

wwPDB X-ray Structure Validation Summary Report (i)

Jan 14, 2024 - 12:50 am GMT

PDB ID	:	6TXC
Title	:	Crystal structure of tetrameric human wt-SAMHD1 (residues 109-626) with
		GTP, dATP, dCMPNPP and Mg
Authors	:	Morris, E.R.; Kunzelmann, S.; Caswell, S.J.; Arnold, L.H.; Purkiss, A.; Kelly,
		G.; Taylor, I.A.
Deposited on	:	2020-01-14
Resolution	:	2.84 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.84 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	$1031 \ (2.86-2.82)$
Clashscore	141614	1078 (2.86-2.82)
Ramachandran outliers	138981	$1050 \ (2.86-2.82)$
Sidechain outliers	138945	1051 (2.86-2.82)
RSRZ outliers	127900	1019 (2.86-2.82)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	520	85%	7%	• 8%
1	В	520	85%	7%	8%
1	С	520	85%	7%	• 8%
1	D	520	85%	6%	8%

1

1

1

1

1

L

М

Ν

Ο

Р

520

520

520

520

520

5%

2%

4%

2%

86%

86%

86%

84%

83%

5% • 8%

• •

5%

5%

6%

5%•

5%

5%

5% ·

5% • 8%

11%

11%

8%

8%

9%

• • 9%

9%

11%

11%

5% 8%

Continued from previous page... Chain Length Quality of chain Mol 3% Е 520 1 86% 2% F 5201 84% 3% 1 \mathbf{G} 520 84% .% Η 5201 87% Ι 1 52086% J 520 1 86% Κ 5201 86% .%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 61950 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	401	Total	С	Ν	0	S	0	0	0
	A	481	3840	2458	657	705	20	0	0	0
1	D	179	Total	С	Ν	Ο	S	0	0	0
	В 47	410	3825	2449	662	694	20	0	0	0
1	С	480	Total	С	Ν	Ο	S	0	0	0
L	U	400	3854	2468	666	700	20	0	0	0
1	а	/81	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	D	401	3846	2462	663	701	20	0	0	0
1	E	478	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		-10	3799	2432	655	692	20	0	0	0
1	F	463	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	1	100	3695	2364	633	678	20	0	0	0
1	G	463	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	<u> </u>	100	3668	2347	626	675	20	0	0	0
1	Н	478	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
			3845	2461	665	699	20	Ŭ		
1	T	477	Total	С	Ν	Ο	S	0	0	0
	-		3822	2446	660	696	20	Ŭ		
1	J	479	Total	С	Ν	0	S	0	0	0
	, in the second		3837	2456	662	699	20	Ŭ	<u> </u>	
1	K	480	Total	С	Ν	Ο	S	0	0	0
			3839	2455	659	705	20	-		
1	L	475	Total	С	N	0	S	0	0	0
			3756	2406	642	689	19	_	_	
1	М	471	Total	C	N	0	S	0	0	0
		-	3704	2367	636	681	20	_	_	_
1	Ν	475	Total	С	N	0	S	0	0	0
			3757	2403	642	692	20			
1	Ο	465	Total	C	N	U 0	S	0	0	0
			3680	2352	629	679	20			
1	Р	461	Total	C	N	O	S	0	0	0
		-	3640	2330	618	672	20	-	-	-

• Molecule 1 is a protein called Deoxynucleoside triphosphate triphosphohydrolase SAMHD1.

67	DVC
U I	LЛU

Chain	Residue	Modelled	Actual	Comment	Reference
А	107	GLY	-	expression tag	UNP Q9Y3Z3
А	108	SER	-	expression tag	UNP Q9Y3Z3
В	107	GLY	-	expression tag	UNP Q9Y3Z3
В	108	SER	-	expression tag	UNP Q9Y3Z3
С	107	GLY	-	expression tag	UNP Q9Y3Z3
С	108	SER	-	expression tag	UNP Q9Y3Z3
D	107	GLY	-	expression tag	UNP Q9Y3Z3
D	108	SER	-	expression tag	UNP Q9Y3Z3
Е	107	GLY	-	expression tag	UNP Q9Y3Z3
Е	108	SER	-	expression tag	UNP Q9Y3Z3
F	107	GLY	-	expression tag	UNP Q9Y3Z3
F	108	SER	-	expression tag	UNP Q9Y3Z3
G	107	GLY	-	expression tag	UNP Q9Y3Z3
G	108	SER	-	expression tag	UNP Q9Y3Z3
Н	107	GLY	-	expression tag	UNP Q9Y3Z3
Н	108	SER	-	expression tag	UNP Q9Y3Z3
Ι	107	GLY	-	expression tag	UNP Q9Y3Z3
Ι	108	SER	-	expression tag	UNP Q9Y3Z3
J	107	GLY	-	expression tag	UNP Q9Y3Z3
J	108	SER	-	expression tag	UNP Q9Y3Z3
K	107	GLY	-	expression tag	UNP Q9Y3Z3
K	108	SER	-	expression tag	UNP Q9Y3Z3
L	107	GLY	-	expression tag	UNP Q9Y3Z3
L	108	SER	-	expression tag	UNP Q9Y3Z3
М	107	GLY	-	expression tag	UNP Q9Y3Z3
М	108	SER	-	expression tag	UNP Q9Y3Z3
N	107	GLY	-	expression tag	UNP Q9Y3Z3
N	108	SER	-	expression tag	UNP Q9Y3Z3
0	107	GLY	-	expression tag	UNP Q9Y3Z3
0	108	SER	-	expression tag	UNP Q9Y3Z3
Р	107	GLY	-	expression tag	UNP Q9Y3Z3
Р	108	SER	-	expression tag	UNP Q9Y3Z3

