 (100%)	0	0	100	100
21	5	585/750~(78%)	576 (98%)	9 (2%)	0	100	100
22	5B	98/100~(98%)	86 (88%)	12 (12%)	0	100	100

<i>a</i> 1	C		
Continued	trom	previous	page
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		p. 0000 a0	p @ 9 0

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
23	6	242/255~(95%)	228 (94%)	14 (6%)	0	100	100
24	A2	90/103~(87%)	90 (100%)	0	0	100	100
25	A5	153/206~(74%)	150 (98%)	3 (2%)	0	100	100
26	A6	170/172~(99%)	163 (96%)	7 (4%)	0	100	100
27	A7	279/282~(99%)	274 (98%)	5 (2%)	0	100	100
28	A9	336/362~(93%)	329 (98%)	7 (2%)	0	100	100
29	AB	110/138 (80%)	108 (98%)	2 (2%)	0	100	100
30	AC	96/133~(72%)	95 (99%)	1 (1%)	0	100	100
31	AL	191/194 (98%)	184 (96%)	7 (4%)	0	100	100
32	AM	158/175~(90%)	152 (96%)	6 (4%)	0	100	100
33	B7	113/120 (94%)	109 (96%)	4 (4%)	0	100	100
34	B8	167/207~(81%)	166 (99%)	1 (1%)	0	100	100
35	BL	173/188~(92%)	167 (96%)	6 (4%)	0	100	100
37	C1	227/257~(88%)	213 (94%)	14 (6%)	0	100	100
38	C2	221/233~(95%)	209 (95%)	12 (5%)	0	100	100
39	C3	344/346~(99%)	337 (98%)	7 (2%)	0	100	100
40	TD	69/73~(94%)	68 (99%)	1 (1%)	0	100	100
41	J1	256/317~(81%)	253 (99%)	3 (1%)	0	100	100
42	FX	144/172~(84%)	142 (99%)	2 (1%)	0	100	100
43	Τ2	269/333~(81%)	259 (96%)	10 (4%)	0	100	100
44	T1	479/516~(93%)	465 (97%)	14 (3%)	0	100	100
45	A1	90/94~(96%)	87 (97%)	3 (3%)	0	100	100
46	X1	147/150~(98%)	141 (96%)	6 (4%)	0	100	100
47	Т6	107/144~(74%)	104 (97%)	3 (3%)	0	100	100
48	Τ5	132/205~(64%)	129 (98%)	3 (2%)	0	100	100
49	R	122/124~(98%)	118 (97%)	4 (3%)	0	100	100
50	S1	685/718~(95%)	667 (97%)	18 (3%)	0	100	100
51	S2	440/442~(100%)	427 (97%)	13 (3%)	0	100	100
52	S3	196/198~(99%)	191 (97%)	5 (3%)	0	100	100
53	S4	173/185~(94%)	166 (96%)	7 (4%)	0	100	100
54	S6	88/132 (67%)	87 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
55	S7	160/162~(99%)	156~(98%)	4 (2%)	0	100	100
56	S8	216/236~(92%)	212~(98%)	4 (2%)	0	100	100
57	B9	184/189~(97%)	177~(96%)	7 (4%)	0	100	100
58	ΤХ	142/166~(86%)	140 (99%)	2 (1%)	0	100	100
59	A8	130/238~(55%)	129 (99%)	1 (1%)	0	100	100
60	TB	94/113~(83%)	89~(95%)	5 (5%)	0	100	100
61	V1	440/474~(93%)	426 (97%)	14 (3%)	0	100	100
62	V2	229/274~(84%)	222~(97%)	7 (3%)	0	100	100
63	B6	68/129~(53%)	64 (94%)	4 (6%)	0	100	100
64	BM	141/214~(66%)	139 (99%)	2 (1%)	0	100	100
65	C4	99/102~(97%)	98~(99%)	1 (1%)	0	100	100
66	AN	229/231~(99%)	226 (99%)	3 (1%)	0	100	100
67	B4	106/108~(98%)	103~(97%)	3 (3%)	0	100	100
68	Τ4	166/212~(78%)	164 (99%)	2 (1%)	0	100	100
69	Т8	127/135~(94%)	124 (98%)	3 (2%)	0	100	100
70	B2	116/126~(92%)	112 (97%)	4 (3%)	0	100	100
71	Т3	299/311~(96%)	294 (98%)	4 (1%)	1 (0%)	41	64
72	P1	226/251~(90%)	218 (96%)	8 (4%)	0	100	100
73	B3	66/83~(80%)	63~(96%)	3 (4%)	0	100	100
74	ТА	100/102~(98%)	96~(96%)	4 (4%)	0	100	100
75	S5	83/94~(88%)	80 (96%)	3 (4%)	0	100	100
76	TC	89/93~(96%)	87~(98%)	2 (2%)	0	100	100
77	P2	165/189~(87%)	164 (99%)	1 (1%)	0	100	100
78	A3	125/135~(93%)	122 (98%)	3 (2%)	0	100	100
79	Т9	130/135~(96%)	126 (97%)	4 (3%)	0	100	100
80	TE	47/71~(66%)	47 (100%)	0	0	100	100
81	Τ7	140/143~(98%)	135~(96%)	5 (4%)	0	100	100
All	All	17880/19899~(90%)	17305 (97%)	573 (3%)	2(0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
71	Τ3	41	LYS
	-	-	

