

wwPDB NMR Structure Validation Summary Report (i)

Jun 3, 2023 – 04:14 AM EDT

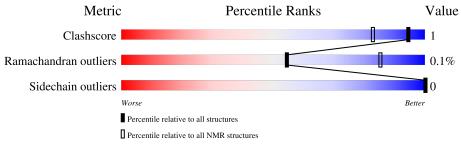
PDB ID	:	5TTT
BMRB ID	:	30200
Title	:	Sparse-restraint solution NMR structure of micelle-solubilized cytosolic amino
		terminal domain of C. elegans mechanosensory ion channel MEC-4 refined by
		restrained Rosetta
Authors	:	Everett, J.K.; Liu, G.; Mao, B.; Driscoll, M.A.; Montelione, G.T.; Northeast
		Structural Genomics Consortium (NESG)
Deposited on	:	2016-11-04

This is a wwPDB NMR Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
wwPDB-RCI	:	$v_1n_11_5_13_A$ (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
wwPDB-ShiftChecker	:	v1.2
BMRB Restraints Analysis	:	v1.2
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.33

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 32%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	NMR archive	
	$(\# { m Entries})$	$(\# { m Entries})$	
Clashscore	158937	12864	
Ramachandran outliers	154571	11451	
Sidechain outliers	154315	11428	

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	٨	111		
	А	111	95%	••

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 18 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues					
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model					
1	A:1-A:107 (107)	0.68	18		

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 3 clusters and 1 single-model cluster was found.

Cluster number	Models
1	1, 2, 6, 7, 13, 17, 18, 19
2	4, 5, 8, 11, 12, 15
3	3, 9, 10, 16, 20
Single-model clusters	14

3 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 1765 atoms, of which 828 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Degenerin mec-4.

Mol	Chain	Residues	Atoms					Trace	
1	٨	111	Total	С	Н	Ν	0	\mathbf{S}	0
	A		1765	599	828	154	177	$\overline{7}$	U

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	104	LEU	-	expression tag	UNP P24612
А	105	GLU	-	expression tag	UNP P24612
А	106	HIS	-	expression tag	UNP P24612
А	107	HIS	-	expression tag	UNP P24612
А	108	HIS	-	expression tag	UNP P24612
А	109	HIS	-	expression tag	UNP P24612
А	110	HIS	-	expression tag	UNP P24612
А	111	HIS	-	expression tag	UNP P24612

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Degenerin mec-4

Chain A:	95%	• •
M1082 H108 H110 H110		

4.2 Residue scores for the representative (medoid) model from the NMR ensemble

. .

The representative model is number 18. Colouring as in section 4.1 above.

• Molecule 1: Degenerin mec-4

Chain A:

95%

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: *simulated annealing*.

Of the 250 calculated structures, 20 were deposited, based on the following criterion: target function.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
Restrained Rosetta	refinement	
CYANA	structure calculation	
CNS	structure solution	
TALOS	structure solution	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	working_cs.cif
Number of chemical shift lists	1
Total number of shifts	469
Number of shifts mapped to atoms	469
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	32%

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	896	812	827	2±1
All	All	17920	16240	16540	38

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

Atom-1	Atom-2	Clash(Å)	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	(A) Distance(A)		Total
1:A:39:THR:HG23	1:A:39:THR:O	0.68	1.88	3	4
1:A:82:TRP:CD1	1:A:82:TRP:C	0.59	2.74	2	14
1:A:39:THR:O	1:A:39:THR:CG2	0.49	2.61	3	2
1:A:74:LEU:C	1:A:74:LEU:HD23	0.46	2.30	3	1
1:A:30:TYR:C	1:A:30:TYR:CD1	0.46	2.88	10	1

5 of 14 unique clashes are listed below, sorted by their clash magnitude.

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	oured Allowed		Percentiles	
1	А	106/111~(95%)	93 ± 2 (87 $\pm2\%$)	$13\pm2~(12\pm2\%)$	0±0 (0±0%)	54	85
All	All	2120/2220~(95%)	1854 (87%)	264 (12%)	2 (0%)	54	85

All 1 unique Ramachandran outliers are listed below.

Mol	Chain	Res	Type	Models (Total)
1	А	100	GLY	2

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	97/101~(96%)	97±0 (100±0%)	0±0 (0±0%)	100	100
All	All	1940/2020~(96%)	1940 (100%)	0 (0%)	100	100

There are no protein residues with a non-rotameric sidechain to report.

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 32% for the well-defined parts and 31% for the entire structure.