There are 32 discrepancies between the modelled and reference sequences:

• Molecule 2 is FE (III) ION (three-letter code: FE) (formula: Fe) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Fe 1 1	0	0
2	В	1	Total Fe 1 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	С	1	Total Fe 1 1	0	0
2	D	1	Total Fe 1 1	0	0
2	Е	1	Total Fe 1 1	0	0
2	F	1	Total Fe 1 1	0	0
2	G	1	Total Fe 1 1	0	0
2	Н	1	Total Fe 1 1	0	0
2	Ι	1	Total Fe 1 1	0	0
2	J	1	Total Fe 1 1	0	0
2	K	1	Total Fe 1 1	0	0
2	L	1	Total Fe 1 1	0	0
2	М	1	Total Fe 1 1	0	0
2	Ν	1	Total Fe 1 1	0	0
2	О	1	Total Fe 1 1	0	0
2	Р	1	Total Fe 1 1	0	0

Continued from previous page...

• Molecule 3 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	3	Total Mg 3 3	0	0
3	В	3	Total Mg 3 3	0	0
3	С	3	Total Mg 3 3	0	0
3	D	3	Total Mg 3 3	0	0
3	Е	2	Total Mg 2 2	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	F	2	Total Mg 2 2	0	0
3	G	3	Total Mg 3 3	0	0
3	Н	2	Total Mg 2 2	0	0
3	Ι	3	Total Mg 3 3	0	0
3	J	2	Total Mg 2 2	0	0
3	K	3	Total Mg 3 3	0	0
3	L	3	Total Mg 3 3	0	0
3	М	3	Total Mg 3 3	0	0
3	Ν	2	Total Mg 2 2	0	0
3	0	2	Total Mg 2 2	0	0
3	Р	3	Total Mg 3 3	0	0

Continued from previous page...

• Molecule 4 is 2'-deoxy-5'-O-[(R)-hydroxy{[(R)-hydroxy(phosphonooxy)phosphoryl]amino} phosphoryl]cytidine (three-letter code: 0KX) (formula: $C_9H_{17}N_4O_{12}P_3$) (labeled as "Ligand of Interest" by depositor).

Р

Mol	Chain	Residues		At	oms	5		ZeroOcc	AltConf	
4	٨	1	Total	С	Ν	Ο	Р	0	0	
4	A	1	28	9	4	12	3	0	0	
4	D	1	Total	С	Ν	Ο	Р	0	0	
4	D	1	28	9	4	12	3	0	0	
4	С	1	Total	С	Ν	Ο	Р	0	0	
4	U	1	28	9	4	12	3	0	0	
4	Л	1	Total	С	Ν	Ο	Р	0	0	
т	D	1	28	9	4	12	3	0	0	
4	E	1	Total	С	Ν	Ο	Р	0	0	
1		1	28	9	4	12	3	0	0	
4	F	1	Total	С	Ν	Ο	Р	0	0	
Т	1	1	28	9	4	12	3	0	0	
4	G	G 1	Total	С	Ν	Ο	Р	0	0	
1	4 0		28	9	4	12	3			
4	Н	Н 1	Total	С	Ν	Ο	Р	0	0	
1		1	28	9	4	12	3			
4	T	I 1	Total	С	Ν	Ο	Р	0	0	
*	-	-	28	9	4	12	3	Ŭ		
4	J	1	Total	С	Ν	Ο	Р	0	0	
*		-	28	9	4	12	3	Ŭ		
4	K	1	Total	С	Ν	0	Р	0	0	
-		-	28	9	4	12	3	Ŭ		
4	L	1	Total	С	Ν	0	Р	0	0	
	-	-	28	9	4	12	3	Ŭ		
4	М	1	Total	С	Ν	0	Р	0	0	
-		-	28	9	4	12	3			
4	4 N	1	Total	С	Ν	0	Р	0	0	
			28	9	4	12	3	_	-	
4	0	1	Total	С	Ν	0	Р	0	0	
-		-	28	9	4	12	3	0		Ĭ

• Molecule 5 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$ (labeled as "Ligand of Interest" by depositor).

