

Full wwPDB X-ray Structure Validation Report (i)

Oct 10, 2023 – 05:30 AM EDT

PDB ID	:	7TGM
Title	:	Crystal structure of HSC-AMS bound DesD, the desferrioxamine synthetase
		from the Streptomyces griseoflavus ferrimycin biosynthetic pathway
Authors	:	Patel, K.D.; Gulick, A.M.
Deposited on	:	2022-01-07
Resolution	:	2.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution		
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R_{free}	130704	4661 (2.50-2.50)		
Clashscore	141614	5346 (2.50-2.50)		
Ramachandran outliers	138981	5231 (2.50-2.50)		
Sidechain outliers	138945	5233 (2.50-2.50)		
RSRZ outliers	127900	4559 (2.50-2.50)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	612	87%	10%	·
1	В	612	% 88 %	8%	•
1	С	612	% 88 %	9%	·
1	D	612	% 90%	7%	·
1	Е	612	87%	10%	·

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	GOL	А	601	-	-	-	Х
2	GOL	В	606	-	-	-	Х
2	GOL	В	609	-	-	-	Х
2	GOL	С	607	-	-	-	Х
2	GOL	D	607	-	-	-	Х
2	GOL	D	614	-	-	-	Х
7	SO4	А	624	-	-	-	Х
7	SO4	В	621	-	-	-	Х
7	SO4	С	621	-	-	-	Х
7	SO4	С	622	-	-	-	Х
7	SO4	С	623	-	-	-	Х
7	SO4	D	624	-	-	-	Х
7	SO4	D	627	-	-	-	Х
7	SO4	Е	613	-	-	-	Х
7	SO4	Е	614	-	-	-	Х
7	SO4	Е	615	-	-	-	Х

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

$7 \mathrm{TGM}$

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 24554 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	502	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	A	090	4692	2984	817	875	16	0	0	0
1	В	502	Total	С	Ν	Ο	S	0	0	0
1		592	4674	2973	818	868	15	0	0	0
1	1 C	592	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	U		4662	2967	810	870	15		0	0
1	F	501	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1		591	4658	2965	809	869	15	0	0	0
1	1 D	502	Total	С	Ν	Ο	S	0	0	0
		592	4674	2975	816	868	15	0	U	0

• Molecule 1 is a protein called Desferrioxamine synthetase DesD.

• Molecule 2 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atom	s	ZeroOcc	AltConf
2	А	1	Total C 6 3	O 3	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{c cc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{c cc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

• Molecule 3 is 4-[(5-aminopentyl)(hydroxy)amino]-4-oxobutanoic acid (three-letter code: I3U) (formula: $C_9H_{18}N_2O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C N O 14 9 2 3	0	0
3	В	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
3	С	1	I4 9 2 3 Total C N O 14 O 2 2	0	0
3	Е	1	I4 9 2 5 Total C N O 14 0 2 3	0	0
3	D	1	Total C N O 14 9 2 3	0	0

• Molecule 4 is [(2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXYTE TRAHYDRO-2-FURANYL]METHYL SULFAMATE (three-letter code: LMS) (formula: C₁₀H₁₄N₆O₆S) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf					
4	Λ	1	Total C N O S	0	0					
4	A	L	23 10 6 6 1	0	0					
4	В	1	Total C N O S	0	0					
4	4 D	1	23 10 6 6 1	0	0					
4	4	1	Total C N O S	0	0					
4	U		23 10 6 6 1	0	0					
4	Б	Б	F	Б	Б	Б	1	Total C N O S	0	0
	Ľ	1	23 10 6 6 1	0	0					
	1	Total C N O S	0	0						
4			23 10 6 6 1	0	0					

• Molecule 5 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	Δ	1	Total O P	0	0
5	Л	1	$5 \ 4 \ 1$	0	0
5	В	1	Total O P	0	0
0	D	I	$5 \ 4 \ 1$	0	
5	С	1	Total O P	0	0
0	U	I	$5 \ 4 \ 1$	0	0
5	F	1	Total O P	0	0
0	Ľ	I	$5 \ 4 \ 1$	0	0
5	Л	1	Total O P	0	0
5	D	1	5 4 1		0

 $\bullet\,$ Molecule 6 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	Total Mg 1 1	0	0
6	В	1	Total Mg 1 1	0	0
6	С	1	Total Mg 1 1	0	0
6	Е	1	Total Mg 1 1	0	0
6	D	1	Total Mg 1 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	В	1	$\begin{array}{ccc} \overline{\text{Total}} & O & S \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	Ε	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	Ε	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	Ε	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	Ε	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	Ε	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \overline{\text{S}} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{c cc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{c cc} \overline{\text{Total}} & O & S \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{c ccc} \hline \text{Total} & \text{O} & \text{S} \\ \hline 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
7	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	А	104	Total O 104 104	0	0
8	В	110	Total O 110 110	0	0
8	С	41	Total O 41 41	0	0
8	Е	43	Total O 43 43	0	0
8	D	92	TotalO9292	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Desferrioxamine synthetase DesD

• Molecule 1: Desferrioxamine synthetase DesD

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	125.80Å 237.40Å 329.70Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	49.60 - 2.50	Depositor
Resolution (A)	49.60 - 2.50	EDS
% Data completeness	99.7 (49.60-2.50)	Depositor
(in resolution range)	93.3 (49.60-2.50)	EDS
R_{merge}	0.08	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.43 (at 2.51 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.19.2_4158	Depositor
B B.	0.189 , 0.220	Depositor
Λ, Λ_{free}	0.187 , 0.217	DCC
R_{free} test set	1862 reflections (1.10%)	wwPDB-VP
Wilson B-factor $(Å^2)$	50.7	Xtriage
Anisotropy	0.098	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.34, 38.7	EDS
L-test for $twinning^2$	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	24554	wwPDB-VP
Average B, all atoms $(Å^2)$	63.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.64% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: I3U, LMS, MG, PO4, GOL, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
IVIOI		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.43	0/4806	0.62	0/6542
1	В	0.43	0/4787	0.64	0/6516
1	С	0.38	0/4776	0.60	0/6505
1	D	0.41	0/4788	0.61	0/6519
1	Е	0.39	0/4772	0.59	0/6499
All	All	0.41	0/23929	0.61	0/32581

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4692	0	4573	36	0
1	В	4674	0	4560	40	0
1	С	4662	0	4527	28	0
1	D	4674	0	4556	30	0
1	Е	4658	0	4524	41	0
2	А	78	0	103	3	0
2	В	84	0	112	8	0
2	С	54	0	72	6	0

7	Т	\mathbf{G}	М
	т.	U.	TAT

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	D	90	0	119	4	0
2	Е	48	0	64	2	0
3	А	14	0	0	0	0
3	В	14	0	0	0	0
3	С	14	0	0	0	0
3	D	14	0	0	0	0
3	Е	14	0	0	0	0
4	А	23	0	12	0	0
4	В	23	0	12	0	0
4	С	23	0	12	0	0
4	D	23	0	13	0	0
4	Е	23	0	12	0	0
5	А	5	0	0	0	0
5	В	5	0	0	0	0
5	С	5	0	0	0	0
5	D	5	0	0	0	0
5	Е	5	0	0	1	0
6	А	1	0	0	0	0
6	В	1	0	0	0	0
6	С	1	0	0	0	0
6	D	1	0	0	0	0
6	Е	1	0	0	0	0
7	А	40	0	0	0	0
7	В	60	0	0	0	0
7	С	50	0	0	0	0
7	D	50	0	0	1	0
7	Ε	35	0	0	0	0
8	А	104	0	0	1	0
8	В	110	0	0	2	0
8	С	41	0	0	2	0
8	D	92	0	0	3	0
8	Е	43	0	0	0	0
All	All	24554	0	23271	172	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (172) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:182:ARG:NH1	1:A:267:ASP:O	2.06	0.88

