

wwPDB X-ray Structure Validation Summary Report (i)

Jun 26, 2024 – 09:35 AM EDT

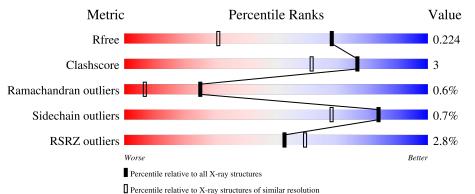
PDB ID	:	6TV4
Title	:	CFF-Notum complex
Authors	:	Zhao, Y.; Jones, E.Y.
1		2020-01-08
Resolution	:	1.53 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.53 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2556 (1.56-1.52)
Clashscore	141614	2634(1.56-1.52)
Ramachandran outliers	138981	2580 (1.56-1.52)
Sidechain outliers	138945	2577 (1.56-1.52)
RSRZ outliers	127900	2524 (1.56-1.52)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

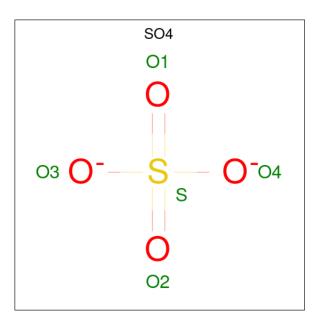
Mol	Chain	Length	Quality of chain		
			3%		
1	А	383	84%	8%	8%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 5847 atoms, of which 2790 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

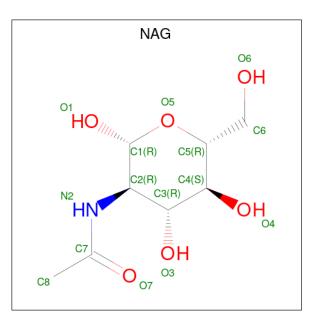
• Molecule 1 is a protein called Palmitoleoyl-protein carboxylesterase NOTUM.


Mol	Chain	Residues		Atoms					ZeroOcc	AltConf	Trace
1	А	353	$\begin{array}{c} \text{Total} \\ 5531 \end{array}$	C 1781	Н 2714	N 505	0 514	S 17	141	2	0

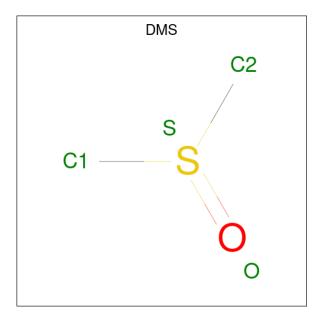
There are 13 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	78	GLU	-	expression tag	UNP Q6P988
А	79	THR	-	expression tag	UNP Q6P988
А	80	GLY	-	expression tag	UNP Q6P988
А	330	SER	CYS	engineered mutation	UNP Q6P988
А	452	GLY	-	expression tag	UNP Q6P988
A	453	THR	-	expression tag	UNP Q6P988
А	454	LYS	-	expression tag	UNP Q6P988
A	455	HIS	-	expression tag	UNP Q6P988
А	456	HIS	-	expression tag	UNP Q6P988
А	457	HIS	-	expression tag	UNP Q6P988
А	458	HIS	-	expression tag	UNP Q6P988
А	459	HIS	-	expression tag	UNP Q6P988
А	460	HIS	-	expression tag	UNP Q6P988

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O₄S).

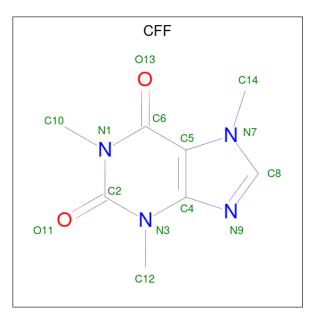


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0


• Molecule 3 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

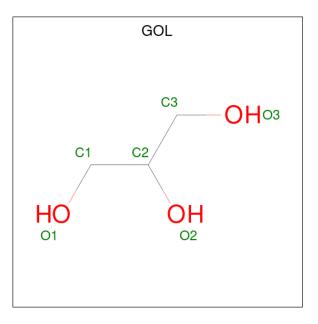
Mol	Chain	Residues	Atoms					ZeroOcc	AltConf
3	Δ	1	Total	С	Η	Ν	0	3	0
5	А	1	28	8	14	1	5	5	0

• Molecule 4 is DIMETHYL SULFOXIDE (three-letter code: DMS) (formula: C_2H_6OS).



Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	
4	Δ	A 1	Total	С	Η	Ο	S	0	0	
4	A		10	2	6	1	1	0	0	
4	Λ	1	Total	С	Η	0	S	0	0	
4	A	1	10	2	6	1	1		0	

• Molecule 5 is CAFFEINE (three-letter code: CFF) (formula: $C_8H_{10}N_4O_2$) (labeled as "Lig-



and of Interest" by depositor).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf
5	А	1	Total 24	C 8	H 10	N 4	O 2	0	0

• Molecule 6 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

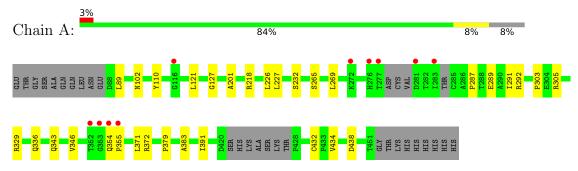
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	Total C H O 14 3 8 3	2	0
6	А	1	Total C H O 14 3 8 3	2	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	Total C H O 14 3 8 3	2	0
6	А	1	Total C H O 14 3 8 3	2	0
6	А	1	Total C H O 14 3 8 3	2	0

• Molecule 7 is water.


Μ	[ol	Chain	Residues	Ator	\mathbf{ns}	ZeroOcc	AltConf
,	7	А	114	Total 114	0 114	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Palmitoleoyl-protein carboxylesterase NOTUM

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	P 21 21 21	Depositor	
Cell constants	59.99Å 71.57Å 78.31Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	52.83 - 1.53	Depositor	
Resolution (A)	52.83 - 1.53	EDS	
% Data completeness	98.6 (52.83-1.53)	Depositor	
(in resolution range)	98.6(52.83-1.53)	EDS	
R _{merge}	(Not available)	Depositor	
R _{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.64 (at 1.53 \text{\AA})$	Xtriage	
Refinement program	REFMAC 5.8.0258	Depositor	
D D.	0.170 , 0.214	Depositor	
R, R_{free}	0.182 , 0.224	DCC	
R_{free} test set	2488 reflections $(4.89%)$	wwPDB-VP	
Wilson B-factor $(Å^2)$	18.3	Xtriage	
Anisotropy	0.169	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.45 , 45.2	EDS	
L-test for twinning ²	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.33$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
F_o, F_c correlation	0.97	EDS	
Total number of atoms	5847	wwPDB-VP	
Average B, all atoms $(Å^2)$	24.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.24% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GOL, DMS, SO4, NAG, CFF

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
Mol	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.61	0/2896	0.70	0/3939	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2817	2714	2689	17	0
2	А	60	0	0	0	0
3	А	14	14	13	0	0
4	А	8	12	12	0	0
5	А	14	10	10	1	0
6	А	30	40	40	1	0
7	А	114	0	0	1	0
All	All	3057	2790	2764	17	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 17 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:269:LEU:H	1:A:343:GLN:HE22	1.34	0.73
1:A:287:PRO:O	1:A:291:ILE:HG12	2.07	0.55
1:A:289:GLU:HA	1:A:292:ARG:HD2	1.89	0.53
1:A:346:VAL:HG11	5:A:616:CFF:H143	1.92	0.51
1:A:269:LEU:H	1:A:343:GLN:NE2	2.05	0.50

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	А	347/383~(91%)	332 (96%)	13~(4%)	2(1%)	25 7	

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	391	ILE
1	А	127	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	303/333~(91%)	301~(99%)	2(1%)	84 68	

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	371	LEU
1	А	432	CYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	273	GLN
1	А	343	GLN
1	А	354	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

21 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type		be Chain	Res	Link	Bo	Bond lengths			Bond angles		
	Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
2	SO4	А	612	-	4,4,4	0.39	0	6,6,6	0.05	0	
2	SO4	А	610	-	4,4,4	0.35	0	$6,\!6,\!6$	0.05	0	
3	NAG	А	605	1	14,14,15	0.23	0	17,19,21	0.62	0	
2	SO4	А	601	-	4,4,4	0.37	0	6,6,6	0.06	0	