Р

С

Ν

Total

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf
-	٨	1	Total	С	Ν	Ο	Р	0	0
6	А	1	32	10	5	14	3	0	0
E	р	1	Total	С	Ν	Ο	Р	0	0
5	D	1	32	10	5	14	3	0	0
5	C	1	Total	С	Ν	Ο	Р	0	0
0	U	1	32	10	5	14	3	0	0
F	л	1	Total	С	Ν	0	Р	0	0
0	D	1	32	10	5	14	3	0	0
5	Б	1	Total	С	Ν	Ο	Р	0	0
0	Ľ	1	32	10	5	14	3	0	0
5	Б	1	Total	С	Ν	0	Р	0	0
0	Г	1	32	10	5	14	3	0	0
5	C	1	Total	С	Ν	0	Р	0	0
0	G	1	32	10	5	14	3	0	0
5	Ц	1	Total	С	Ν	Ο	Р	0	0
0	11	1	32	10	5	14	3		
5	т	1	Total	С	Ν	Ο	Р	0	0
0	1	1	32	10	5	14	3	0	0
5	т	1	Total	С	Ν	Ο	Р	0	0
0	1	1	32	10	5	14	3	0	0
5	K	1	Total	С	Ν	Ο	Р	0	0
0	Γ	1	32	10	5	14	3	0	0
5	т	Т 1	Total	С	Ν	Ο	Р	0	0
0		1	32	10	5	14	3	0	0
5	М	M 1	Total	С	Ν	Ο	Р	0	0
5	IVI		32	10	5	14	3	U	U
5	N	1	Total	С	Ν	Ο	Р	0	0
5	L N		32	10	5	14	3	U	U

α \cdot \cdot \cdot	C		
Continued	from	previous	page
		1	1 0

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
F	0	1	Total	С	Ν	Ο	Р	0	0
0	0	1	32	10	5	14	3	0	0
Б	0	1	Total	С	Ν	Ο	Р	0	0
0	0	1	32	10	5	14	3	0	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	
6	Δ	1	Total O S	0	0	
0	Π	1	5 4 1	0	0	
6	В	1	Total O S	0	0	
	0 В	1	5 4 1	0		
6	С	1	Total O S	0	0	
		1	5 4 1		0	
6	D	1	Total O S	0	0	
		-	5 4 1			
6	Н	1	Total O S	0	0	
		_			<u> </u>	
6	I	1	Total O S	0	0	
			5 4 1	-	_	
6	J	1	Total O S	0	0	
			5 4 1	_	_	
6	L	1	Total O S	0	0	
		_				
6	М	1	Total O S	0	0	
	-/1	-	5 4 1			

• Molecule 7 is 2'-DEOXYADENOSINE 5'-TRIPHOSPHATE (three-letter code: DTP) (formula: $C_{10}H_{16}N_5O_{12}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
7	٨	1	Total	С	Ν	0	Р	0	0
(А	1	30	10	5	12	3	0	0
7	р	1	Total	С	Ν	Ο	Р	0	0
1	D	1	30	10	5	12	3	0	0
7	С	1	Total	С	Ν	Ο	Р	0	0
1	U	1	30	10	5	12	3	0	0
7	Л	1	Total	С	Ν	Ο	Р	0	0
1	D	1	30	10	5	12	3	0	0
7	E	1	Total	С	Ν	Ο	Р	0	0
'	Ľ	I	30	10	5	12	3	0	0
7	F	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
· ·		Ĩ	30	10	5	12	3	0	0
7	G	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
	Ŭ	1	30	10	5	12	3	0	0
7	н	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
· ·	11	Ĩ	30	10	5	12	3	0	0
7	Т	1	Total	С	Ν	Ο	Р	0	0
· ·	1	Ĩ	30	10	5	12	3	0	0
7	I	1	Total	С	Ν	Ο	Р	0	0
· ·	5	1	30	10	5	12	3	0	0
7	K 1	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
•		1	30	10	5	12	3	0	Ŭ
7	L	1	Total	\mathbf{C}	Ν	Ο	Р	0	0
'	Ц	1	30	10	5	12	3	U	

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf
7	7 M	1	Total	С	Ν	Ο	Р	0	0
1	101	1	30	10	5	12	3	0	0
7	N	1	Total	С	Ν	Ο	Р	0	0
1	(IN	1	30	10	5	12	3		
7	0	1	Total	С	Ν	Ο	Р	0	0
1	0	1	30	10	5	12	3	0	0
7 P	1	Total	С	Ν	Ο	Р	0	0	
	Г	1	30	10	5	12	3	0	U