7.1 Chemical shift list 1

File name: working_cs.cif

Chemical shift list name: data1.str

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	469
Number of shifts mapped to atoms	469
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

7.1.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\rm Correction}\pm{\rm precision},ppm$	Suggested action
$^{13}C_{\alpha}$	101	0.33 ± 0.14	None needed (< 0.5 ppm)
$^{13}C_{\beta}$	93	0.97 ± 0.06	Should be checked
$^{13}C'$	93	-0.06 ± 0.12	None needed (< 0.5 ppm)
¹⁵ N	91	0.18 ± 0.20	None needed (< 0.5 ppm)

7.1.3 Completeness of resonance assignments (i)

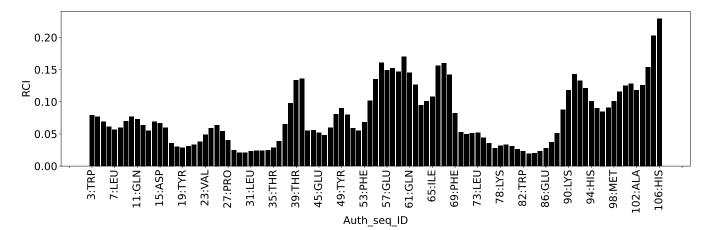
The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 32%, i.e. 469 atoms were assigned a chemical shift out of a possible 1463. 0 out of 12 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathbf{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	376/529~(71%)	91/214 (43%)	194/214 (91%)	91/101~(90%)
Sidechain	93/739~(13%)	0/476~(0%)	93/240~(39%)	0/23~(0%)

Continued on next page...

	Total	$^{1}\mathbf{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Aromatic	0/195~(0%)	0/98~(0%)	0/95~(0%)	0/2~(0%)
Overall	469/1463~(32%)	91/788~(12%)	287/549~(52%)	91/126~(72%)

Continued from previous page...


7.1.4 Statistically unusual chemical shifts (i)

There are no statistically unusual chemical shifts.

7.1.5 Random Coil Index (RCI) plots (1)

The image below reports *random coil index* values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition. If well-defined core and ill-defined regions are not identified then it is shown as gray bars.

Random coil index (RCI) for chain A:

8 NMR restraints analysis (i)

8.1 Conformationally restricting restraints (i)

The following table provides the summary of experimentally observed NMR restraints in different categories. Restraints are classified into different categories based on the sequence separation of the atoms involved.

Description	Value
Total distance restraints	175
Intra-residue (i-j =0)	0
Sequential (i-j =1)	4
Medium range ($ i-j >1$ and $ i-j <5$)	18
Long range $(i-j \ge 5)$	101
Inter-chain	0
Hydrogen bond restraints	52
Disulfide bond restraints	0
Total dihedral-angle restraints	47
Number of unmapped restraints	0
Number of restraints per residue	2.0
Number of long range restraints per residue ¹	0.9

¹Long range hydrogen bonds and disulfide bonds are counted as long range restraints while calculating the number of long range restraints per residue

8.2 Residual restraint violations (i)

This section provides the overview of the restraint violations analysis. The violations are binned as small, medium and large violations based on its absolute value. Average number of violations per model is calculated by dividing the total number of violations in each bin by the size of the ensemble.

8.2.1 Average number of distance violations per model (i)

Distance violations less than 0.1 Å are not included in the calculation.

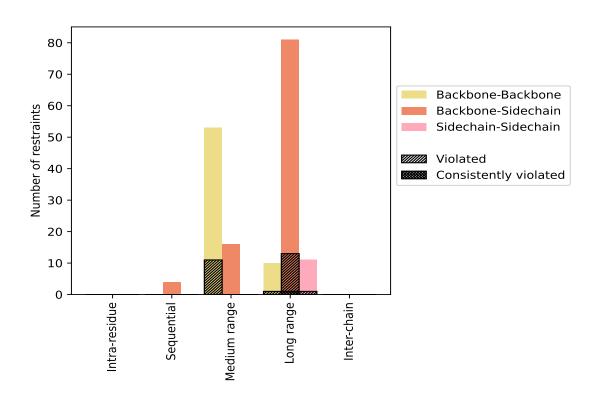
Bins (Å)	Average number of violations per model	Max (Å)
0.1-0.2 (Small)	5.0	0.2
0.2-0.5 (Medium)	2.6	0.49
>0.5 (Large)	0.8	1.43

8.2.2 Average number of dihedral-angle violations per model (i)

Dihedral-angle violations less than 1° are not included in the calculation.

Bins $(^{\circ})$	Average number of violations per model	Max ($^{\circ}$)
1.0-10.0 (Small)	0.7	9.5
10.0-20.0 (Medium)	0.2	16.2
>20.0 (Large)	None	None

9 Distance violation analysis (i)


9.1 Summary of distance violations (i)

The following table shows the summary of distance violations in different restraint categories based on the sequence separation of the atoms involved. Each category is further sub-divided into three sub-categories based on the atoms involved. Violations less than 0.1 Å are not included in the statistics.