	lo ao pagom	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:E:185:TRP:HE1	1:E:266:SER:HB3	1.50	0.76		
1:A:476:PRO:HA	1:A:479:ARG:HD2	1.68	0.75		
1:E:476:PRO:HA	1:E:479:ARG:HD2	1.71	0.72		
1:C:185:TRP:HE1	1:C:266:SER:HB3	1.54	0.72		
1:A:185:TRP:HE1	1:A:266:SER:HB3	1.57	0.70		
1:D:530:ARG:HH11	1:D:530:ARG:HG2	1.57	0.69		
1:B:406:ARG:HH11	2:B:603:GOL:H12	1.59	0.68		
1:D:24:ARG:NH2	8:D:702:HOH:O	2.27	0.67		
1:C:567:ARG:NH1	8:C:701:HOH:O	2.28	0.66		
2:C:602:GOL:H12	1:D:246:LYS:NZ	2.12	0.65		
1:E:49:VAL:HG23	1:E:60:ARG:HG2	1.82	0.61		
1:A:226:ARG:HH21	1:A:258:GLN:HE21	1.49	0.60		
1:A:300:GLY:HA3	1:A:569:MET:HG3	1.83	0.60		
1:C:300:GLY:HA3	1:C:569:MET:HG3	1.84	0.60		
1:D:322:ARG:HD2	2:D:610:GOL:O2	2.02	0.60		
1:E:487:GLU:OE2	1:E:546:TYR:OH	2.20	0.60		
1:E:182:ARG:NH1	1:E:267:ASP:O	2.35	0.59		
1:A:478:VAL:O	1:A:481:VAL:HG22	2.03	0.58		
1:B:41:ALA:CB	1:B:47:ARG:HB3	2.33	0.58		
1:B:442:GLU:O	1:B:459:LYS:HE3	2.03	0.57		
1:B:224:ARG:NH1	8:B:701:HOH:O	2.31	0.56		
1:C:205:SER:O	1:C:209:GLN:HG3	2.05	0.56		
1:A:142:PHE:HB2	2:A:604:GOL:H2	1.88	0.55		
1:A:197:ALA:HB1	1:A:201:ILE:HB	1.87	0.55		
1:D:185:TRP:HE1	1:D:266:SER:HB3	1.71	0.55		
1:E:277:ARG:NH1	1:E:304:GLY:O	2.39	0.55		
1:E:300:GLY:HA3	1:E:569:MET:HG3	1.89	0.55		
1:E:208:ARG:HE	1:E:216:VAL:HG11	1.71	0.55		
1:B:377:LEU:HD11	1:B:383:LEU:CD2	2.36	0.54		
1:D:72:GLN:OE1	1:D:512:THR:OG1	2.24	0.54		
1:D:258:GLN:NE2	8:D:704:HOH:O	2.39	0.54		
1:B:182:ARG:NH1	1:B:267:ASP:O	2.40	0.54		
1:E:352:GLU:O	1:E:362:ARG:NH2	2.41	0.53		
1:B:286:GLU:OE1	1:B:286:GLU:N	2.32	0.53		
1:E:62:THR:HG23	1:E:77:SER:HB2	1.91	0.53		
1:E:39:GLU:HG3	1:E:49:VAL:HG12	1.91	0.53		
1:C:2:SER:HB3	1:C:5:ASP:HB2	1.91	0.53		
1:B:377:LEU:HD11	1:B:383:LEU:HD22	1.89	0.53		
1:C:187:ALA:HB2	1:C:263:LEU:HD11	1.92	0.52		
1:B:226:ARG:HH21	1:B:258:GLN:HE21	1.58	0.52		
1:D:37:THR:H	2:D:612:GOL:H12	1.74	0.52		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:B:171:LEU:O	1:B:179:HIS:HD2	1.92	0.52		
1:C:564:ARG:HB2	2:C:601:GOL:H12	1.92	0.52		
2:E:605:GOL:H32	2:E:607:GOL:H12	1.92	0.52		
1:C:567:ARG:HH11	1:C:567:ARG:HG2	1.74	0.51		
1:B:164:GLY:H	2:B:611:GOL:C1	2.23	0.51		
1:B:57:THR:OG1	1:B:82:ARG:HD3	2.11	0.51		
1:C:253:ALA:O	1:C:257:ARG:HG3	2.10	0.51		
1:A:270:TYR:HB3	1:A:279:PHE:HB3	1.91	0.51		
1:B:41:ALA:HB2	1:B:47:ARG:C	2.31	0.51		
1:C:208:ARG:HG2	1:C:213:GLU:HG2	1.93	0.50		
1:A:208:ARG:HH12	2:A:605:GOL:H31	1.74	0.50		
1:A:434:ASP:OD1	1:A:542:ARG:NH2	2.44	0.50		
1:E:24:ARG:HG3	1:E:24:ARG:HH11	1.77	0.50		
1:D:254:GLU:OE2	8:D:701:HOH:O	2.19	0.50		
1:B:41:ALA:HB2	1:B:47:ARG:HB3	1.93	0.50		
1:B:41:ALA:HB2	1:B:47:ARG:O	2.11	0.50		
2:C:602:GOL:H12	1:D:246:LYS:HZ3	1.76	0.50		
1:B:196:THR:HG21	1:B:311:GLU:O	2.12	0.49		
1:C:226:ARG:HH21	1:C:258:GLN:HE21	1.59	0.49		
1:C:270:TYR:HB3	1:C:279:PHE:HB3	1.94	0.49		
1:B:226:ARG:NH2	8:B:703:HOH:O	2.44	0.49		
1:D:60:ARG:NH2	7:D:621:SO4:S	2.85	0.49		
1:B:47:ARG:HD2	1:B:62:THR:HG23	1.95	0.49		
1:A:416:ARG:HG2	1:A:420:ARG:NE	2.28	0.49		
1:C:356:ASP:OD1	1:C:358:TYR:N	2.42	0.49		
1:E:491:LEU:HD21	1:E:548:LEU:HD12	1.95	0.49		
1:A:72:GLN:HE21	1:A:508:ALA:HB1	1.78	0.49		
1:B:204:ALA:O	1:B:208:ARG:HG2	2.12	0.49		
1:B:347:ARG:HD2	1:B:352:GLU:OE2	2.13	0.49		
1:C:397:ARG:NH1	1:C:402:GLU:OE2	2.45	0.49		
1:E:291:LYS:NZ	5:E:611:PO4:O4	2.45	0.49		
2:C:602:GOL:H12	1:D:246:LYS:HZ2	1.77	0.49		
1:E:310:MET:HE3	1:E:368:LEU:HB3	1.95	0.49		
1:D:476:PRO:HA	1:D:479:ARG:HD2	1.94	0.49		
1:A:256:ALA:HB1	1:B:15:TRP:HB2	1.95	0.48		
1:A:357:ARG:HD2	1:E:85:ALA:HB2	1.95	0.48		
1:E:478:VAL:O	1:E:481:VAL:HG22	2.12	0.48		
1:B:185:TRP:CZ2	1:B:211:LEU:HD21	2.47	0.48		
1:B:451:GLY:H	2:B:603:GOL:C3	2.26	0.48		
1:C:468:MET:O	1:C:490:LYS:NZ	2.33	0.48		
1:E:486:PRO:HG2	1:E:489:MET:HE2	1.95	0.48		

	louo pugom	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:B:477:GLU:H	1:B:477:GLU:CD	2.18	0.47		
1:E:434:ASP:OD2	1:E:542:ARG:NH2	2.48	0.47		
1:E:540:ASP:HB3	1:E:544:ARG:NH2	2.30	0.47		
1:D:300:GLY:HA3	1:D:569:MET:HG3	1.96	0.47		
1:B:491:LEU:HD22	1:B:546:TYR:HB3	1.96	0.47		
1:D:24:ARG:HG3	1:D:25:LYS:N	2.29	0.47		
1:E:431:TYR:OH	1:E:548:LEU:HD13	2.15	0.47		
1:A:416:ARG:NH1	1:A:531:GLU:OE2	2.48	0.46		
1:E:270:TYR:HB3	1:E:279:PHE:HB3	1.97	0.46		
1:B:451:GLY:H	2:B:603:GOL:H31	1.80	0.46		
1:C:488:ASP:OD2	1:C:488:ASP:N	2.35	0.46		
1:B:47:ARG:HD2	1:B:62:THR:CG2	2.46	0.46		
1:B:270:TYR:HB3	1:B:279:PHE:HB3	1.97	0.46		
1:A:277:ARG:NH1	1:A:304:GLY:O	2.48	0.46		
1:A:163:LEU:HD23	1:A:163:LEU:HA	1.75	0.45		
1:B:208:ARG:HG2	1:B:208:ARG:HH11	1.80	0.45		
1:A:168:ASP:OD2	2:A:613:GOL:H11	2.15	0.45		
1:E:357:ARG:HA	1:E:362:ARG:NH1	2.32	0.45		
1:D:47:ARG:HH11	1:D:62:THR:HG23	1.81	0.45		
1:A:300:GLY:CA	1:A:569:MET:HG3	2.46	0.45		
1:E:66:ARG:HG2	1:E:518:GLU:OE2	2.16	0.45		
1:A:400:ALA:O	1:A:404:ILE:HG13	2.16	0.45		
1:D:335:LEU:HD22	1:D:425:PRO:HB3	1.98	0.45		
1:D:479:ARG:HB3	1:D:482:ARG:NH2	2.31	0.45		
1:E:56:LEU:HD23	1:E:56:LEU:HA	1.77	0.44		
1:B:362:ARG:HH12	2:B:614:GOL:H2	1.82	0.44		
1:E:310:MET:HE1	1:E:368:LEU:HD23	2.00	0.44		
1:D:476:PRO:HA	1:D:479:ARG:HG3	1.99	0.44		
1:B:2:SER:HB3	1:B:5:ASP:HB2	1.99	0.44		
1:E:171:LEU:HA	1:E:177:THR:HG21	1.99	0.44		
1:B:185:TRP:HE1	1:B:266:SER:HB3	1.81	0.44		
1:E:24:ARG:HG3	1:E:24:ARG:NH1	2.33	0.44		
1:A:301:PHE:HZ	1:A:570:VAL:HG22	1.83	0.43		
1:D:489:MET:CE	1:D:579:LEU:HD12	2.48	0.43		
1:B:164:GLY:H	2:B:611:GOL:H11	1.83	0.43		
1:D:488:ASP:OD2	1:D:488:ASP:N	2.47	0.43		
1:C:289:TYR:HB2	1:C:370:ARG:HB3	1.99	0.43		
1:A:2:SER:HB3	1:A:5:ASP:HB2	2.00	0.43		
1:A:15:TRP:HB2	1:B:256:ALA:HB1	2.00	0.43		
1:C:128:THR:OG1	2:C:607:GOL:H32	2.19	0.43		
1:B:197:ALA:HB1	1:B:201:ILE:HB	2.00	0.43		