Continued from previous page...

Mol	Chain	Res	Type
10	$3\mathrm{E}$	229	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	1	250/250~(100%)	250 (100%)	0	100	100
2	1B	55/55~(100%)	55~(100%)	0	100	100
3	2	345/346~(100%)	344 (100%)	1 (0%)	92	98
4	2B	170/170~(100%)	170 (100%)	0	100	100
5	3	111/112~(99%)	111 (100%)	0	100	100
6	3A	384/409~(94%)	384 (100%)	0	100	100
6	3a	382/409~(93%)	382 (100%)	0	100	100
7	3B	410/440~(93%)	409 (100%)	1 (0%)	93	98
7	3b	409/440~(93%)	407 (100%)	2 (0%)	88	96
8	3C	386/386~(100%)	385 (100%)	1 (0%)	92	98
8	3c	386/386~(100%)	386 (100%)	0	100	100
9	3D	255/274~(93%)	254 (100%)	1 (0%)	91	97
9	3d	247/274~(90%)	247 (100%)	0	100	100
10	3E	200/237~(84%)	199 (100%)	1 (0%)	88	96
10	3e	92/237~(39%)	91 (99%)	1 (1%)	73	88
11	3F	80/81~(99%)	80 (100%)	0	100	100
11	3f	69/81~(85%)	69 (100%)	0	100	100
12	3G	269/289~(93%)	269~(100%)	0	100	100
12	$3\mathrm{g}$	278/289~(96%)	276 (99%)	2(1%)	84	94
13	3H	117/118~(99%)	116 (99%)	1 (1%)	78	91
13	3h	112/118~(95%)	112 (100%)	0	100	100
14	3I	104/109~(95%)	104 (100%)	0	100	100
14	3i	102/109~(94%)	102 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
15	3J	53/56~(95%)	53~(100%)	0	100	100
15	3j	47/56~(84%)	47 (100%)	0	100	100
16	3M	16/16~(100%)	16 (100%)	0	100	100
17	31	1/1~(100%)	1 (100%)	0	100	100
18	$3\mathrm{m}$	7/7~(100%)	7 (100%)	0	100	100
19	4	463/463~(100%)	462 (100%)	1 (0%)	93	98
20	4L	108/108~(100%)	108 (100%)	0	100	100
21	5	533/694~(77%)	533 (100%)	0	100	100
22	5B	98/98~(100%)	98 (100%)	0	100	100
23	6	233/244~(96%)	233 (100%)	0	100	100
24	A2	82/93~(88%)	82 (100%)	0	100	100
25	A5	144/186~(77%)	144 (100%)	0	100	100
26	A6	154/154~(100%)	154 (100%)	0	100	100
27	A7	256/257~(100%)	256/257 (100%) 255 (100%) 1 (0%)		91	97
28	A9	288/311~(93%)	288 (100%)	0	100	100
29	AB	104/129 (81%) 103 (99%) 1 (1%)		76	90	
30	AC	88/119 (74%)	88 (100%)	0	100	100
31	AL	169/170~(99%)	169~(100%)	0	100	100
32	AM	142/156~(91%)	141 (99%)	1 (1%)	84	94
33	B7	97/99~(98%)	97~(100%)	0	100	100
34	B8	151/180~(84%)	151 (100%)	0	100	100
35	BL	160/172~(93%)	160 (100%)	0	100	100
37	C1	194/218~(89%)	194 (100%)	0	100	100
38	C2	165/197~(84%)	163 (99%)	2 (1%)	71	87
39	C3	309/309~(100%)	309 (100%)	0	100	100
40	TD	63/65~(97%)	63 (100%)	0	100	100
41	J1	220/270~(82%)	220 (100%)	0	100	100
42	FX	130/152~(86%)	130 (100%)	0	100	100
43	Τ2	230/280~(82%)	230 (100%)	0	100	100
44	T1	421/454 (93%)	421 (100%)	0	100	100
45	A1	87/89~(98%)	86 (99%)	1 (1%)	73	88