Destroints trues	Count	$\%^1$	Vi	olated	3	Consis	tently	\cdot Violated ⁴
Restraints type	Count	701	Count	$\%^2$	$\%^1$	Count	$\%^2$	$\%^1$
Intra-residue (i-j =0)	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Backbone	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Sidechain-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Sequential (i-j =1)	4	2.3	0	0.0	0.0	0	0.0	0.0
Backbone-Backbone	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	4	2.3	0	0.0	0.0	0	0.0	0.0
Sidechain-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Medium range ($ i-j > 1 \& i-j < 5$)	18	10.3	1	5.6	0.6	0	0.0	0.0
Backbone-Backbone	2	1.1	1	50.0	0.6	0	0.0	0.0
Backbone-Sidechain	16	9.1	0	0.0	0.0	0	0.0	0.0
Sidechain-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Long range $(i-j \ge 5)$	101	57.7	15	14.9	8.6	1	1.0	0.6
Backbone-Backbone	9	5.1	1	11.1	0.6	0	0.0	0.0
Backbone-Sidechain	81	46.3	13	16.0	7.4	1	1.2	0.6
Sidechain-Sidechain	11	6.3	1	9.1	0.6	0	0.0	0.0
Inter-chain	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Backbone	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Sidechain-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Hydrogen bond	52	29.7	10	19.2	5.7	0	0.0	0.0
Disulfide bond	0	0.0	0	0.0	0.0	0	0.0	0.0
Total	175	100.0	26	14.9	14.9	1	0.6	0.6
Backbone-Backbone	63	36.0	12	19.0	6.9	0	0.0	0.0
Backbone-Sidechain	101	57.7	13	12.9	7.4	1	1.0	0.6
Sidechain-Sidechain	11	6.3	1	9.1	0.6	0	0.0	0.0

 1 percentage calculated with respect to the total number of distance restraints, 2 percentage calculated with respect to the number of restraints in a particular restraint category, 3 violated in at least one model, 4 violated in all the models

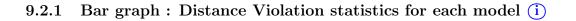
9.1.1 Bar chart : Distribution of distance restraints and violations (i)

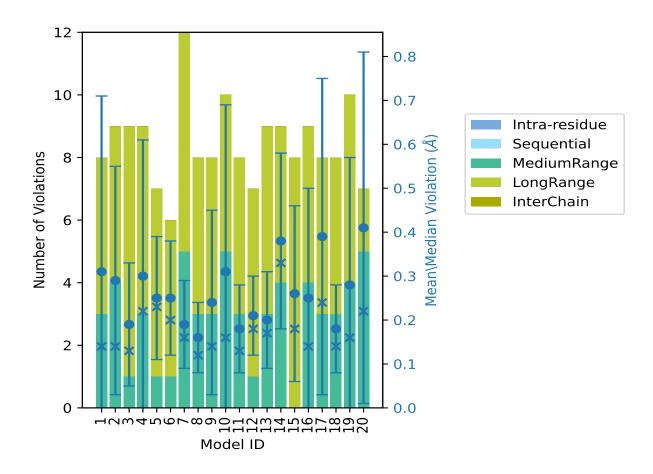
Violated and consistently violated restraints are shown using different hatch patterns in their respective categories. The hydrogen bonds and disulfied bonds are counted in their appropriate category on the x-axis

9.2 Distance violation statistics for each model (i)

The following table provides the distance violation statistics for each model in the ensemble. Violations less than 0.1 Å are not included in the statistics.

Madal ID		Nun	nber o	f viola	ations	5	Maan (Å)	Mar (Å)	SD^6 (Å)	Madian (Å)
Model ID	IR^{1}	SQ^2	MR^3	LR^4	IC^5	Total	Mean (Å)	Max (Å)	$SD^{*}(A)$	Median (Å)
1	0	0	3	5	0	8	0.31	1.35	0.4	0.14
2	0	0	4	5	0	9	0.29	0.98	0.26	0.14
3	0	0	1	8	0	9	0.19	0.58	0.14	0.13
4	0	0	3	6	0	9	0.3	1.17	0.31	0.22
5	0	0	1	6	0	7	0.25	0.57	0.14	0.23
6	0	0	1	5	0	6	0.25	0.49	0.13	0.2
7	0	0	5	7	0	12	0.19	0.49	0.1	0.16
8	0	0	3	5	0	8	0.16	0.36	0.08	0.12
9	0	0	3	5	0	8	0.24	0.75	0.21	0.14
10	0	0	5	5	0	10	0.31	1.43	0.38	0.16
11	0	0	3	5	0	8	0.18	0.43	0.1	0.13


Continued on next page...