	A h o	Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:E:520:ASP:HA	1:E:523:ARG:NH1	2.34	0.43		
1:E:486:PRO:HG2	1:E:489:MET:CE	2.48	0.43		
1:D:220:ASP:OD2	2:D:608:GOL:H11	2.19	0.43		
1:D:411:PRO:HB2	1:D:516:LEU:HD13	2.01	0.43		
1:D:277:ARG:NH1	1:D:304:GLY:O	2.52	0.42		
1:B:277:ARG:NH1	1:B:304:GLY:O	2.52	0.42		
1:C:301:PHE:HZ	1:C:570:VAL:HG22	1.84	0.42		
1:E:357:ARG:HA	1:E:362:ARG:HH11	1.84	0.42		
1:A:226:ARG:NH2	1:A:258:GLN:HE21	2.14	0.42		
1:B:301:PHE:CE2	1:B:569:MET:HE2	2.53	0.42		
1:A:491:LEU:HD23	1:A:495:PHE:CE2	2.55	0.42		
1:E:339:ARG:NH2	1:E:371:GLU:OE2	2.39	0.42		
1:D:257:ARG:O	1:D:258:GLN:HB2	2.19	0.42		
1:C:487:GLU:OE1	1:C:545:GLN:NE2	2.52	0.42		
1:E:249:VAL:HG11	2:E:602:GOL:H31	2.00	0.42		
1:B:560:ARG:HB3	2:B:602:GOL:H11	2.02	0.42		
1:C:386:MET:HG3	1:C:446:LEU:HD11	2.02	0.41		
1:E:70:HIS:HB2	1:E:504:ARG:HD2	2.02	0.41		
1:E:72:GLN:OE1	1:E:512:THR:OG1	2.38	0.41		
1:E:204:ALA:O	1:E:208:ARG:HD3	2.19	0.41		
1:B:411:PRO:HB2	1:B:516:LEU:HD13	2.01	0.41		
1:C:357:ARG:NH1	2:C:608:GOL:O2	2.54	0.41		
1:C:523:ARG:HD2	1:C:527:GLU:OE2	2.19	0.41		
1:A:33:GLU:OE1	1:A:557:CYS:HB3	2.19	0.41		
1:E:204:ALA:O	1:E:208:ARG:CD	2.68	0.41		
1:C:197:ALA:HB1	1:C:201:ILE:HB	2.02	0.41		
1:E:99:ARG:NH2	1:E:106:ASP:OD1	2.54	0.41		
1:A:412:THR:HG23	8:A:780:HOH:O	2.21	0.41		
1:C:440:HIS:HB2	8:C:729:HOH:O	2.21	0.41		
1:C:174:ALA:HB3	1:C:177:THR:HG23	2.03	0.41		
1:A:428:HIS:HA	1:A:532:TYR:OH	2.21	0.41		
1:A:482:ARG:HE	1:A:482:ARG:HB2	1.59	0.41		
1:C:256:ALA:HB1	1:D:15:TRP:HB2	2.03	0.41		
1:E:491:LEU:HD11	1:E:548:LEU:HD11	2.03	0.41		
1:D:197:ALA:HB1	1:D:201:ILE:HB	2.02	0.41		
1:A:30:PHE:HB2	1:A:36:PHE:CZ	2.56	0.40		
1:A:246:LYS:NZ	2:B:611:GOL:O3	2.45	0.40		
1:A:474:LEU:HD12	1:A:482:ARG:HD3	2.03	0.40		
1:B:478:VAL:O	1:B:481:VAL:HG22	2.21	0.40		
1:E:24:ARG:HG3	1:E:25:LYS:N	2.35	0.40		
1:D:33:GLU:OE1	1:D:557:CYS:HB3	2.20	0.40		

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:270:TYR:HB3	1:D:279:PHE:HB3	2.03	0.40
1:D:572:LEU:HD21	2:D:615:GOL:H31	2.03	0.40
1:A:42:ASP:HB3	1:A:44:GLN:OE1	2.21	0.40
1:A:89:LEU:HD23	1:A:89:LEU:HA	1.88	0.40
1:C:555:LEU:HD13	1:C:585:LEU:HD21	2.03	0.40
1:E:489:MET:HA	1:E:492:LEU:HG	2.02	0.40
1:A:57:THR:OG1	1:A:82:ARG:HD2	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	591/612~(97%)	575~(97%)	16 (3%)	0	100	100
1	В	590/612~(96%)	573~(97%)	17 (3%)	0	100	100
1	С	590/612~(96%)	578~(98%)	12 (2%)	0	100	100
1	D	590/612~(96%)	575~(98%)	15 (2%)	0	100	100
1	Е	589/612~(96%)	572 (97%)	17 (3%)	0	100	100
All	All	2950/3060~(96%)	2873 (97%)	77 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	485/504~(96%)	479 (99%)	6 (1%)	71	88
1	В	481/504~(95%)	475 (99%)	6 (1%)	71	88
1	С	479/504~(95%)	473 (99%)	6 (1%)	69	87
1	D	481/504~(95%)	475~(99%)	6 (1%)	71	88
1	Ε	479/504~(95%)	477 (100%)	2 (0%)	91	97
All	All	2405/2520~(95%)	2379~(99%)	26~(1%)	73	89

All (26) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	1	MET
1	А	93	ASP
1	А	277	ARG
1	А	378	ARG
1	А	397	ARG
1	А	480	ARG
1	В	277	ARG
1	В	325	ASP
1	В	397	ARG
1	В	459	LYS
1	В	564	ARG
1	В	576	SER
1	С	36	PHE
1	С	93	ASP
1	С	217	GLU
1	С	309	TYR
1	С	378	ARG
1	С	480	ARG
1	Е	139	GLU
1	Е	567	ARG
1	D	24	ARG
1	D	139	GLU
1	D	202	ASP
1	D	397	ARG
1	D	576	SER
1	D	586	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such side chains are listed below:

Mol	Chain	Res	Type
1	А	72	GLN
1	А	209	GLN
1	А	258	GLN
1	В	179	HIS
1	В	258	GLN
1	С	209	GLN
1	С	258	GLN
1	D	143	GLN
1	D	273	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 126 ligands modelled in this entry, 5 are monoatomic - leaving 121 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Type Chain Res		Tinle	Bond lengths			Bond angles			
	туре	Chain	nes	Res Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	GOL	Е	603	-	$5,\!5,\!5$	0.94	0	$5,\!5,\!5$	0.94	0	
7	SO4	С	615	-	4,4,4	0.16	0	6,6,6	0.11	0	
2	GOL	D	601	-	$5,\!5,\!5$	1.01	0	$5,\!5,\!5$	0.98	0	
7	SO4	В	620	-	4,4,4	0.20	0	6,6,6	0.22	0	
2	GOL	Е	601	-	$5,\!5,\!5$	1.10	1 (20%)	5,5,5	0.95	0	
2	GOL	С	608	-	$5,\!5,\!5$	1.01	0	5,5,5	0.98	0	