Mol	Chain	Analysed	Rotameric	Outliers	Percentile		
46	X1	132/133~(99%)	132~(100%)	0	100	100	
47	T6	97/131~(74%)	97~(100%)	0	100	100	
48	T5	115/179~(64%)	115 (100%)	0	100	100	
49	R	98/98~(100%)	98 (100%)	0	100	100	
50	S1	588/617~(95%)	588 (100%)	0	100	100	
51	S2	399/399~(100%)	398 (100%)	1 (0%)	92	98	
52	S3	191/191~(100%)	190 (100%)	1 (0%)	88	96	
53	S4	157/163~(96%)	156 (99%)	1 (1%)	86	95	
54	S6	80/116~(69%)	80 (100%)	0	100	100	
55	S7	137/137~(100%)	136 (99%)	1 (1%)	84	94	
56	S8	197/215~(92%)	196 (100%)	1 (0%)	88	96	
57	B9	169/172~(98%)	169 (100%)	0	100	100	
58	ΤХ	128/147~(87%)	128 (100%)	0	100	100	
59	A8	121/224~(54%)	120 (99%)	1 (1%)	81	92	
60	ТВ	82/97~(84%)	82 (100%)	0	100	100	
61	V1	362/392~(92%)	362 (100%)	0	100	100	
62	V2	205/236~(87%)	204 (100%)	1 (0%)	88	96	
63	B6	64/117~(55%)	64 (100%)	0	100	100	
64	BM	125/182~(69%)	125 (100%)	0	100	100	
65	C4	88/89~(99%)	88 (100%)	0	100	100	
66	AN	199/199~(100%)	199 (100%)	0	100	100	
67	B4	94/94~(100%)	94 (100%)	0	100	100	
68	Τ4	151/190~(80%)	150 (99%)	1 (1%)	84	94	
69	Т8	116/122~(95%)	116 (100%)	0	100	100	
70	B2	102/109~(94%)	102 (100%)	0	100	100	
71	Т3	267/275~(97%)	266 (100%)	1 (0%)	91	97	
72	P1	206/223~(92%)	205 (100%)	1 (0%)	88	96	
73	B3	63/74~(85%)	63 (100%)	0	100	100	
74	ТА	94/94~(100%)	94 (100%)	0	100	100	
75	S5	76/83~(92%)	76 (100%)	0	100	100	
76	TC	82/84 (98%)	82 (100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
77	P2	158/178~(89%)	158~(100%)	0	100 100
78	A3	107/114~(94%)	107~(100%)	0	100 100
79	Т9	118/121~(98%)	118 (100%)	0	100 100
80	TE	44/63~(70%)	44 (100%)	0	100 100
81	T7	124/125~(99%)	123~(99%)	1 (1%)	81 92
All	All	15962/17605~(91%)	15933 (100%)	29 (0%)	93 98

5 of 29 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
32	AM	87	ARG
72	P1	58	ASN
45	A1	44	ARG
62	V2	136	ARG
38	C2	194	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 20 such sidechains are listed below:

Mol	Chain	Res	Type
50	S1	599	GLN
68	Τ4	137	ASN
77	P2	78	HIS
77	P2	74	ASN
10	3E	199	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 104 ligands modelled in this entry, 3 are monoatomic - leaving 101 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Dog Link	Bond lengths		Bo	ond angle	es	
	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
88	3PE	Τ4	301	-	24,24,50	0.42	0	$27,\!29,\!55$	0.36	0
83	PC1	J1	400	-	39,39,53	0.33	0	$45,\!47,\!61$	0.33	0
88	3PE	TA	201	-	25,25,50	0.41	0	$28,\!30,\!55$	0.36	0
83	PC1	AN	303	-	35,35,53	0.35	0	41,43,61	0.37	0
91	ZMP	AB	201	29	27,33,36	0.71	1 (3%)	$32,\!40,\!45$	3.77	<mark>6 (18%)</mark>
82	CDL	3c	504	-	63,63,99	0.37	0	69,75,111	0.30	0
83	PC1	3C	606	-	43,43,53	0.32	0	49,51,61	0.28	0
82	CDL	A1	101	-	52,52,99	0.40	0	58,64,111	0.34	0
82	CDL	3b	602	-	67,67,99	0.36	0	73,79,111	0.37	0
83	PC1	3e	301	-	49,49,53	0.31	0	55,57,61	0.28	0
93	SF4	S8	302	56	0,12,12	-	-	-		
82	CDL	AN	304	66	52,52,99	0.40	0	58,64,111	0.34	0
82	CDL	P2	201	-	81,81,99	0.33	0	87,93,111	0.28	0
83	PC1	5	801	-	53,53,53	0.29	0	$59,\!61,\!61$	0.26	0
88	3PE	5B	201	-	23,23,50	0.43	0	$26,\!28,\!55$	0.35	0
88	3PE	C4	402	-	50,50,50	0.31	0	$53,\!55,\!55$	0.33	0
83	PC1	3I	602	-	45,45,53	0.32	0	$51,\!53,\!61$	0.28	0
82	CDL	TD	101	-	$65,\!65,\!99$	0.36	0	$71,\!77,\!111$	0.35	0
82	CDL	3i	201	-	70,70,99	0.36	0	76,82,111	0.33	0
82	CDL	3B	701	-	77,77,99	0.34	0	83,89,111	0.31	0
83	PC1	3j	101	-	$35,\!35,\!53$	0.34	0	$41,\!43,\!61$	0.31	0
82	CDL	B8	603	-	44,44,99	0.43	0	$50,\!56,\!111$	0.36	0
87	FES	V2	300	62	0,4,4	-	-	-		
82	CDL	3	202	-	43,43,99	0.43	0	49,55,111	0.37	0
94	FMN	V1	501	-	33,33,33	0.21	0	$48,\!50,\!50$	0.43	0
88	3PE	4	602	-	$35,\!35,\!50$	0.36	0	$38,\!40,\!55$	0.33	0
93	SF4	S1	801	50	0,12,12	-	-	-		
82	CDL	T1	602	-	54,54,99	0.39	0	60, 66, 111	0.41	0
82	CDL	AL	301	-	$52,\!52,\!99$	0.40	0	$5\overline{8,\!64,\!111}$	0.33	0
87	FES	S1	803	50	0,4,4	-	-	-		
87	FES	FX	201	42	0,4,4	-	-			
83	PC1	AM	201	-	29,29,53	0.38	0	$35,\!37,\!6\overline{1}$	0.32	0