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

Chain D: 85%

6% • 8%

• Molecule 1: Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

Chain I:	86%	5% 8%
GLY SER GLN LILE HIS VAL ASP THR ASP A134 A134	R164 8168 8168 8168 8168 8193 8275 8274 8275 8274 8275 8274 8275 8274 8275 8275 8276 8276 8276 8276 8361 8361 8361 8361	R371 1384 1384 1384 1384 1384 1384 1384 1486 K455 K455 K494
F520 Y521 L549 Y553 Y553 R576 R576	K595 K596 N599 N599 N599 N599 N599 N588 A58 A58 A14 A58 A14 A14 A14 A14 A14 A14 A14 A14 A14 A14	1910
• Molecule 1: I	Deoxynucleoside triphosphate triphosphohy	drolase SAMHD1
Chain J:	86%	6% 8%
GLY SER GLN GLN ILE HIS VAL T114 T114 T115 K116 K116 K116	R134 R164 8168 8168 8220 8234 8234 8234 8234 8234 8234 8234 8238 824 824 828 828 828 828 828 828 828 82	A351 A351 K377 K377 F390 F390 F390 F390 F390 F390 F390 F390
D490 F520 Y521 E543 Y553 Y553	d571 R576 R576 R576 R595 R588 R588 R588 R588 R588 R588 R588	LYR ASP AGP MET MET
• Molecule 1: I	Deoxynucleoside triphosphate triphosphohy	drolase SAMHD1
Chain K:	86%	5% • 8%
GLY SER GLN CLN ILE HIS VAL D113 M114 M115 M115 R134 R134	R164 S168 S168 G176 R220 R220 R224 R220 R26 R220 R26 R26 R27 CL276 CL276 CL276 CL276 CL276 R273 SER VAL CL284 R359 R351 R351 R352	1381 1384 1384 1388 1389 1389 1389 1390 1391 1426 1439 1439 1439
E496 F520 Y521 Y523 L562 L562	NST CONTRACTOR NOT CONTRACT CO	LTAE ASP ASP PRO MET
• Molecule 1: I	Deoxynucleoside triphosphate triphosphohy	drolase SAMHD1
Chain L:	86%	5% • 9%
GLY SER GLN GLN ILE HIS VAL ASP ASP THR MET MET	E127 R134 R164 E193 E193 E193 F275 E193 F275 C274 C274 C274 C274 C274 C274 C274 C274	F328 F328 A351 R339 K354 F339 F331 F331 F334 F330 F330 F330 F330 F330
1453 7455 7455 1488 1488 1488 1498 1490	F520 F521 F521 F551 V552 V553 V553 V557 V557 V557 V557 V557 V557	ARC VAL GIN LEU LEU LYS ASP ASP PRO MET
• Molecule 1: I	Deoxynucleoside triphosphate triphosphohy	drolase SAMHD1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	99.11Å 175.24Å 277.27Å	Deperitor
a, b, c, α , β , γ	90.00° 94.81° 90.00°	Depositor
Bosolution (Å)	276.29 - 2.84	Depositor
Resolution (A)	276.29 - 2.82	EDS
% Data completeness	72.7 (276.29-2.84)	Depositor
(in resolution range)	71.3(276.29-2.82)	EDS
R_{merge}	0.17	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.55 (at 2.82 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0158	Depositor
B B.	0.228 , 0.249	Depositor
n, n_{free}	0.227 , 0.247	DCC
R_{free} test set	8050 reflections $(4.98%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	46.2	Xtriage
Anisotropy	0.098	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29, 22.7	EDS
L-test for $twinning^2$	$ L > = 0.47, < L^2 > = 0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.85	EDS
Total number of atoms	61950	wwPDB-VP
Average B, all atoms $(Å^2)$	54.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.46% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 0KX, DTP, GTP, FE, MG, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	E	Sond angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.72	2/3933~(0.1%)	0.89	6/5335~(0.1%)
1	В	0.73	2/3918~(0.1%)	0.92	10/5310~(0.2%)
1	С	0.71	1/3947~(0.0%)	0.89	10/5346~(0.2%)
1	D	0.73	5/3939~(0.1%)	0.95	11/5339~(0.2%)
1	Е	0.64	0/3892	0.88	10/5282~(0.2%)
1	F	0.65	0/3784	0.84	4/5129~(0.1%)
1	G	0.63	2/3757~(0.1%)	0.86	5/5099~(0.1%)
1	Н	0.67	2/3938~(0.1%)	0.90	3/5333~(0.1%)
1	Ι	0.66	0/3915	0.86	5/5306~(0.1%)
1	J	0.69	2/3930~(0.1%)	0.93	7/5327~(0.1%)
1	Κ	0.69	1/3932~(0.0%)	0.88	9/5333~(0.2%)
1	L	0.66	6/3849~(0.2%)	0.90	6/5230~(0.1%)
1	М	0.64	0/3792	0.86	8/5151~(0.2%)
1	Ν	0.66	2/3849~(0.1%)	0.91	8/5229~(0.2%)
1	0	0.66	0/3769	0.89	8/5116~(0.2%)
1	Р	0.68	6/3729~(0.2%)	0.90	6/5064~(0.1%)
All	All	0.68	31/61873~(0.1%)	0.89	116/83929~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1

The worst 5 of 31 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	Р	341	CYS	CB-SG	8.66	1.97	1.82
1	L	193	GLU	CD-OE2	6.61	1.32	1.25

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	А	489	LEU	C-O	-6.56	1.10	1.23
1	Κ	410	SER	CB-OG	-6.51	1.33	1.42
1	L	275	PRO	C-O	-6.38	1.10	1.23