N/L-1	T a	Chain	Dag	T : 1-	В	ond leng	gths	B	ond ang	les
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	GOL	А	602	-	$5,\!5,\!5$	1.16	1 (20%)	$5,\!5,\!5$	0.96	0
7	SO4	С	617	-	4,4,4	0.19	0	6,6,6	0.16	0
2	GOL	Е	602	-	$5,\!5,\!5$	0.98	0	$5,\!5,\!5$	1.06	0
7	SO4	В	621	-	4,4,4	0.17	0	6,6,6	0.16	0
7	SO4	В	629	-	4,4,4	0.17	0	6,6,6	0.12	0
2	GOL	А	601	-	$5,\!5,\!5$	1.51	1 (20%)	$5,\!5,\!5$	0.74	0
2	GOL	Е	606	-	$5,\!5,\!5$	0.92	0	$5,\!5,\!5$	0.92	0
2	GOL	D	612	-	$5,\!5,\!5$	0.82	0	$5,\!5,\!5$	0.98	0
7	SO4	D	623	-	4,4,4	0.15	0	$6,\!6,\!6$	0.10	0
7	SO4	D	625	-	4,4,4	0.14	0	$6,\!6,\!6$	0.10	0
7	SO4	В	623	-	4,4,4	0.16	0	$6,\!6,\!6$	0.08	0
7	SO4	В	624	-	4,4,4	0.16	0	6,6,6	0.06	0
7	SO4	С	614	-	4,4,4	0.16	0	6,6,6	0.14	0
2	GOL	D	606	-	5,5,5	1.09	0	5,5,5	0.98	0
5	PO4	В	617	6	$4,\!4,\!4$	0.98	0	$6,\!6,\!6$	1.09	1 (16%)
2	GOL	С	605	-	5,5,5	0.87	0	5,5,5	1.04	0
2	GOL	A	610	-	5,5,5	0.97	0	5,5,5	0.85	0
2	GOL	D	610	-	$5,\!5,\!5$	1.14	1 (20%)	$5,\!5,\!5$	0.84	0
7	SO4	А	620	-	4,4,4	0.16	0	6,6,6	0.14	0
2	GOL	Е	605	-	$5,\!5,\!5$	0.89	0	$5,\!5,\!5$	0.81	0
4	LMS	В	616	3,6	22,25,25	4.83	9 (40%)	25,38,38	<mark>3.99</mark>	4 (16%)
7	SO4	В	622	-	4,4,4	0.14	0	6,6,6	0.16	0
2	GOL	А	612	-	$5,\!5,\!5$	0.99	0	$5,\!5,\!5$	0.93	0
2	GOL	В	605	-	$5,\!5,\!5$	0.90	0	$5,\!5,\!5$	1.02	0
2	GOL	А	604	-	$5,\!5,\!5$	1.15	0	$5,\!5,\!5$	0.99	0
7	SO4	А	625	-	4,4,4	0.15	0	6,6,6	0.19	0
2	GOL	С	602	-	$5,\!5,\!5$	0.86	0	$5,\!5,\!5$	0.88	0
3	I3U	А	614	4	13,13,14	3.08	1 (7%)	10,14,16	1.68	2 (20%)
2	GOL	D	613	-	$5,\!5,\!5$	0.91	0	$5,\!5,\!5$	1.03	0
7	SO4	D	627	-	4,4,4	0.17	0	$6,\!6,\!6$	0.14	0
2	GOL	В	610	-	$5,\!5,\!5$	1.27	1 (20%)	$5,\!5,\!5$	1.10	0
2	GOL	В	602	-	5,5,5	0.74	0	5,5,5	1.06	0
7	SO4	Е	614	-	4,4,4	0.13	0	6,6,6	0.09	0
2	GOL	A	607	-	5,5,5	1.20	0	5,5,5	0.96	0
4	LMS	E	610	3,6	22,25,25	4.86	11 (50%)	25,38,38	3.28	4 (16%)
7	SO4	В	630	-	4,4,4	0.14	0	6,6,6	0.14	0
2	GOL	D	603	_	5,5,5	1.23	1 (20%)	5,5,5	0.92	0
7	SO4	А	622	_	4,4,4	0.21	0	6,6,6	0.12	0
2	GOL	А	608	-	$5,\!5,\!5$	0.92	0	5,5,5	1.03	1 (20%)
2	GOL	С	609	-	$5,\!5,\!5$	0.97	0	$5,\!5,\!5$	0.95	0
2	GOL	С	601	-	$5,\!5,\!5$	1.06	0	$5,\!5,\!5$	0.97	0

Mal	Trune	Chain	Dec	Tinle	В	ond leng	gths	B	ond ang	les
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	GOL	С	604	-	$5,\!5,\!5$	0.80	0	$5,\!5,\!5$	1.00	0
5	PO4	D	618	6	4,4,4	0.92	0	6,6,6	0.63	0
2	GOL	D	609	-	$5,\!5,\!5$	1.04	0	$5,\!5,\!5$	1.07	0
2	GOL	В	612	-	$5,\!5,\!5$	0.96	0	$5,\!5,\!5$	0.85	0
7	SO4	Е	619	-	4,4,4	0.18	0	6,6,6	0.19	0
3	I3U	С	610	4	$13,\!13,\!14$	2.79	2 (15%)	10,14,16	1.82	2 (20%)
2	GOL	D	604	-	$5,\!5,\!5$	0.98	0	$5,\!5,\!5$	0.99	0
7	SO4	В	625	-	4,4,4	0.13	0	$6,\!6,\!6$	0.28	0
7	SO4	D	624	-	4,4,4	0.15	0	6,6,6	0.09	0
5	PO4	А	616	6	4,4,4	0.72	0	6,6,6	0.86	0
2	GOL	В	604	-	$5,\!5,\!5$	1.10	0	$5,\!5,\!5$	0.70	0
2	GOL	А	609	-	$5,\!5,\!5$	0.80	0	$5,\!5,\!5$	1.03	0
3	I3U	Е	609	4	$13,\!13,\!14$	3.02	2 (15%)	10,14,16	1.68	2 (20%)
7	SO4	D	629	-	4,4,4	0.14	0	6,6,6	0.07	0
7	SO4	D	626	-	4,4,4	0.17	0	6,6,6	0.08	0
7	SO4	Е	613	-	4,4,4	0.14	0	6,6,6	0.16	0
7	SO4	D	628	-	4,4,4	0.14	0	6,6,6	0.14	0
7	SO4	А	624	-	4,4,4	0.14	0	6,6,6	0.20	0
7	SO4	С	622	-	4,4,4	0.12	0	6,6,6	0.18	0
2	GOL	D	608	-	$5,\!5,\!5$	1.13	0	$5,\!5,\!5$	0.71	0
7	SO4	В	626	-	4,4,4	0.17	0	6,6,6	0.12	0
7	SO4	С	618	-	4,4,4	0.15	0	6,6,6	0.12	0
2	GOL	В	614	-	$5,\!5,\!5$	1.15	0	$5,\!5,\!5$	0.73	0
2	GOL	D	607	-	$5,\!5,\!5$	0.86	0	$5,\!5,\!5$	1.13	0
2	GOL	В	613	-	$5,\!5,\!5$	1.10	0	$5,\!5,\!5$	0.73	0
7	SO4	С	619	-	4,4,4	0.16	0	$6,\!6,\!6$	0.15	0
2	GOL	В	603	-	$5,\!5,\!5$	1.18	0	$5,\!5,\!5$	0.70	0
2	GOL	Е	607	-	$5,\!5,\!5$	0.97	0	$5,\!5,\!5$	0.88	0
3	I3U	D	616	4	$13,\!13,\!14$	2.84	1 (7%)	10,14,16	1.50	2 (20%)
7	SO4	В	627	-	4,4,4	0.13	0	6,6,6	0.14	0
4	LMS	С	611	3,6	$22,\!25,\!25$	4.69	11 (50%)	25,38,38	4.40	4 (16%)
7	SO4	В	619	-	4,4,4	0.15	0	6,6,6	0.06	0
2	GOL	А	613	-	$5,\!5,\!5$	1.28	0	$5,\!5,\!5$	0.76	0
2	GOL	Е	608	-	$5,\!5,\!5$	0.89	0	$5,\!5,\!5$	0.95	0
2	GOL	В	609	-	$5,\!5,\!5$	0.84	0	$5,\!5,\!5$	0.97	0
2	GOL	В	601	-	$5,\!5,\!5$	1.02	0	$5,\!5,\!5$	1.29	0
4	LMS	A	615	3,6	22,25,25	5.01	11 (50%)	25,38,38	3.58	7 (28%)
7	SO4	E	617	_	4,4,4	0.13	0	6,6,6	0.15	0
2	GOL	D	611	_	5,5,5	1.32	1 (20%)	5,5,5	0.59	0
7	SO4	А	623	-	4,4,4	0.14	0	6,6,6	0.09	0
2	GOL	В	608	-	$5,\!5,\!5$	1.01	0	$5,\!5,\!5$	0.77	0
7	SO4	А	621	-	4,4,4	0.17	0	6,6,6	0.31	0