N.T. 1	—		D	T 1.	Bond lengths			Bond angles		
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
83	PC1	3	201	-	30,30,53	0.37	0	36,38,61	0.34	0
83	PC1	$3\mathrm{E}$	304	-	$23,\!23,\!53$	0.41	0	29,31,61	0.36	0
82	CDL	B4	201	-	38,38,99	0.42	0	42,49,111	0.40	0
83	PC1	3C	604	8	45,45,53	0.31	0	51,53,61	0.29	0
83	PC1	3C	607	-	28,28,53	0.38	0	34,36,61	0.35	0
82	CDL	2B	201	-	52,52,99	0.40	0	58,64,111	0.33	0
83	PC1	1	302	-	35,35,53	0.35	0	41,43,61	0.32	0
82	CDL	1	301	-	49,49,99	0.41	0	55,61,111	0.35	0
83	PCI	C4	403	-	31,31,53	0.37	0	37,39,61	0.39	0
84	HEM	3c	502	8	41,50,50	1.23	5 (12%)	45,82,82	1.68	8 (17%)
86	HEC	3d	401	9	$32,\!50,\!50$	2.03	4 (12%)	24,82,82	2.25	14 (58%)
82	CDL	R	201	-	83,83,99	0.33	0	89,95,111	0.31	0
83	PC1	3E	302	-	53,53,53	0.29	0	59,61,61	0.30	0
88	3PE	Т8	201	-	38,38,50	0.34	0	41,43,55	0.30	0
83	PC1	3I	601	-	31,31,53	0.38	0	37,39,61	0.34	0
82	CDL	5	803	-	89,89,99	0.32	0	95,101,111	0.26	0
82	CDL	3H	203	-	$65,\!65,\!99$	0.36	0	71,77,111	0.31	0
88	3PE	3E	303	-	33,33,50	0.37	0	36,38,55	0.33	0
82	CDL	3G	401	-	$65,\!65,\!99$	0.36	0	71,77,111	0.32	0
84	HEM	3C	602	8	$41,\!50,\!50$	1.21	4 (9%)	45,82,82	1.68	8 (17%)
88	3PE	AN	301	-	44,44,50	0.32	0	47,49,55	0.31	0
84	HEM	$3\mathrm{C}$	601	8	$41,\!50,\!50$	1.22	4 (9%)	45,82,82	1.75	<mark>6 (13%)</mark>
83	PC1	3b	601	-	29,29,53	0.39	0	35,37,61	0.45	0
90	NDP	A9	401	-	45,52,52	0.53	0	53,80,80	0.56	1 (1%)
82	CDL	5	805	21	95,95,99	0.32	0	101,107,111	0.35	0
83	PC1	6	302	-	53,53,53	0.29	0	59,61,61	0.29	0
82	CDL	T7	201	-	47,47,99	0.42	0	53,59,111	0.35	0
83	PC1	6	301	-	38,38,53	0.33	0	44,46,61	0.31	0
83	PC1	X1	201	-	48,48,53	0.30	0	54,56,61	0.34	0
88	3PE	5	806	-	34,34,50	0.36	0	37,39,55	0.31	0
84	HEM	3c	503	8	41,50,50	1.24	4 (9%)	45,82,82	1.68	8 (17%)
93	SF4	V1	500	61	$0,\!12,\!12$	-	-	-		
87	FES	3E	301	10	0,4,4	-	_	-		
88	3PE	A3	201	-	44,44,50	0.33	0	47,49,55	0.39	0
82	CDL	AM	202	-	61,61,99	0.37	0	67,73,111	0.31	0
83	PC1	5	807	-	53,53,53	0.29	0	59,61,61	0.29	0
88	3PE	3d	402	-	46,46,50	0.32	0	49,51,55	0.38	0
83	PC1	TC	101	-	41,41,53	0.32	0	47,49,61	0.29	0
93	SF4	S7	201	55	0,12,12	-	-	-		
88	3PE	B8	601	-	35,35,50	0.35	0	38,40,55	0.33	0
82	CDL	BM	301	-	85,85,99	0.32	0	91,97,111	0.31	0
88	3PE	$\mathbf{S8}$	303	-	40,40,50	0.34	0	43, 45, 55	0.32	0