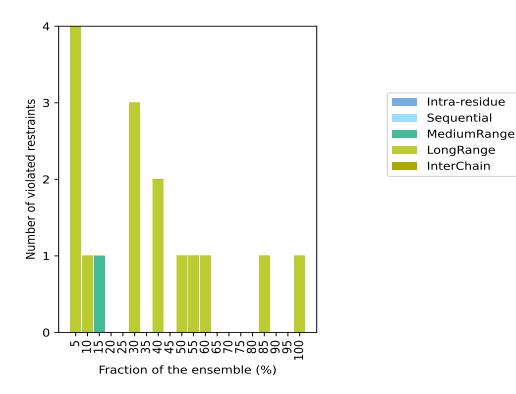


Madal ID		Nun	nber o	f viola	ations	5	Mean (Å)		SD^{6} (Å)	Madian (Å)
Model ID	IR^{1}	SQ^2	MR^3	LR^4	$ IC^5 $	Total	Mean (A)	Max (Å)	$SD^{\circ}(A)$	Median (Å)
12	0	0	1	6	0	7	0.21	0.41	0.09	0.18
13	0	0	3	6	0	9	0.2	0.48	0.11	0.17
14	0	0	4	5	0	9	0.38	0.75	0.2	0.33
15	0	0	0	8	0	8	0.26	0.77	0.2	0.18
16	0	0	4	5	0	9	0.25	0.94	0.25	0.14
17	0	0	3	5	0	8	0.39	1.17	0.36	0.24
18	0	0	3	5	0	8	0.18	0.43	0.1	0.14
19	0	0	4	6	0	10	0.28	1.13	0.29	0.16
20	0	0	5	2	0	7	0.41	1.25	0.4	0.22

Continued from previous page...

 1 Intra-residue restraints, 2 Sequential restraints, 3 Medium range restraints, 4 Long range restraints, 5 Inter-chain restraints, 6 Standard deviation

The mean(dot), median(x) and the standard deviation are shown in blue with respect to the \mathbf{y} axis on the right


9.3 Distance violation statistics for the ensemble (i)

Violation analysis may find that some restraints are violated in few models and some are violated in most of models. The following table provides this information as number of violated restraints for a given fraction of the ensemble. In total, 107(IR:0, SQ:4, MR:17, LR:86, IC:0) restraints are not violated in the ensemble.

Nu		of vio		restra	aints	Fractio	n of the ensemble
IR^1	SQ^2	MR^3	LR^4	IC ⁵	Total	Count^6	%
0	0	0	4	0	4	1	5.0
0	0	0	1	0	1	2	10.0
0	0	1	0	0	1	3	15.0
0	0	0	0	0	0	4	20.0
0	0	0	0	0	0	5	25.0
0	0	0	3	0	3	6	30.0
0	0	0	0	0	0	7	35.0
0	0	0	2	0	2	8	40.0
0	0	0	0	0	0	9	45.0
0	0	0	1	0	1	10	50.0
0	0	0	1	0	1	11	55.0
0	0	0	1	0	1	12	60.0
0	0	0	0	0	0	13	65.0
0	0	0	0	0	0	14	70.0
0	0	0	0	0	0	15	75.0
0	0	0	0	0	0	16	80.0
0	0	0	1	0	1	17	85.0
0	0	0	0	0	0	18	90.0
0	0	0	0	0	0	19	95.0
0	0	0	1	0	1	20	100.0

 1 Intra-residue restraints, 2 Sequential restraints, 3 Medium range restraints, 4 Long range restraints, 5 Inter-chain restraints, 6 Number of models with violations

9.3.1 Bar graph : Distance violation statistics for the ensemble (i)

9.4 Most violated distance restraints in the ensemble (i)

9.4.1 Histogram : Distribution of mean distance violations (i)

The following histogram shows the distribution of the average value of the violation. The average is calculated for each restraint that is violated in more than one model over all the violated models in the ensemble

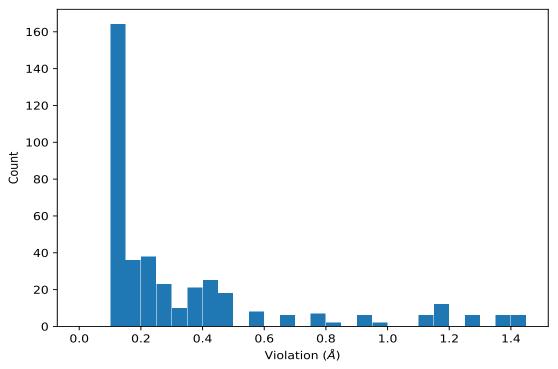
9.4.2 Table: Most violated distance restraints (i)

The following table provides the mean and the standard deviation of the violations for the 10 worst performing restraints, sorted by number of violated models and the mean violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