Ма	Turne	Chain	Dec	Tinle	Bond lengths			Bond angles		
INIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	GOL	С	607	-	$5,\!5,\!5$	1.09	0	$5,\!5,\!5$	0.98	0
7	SO4	С	616	-	4,4,4	0.14	0	$6,\!6,\!6$	0.11	0
2	GOL	D	605	-	$5,\!5,\!5$	1.18	1 (20%)	$5,\!5,\!5$	1.04	0
2	GOL	А	611	-	$5,\!5,\!5$	0.93	0	$5,\!5,\!5$	1.12	1 (20%)
2	GOL	В	606	-	$5,\!5,\!5$	1.14	0	$5,\!5,\!5$	0.55	0
2	GOL	Е	604	-	$5,\!5,\!5$	1.16	1 (20%)	$5,\!5,\!5$	1.14	0
7	SO4	D	622	-	4,4,4	0.16	0	$6,\!6,\!6$	0.32	0
2	GOL	D	614	-	$5,\!5,\!5$	0.99	0	$5,\!5,\!5$	0.89	0
2	GOL	В	611	-	$5,\!5,\!5$	0.87	0	$5,\!5,\!5$	1.11	1 (20%)
7	SO4	С	620	-	4,4,4	0.14	0	$6,\!6,\!6$	0.10	0
7	SO4	А	619	-	4,4,4	0.18	0	$6,\!6,\!6$	0.35	0
2	GOL	С	606	-	$5,\!5,\!5$	0.99	0	$5,\!5,\!5$	0.90	0
2	GOL	А	605	-	$5,\!5,\!5$	0.90	0	$5,\!5,\!5$	0.91	0
3	I3U	В	615	4	13,13,14	2.99	2 (15%)	10,14,16	1.93	2 (20%)
7	SO4	D	620	-	4,4,4	0.17	0	$6,\!6,\!6$	0.11	0
2	GOL	А	603	-	$5,\!5,\!5$	0.68	0	$5,\!5,\!5$	1.07	0
7	SO4	С	623	-	4,4,4	0.14	0	$6,\!6,\!6$	0.10	0
7	SO4	Е	618	-	4,4,4	0.12	0	$6,\!6,\!6$	0.36	0
2	GOL	D	615	-	$5,\!5,\!5$	1.11	0	$5,\!5,\!5$	0.74	0
2	GOL	В	607	-	5,5,5	0.86	0	$5,\!5,\!5$	1.11	0
5	PO4	E	611	6	4,4,4	0.91	0	$6,\!6,\!6$	0.85	0
7	SO4	С	621	-	4,4,4	0.14	0	$6,\!6,\!6$	0.13	0
7	SO4	E	616	-	4,4,4	0.12	0	$6,\!6,\!6$	0.20	0
4	LMS	D	617	3,6	22,25,25	5.45	10 (45%)	$25,\!38,\!38$	3.26	5 (20%)
2	GOL	С	603	-	$5,\!5,\!5$	0.64	0	$5,\!5,\!5$	1.14	1 (20%)
5	PO4	С	612	6	4,4,4	0.66	0	$6,\!6,\!6$	0.76	0
7	SO4	D	621	-	4,4,4	0.14	0	$6,\!6,\!6$	0.11	0
7	SO4	A	618	-	4,4,4	0.17	0	$6,\!6,\!6$	0.18	0
7	SO4	Е	615	-	4,4,4	0.17	0	$6,\!6,\!6$	0.08	0
2	GOL	А	606	-	$5,\!5,\!5$	0.73	0	$5,\!5,\!5$	1.27	1 (20%)
2	GOL	D	602	-	5,5,5	1.03	0	$5,\!5,\!5$	0.92	0
7	SO4	В	628	-	4,4,4	0.13	0	6,6,6	0.18	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GOL	Ε	603	-	-	1/4/4/4	-
2	GOL	В	608	-	-	1/4/4/4	-

1 I G M

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	I3U	Е	609	4	-	1/13/14/15	-
2	GOL	В	610	-	-	4/4/4/4	-
2	GOL	С	607	-	-	0/4/4/4	-
2	GOL	В	602	-	-	0/4/4/4	-
2	GOL	D	601	-	-	2/4/4/4	-
3	I3U	А	614	4	-	1/13/14/15	-
2	GOL	Е	601	-	-	0/4/4/4	-
2	GOL	D	605	-	-	0/4/4/4	-
2	GOL	С	608	-	-	2/4/4/4	-
2	GOL	А	602	-	-	2/4/4/4	-
2	GOL	А	611	-	-	2/4/4/4	-
2	GOL	В	606	-	-	2/4/4/4	-
2	GOL	А	607	-	-	$\frac{4}{4/4}$	-
2	GOL	D	608	-	_	$\frac{2}{4}/4}{4}$	_
4	LMS	Е	610	3,6	_	1/6/26/26	0/3/3/3
2	GOL	Е	604	_	_	$\frac{2}{4}/4}{4}$	_
2	GOL	Е	602		-	$\frac{2/4/4/4}{2}$	-
2	GOL	D	614	-	-	1/4/4/4	_
2	GOL	А	601	-	-	0/4/4/4	_
2	GOL	В	611	-	-	0/4/4/4	-
2	GOL	С	606	-	-	2/4/4/4	-
2	GOL	D	603	-	-	2/4/4/4	-
2	GOL	Е	606	-	-	0/4/4/4	-
2	GOL	В	614	-	-	0/4/4/4	-
2	GOL	А	605	-	-	2/4/4/4	-
2	GOL	А	608	-	-	$\frac{4}{4/4}$	-
2	GOL	С	609	-	-	1/4/4/4	_
2	GOL	D	612	-	-	0/4/4/4	-
2	GOL	D	607	-	-	0/4/4/4	-
3	I3U	В	615	4	-	2/13/14/15	-
2	GOL	С	601	-	-	1/4/4/4	-
2	GOL	С	604	-	-	0/4/4/4	-
2	GOL	В	613	-	-	2/4/4/4	-
2	GOL	A	603	_	-	0/4/4/4	-
2	GOL	В	603	-	-	2/4/4/4	-
2	GOL	Е	607	-	-	4/4/4/4	-
2	GOL	D	615	-	-	2/4/4/4	-
9	I3II		616	1	_	1/13/14/15	_

D W I D E DATA BANK

7TGM

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	GOL	D	606	-	-	2/4/4/4	-
2	GOL	D	609	-	-	0/4/4/4	-
2	GOL	В	612	-	-	2/4/4/4	-
2	GOL	В	607	-	-	2/4/4/4	-
2	GOL	С	605	-	-	2/4/4/4	-
3	I3U	С	610	4	-	2/13/14/15	-
2	GOL	D	604	-	-	0/4/4/4	-
4	LMS	D	617	3,6	-	2/6/26/26	0/3/3/3
2	GOL	А	610	-	-	2/4/4/4	-
4	LMS	С	611	3,6	-	2/6/26/26	0/3/3/3
2	GOL	D	610	-	-	4/4/4/4	-
2	GOL	А	613	-	-	1/4/4/4	-
2	GOL	С	603	-	-	2/4/4/4	-
2	GOL	В	609	-	-	1/4/4/4	-
2	GOL	Е	605	-	-	0/4/4/4	-
2	GOL	Ε	608	-	-	2/4/4/4	-
2	GOL	А	612	-	-	2/4/4/4	-
2	GOL	В	601	-	-	0/4/4/4	-
2	GOL	В	605	-	-	1/4/4/4	-
4	LMS	А	615	3,6	-	3/6/26/26	0/3/3/3
4	LMS	В	616	3,6	-	0/6/26/26	0/3/3/3
2	GOL	А	604	-	-	2/4/4/4	-
2	GOL	В	604	-	-	2/4/4/4	-
2	GOL	D	611	-	-	4/4/4/4	-
2	GOL	А	606	-	-	0/4/4/4	-
2	GOL	С	602	-	-	2/4/4/4	-
2	GOL	D	602	_	-	0/4/4/4	-
2	GOL	D	613	-	_	2/4/4/4	_
2	GOL	А	609	-	-	0/4/4/4	-

All (69) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
4	D	617	LMS	O2P-S	14.36	1.54	1.42
4	D	617	LMS	O1P-S	13.37	1.53	1.42
4	А	615	LMS	O2P-S	12.77	1.52	1.42
4	А	615	LMS	O1P-S	12.31	1.52	1.42
4	Е	610	LMS	O1P-S	12.03	1.52	1.42