Mal	Type	Chain	Dog	Link	B	Bond lengths		Bond angles		
MOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
82	CDL	3c	505	-	55,55,99	0.38	0	61,67,111	0.33	0
83	PC1	5	802	-	38,38,53	0.34	0	44,46,61	0.31	0
88	3PE	AN	302	-	34,34,50	0.36	0	37,39,55	0.32	0
83	PC1	T1	601	-	25,25,53	0.40	0	31,33,61	0.36	0
83	PC1	3F	102	-	$21,\!21,\!53$	0.38	0	27,29,61	0.40	0
83	PC1	$3\mathrm{g}$	401	-	$32,\!32,\!53$	0.36	0	$38,\!40,\!61$	0.34	0
83	PC1	3J	101	-	$36,\!36,\!53$	0.36	0	42,44,61	0.38	0
83	PC1	3c	506	-	$37,\!37,\!53$	0.34	0	43,45,61	0.30	0
93	SF4	S8	301	56	$0,\!12,\!12$	-	-	-		
88	3PE	4	601	-	46, 46, 50	0.32	0	$49,\!51,\!55$	0.36	0
88	3PE	P1	402	-	46, 46, 50	0.32	0	$49,\!51,\!55$	0.32	0
82	CDL	3H	202	-	$61,\!61,\!99$	0.37	0	67,73,111	0.36	0
85	U10	5B	202	-	63,63,63	2.14	20 (31%)	76,79,79	1.70	21 (27%)
82	CDL	3C	603	-	64,64,99	0.37	0	70,76,111	0.35	0
83	PC1	B2	201	-	47,47,53	0.32	0	53,55,61	0.33	0
86	HEC	3D	401	9	32,50,50	2.03	4 (12%)	24,82,82	2.27	14 (58%)
83	PC1	B6	201	-	51,51,53	0.29	0	57,59,61	0.28	0
85	U10	3C	605	-	25,25,63	2.75	8 (32%)	27,29,79	1.90	8 (29%)
82	CDL	C4	401	-	97,97,99	0.30	0	103,109,111	0.33	0
92	ADP	B8	602	-	24,29,29	0.93	1 (4%)	29,45,45	1.46	4 (13%)
93	SF4	S1	802	50	0,12,12	-	-	-		
85	U10	3H	201	-	29,29,63	2.66	10 (34%)	$35,\!38,\!79$	1.54	7 (20%)
88	3PE	5	804	-	36,36,50	0.35	0	39,41,55	0.31	0
83	PC1	P1	401	-	39,39,53	0.33	0	45,47,61	0.28	0
82	CDL	3I	603	-	70,70,99	0.35	0	76,82,111	0.34	0
83	PC1	3c	501	-	30,30,53	0.38	0	36,38,61	0.43	0
82	CDL	3I	604	-	36,36,99	0.42	0	42,48,111	0.39	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
88	3PE	T4	301	-	-	5/28/28/54	-
83	PC1	J1	400	-	-	9/43/43/57	-
88	3PE	TA	201	-	-	6/29/29/54	-
83	PC1	AN	303	-	-	7/39/39/57	-
91	ZMP	AB	201	29	-	8/38/40/43	-
82	CDL	3c	504	-	-	15/74/74/110	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
83	PC1	3C	606	-	-	8/47/47/57	-
82	CDL	A1	101	-	-	16/63/63/110	_
82	CDL	3b	602	-	-	25/78/78/110	-
83	PC1	3e	301	-	_	6/53/53/57	-
93	SF4	S8	302	56	-	-	0/6/5/5
82	CDL	AN	304	66	-	21/62/62/110	-
82	CDL	P2	201	-	-	20/92/92/110	-
83	PC1	5	801	-	-	6/57/57/57	_
88	3PE	5B	201	-	-	8/27/27/54	-
88	3PE	C4	402	-	-	16/54/54/54	_
83	PC1	3I	602	-	-	7/49/49/57	_
82	CDL	TD	101	-	_	16/76/76/110	_
82	CDL	3i	201	_	-	15/81/81/110	_
82	CDL	3B	701	_	-	26/88/88/110	_
83	PC1	3j	101	_	-	5/39/39/57	_
82	CDL	B8	603	_	_	6/55/55/110	_
87	FES	V2	300	62	_	-	0/1/1/1
82	CDL	3	202	-	-	8/54/54/110	-
94	FMN	V1	501	-	-	1/18/18/18	0/3/3/3
88	3PE	4	602	-	-	7/39/39/54	-
93	SF4	S1	801	50	-	-	0/6/5/5