Key	Atom-1	Atom-2	\mathbf{Models}^1	Mean (Å)	SD^1 (Å)	Median (Å)
(1,88)	1:A:58:SER:H	1:A:23:VAL:HG11	20	0.71	0.39	0.49
(1,88)	1:A:58:SER:H	1:A:23:VAL:HG12	20	0.71	0.39	0.49
(1,88)	1:A:58:SER:H	1:A:23:VAL:HG13	20	0.71	0.39	0.49
(1,88)	1:A:58:SER:H	1:A:23:VAL:HG21	20	0.71	0.39	0.49
(1,88)	1:A:58:SER:H	1:A:23:VAL:HG22	20	0.71	0.39	0.49
(1,88)	1:A:58:SER:H	1:A:23:VAL:HG23	20	0.71	0.39	0.49
(1,98)	1:A:99:ILE:H	1:A:82:TRP:HE1	17	0.19	0.05	0.19
(2,29)	1:A:40:GLU:O	1:A:44:TYR:H	15	0.22	0.07	0.2
(2,13)	1:A:18:GLU:O	1:A:22:GLN:H	12	0.21	0.06	0.22
(1,31)	1:A:79:ARG:H	1:A:74:LEU:HD11	12	0.14	0.04	0.13
(1,31)	1:A:79:ARG:H	1:A:74:LEU:HD12	12	0.14	0.04	0.13
(1,31)	1:A:79:ARG:H	1:A:74:LEU:HD13	12	0.14	0.04	0.13
(1,31)	1:A:79:ARG:H	1:A:74:LEU:HD21	12	0.14	0.04	0.13
(1,31)	1:A:79:ARG:H	1:A:74:LEU:HD22	12	0.14	0.04	0.13
(1,31)	1:A:79:ARG:H	1:A:74:LEU:HD23	12	0.14	0.04	0.13
(1,50)	1:A:44:TYR:H	1:A:53:PHE:HE1	11	0.15	0.07	0.13

Continued on next page...

Key	Atom-1	Atom-2	\mathbf{Models}^1	Mean (Å)	SD^1 (Å)	Median (Å)
(1,50)	1:A:44:TYR:H	1:A:53:PHE:HE2	11	0.15	0.07	0.13
(1,34)	1:A:49:TYR:H	1:A:87:PHE:HE1	10	0.12	0.02	0.12
(1,34)	1:A:49:TYR:H	1:A:87:PHE:HE2	10	0.12	0.02	0.12
(1,23)	1:A:98:MET:H	1:A:53:PHE:HD1	8	0.19	0.03	0.18
(1,23)	1:A:98:MET:H	1:A:53:PHE:HD2	8	0.19	0.03	0.18
(1,28)	1:A:84:PHE:HD1	1:A:38:VAL:H	8	0.17	0.06	0.14
(1,28)	1:A:84:PHE:HD2	1:A:38:VAL:H	8	0.17	0.06	0.14
(2,43)	1:A:82:TRP:O	1:A:86:GLU:H	7	0.26	0.21	0.17


Continued from previous page...

 $^1\mathrm{Number}$ of violated models, $^2\mathrm{Standard}$ deviation

9.5 All violated distance restraints (i)

9.5.1 Histogram : Distribution of distance violations (i)

The following histogram shows the distribution of the absolute value of the violation for all violated restraints in the ensemble.

9.5.2 Table : All distance violations (i)

The following table provides the 10 worst performing restraints, sorted by the violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