The worst 5 of 116 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	J	164	ARG	NE-CZ-NH1	23.34	131.97	120.30
1	D	164	ARG	NE-CZ-NH1	23.28	131.94	120.30
1	N	164	ARG	NE-CZ-NH1	22.96	131.78	120.30
1	Р	164	ARG	NE-CZ-NH1	22.90	131.75	120.30
1	L	164	ARG	NE-CZ-NH1	22.63	131.61	120.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	486	LYS	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3840	0	3707	15	0
1	В	3825	0	3715	11	0
1	С	3854	0	3758	17	1
1	D	3846	0	3732	15	0
1	Е	3799	0	3656	14	0
1	F	3695	0	3560	12	0
1	G	3668	0	3505	13	0
1	Н	3845	0	3751	15	0
1	Ι	3822	0	3705	13	0
1	J	3837	0	3723	15	0
1	K	3839	0	3704	12	0
1	L	3756	0	3583	12	0
1	М	3704	0	3524	10	0
1	N	3757	0	3573	12	0

	Chain	Non H	$\mathbf{H}(\mathbf{modol})$	H(addad)	Clashos	Symm Clashes
11101		2690		2509		Symm-Clashes
		3080	0	3008	12	0
	Г	1	0	0403	14	1
	A D	1	0	0	0	0
	D	1	0	0	0	0
		1	0	0	0	0
		1	0	0	0	0
		1	0	0	0	0
	Г	1	0	0	0	0
$\frac{2}{2}$	и Ч	1	0	0	0	0
$\frac{2}{2}$	II I	1	0	0	0	0
	I	1	0	0	0	0
	J K	1	0	0	0	0
	I I	1	0	0	0	0
		1	0	0	0	0
	NI N	1	0	0	0	0
		1	0	0	0	0
	D	1	0	0	0	0
	Ι Λ	1	0	0	0	0
3	A B	3 2	0	0	0	0
$\frac{3}{2}$	D C	3	0	0	0	0
3		3	0	0	0	0
3	E E	2	0	0	0	0
3	E F	$\frac{2}{2}$	0	0	0	0
3	I C	2	0	0	0	0
3	- U - Н	2	0	0	0	0
3	I	3	0	0	0	0
3	I	$\frac{0}{2}$	0	0	0	0
3	K K	3	0	0	0	0
3	L	3	0	0	0	0
3	M	3	0	0	0	0
3	N	2	0	0	0	0
	0	2	0	0	0	0
3	P	3	0	0	0	0
4	A	28	0	16	0	0
4	B	28	0	16	1	0
4	 C	28	0	16	2	0
4	D	28	0	17	1	0
4	E	28	0	17	1	0
4	F	28	0	17	0	0
4	G	28	0	16	0	0
4	Н	28	0	16	1	0
L	1	1	I	1	1	

ntia J fa α

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	I	28		15		
4	I	28	0	17	0	0
4	K K	28	0	15	0	0
4	L	20	0	16	2	0
4	M	20	0	10	0	0
4	N	20	0	17	2	0
4	0	28	0	17	0	0
4	P	28	0	16	0	0
5	A	32	0	10	0	0
5	B	32	0	12	0	0
5	C	32	0	12	0	0
5	D	32	0	12	1	0
5	E	32	0	12	1	0
5	F	32	0	12	1	0
5	G	32	0	12	1	0
5	H	32	0	12	0	0
5	I	32	0	12	0	0
5	J	32	0	12	1	0
5	K	32	0	12	0	0
5	L	32	0	12	0	0
5	М	32	0	12	0	0
5	N	32	0	12	1	0
5	0	64	0	24	2	0
6	А	5	0	0	1	0
6	В	5	0	0	0	0
6	С	5	0	0	0	0
6	D	5	0	0	1	0
6	Н	5	0	0	1	0
6	Ι	5	0	0	0	0
6	J	5	0	0	0	0
6	L	5	0	0	0	0
6	М	5	0	0	0	0
7	А	30	0	12	0	0
7	В	30	0	12	2	0
7	С	30	0	12	1	0
7	D	30	0	12	1	0
7	E	30	0	12	3	0
7	F	30	0	12	2	0
7	G	30	0	12	2	0
7	Н	30	0	12	2	0
7	I	30	0	12	0	0
7	J	30	0	12	1	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
7	Κ	30	0	12	2	0
7	L	30	0	12	1	0
7	М	30	0	12	4	0
7	Ν	30	0	12	1	0
7	0	30	0	12	1	0
7	Р	30	0	12	2	0
All	All	61950	0	58812	213	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 213 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:N:352:ARG:NH1	7:N:706:DTP:O3G	2.20	0.71
1:M:352:ARG:NH1	7:M:708:DTP:O3G	2.21	0.70
7:E:706:DTP:O2G	5:G:707:GTP:O1B	2.13	0.67
1:I:595:LYS:HZ2	1:I:597:GLU:HG2	1.62	0.65
7:M:708:DTP:O1B	5:O:706:GTP:H5"	1.97	0.64

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:472:ASP:OD1	1:P:396:TYR:OH[1_565]	1.97	0.23

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	477/520~(92%)	463 (97%)	13 (3%)	1 (0%)	47	69