82	CDL	T1	602	-	-	11/65/65/110	-
82	CDL	AL	301	-	-	15/63/63/110	-
87	FES	S1	803	50	-	-	0/1/1/1
87	FES	FX	201	42	-	-	0/1/1/1
83	PC1	AM	201	-	-	13/33/33/57	-
83	PC1	3	201	-	-	7/34/34/57	-
83	PC1	3E	304	-	-	9/26/26/57	-
82	CDL	B4	201	-	-	12/44/44/110	-
83	PC1	3C	604	8	-	15/49/49/57	-
83	PC1	3C	607	-	-	9/32/32/57	-
82	CDL	2B	201	-	-	11/63/63/110	-
83	PC1	1	302	-	-	13/39/39/57	-
82	CDL	1	301	-	-	11/60/60/110	-
83	PC1	C4	403	-	-	13/35/35/57	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
84	HEM	3c	502	8	-	5/12/54/54	-
86	HEC	3d	401	9	-	3/10/54/54	-
82	CDL	R	201	-	-	18/94/94/110	-
83	PC1	3E	302	-	-	21/57/57/57	-
88	3PE	Т8	201	-	-	8/42/42/54	-
83	PC1	3I	601	-	-	9/35/35/57	-
82	CDL	5	803	-	-	21/100/100/110	-
82	CDL	3H	203	_	-	12/76/76/110	-
88	3PE	3E	303	_	-	7/37/37/54	-
82	CDL	3G	401	-	-	20/76/76/110	-
84	HEM	3C	602	8	-	5/12/54/54	-
88	3PE	AN	301	-	_	8/48/48/54	_
84	HEM	3C	601	8	_	3/12/54/54	_
83	PC1	3b	601	-	_	15/33/33/57	_
90	NDP	A9	401	-	_	3/30/77/77	0/5/5/5
82	CDL	5	805	21	_	20/106/106/110	_
83	PC1	6	302	-	-	11/57/57/57	-
82	CDL	Τ7	201	-	-	14/58/58/110	-
83	PC1	6	301	-	-	8/42/42/57	-
83	PC1	X1	201	-	-	12/52/52/57	-
88	3PE	5	806	_	-	7/38/38/54	-
84	HEM	3c	503	8	-	7/12/54/54	-
93	SF4	V1	500	61	-	_	0/6/5/5
87	FES	3E	301	10	-	-	0/1/1/1
88	3PE	A3	201	-	-	6/48/48/54	-
82	CDL	AM	202	-	-	16/72/72/110	-
83	PC1	5	807	-	-	10/57/57/57	-
88	3PE	3d	402	-	-	11/50/50/54	-
83	PC1	TC	101	-	-	7/45/45/57	-
93	SF4	S7	201	55	-	-	0/6/5/5
88	3PE	B8	601	-	-	10/39/39/54	-
82	CDL	BM	301	-	-	20/96/96/110	-
88	3PE	S8	303	_	-	10/44/44/54	-
82	CDL	3c	505	-	-	18/66/66/110	-
83	PC1	5	802	-	-	7/42/42/57	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
88	3PE	AN	302	-	-	10/38/38/54	-
83	PC1	T1	601	-	-	11/29/29/57	-
83	PC1	3F	102	-	-	9/23/23/57	-
83	PC1	3g	401	-	-	2/36/36/57	-
83	PC1	3J	101	-	-	16/40/40/57	-
83	PC1	3c	506	-	-	13/41/41/57	-
93	SF4	S8	301	56	-	-	0/6/5/5
88	3PE	4	601	-	-	6/50/50/54	-
88	3PE	P1	402	-	-	12/50/50/54	-
82	CDL	3H	202	-	-	18/72/72/110	-
85	U10	5B	202	-	-	18/63/87/87	0/1/1/1
82	CDL	3C	603	-	-	20/75/75/110	-
83	PC1	B2	201	-	-	17/51/51/57	-
86	HEC	3D	401	9	-	4/10/54/54	-
83	PC1	B6	201	-	-	9/55/55/57	-
85	U10	3C	605	-	-	12/28/28/87	-
82	CDL	C4	401	-	-	21/108/108/110	-
92	ADP	B8	602	-	-	1/12/32/32	0/3/3/3
93	SF4	S1	802	50	-	-	0/6/5/5
85	U10	3H	201	-	-	6/23/47/87	0/1/1/1
88	3PE	5	804	-	-	7/40/40/54	-
83	PC1	P1	401	-	-	15/43/43/57	-
82	CDL	3I	603	-	-	26/81/81/110	-
83	PC1	3c	501	-	-	8/34/34/57	-
82	CDL	3I	604	-	-	11/44/44/110	-