51	Tr	$\Gamma $	
J	Ι.		L

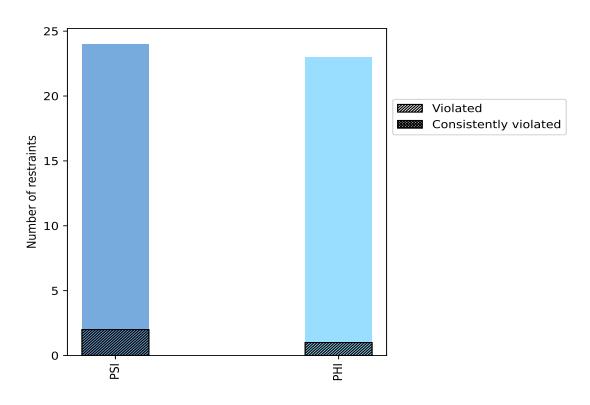
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG11 1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22 1:A:23:VAL:HG23 1:A:23:VAL:HG11 1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG21	10 10 10 10 10 10 1 1 1 1 1 1	Violation (Å) 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.35 1.35 1.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22 1:A:23:VAL:HG23 1:A:23:VAL:HG11 1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22	10 10 10 10 10 1 1 1 1	$ \begin{array}{r} 1.43 \\ 1.43 \\ 1.43 \\ 1.43 \\ 1.35 \\ 1.35 \\ 1.35 \\ \end{array} $
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG21 1:A:23:VAL:HG22 1:A:23:VAL:HG23 1:A:23:VAL:HG11 1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22	10 10 10 1 1 1 1	$ \begin{array}{r} 1.43 \\ 1.43 \\ 1.43 \\ 1.35 \\ 1.35 \\ 1.35 \\ \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG22 1:A:23:VAL:HG23 1:A:23:VAL:HG11 1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22	10 10 1 1 1 1	1.43 1.43 1.35 1.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG23 1:A:23:VAL:HG11 1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG21	10 1 1 1	1.43 1.35 1.35
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG11 1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22	1 1 1	1.35 1.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG12 1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22	1	1.35
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG13 1:A:23:VAL:HG21 1:A:23:VAL:HG22	1	
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H :58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG21 1:A:23:VAL:HG22		1 25
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H :58:SER:H :58:SER:H :58:SER:H	1:A:23:VAL:HG22	1	1.00
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H :58:SER:H :58:SER:H		_ <u> </u>	1.35
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H :58:SER:H		1	1.35
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H	1:A:23:VAL:HG23	1	1.35
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$		1:A:23:VAL:HG11	20	1.25
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$		1:A:23:VAL:HG12	20	1.25
$\begin{array}{c ccccc} (1,88) & 1:A:\\ (1,88) &$:58:SER:H	1:A:23:VAL:HG13	20	1.25
$\begin{array}{c} (1,88) & 1:A:\\ (1,88) & 1:A:\\$:58:SER:H	1:A:23:VAL:HG21	20	1.25
$\begin{array}{c ccccc} (1,88) & 1:A:\\ (1,88) &$:58:SER:H	1:A:23:VAL:HG22	20	1.25
$\begin{array}{c ccccc} (1,88) & 1:A:\\ (1,88) &$:58:SER:H	1:A:23:VAL:HG23	20	1.25
$\begin{array}{c ccccc} (1,88) & 1:A:\\ (1,88) &$:58:SER:H	1:A:23:VAL:HG11	4	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ (1,88) & $:58:SER:H	1:A:23:VAL:HG12	4	1.17
$\begin{array}{c cccc} (1,88) & 1:A\\ \hline (1$:58:SER:H	1:A:23:VAL:HG13	4	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ (1,88) & $:58:SER:H	1:A:23:VAL:HG21	4	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ (1,88) & $:58:SER:H	1:A:23:VAL:HG22	4	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ (1,88) & $:58:SER:H	1:A:23:VAL:HG23	4	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ (1,88) & $:58:SER:H	1:A:23:VAL:HG11	17	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ \end{array}$:58:SER:H	1:A:23:VAL:HG12	17	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ \end{array}$:58:SER:H	1:A:23:VAL:HG13	17	1.17
$\begin{array}{c cccc} (1,88) & 1:A:\\ \end{array}$:58:SER:H	1:A:23:VAL:HG21	17	1.17
$\begin{array}{c c} (1,88) & 1:A:\\ \end{array}$:58:SER:H	1:A:23:VAL:HG22	17	1.17
$\begin{array}{c c} (1,88) & 1:A: \\ (1,88) & 1:A: \\ (1,88) & 1:A: \\ (1,88) & 1:A: \\ \end{array}$:58:SER:H	1:A:23:VAL:HG23	17	1.17
(1,88) 1:A: (1,88) 1:A:	:58:SER:H	1:A:23:VAL:HG11	19	1.13
(1,88) 1:A:	:58:SER:H	1:A:23:VAL:HG12	19	1.13
(/ /	:58:SER:H	1:A:23:VAL:HG13	19	1.13
	:58:SER:H	1:A:23:VAL:HG21	19	1.13
. ,	:58:SER:H	1:A:23:VAL:HG22	19	1.13
	:58:SER:H	1:A:23:VAL:HG23	19	1.13
	:15:ASP:H	1:A:10:TYR:HD1	2	0.98
		1:A:10:TYR:HD2	2	0.98
() /	:15:ASP:H	1:A:23:VAL:HG11	16	0.94
		1:A:23:VAL:HG12	16	0.94
	:15:ASP:H	1:A:23:VAL:HG13	16	0.94
(, ,	:15:ASP:H :58:SER:H	1:A:23:VAL:HG21	16	0.94
(1,88) 1:A:	:15:ASP:H :58:SER:H :58:SER:H		16	0.94

Continued on next page...

Key	Atom-1	Atom-2	Model ID	Violation (Å)
(1,88)	1:A:58:SER:H	1:A:23:VAL:HG23	16	0.94
(1,83)	1:A:15:ASP:H	1:A:10:TYR:HD1	17	0.81
(1,83)	1:A:15:ASP:H	1:A:10:TYR:HD2	17	0.81
(1,83)	1:A:15:ASP:H	1:A:10:TYR:HD1	15	0.77

Continued from previous page...