7TGM

Conti	nued fron	ı previ	ous page	•••		0	0
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
4	В	616	LMS	O2P-S	11.48	1.51	1.42
4	В	616	LMS	O1P-S	11.43	1.51	1.42
4	С	611	LMS	O2P-S	11.27	1.51	1.42
4	Е	610	LMS	O2P-S	10.94	1.51	1.42
4	С	611	LMS	O1P-S	10.89	1.51	1.42
3	А	614	I3U	C09-N07	10.73	1.49	1.34
4	Е	610	LMS	S-N	10.63	1.70	1.58
3	Е	609	I3U	C09-N07	10.31	1.48	1.34
3	В	615	I3U	C09-N07	10.30	1.48	1.34
4	В	616	LMS	S-N	10.16	1.69	1.58
4	D	617	LMS	S-N	9.95	1.69	1.58
3	D	616	I3U	C09-N07	9.58	1.47	1.34
3	С	610	I3U	C09-N07	9.47	1.47	1.34
4	С	611	LMS	S-N	9.30	1.68	1.58
4	А	615	LMS	S-N	9.09	1.68	1.58
4	D	617	LMS	O4'-C1'	8.42	1.52	1.41
4	С	611	LMS	O4'-C1'	7.75	1.51	1.41
4	А	615	LMS	O4'-C1'	7.66	1.51	1.41
4	Е	610	LMS	O4'-C1'	7.41	1.51	1.41
4	В	616	LMS	O4'-C1'	7.41	1.51	1.41
4	D	617	LMS	O5'-S	6.01	1.66	1.57
4	А	615	LMS	O5'-S	5.47	1.65	1.57
4	В	616	LMS	O5'-S	4.62	1.64	1.57
4	С	611	LMS	O5'-S	4.56	1.64	1.57
4	Е	610	LMS	O5'-S	4.54	1.64	1.57
4	Е	610	LMS	C2'-C1'	-4.37	1.47	1.53
4	С	611	LMS	C2'-C1'	-4.34	1.47	1.53
4	В	616	LMS	C4-N3	-4.15	1.29	1.35
4	А	615	LMS	C2'-C1'	-4.14	1.47	1.53
4	В	616	LMS	C2'-C1'	-3.96	1.47	1.53
4	А	615	LMS	C4-N3	-3.94	1.30	1.35
4	D	617	LMS	C2'-C1'	-3.84	1.47	1.53
4	D	617	LMS	C4-N3	-3.81	1.30	1.35
4	С	611	LMS	C4-N3	-3.74	1.30	1.35
4	С	611	LMS	C2-N3	3.19	1.37	1.32
4	В	616	LMS	C2-N3	3.07	1.37	1.32
4	Е	610	LMS	C4-N3	-2.99	1.31	1.35
4	В	616	LMS	C6-N6	2.81	1.44	1.34
4	А	615	LMS	C6-N6	2.75	1.44	1.34
4	Е	610	LMS	C2-N3	2.74	1.36	1.32
4	Е	610	LMS	C6-N6	2.74	1.44	1.34
4	D	617	LMS	C2-N3	2.59	1.36	1.32

 α J fa . . . :

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	D	617	LMS	C6-N6	2.54	1.43	1.34
4	С	611	LMS	C6-N6	2.50	1.43	1.34
2	В	610	GOL	C3-C2	2.40	1.61	1.51
2	А	602	GOL	O2-C2	-2.36	1.36	1.43
2	D	611	GOL	C1-C2	2.31	1.61	1.51
4	Е	610	LMS	C5-N7	2.30	1.48	1.39
2	А	601	GOL	C1-C2	2.27	1.61	1.51
2	D	605	GOL	C3-C2	2.26	1.61	1.51
4	А	615	LMS	C5-N7	2.25	1.47	1.39
2	D	603	GOL	O2-C2	-2.25	1.36	1.43
4	Е	610	LMS	C2'-C3'	-2.21	1.47	1.53
3	Е	609	I3U	C11-C09	2.16	1.56	1.51
2	Е	601	GOL	O2-C2	-2.15	1.37	1.43
4	С	611	LMS	C2'-C3'	-2.13	1.47	1.53
3	С	610	I3U	C11-C09	2.12	1.56	1.51
4	А	615	LMS	C2-N3	2.10	1.35	1.32
4	D	617	LMS	C5-N7	2.10	1.47	1.39
4	С	611	LMS	C5-N7	2.09	1.47	1.39
4	A	615	LMS	C2'-C3'	-2.04	1.47	1.53
2	D	610	GOL	O2-C2	-2.02	1.37	1.43
3	В	615	I3U	C11-C09	2.02	1.55	1.51
2	Е	604	GOL	C1-C2	2.01	1.60	1.51

All (40) bond angle out	liers are listed below:
---------------------------	-------------------------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	С	611	LMS	O2P-S-O1P	-20.79	100.31	119.97
4	В	616	LMS	O2P-S-O1P	-18.51	102.46	119.97
4	А	615	LMS	O2P-S-O1P	-15.98	104.85	119.97
4	Е	610	LMS	O2P-S-O1P	-14.76	106.00	119.97
4	D	617	LMS	O2P-S-O1P	-14.63	106.13	119.97
4	С	611	LMS	N3-C2-N1	-4.66	121.39	128.68
4	Е	610	LMS	N3-C2-N1	-4.51	121.62	128.68
4	D	617	LMS	N3-C2-N1	-4.47	121.70	128.68
4	В	616	LMS	N3-C2-N1	-4.34	121.90	128.68
3	В	615	I3U	C12-C11-C09	-4.22	105.22	111.77
3	С	610	I3U	O08-N07-C06	4.18	124.04	113.59
4	А	615	LMS	N3-C2-N1	-4.15	122.19	128.68
3	В	615	I3U	O08-N07-C06	3.91	123.37	113.59
3	Е	609	I3U	C12-C11-C09	-3.77	105.92	111.77
3	А	614	I3U	C12-C11-C09	-3.74	105.97	111.77
3	D	616	I3U	O08-N07-C06	3.73	122.93	113.59

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	610	I3U	C12-C11-C09	-3.44	106.44	111.77
3	Е	609	I3U	O08-N07-C06	3.43	122.16	113.59
3	А	614	I3U	O08-N07-C06	3.35	121.97	113.59
4	В	616	LMS	C4-C5-N7	-3.27	105.99	109.40
4	А	615	LMS	O5'-C5'-C4'	3.01	113.23	107.62
4	А	615	LMS	C4-C5-N7	-3.00	106.27	109.40
4	С	611	LMS	C4-C5-N7	-2.90	106.38	109.40
4	D	617	LMS	C4-C5-N7	-2.61	106.68	109.40
4	А	615	LMS	O4'-C1'-C2'	-2.42	103.39	106.93
4	В	616	LMS	O4'-C1'-C2'	-2.37	103.46	106.93
3	D	616	I3U	C12-C11-C09	-2.34	108.14	111.77
4	С	611	LMS	O1P-S-N	2.33	112.65	109.14
5	В	617	PO4	O4-P-O1	-2.29	102.51	110.89
4	D	617	LMS	O1P-S-N	2.29	112.60	109.14
4	Е	610	LMS	O5'-S-N	2.28	112.73	105.31
4	D	617	LMS	C5'-O5'-S	2.27	120.06	117.21
2	А	606	GOL	C3-C2-C1	-2.22	103.08	111.70
2	А	611	GOL	C3-C2-C1	-2.22	103.09	111.70
4	А	615	LMS	O1P-S-N	2.21	112.48	109.14
2	С	603	GOL	C3-C2-C1	-2.21	103.12	111.70
2	A	608	GOL	C3-C2-C1	-2.15	103.35	111.70
4	Е	610	LMS	C4-C5-N7	-2.12	107.19	109.40
4	A	615	LMS	C3'-C2'-C1'	2.07	104.09	100.98
2	В	611	GOL	C3-C2-C1	-2.01	103.87	111.70

There are no chirality outliers.

All (99) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	А	602	GOL	O1-C1-C2-C3
2	А	604	GOL	C1-C2-C3-O3
2	А	608	GOL	C1-C2-C3-O3
2	А	610	GOL	C1-C2-C3-O3
2	А	612	GOL	O1-C1-C2-O2
2	А	612	GOL	O1-C1-C2-C3
2	В	604	GOL	O1-C1-C2-C3
2	В	607	GOL	O1-C1-C2-O2
2	В	612	GOL	C1-C2-C3-O3
2	С	602	GOL	C1-C2-C3-O3
2	С	603	GOL	C1-C2-C3-O3
2	С	603	GOL	O2-C2-C3-O3
2	С	606	GOL	O1-C1-C2-C3