6TXC

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	В	474/520~(91%)	459~(97%)	14 (3%)	1 (0%)	47	69
1	С	476/520~(92%)	462 (97%)	14 (3%)	0	100	100
1	D	477/520~(92%)	462 (97%)	15 (3%)	0	100	100
1	Ε	474/520~(91%)	457~(96%)	17 (4%)	0	100	100
1	F	457/520~(88%)	443 (97%)	14 (3%)	0	100	100
1	G	457/520~(88%)	442 (97%)	15 (3%)	0	100	100
1	Н	474/520 (91%)	458 (97%)	16 (3%)	0	100	100
1	Ι	473/520~(91%)	460 (97%)	13 (3%)	0	100	100
1	J	475/520 (91%)	459 (97%)	16 (3%)	0	100	100
1	Κ	476/520~(92%)	460 (97%)	16 (3%)	0	100	100
1	L	471/520 (91%)	455 (97%)	16 (3%)	0	100	100
1	М	467/520~(90%)	453 (97%)	14 (3%)	0	100	100
1	Ν	471/520 (91%)	457 (97%)	14 (3%)	0	100	100
1	Ο	459/520~(88%)	441 (96%)	17 (4%)	1 (0%)	47	69
1	Р	455/520 (88%)	441 (97%)	14 (3%)	0	100	100
All	All	7513/8320~(90%)	7272 (97%)	238 (3%)	3~(0%)	100	100

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	0	283	SER
1	А	486	LYS
1	В	486	LYS

5.3.2Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Analysed Rotameric Outliers		Percentiles		
1	А	406/464~(88%)	394 (97%)	12 (3%)	41 65		
1	В	404/464~(87%)	395~(98%)	9(2%)	52 75		

6TXC

Mol	Chain	Analysed	Rotameric Ou		Percentiles	
1	С	409/464~(88%)	399~(98%)	10 (2%)	49	72
1	D	407/464~(88%)	397~(98%)	10 (2%)	47	71
1	Ε	398/464~(86%)	390~(98%)	8 (2%)	55	76
1	F	390/464~(84%)	381 (98%)	9(2%)	50	73
1	G	384/464 (83%)	378~(98%)	6 (2%)	62	81
1	Н	409/464~(88%)	401 (98%)	8 (2%)	55	76
1	Ι	404/464 (87%)	397~(98%)	7 (2%)	60	80
1	J	406/464~(88%)	398~(98%)	8 (2%)	55	76
1	Κ	406/464~(88%)	393~(97%)	13 (3%)	39	63
1	L	391/464~(84%)	383~(98%)	8 (2%)	55	76
1	М	384/464~(83%)	374 (97%)	10 (3%)	46	70
1	Ν	391/464 (84%)	384 (98%)	7 (2%)	59	78
1	Ο	385/464~(83%)	376~(98%)	9 (2%)	50	73
1	Р	380/464 (82%)	373~(98%)	7 (2%)	59	78
All	All	6354/7424~(86%)	6213 (98%)	141 (2%)	52	75

5 of 141 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	М	576	ARG
1	Ν	315	TYR
1	0	339	ARG
1	Е	576	ARG
1	Е	490	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 77 such sidechains are listed below:

Mol	Chain	Res	Type
1	М	210	HIS
1	0	380	ASN
1	М	370	HIS
1	N	375	GLN
1	Р	380	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 115 ligands modelled in this entry, 58 are monoatomic - leaving 57 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link Bond lengths Bo		Bond angles				
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	0KX	G	706	3,2	28,29,29	1.29	3 (10%)	40,45,45	1.78	7 (17%)
7	DTP	F	706	3	26,32,32	1.09	2 (7%)	30,50,50	1.53	7 (23%)
5	GTP	0	707	3	26,34,34	0.88	1 (3%)	32,54,54	1.80	11 (34%)
6	SO4	А	707	-	4,4,4	0.47	0	6,6,6	0.98	1 (16%)
6	SO4	Н	707	-	4,4,4	0.45	0	6,6,6	0.51	0
4	0KX	0	705	3,2	28,29,29	1.14	3 (10%)	40,45,45	1.34	4 (10%)
4	0KX	J	704	3,2	28,29,29	1.22	3 (10%)	40,45,45	1.45	6 (15%)
7	DTP	В	708	3	26,32,32	1.35	4 (15%)	30,50,50	1.77	9 (30%)
7	DTP	С	701	3	26,32,32	0.86	1 (3%)	30,50,50	2.02	12 (40%)
5	GTP	Ι	706	3	26,34,34	1.09	2 (7%)	32,54,54	1.67	8 (25%)
4	0KX	А	705	3,2	28,29,29	1.05	3 (10%)	40,45,45	1.48	5 (12%)
4	0KX	В	705	3,2	28,29,29	1.46	4 (14%)	40,45,45	1.98	11 (27%)
5	GTP	Е	705	3	26,34,34	0.79	0	32,54,54	1.47	5 (15%)
6	SO4	М	707	-	4,4,4	0.47	0	6,6,6	0.18	0
4	0KX	С	706	3	28,29,29	1.10	3 (10%)	40,45,45	1.46	3 (7%)