10 Dihedral-angle violation analysis (i)


10.1 Summary of dihedral-angle violations (i)

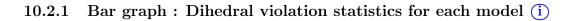
The following table provides the summary of dihedral-angle violations in different dihedral-angle types. Violations less than 1° are not included in the calculation.

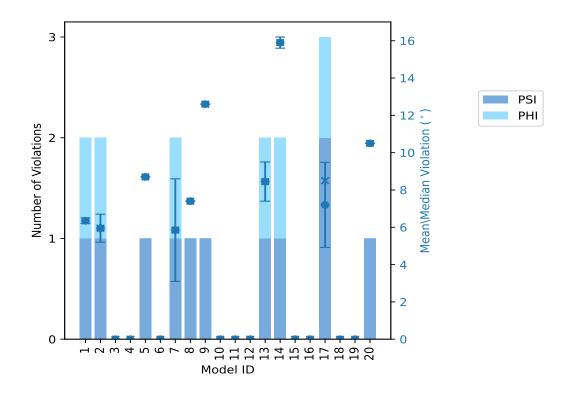
	Count	$\%^1$	Vio	lated	3	Consis	tent	y Violated ⁴
Angle type	Count	70-	Count	$\%^2$	$\%^1$	Count	$\%^2$	$ y Violated4 \%^1 0.0 0.0 0.0 $
PSI	24	51.1	2	8.3	4.3	0	0.0	0.0
PHI	23	48.9	1	4.3	2.1	0	0.0	0.0
Total	47	100.0	3	6.4	6.4	0	0.0	0.0

 1 percentage calculated with respect to total number of dihedral-angle restraints, 2 percentage calculated with respect to number of restraints in a particular dihedral-angle type, 3 violated in at least one model, 4 violated in all the models

10.1.1 Bar chart : Distribution of dihedral-angles and violations (i)

Violated and consistently violated restraints are shown using different hatch patterns in their respective categories




10.2 Dihedral-angle violation statistics for each model (i)

The following table provides the dihedral-angle violation statistics for each model in the ensemble. Violations less than 1° are not included in the statistics.

Model ID	Nun	nber o	of violations	Maan (°)	M_{ov} (°)	SD (°)	Madian (°)
Model ID	PSI	PHI	Total	Mean ($^{\circ}$)	$Max (^{\circ})$	$SD(^{\circ})$	Median ($^{\circ}$)
1	1	1	2	6.35	6.5	0.15	6.35
2	1	1	2	5.95	6.7	0.75	5.95
3	0	0	0	0.0	0.0	0.0	0.0
4	0	0	0	0.0	0.0	0.0	0.0
5	1	0	1	8.7	8.7	0.0	8.7
6	0	0	0	0.0	0.0	0.0	0.0
7	1	1	2	5.85	8.6	2.75	5.85
8	1	0	1	7.4	7.4	0.0	7.4
9	1	0	1	12.6	12.6	0.0	12.6
10	0	0	0	0.0	0.0	0.0	0.0
11	0	0	0	0.0	0.0	0.0	0.0
12	0	0	0	0.0	0.0	0.0	0.0
13	1	1	2	8.45	9.5	1.05	8.45
14	1	1	2	15.9	16.2	0.3	15.9
15	0	0	0	0.0	0.0	0.0	0.0
16	0	0	0	0.0	0.0	0.0	0.0
17	2	1	3	7.2	9.1	2.28	8.5
18	0	0	0	0.0	0.0	0.0	0.0
19	0	0	0	0.0	0.0	0.0	0.0
20	1	0	1	10.5	10.5	0.0	10.5

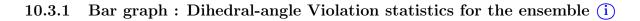
The mean(dot), median(x) and the standard deviation are shown in blue with respect to the y axis on the right

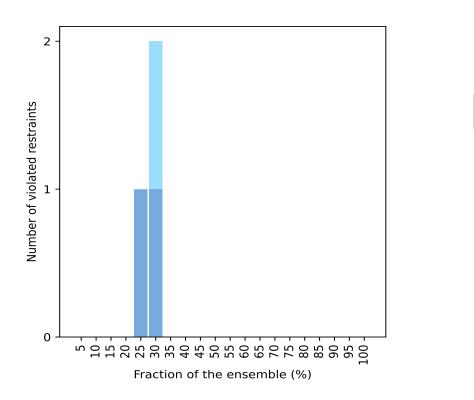
10.3 Dihedral-angle violation statistics for the ensemble (i)

Violation analysis may find that some restraints are violated in very few models and some are violated in most of models. The following table provides this information as number of violated restraints for a given fraction of ensemble.

Nun	nber o	f violated restraints	Fractio	n of the ensemble
PSI	PHI	Total	Count^1	%
0	0	0	1	5.0
0	0	0	2	10.0
0	0	0	3	15.0
0	0	0	4	20.0
1	0	1	5	25.0
1	1	2	6	30.0
0	0	0	7	35.0
0	0	0	8	40.0
0	0	0	9	45.0
0	0	0	10	50.0
0	0	0	11	55.0

Continued on next page...