Mol	Chain	Res		Atoms
2	E	604	GOL	01-C1-C2-C3
2	D	603	GOL	01-C1-C2-C3
2	D	608	GOL	C1-C2-C3-O3
3	A	614	I3U	C04-C05-C06-N07
3	B	615	I3U	C04-C05-C06-N07
3	C	610	I3U	C04-C05-C06-N07
3	E	609	I3U	C04-C05-C06-N07
4	A	615	LMS	C5'-O5'-S-N
4	A	615	LMS	C5'-O5'-S-O1P
4	A	615	LMS	C5'-O5'-S-O2P
4	C	611	LMS	C5'-O5'-S-N
4	C	611	LMS	C5'-O5'-S-O1P
4	E	610	LMS	C3'-C4'-C5'-O5'
4	D	617	LMS	C5'-O5'-S-O1P
2	A	605	GOL	02-C2-C3-O3
$\frac{-2}{2}$	R	612	GOL	02-02-03-03
$\frac{2}{2}$	A	605	GOL	C1-C2-C3-O3
2	A	607	GOL	01-C1-C2-C3
$\frac{2}{2}$	A	608	GOL	01-C1-C2-C3
$\frac{2}{2}$	A	611	GOL	01-C1-C2-C3
$\frac{2}{2}$	R	603	GOL	01 C1 C2 C3
$\frac{2}{2}$	B	606	GOL	01 C1 C2 C3
$\frac{2}{2}$	B	607	GOL	01-C1-C2-C3
$\frac{2}{2}$	C	605	GOL	01 C1 C2 C3
$\frac{2}{2}$	E	607	GOL	01-C1-C2-C3
$\frac{2}{2}$	D	601	GOL	01 C1 C2 C3
$\frac{2}{2}$	D	606	GOL	01-C1-C2-C3
$\frac{2}{2}$	D	611	GOL	01-C1-C2-C3
$\frac{2}{2}$	A	602	GOL	01-C1-C2-O2
2	A	604	GOL	02-C2-C3-O3
2	A	608	GOL	02-C2-C3-O3
2	E	604	GOL	01-C1-C2-O2
2	D	601	GOL	01-C1-C2-O2
2	D	603	GOL	01-C1-C2-O2
2	D	606	GOL	01-C1-C2-O2
3	D	616	I3U	C02-C03-C04-C05
2	A	610	GOL	02-C2-C3-O3
2	A	611	GOL	01-C1-C2-O2
$\frac{-2}{2}$	D	608	GOL	02-C2-C3-O3
2	A	607	GOL	01-C1-C2-O2
2	A	607	GOL	02-C2-C3-O3
$\frac{-2}{2}$	R	604	GOL	01-C1-C2-O2
4		001		

Continued from previous page...

		1	1.5	
\mathbf{Mol}	Chain	Res	Type	Atoms
2	В	610	GOL	O2-C2-C3-O3
2	С	606	GOL	O1-C1-C2-O2
2	С	608	GOL	O2-C2-C3-O3
2	D	611	GOL	O1-C1-C2-O2
2	D	615	GOL	O2-C2-C3-O3
2	В	613	GOL	O2-C2-C3-O3
2	С	601	GOL	O2-C2-C3-O3
2	С	602	GOL	O2-C2-C3-O3
2	Е	602	GOL	O1-C1-C2-O2
2	Е	607	GOL	O2-C2-C3-O3
2	D	610	GOL	O2-C2-C3-O3
2	D	613	GOL	O2-C2-C3-O3
2	A	607	GOL	C1-C2-C3-O3
2	D	610	GOL	O1-C1-C2-C3
2	D	610	GOL	C1-C2-C3-O3
2	В	610	GOL	O1-C1-C2-C3
2	В	613	GOL	C1-C2-C3-O3
2	А	608	GOL	O1-C1-C2-O2
2	D	614	GOL	O2-C2-C3-O3
3	С	610	I3U	C02-C03-C04-C05
2	B	608	GOL	O2-C2-C3-O3
2	B	610	GOL	01-C1-C2-O2
2	Е	603	GOL	01-C1-C2-O2
2	B	605	GOL	C1-C2-C3-O3
2	Е	602	GOL	01-C1-C2-C3
2	E	607	GOL	C1-C2-C3-O3
2	Е	608	GOL	O1-C1-C2-C3
2	D	611	GOL	C1-C2-C3-O3
2	D	615	GOL	C1-C2-C3-O3
2	В	603	GOL	O1-C1-C2-O2
2	В	606	GOL	O1-C1-C2-O2
2	С	605	GOL	O1-C1-C2-O2
2	Е	607	GOL	O1-C1-C2-O2
2	D	610	GOL	01-C1-C2-O2
2	D	611	GOL	O2-C2-C3-O3
2	С	609	GOL	O2-C2-C3-O3
4	D	617	LMS	C5'-O5'-S-N
2	А	613	GOL	01-C1-C2-C3
2	B	610	GOL	C1-C2-C3-O3
2	С	608	GOL	O1-C1-C2-C3
2	D	613	GOL	C1-C2-C3-O3
3	В	615	I3U	C02-C03-C04-C05

Continued from previous page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	В	609	GOL	O2-C2-C3-O3
2	Е	608	GOL	O2-C2-C3-O3

There are no ring outliers.

20 monomers are involved in 25 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
2	С	608	GOL	1	0
2	Е	602	GOL	1	0
2	D	612	GOL	1	0
2	D	610	GOL	1	0
2	Е	605	GOL	1	0
2	А	604	GOL	1	0
2	С	602	GOL	3	0
2	В	602	GOL	1	0
2	С	601	GOL	1	0
2	D	608	GOL	1	0
2	В	614	GOL	1	0
2	В	603	GOL	3	0
2	Ε	607	GOL	1	0
2	А	613	GOL	1	0
2	С	607	GOL	1	0
2	В	611	GOL	3	0
2	A	605	GOL	1	0
2	D	615	GOL	1	0
5	Ē	611	PO4	1	0
7	D	621	SO4	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	593/612~(96%)	-0.20	8 (1%) 77 79	39, 56, 88, 157	0
1	В	592/612~(96%)	-0.15	5 (0%) 86 87	39, 54, 78, 145	0
1	С	592/612~(96%)	-0.06	7 (1%) 79 80	47, 67, 96, 148	0
1	D	592/612~(96%)	-0.23	9 (1%) 73 75	46, 56, 79, 130	0
1	Ε	591/612~(96%)	-0.15	13 (2%) 62 65	47, 67, 96, 157	0
All	All	2960/3060~(96%)	-0.16	42 (1%) 75 77	39, 59, 91, 157	0

All (42) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	42	ASP	6.4
1	В	41	ALA	5.5
1	Е	41	ALA	4.8
1	D	42	ASP	4.7
1	А	592	LEU	4.1
1	Ε	42	ASP	4.1
1	D	41	ALA	3.5
1	Е	573	ALA	3.4
1	Е	591	GLY	3.3
1	С	591	GLY	3.2
1	С	592	LEU	3.2
1	D	267	ASP	3.2
1	Е	592	LEU	3.1
1	Е	471	ASP	2.9
1	Е	551	PRO	2.8
1	Е	44	GLN	2.8
1	Е	43	GLY	2.7
1	D	43	GLY	2.7
1	А	41	ALA	2.6
1	С	520	ASP	2.6

Mol	Chain	Res	Type	RSRZ
1	А	573	ALA	2.6
1	D	397	ARG	2.5
1	А	539	LEU	2.4
1	Е	45	ASP	2.4
1	С	411	PRO	2.4
1	D	592	LEU	2.4
1	А	0	HIS	2.3
1	Е	411	PRO	2.3
1	Е	83	ASP	2.3
1	А	537	PRO	2.2
1	В	43	GLY	2.2
1	В	39	GLU	2.2
1	В	40	PRO	2.2
1	С	523	ARG	2.2
1	А	43	GLY	2.2
1	Е	47	ARG	2.2
1	А	544	ARG	2.2
1	D	44	GLN	2.2
1	С	573	ALA	2.1
1	С	589	LEU	2.1
1	D	586	ARG	2.1
1	D	297	LEU	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q < 0.9
2	GOL	D	614	6/6	0.61	0.54	73,74,74,77	6

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
2	GOL	D	608	6/6	0.62	0.34	72,77,80,81	0
2	GOL	А	607	6/6	0.64	0.35	88,90,92,98	0
2	GOL	Е	607	6/6	0.68	0.27	92,93,97,98	0
7	SO4	Е	619	5/5	0.68	0.26	124,125,125,126	0
7	SO4	А	624	5/5	0.70	0.60	81,82,86,88	5
7	SO4	Е	614	5/5	0.70	0.48	100,100,102,106	5
2	GOL	А	601	6/6	0.70	0.45	74,75,77,78	0
7	SO4	С	622	5/5	0.71	0.43	91,91,92,92	5
2	GOL	А	605	6/6	0.71	0.31	76,77,77,81	0
2	GOL	С	609	6/6	0.71	0.39	80,84,91,102	0
2	GOL	В	609	6/6	0.72	0.52	86,87,88,92	0
7	SO4	Е	616	5/5	0.72	0.33	96,97,98,104	5
2	GOL	D	607	6/6	0.72	0.46	90,91,101,109	0
2	GOL	В	613	6/6	0.73	0.39	95,96,96,97	0
7	SO4	Е	615	5/5	0.73	0.50	94,94,99,107	5
2	GOL	В	610	6/6	0.73	0.35	70,71,72,73	0
7	SO4	Е	613	5/5	0.73	0.46	127,127,128,132	0
2	GOL	В	606	6/6	0.75	0.53	78,81,82,82	0
7	SO4	А	618	5/5	0.76	0.30	122,123,125,128	0
7	SO4	В	630	5/5	0.76	0.34	111,112,112,119	5
7	SO4	D	620	5/5	0.76	0.34	127,127,130,132	0
7	SO4	D	627	5/5	0.76	0.45	132,132,133,133	0
7	SO4	С	621	5/5	0.77	0.43	105,106,112,115	5
2	GOL	С	608	6/6	0.77	0.20	80,81,85,86	0
7	SO4	А	619	5/5	0.77	0.31	103,103,114,118	0
7	SO4	D	624	5/5	0.78	0.42	$95,\!96,\!98,\!102$	5
7	SO4	А	625	5/5	0.78	0.31	80,81,81,89	5
2	GOL	А	612	6/6	0.79	0.23	80,81,82,84	0
2	GOL	D	611	6/6	0.79	0.36	73,75,76,77	0
2	GOL	D	612	6/6	0.79	0.35	91,91,91,91	0
7	SO4	С	623	5/5	0.79	0.48	131,132,133,133	0
2	GOL	С	607	6/6	0.79	0.41	76,77,78,84	0
7	SO4	В	621	5/5	0.79	0.43	107,108,117,118	0
7	SO4	С	618	5/5	0.80	0.49	81,81,83,88	5
7	SO4	D	626	5/5	0.80	0.36	95,96,102,108	5
2	GOL	D	610	6/6	0.80	0.27	82,83,84,85	0
7	SO4	B	625	5/5	0.81	0.40	100,100,100,102	5
7	SO4	B	626	5/5	0.81	0.41	83,83,89,91	5
7	SO4	A	621	5/5	0.81	0.51	119,119,120,120	0
7	SO4	C	614	5/5	0.81	0.46	122,123,123,123	0
2	GOL	B	614	6/6	0.81	0.24	69,73,78,85	0
7	SO4	C	620	5/5	0.81	0.42	$89,\!89,\!93,\!96$	5