Mol	Type	Chain	Res	Link	Bo	ond leng	ths	В	ond ang	les
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	CFF	А	616	-	$8,\!15,\!15$	2.05	3 (37%)	$8,\!23,\!23$	1.41	1 (12%)
2	SO4	А	604	-	4,4,4	0.39	0	6,6,6	0.05	0
2	SO4	А	614	-	4,4,4	0.39	0	$6,\!6,\!6$	0.06	0
2	SO4	А	611	-	$4,\!4,\!4$	0.38	0	$6,\!6,\!6$	0.07	0
4	DMS	А	607	-	3,3,3	0.25	0	3,3,3	0.07	0
6	GOL	А	620	-	$5,\!5,\!5$	0.09	0	$5,\!5,\!5$	0.29	0
2	SO4	А	613	-	4,4,4	0.34	0	$6,\!6,\!6$	0.05	0
2	SO4	А	602	-	$4,\!4,\!4$	0.38	0	$6,\!6,\!6$	0.11	0
2	SO4	А	603	-	$4,\!4,\!4$	0.40	0	$6,\!6,\!6$	0.07	0
6	GOL	А	621	-	$5,\!5,\!5$	0.10	0	$5,\!5,\!5$	0.37	0
2	SO4	А	615	-	$4,\!4,\!4$	0.37	0	$6,\!6,\!6$	0.05	0
6	GOL	А	619	-	$5,\!5,\!5$	0.11	0	$5,\!5,\!5$	0.37	0
6	GOL	А	618	-	$5,\!5,\!5$	0.11	0	$5,\!5,\!5$	0.31	0
6	GOL	А	617	-	$5,\!5,\!5$	0.10	0	$5,\!5,\!5$	0.37	0
4	DMS	А	606	-	3,3,3	0.30	0	3,3,3	0.04	0
2	SO4	А	608	-	4,4,4	0.37	0	$6,\!6,\!6$	0.05	0
2	SO4	А	609	-	4,4,4	0.37	0	$6,\!6,\!6$	0.07	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	GOL	А	620	-	-	2/4/4/4	-
3	NAG	А	605	1	-	0/6/23/26	0/1/1/1
6	GOL	А	621	-	-	3/4/4/4	-
5	CFF	А	616	-	-	-	0/2/2/2
6	GOL	А	619	-	-	4/4/4/4	-
6	GOL	А	618	-	-	0/4/4/4	-
6	GOL	А	617	-	-	0/4/4/4	-

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	А	616	CFF	C5-C4	-3.86	1.34	1.39
5	А	616	CFF	C6-N1	-3.19	1.33	1.38
5	А	616	CFF	O13-C6	-2.12	1.19	1.24

All (1) bond angle outliers are listed below:

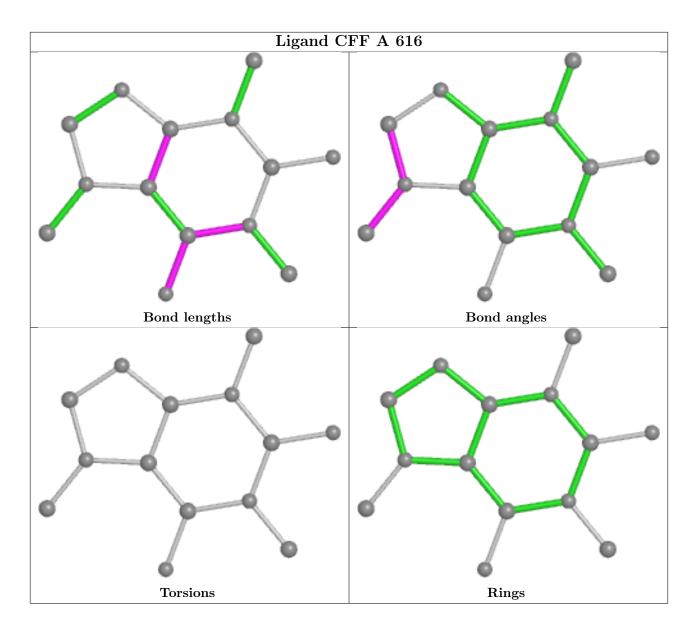
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	А	616	CFF	C14-N7-C8	-2.95	111.24	125.43

There are no chirality outliers.

5 of 9 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	А	619	GOL	C1-C2-C3-O3
6	А	620	GOL	C1-C2-C3-O3
6	А	621	GOL	O1-C1-C2-C3
6	А	621	GOL	C1-C2-C3-O3
6	А	620	GOL	O2-C2-C3-O3

There are no ring outliers.