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	gles
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	GTP	Н	706	3	26,34,34	1.52	3 (11%)	32,54,54	1.70	7 (21%)
7	DTP	А	708	3	26,32,32	0.82	1 (3%)	30,50,50	1.48	5 (16%)
5	GTP	А	706	3	26,34,34	1.19	3 (11%)	32,54,54	1.74	10 (31%)
7	DTP	0	701	3	26,32,32	0.96	1 (3%)	30,50,50	1.63	8 (26%)
5	GTP	В	706	3	26,34,34	1.15	1 (3%)	32,54,54	1.78	9 (28%)
6	SO4	D	708	-	4,4,4	0.53	0	6,6,6	0.27	0
7	DTP	Е	706	3	26,32,32	1.12	3 (11%)	30,50,50	1.23	3 (10%)
5	GTP	М	706	3	26,34,34	1.09	1 (3%)	32,54,54	1.61	6 (18%)
7	DTP	K	701	3	26,32,32	0.89	1 (3%)	30,50,50	1.62	8 (26%)
7	DTP	L	701	3	26,32,32	1.12	3 (11%)	30,50,50	2.01	7 (23%)
7	DTP	D	701	3	26,32,32	1.14	4 (15%)	30,50,50	1.47	4 (13%)
5	GTP	С	707	3	26,34,34	1.08	1 (3%)	32,54,54	1.44	<mark>5 (15%)</mark>
7	DTP	М	708	3	26,32,32	1.12	3 (11%)	30,50,50	1.27	4 (13%)
4	0KX	D	706	3,2	28,29,29	1.42	4 (14%)	40,45,45	1.83	8 (20%)
7	DTP	G	701	3	26,32,32	0.94	0	30,50,50	1.56	7 (23%)
4	0KX	L	706	3,2	28,29,29	1.47	3 (10%)	40,45,45	1.74	9 (22%)
4	0KX	Ι	705	3,2	28,29,29	1.05	3 (10%)	40,45,45	1.75	5 (12%)
5	GTP	J	705	3	26,34,34	1.52	2 (7%)	32,54,54	1.77	7 (21%)
7	DTP	J	707	3	26,32,32	1.11	1 (3%)	30,50,50	1.99	8 (26%)
4	0KX	Е	704	3,2	28,29,29	1.37	4 (14%)	40,45,45	1.27	3 (7%)
5	GTP	0	706	3	26,34,34	0.82	0	32,54,54	1.74	9 (28%)
6	SO4	J	706	-	4,4,4	0.64	0	6,6,6	0.45	0
7	DTP	Ι	708	3	26,32,32	0.84	0	30,50,50	1.66	9 (30%)
4	0KX	Р	706	3,2	28,29,29	1.41	4 (14%)	40,45,45	1.33	4 (10%)
6	SO4	С	708	-	4,4,4	0.70	0	$6,\!6,\!6$	0.37	0
6	SO4	L	708	-	4,4,4	0.62	0	6,6,6	0.70	0
4	0KX	F	704	3,2	28,29,29	1.07	3 (10%)	40,45,45	1.83	5 (12%)
5	GTP	K	707	3	26,34,34	0.99	2 (7%)	32,54,54	1.87	8 (25%)
7	DTP	Р	701	3	26,32,32	1.14	3 (11%)	30,50,50	1.35	4 (13%)
4	0KX	N	704	3,2	28,29,29	1.17	3 (10%)	40,45,45	1.37	4 (10%)
6	SO4	Ι	707	-	4,4,4	0.43	0	6,6,6	0.81	0
7	DTP	N	706	3	26,32,32	1.06	2 (7%)	30,50,50	1.47	5 (16%)
4	0KX	М	705	3,2	28,29,29	1.16	3 (10%)	40,45,45	1.57	6 (15%)
5	GTP	D	707	3	26,34,34	1.33	4 (15%)	32,54,54	1.72	10 (31%)
5	GTP	N	705	3	26,34,34	1.22	2 (7%)	32,54,54	1.83	9 (28%)
5	GTP	L	707	3	26,34,34	1.16	3 (11%)	32,54,54	1.80	8 (25%)

Mal	Turne	Chain Res I		Link	Bo	Bond lengths			Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
4	0KX	K	706	3,2	28,29,29	1.18	3 (10%)	40,45,45	1.71	7 (17%)	
5	GTP	F	705	3	$26,\!34,\!34$	0.98	0	$32,\!54,\!54$	1.92	9 (28%)	
4	0KX	Н	705	3,2	$28,\!29,\!29$	0.99	3 (10%)	$40,\!45,\!45$	1.28	5 (12%)	
7	DTP	Н	701	3	$26,\!32,\!32$	1.25	2 (7%)	$30,\!50,\!50$	1.68	8 (26%)	
5	GTP	G	707	3	$26,\!34,\!34$	1.10	2(7%)	$32,\!54,\!54$	1.25	3 (9%)	
6	SO4	В	707	-	4,4,4	0.59	0	6,6,6	0.87	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	0KX	G	706	3,2	-	6/19/34/34	0/2/2/2
7	DTP	F	706	3	-	0/18/34/34	0/3/3/3
5	GTP	0	707	3	-	2/18/38/38	0/3/3/3
4	0KX	0	705	3,2	-	2/19/34/34	0/2/2/2
4	0KX	J	704	3,2	-	2/19/34/34	0/2/2/2
7	DTP	В	708	3	-	2/18/34/34	0/3/3/3
7	DTP	С	701	3	-	4/18/34/34	0/3/3/3
5	GTP	Ι	706	3	-	2/18/38/38	0/3/3/3
4	0KX	А	705	3,2	-	2/19/34/34	0/2/2/2
4	0KX	В	705	3,2	-	5/19/34/34	0/2/2/2
5	GTP	Е	705	3	-	1/18/38/38	0/3/3/3
7	DTP	А	708	3	-	4/18/34/34	0/3/3/3
4	0KX	С	706	3	-	2/19/34/34	0/2/2/2
5	GTP	Н	706	3	-	1/18/38/38	0/3/3/3
7	DTP	О	701	3	-	5/18/34/34	0/3/3/3
5	GTP	А	706	3	-	1/18/38/38	0/3/3/3
5	GTP	В	706	3	-	4/18/38/38	0/3/3/3
7	DTP	Е	706	3	-	2/18/34/34	0/3/3/3
5	GTP	М	706	3	-	1/18/38/38	0/3/3/3
7	DTP	Κ	701	3	-	0/18/34/34	0/3/3/3
7	DTP	L	701	3	-	3/18/34/34	0/3/3/3
7	DTP	D	701	3	-	3/18/34/34	0/3/3/3
5	GTP	С	707	3	-	4/18/38/38	0/3/3/3
7	DTP	М	708	3	-	2/18/34/34	0/3/3/3