	Turne	Chair	D oc	Atoma	DSCC	DCD	B factors (λ^2)	
	COL		Res 612			R5R	\mathbf{B} -factors(\mathbf{A}^{-})	Q<0.9
	GOL	A	013	0/0	0.81	0.28	85,85,84,84	0
2	GOL		605 C24		0.81	0.34	85,80,87,87	0
(<u>504</u>	B	624 605		0.81	0.03		0
2	GOL	D	605 616		0.82	0.23	07,71,74,74	0
7	SO4		616	5/5	0.82	0.47	128,128,128,129	<u> </u>
7	SO4	B	627	5/5	0.82	0.30	94,94,96,98	5
7	SO4	B	623	5/5	0.82	0.37	111,112,115,121	5
1	SO4	D	629	5/5	0.82	0.36	130,130,131,131	0
2	GOL	A	609	6/6	0.83	0.25	65,67,68,69	0
7	SO4	B	628	5/5	0.83	0.70	102,102,102,102	5
7	SO4	E	618	5/5	0.83	0.26	90,91,92,92	5
2	GOL	E	608	6/6	0.84	0.40	75,76,76,82	0
2	GOL	С	601	6/6	0.84	0.29	71,72,75,75	0
2	GOL	В	603	6/6	0.84	0.26	63,65,68,74	0
7	SO4	A	622	5/5	0.84	0.37	110,110,111,116	0
7	SO4	С	617	5/5	0.84	0.22	110,111,115,122	0
2	GOL	D	613	6/6	0.84	0.29	78,79,80,83	0
7	SO4	D	628	5/5	0.84	0.40	$94,\!94,\!95,\!95$	5
2	GOL	В	607	6/6	0.84	0.21	74,75,77,81	0
7	SO4	D	622	5/5	0.85	0.33	111,111,112,112	0
2	GOL	D	606	6/6	0.85	0.34	78,80,80,80	0
2	GOL	В	602	6/6	0.85	0.25	61,62,68,68	0
2	GOL	D	602	6/6	0.85	0.23	82,83,84,85	0
2	GOL	Е	603	6/6	0.85	0.21	78,84,87,90	0
7	SO4	А	623	5/5	0.85	0.39	123,123,125,126	0
2	GOL	С	606	6/6	0.86	0.40	79,81,85,86	0
2	GOL	В	608	6/6	0.86	0.39	76,77,78,78	0
7	SO4	В	629	5/5	0.86	0.30	95,96,98,100	5
2	GOL	Е	604	6/6	0.86	0.35	79,80,80,81	0
2	GOL	С	605	6/6	0.86	0.28	78,79,79,79	0
7	SO4	В	620	5/5	0.87	0.40	103,103,103,105	0
7	SO4	А	620	5/5	0.87	0.48	108,108,109,113	0
7	SO4	Е	617	5/5	0.87	0.29	78,78,81,82	5
7	SO4	С	619	5/5	0.87	0.29	83,83,91,92	5
6	MG	Е	612	1/1	0.88	0.08	62,62,62,62	0
2	GOL	A	608	6/6	0.88	0.25	60,62,62,63	0
2	GOL	В	612	6/6	0.88	0.16	58,62,67,69	0
2	GOL	С	604	6/6	0.88	0.25	87,89,89,90	0
2	GOL	A	610	6/6	0.88	0.31	82,82,83,86	0
2	GOL	Е	602	6/6	0.88	0.24	72,73,73,75	0
7	SO4	D	623	5/5	0.89	0.24	133,133.134.134	5
7	SO4	B	622	5/5	0.89	0.22	104,105.105.105	5
		-		- / -			. , , = , =	

Mol	Type	Chain	ls page	Atoms	BSCC	BSB	B -factors (λ^2)	
	COL		606		0.80	0.20	$\frac{D-1actors(A)}{77.02.02.05}$	
	GOL SO4		615	5/5	0.89	0.30	111 112 124 120	0
$\frac{1}{2}$	COL	B	604	6/6	0.89	0.19 0.22	61 64 64 66	0
$\frac{2}{2}$	COL	B	611	6/6	0.89	0.22	75 76 77 78	0
$\frac{2}{2}$	COL		604	6/6	0.09	0.20 0.23	65 66 67 68	0
	SO4		625	5/5	0.90	$\begin{array}{c} 0.23 \\ 0.33 \end{array}$	00.01.08.101	5
2	COL		606	6/6	0.90	0.00	63 65 60 72	0
7	SO4	D	621	5/5	0.90	0.22 0.42	105,05,05,12	0
2	GOL	B	605	6/6	0.01	0.42	86 87 87 87	0
$\frac{2}{2}$	GOL	D	615	6/6	0.91	0.30 0.23	80.81.81.82	0
6	MG		617	1/1	0.91	0.20	58 58 58 58	0
7	SO4	B	619	$\frac{1}{5}/5$	0.92	0.20 0.32	115 115 126 129	0
2	GOL	E E	601	6/6	0.92	0.02	58 60 64 66	0
2	GOL	D	609	6/6	0.92	0.19	69 70 73 84	0
2	GOL	A	603	6/6	0.93	0.10	68.69.69.70	0
2	GOL	C	602	6/6	0.93	0.19	62.64.65.66	0
2	GOL	D	601	6/6	0.93	0.22	67.69.71.75	0
3	I3U	C	610	14/15	0.93	0.21	55.60.70.75	0
3	I3U	D	616	14/15	0.93	0.23	50.58.66.73	0
2	GOL	С	603	6/6	0.93	0.25	57,59,60,70	0
2	GOL	A	611	6/6	0.94	0.28	51,52,53,54	6
3	I3U	A	614	14/15	0.94	0.20	50,59,68,74	0
2	GOL	D	604	6/6	0.94	0.23	55,57,60,62	0
3	I3U	Е	609	14/15	0.94	0.16	59,68,81,84	0
2	GOL	В	601	6/6	0.94	0.24	54,56,58,62	0
2	GOL	А	602	6/6	0.94	0.20	50,58,59,60	0
2	GOL	D	603	6/6	0.95	0.19	50,51,57,57	0
6	MG	С	613	1/1	0.95	0.17	61,61,61,61	0
6	MG	D	619	1/1	0.96	0.07	57,57,57,57	0
3	I3U	В	615	14/15	0.96	0.23	52,56,62,73	0
6	MG	В	618	1/1	0.96	0.11	58,58,58,58	0
4	LMS	D	617	23/23	0.98	0.17	43,49,52,57	0
5	PO4	С	612	5/5	0.98	0.19	61,62,65,66	0
5	PO4	E	611	5/5	0.98	0.12	$58,\!61,\!62,\!67$	0
5	PO4	D	618	5/5	0.98	0.15	$51,\!53,\!57,\!58$	0
4	LMS	А	615	23/23	0.98	0.20	44,49,54,56	0
4	LMS	B	616	$23\overline{/23}$	0.98	0.21	44,47,49,51	0
4	LMS	C	611	23/23	0.98	0.18	$52,\!56,\!58,\!63$	0
4	LMS	E	610	23/23	0.98	0.14	$53,\!56,\!59,\!65$	0
5	PO4	В	617	5/5	0.99	0.19	51,52,53,58	0
5	PO4	A	616	5/5	0.99	0.19	52,54,57,60	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all

instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