2 monomers are involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	А	616	CFF	1	0
6	А	619	GOL	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	353/383~(92%)	-0.02	10 (2%) 53 59	13, 21, 40, 71	0

The worst 5 of 10 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	283	ILE	5.1
1	А	353	GLY	4.8
1	А	354	GLN	4.3
1	А	355	PRO	3.3
1	А	116	GLY	3.3

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

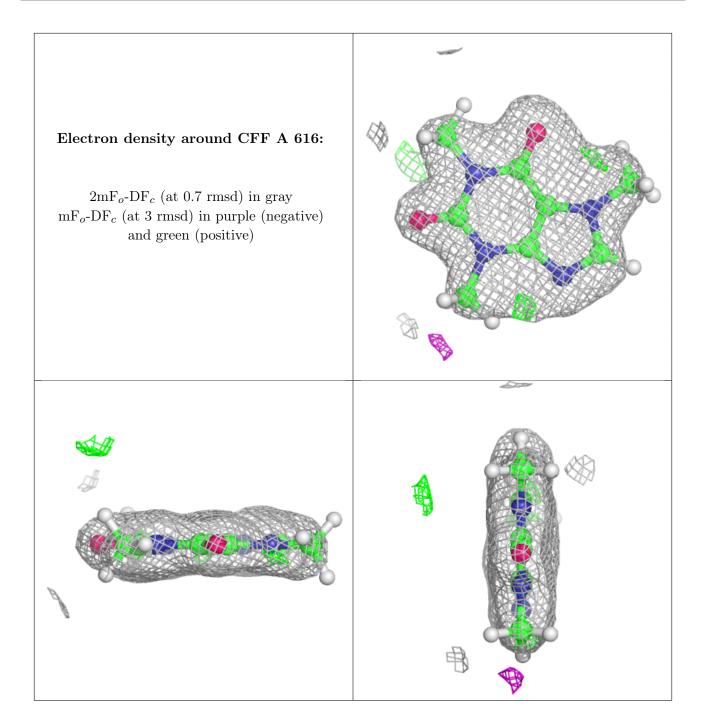
There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
6	GOL	А	619	6/6	0.57	0.20	$56,\!59,\!62,\!63$	2
4	DMS	А	607	4/4	0.81	0.24	45,49,51,58	0

Continued on next page...



	Continued from previous page $\mathbf{N} = \mathbf{N} + N$										
Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	\mathbf{RSR}	$\operatorname{B-factors}(\operatorname{\AA}^2)$	$Q{<}0.9$			
6	GOL	А	620	6/6	0.82	0.11	44,50,54,54	2			
6	GOL	А	621	6/6	0.83	0.21	28,42,47,49	2			
6	GOL	А	618	6/6	0.84	0.31	40,47,50,53	2			
2	SO4	А	604	5/5	0.88	0.15	63,72,74,75	0			
3	NAG	А	605	14/15	0.91	0.15	32,39,46,49	3			
2	SO4	А	601	5/5	0.91	0.15	62,62,67,74	0			
2	SO4	А	614	5/5	0.92	0.19	$60,\!62,\!70,\!72$	0			
2	SO4	А	615	5/5	0.92	0.24	67,68,71,75	0			
2	SO4	А	608	5/5	0.92	0.16	$65,\!67,\!75,\!78$	0			
2	SO4	А	612	5/5	0.92	0.22	63,64,74,76	0			
5	CFF	А	616	14/14	0.93	0.09	27,30,32,33	0			
6	GOL	А	617	6/6	0.94	0.10	$36,\!42,\!51,\!55$	2			
4	DMS	А	606	4/4	0.96	0.14	30,31,31,34	0			
2	SO4	А	611	5/5	0.96	0.22	33,34,41,48	0			
2	SO4	А	610	5/5	0.96	0.22	34,46,50,52	0			
2	SO4	А	613	5/5	0.96	0.13	42,43,43,45	0			
2	SO4	А	609	5/5	0.98	0.16	38,38,45,45	0			
2	SO4	А	603	5/5	0.98	0.08	29,29,34,35	0			
2	SO4	А	602	5/5	0.99	0.07	19,19,23,24	0			

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