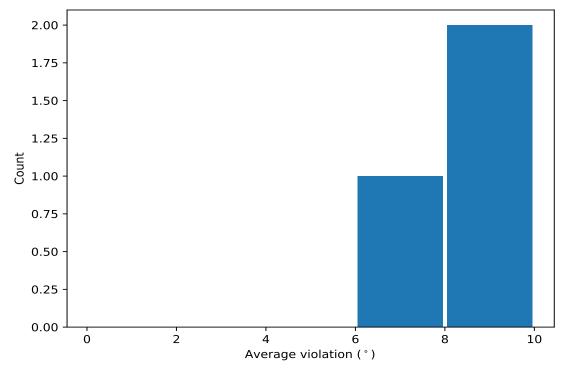

PSI


PHI

00100											
Nun	nber o	of violated restraints	Fractio	n of the ensemble							
PSI	PHI	Total	Count ¹	%							
0	0	0	12	60.0							
0	0	0	13	65.0							
0	0	0	14	70.0							
0	0	0	15	75.0							
0	0	0	16	80.0							
0	0	0	17	85.0							
0	0	0	18	90.0							
0	0	0	19	95.0							
0	0	0	20	100.0							

Continued from previous page...

 1 Number of models with violations


10.4 Most violated dihedral-angle restraints in the ensemble (i)

10.4.1 Histogram : Distribution of mean dihedral-angle violations (i)

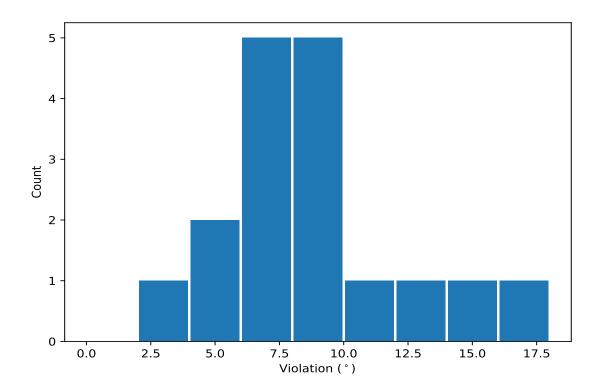
The following histogram shows the distribution of the average value of the violation. The average is calculated for each restraint that is violated in more than one model over all the violated models

in the ensemble

10.4.2 Table: Most violated dihedral-angle restraints (i)

The following table provides the mean and the standard deviation of the violation for each restraint sorted by number of violated models and the mean value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint.

Key	Atom-1	Atom-2	Atom-3	Atom-4	\mathbf{Models}^1	Mean	\mathbf{SD}^2	Median
(1,46)	1:A:101:GLU:C	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	6	8.63	3.33	7.95
(1,47)	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	1:A:103:PRO:N	6	7.62	4.35	6.45
(1,15)	1:A:76:TYR:N	1:A:76:TYR:CA	1:A:76:TYR:C	1:A:77:ASP:N	5	9.66	1.77	9.1


 1 Number of violated models, $^2 \mathrm{Standard}$ deviation, All angle values are in degree (°)

10.5 All violated dihedral-angle restraints (i)

10.5.1 Histogram : Distribution of violations (i)

The following histogram shows the distribution of the absolute value of the violation for all violated restraints in the ensemble.

10.5.2 Table: All violated dihedral-angle restraints (i)

The following table provides the list of violations for the 10 worst performing restraints, sorted by the violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint.

Key	Atom-1	Atom-2	Atom-3	Atom-4	Model ID	Violation ($^{\circ}$)
(1,47)	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	1:A:103:PRO:N	14	16.2
(1,46)	1:A:101:GLU:C	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	14	15.6
(1,15)	1:A:76:TYR:N	1:A:76:TYR:CA	1:A:76:TYR:C	1:A:77:ASP:N	9	12.6
(1,15)	1:A:76:TYR:N	1:A:76:TYR:CA	1:A:76:TYR:C	1:A:77:ASP:N	20	10.5
(1,47)	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	1:A:103:PRO:N	13	9.5
(1,15)	1:A:76:TYR:N	1:A:76:TYR:CA	1:A:76:TYR:C	1:A:77:ASP:N	17	9.1
(1,15)	1:A:76:TYR:N	1:A:76:TYR:CA	1:A:76:TYR:C	1:A:77:ASP:N	5	8.7
(1,46)	1:A:101:GLU:C	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	7	8.6
(1,46)	1:A:101:GLU:C	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	17	8.5
(1,46)	1:A:101:GLU:C	1:A:102:ALA:N	1:A:102:ALA:CA	1:A:102:ALA:C	13	7.4