The worst 5 of 65 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
85	3H	201	U10	C6-C1	10.08	1.53	1.35
85	5B	202	U10	C6-C1	10.06	1.53	1.35
85	3C	605	U10	C6-C1	9.89	1.56	1.33
86	3D	401	HEC	C3C-C2C	-6.43	1.34	1.40
86	3d	401	HEC	C3C-C2C	-6.42	1.34	1.40

The worst 5 of 105 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
91	AB	201	ZMP	C19-C18-C17	-12.54	87.07	108.82
91	AB	201	ZMP	C20-C18-C17	-11.59	88.73	108.82
91	AB	201	ZMP	C20-C18-C21	8.37	121.88	108.23
91	AB	201	ZMP	C19-C18-C21	5.98	117.98	108.23
91	AB	201	ZMP	C20-C18-C19	5.23	119.84	109.17

There are no chirality outliers.

5 of 1030 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
82	1	301	CDL	CB2-OB2-PB2-OB3
82	1	301	CDL	OB5-CB3-CB4-OB6
82	2B	201	CDL	CA2-OA2-PA1-OA3
82	2B	201	CDL	CB2-OB2-PB2-OB5
82	2B	201	CDL	CB3-OB5-PB2-OB4

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-25882. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 300

Y Index: 300

Z Index: 300

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 276

Y Index: 271

Z Index: 248

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 6.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 673 $\rm nm^3;$ this corresponds to an approximate mass of 608 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.385 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.385 \AA^{-1}

8.2 Resolution estimates (i)

B osolution ostimato $(\hat{\lambda})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.60	-	-
Author-provided FSC curve	2.47	2.99	2.54
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-25882 and PDB model 7TGH. Per-residue inclusion information can be found in section 3 on page 31.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 6.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

This section was not generated.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (6.0).

9.4 Atom inclusion (i)

At the recommended contour level, 87% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (6.0) and Q-score for the entire model and for each chain.

Chain	Atom inclusion		
All	0.8019		
1	0.7556		
1B	0.8317		
2	0.9055		
2B	0.9018		
3	0.8079		
3A	0.8859		
3B	0.9008		
3C	0.7983		
3D	0.9258		
3E	0.6385		
3F	0.7563		
3G	0.7278		
3H	0.8030		
3I	0.8339		
3J	0.8061		
3M	0.7724		
3a	0.8340		
3b	0.8586		
3c	0.7603		
3d	0.8821		
3e	0.8320		
3f	0.5323		
3g	0.7150		
3h	0.7448		
3i	0.7892		
3j	0.7854		
31	0.4355		
3m	0.8707		
4	0.9009		
4L	0.8757		
5	0.9059		
5B	0.8432		
6	0.8343		
A1	0.7803		

Continued on next page...

Continued from previous page...

Chain	Atom inclusion		
A2	0.7560		
A3	0.8093		
A5	0.7692		
A6	0.9141		
A7	0.6988		
A8	0.8038		
A9	0.9045		
AB	0.7692		
AC	0.8359		
AL	0.8326		
AM	0.7336		
AN	0.7350		
B2	0.7237		
B3	0.8299		
B4	0.8503		
B6	0.9306		
B7	0.8551		
B8	0.8419		
B9	0.8386		
BL	0.8959		
BM	0.7828		
С	0.7167		
C1	0.8850		
C2	0.8057		
C3	0.7685		
C4	0.8076		
FX	0.8635		
J1	0.6579		
P1	0.7601		
P2	0.6868		
R	0.8153		
S1	0.8846		
S2	0.8859		
S3	0.8914		
S4	0.8627		
S5	0.8466		
S6	0.8815		
S7	0.9157		
S8	0.7870		
<u>'I'1</u>	0.6843		
<u>'T2</u>	0.7771		
Τ3	0.4534		

Continued on next page...

Chain	Atom inclusion
Τ4	0.4933
Τ5	0.8230
Т6	0.8247
Τ7	0.5037
Τ8	0.7913
Т9	0.8084
TA	0.6412
TB	0.8383
TC	0.7952
TD	0.4558
TE	0.6213
TX	0.7130
V1	0.7906
V2	0.7041
X1	0.8382

Continued from previous page...