D •

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	0KX	D	706	3,2	-	4/19/34/34	0/2/2/2
7	DTP	G	701	3	-	1/18/34/34	0/3/3/3
4	0KX	L	706	3,2	-	4/19/34/34	0/2/2/2
4	0KX	Ι	705	3,2	-	3/19/34/34	0/2/2/2
5	GTP	J	705	3	-	0/18/38/38	0/3/3/3
7	DTP	J	707	3	-	4/18/34/34	0/3/3/3
4	0KX	Ε	704	3,2	-	4/19/34/34	0/2/2/2
5	GTP	Ο	706	3	-	3/18/38/38	0/3/3/3
7	DTP	Ι	708	3	-	5/18/34/34	0/3/3/3
4	0KX	Р	706	3,2	-	6/19/34/34	0/2/2/2
4	0KX	F	704	3,2	-	5/19/34/34	0/2/2/2
5	GTP	K	707	3	-	2/18/38/38	0/3/3/3
7	DTP	Р	701	3	-	1/18/34/34	0/3/3/3
4	0KX	Ν	704	3,2	-	2/19/34/34	0/2/2/2
7	DTP	Ν	706	3	-	2/18/34/34	0/3/3/3
4	0KX	М	705	3,2	-	0/19/34/34	0/2/2/2
5	GTP	D	707	3	-	2/18/38/38	0/3/3/3
5	GTP	Ν	705	3	-	3/18/38/38	0/3/3/3
5	GTP	L	707	3	-	2/18/38/38	0/3/3/3
4	0KX	K	706	3,2	-	2/19/34/34	0/2/2/2
5	GTP	F	705	3	-	0/18/38/38	0/3/3/3
4	0KX	Н	705	3,2	-	3/19/34/34	0/2/2/2
7	DTP	Н	701	3	-	6/18/34/34	0/3/3/3
5	GTP	G	707	3	-	2/18/38/38	0/3/3/3

Continued from previous page...

The worst 5 of 110 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	J	705	GTP	C6-N1	-5.95	1.29	1.37
5	Н	706	GTP	C6-N1	-5.40	1.29	1.37
4	В	705	0KX	PB-O2B	5.22	1.54	1.46
4	L	706	0KX	PB-O2B	4.96	1.54	1.46
4	D	706	0KX	PB-O2B	4.66	1.53	1.46

The worst 5 of 325 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	Ι	705	0KX	O2B-PB-N3A	-7.11	101.30	111.77

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
7	L	701	DTP	C4-C5-N7	-6.77	102.34	109.40
4	В	705	0KX	O1B-PB-O2B	6.53	123.61	109.92
4	С	706	0KX	O1B-PB-O2B	6.23	122.98	109.92
4	L	706	0KX	O1B-PB-O2B	5.64	121.75	109.92

There are no chirality outliers.

5 of 126 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	А	705	0KX	PG-O3B-PB-O1B
4	А	705	0KX	PG-O3B-PB-O2B
4	В	705	0KX	PB-O3B-PG-O1G
4	В	705	0KX	PG-O3B-PB-O1B
4	В	705	0KX	PG-O3B-PB-O2B

There are no ring outliers.

32 monomers are involved in 42 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	F	706	DTP	2	0
5	0	707	GTP	1	0
6	А	707	SO4	1	0
6	Н	707	SO4	1	0
7	В	708	DTP	2	0
7	С	701	DTP	1	0
4	В	705	0KX	1	0
5	Е	705	GTP	1	0
4	С	706	0KX	2	0
7	0	701	DTP	1	0
6	D	708	SO4	1	0
7	Е	706	DTP	3	0
7	K	701	DTP	2	0
7	L	701	DTP	1	0
7	D	701	DTP	1	0
7	М	708	DTP	4	0
4	D	706	0KX	1	0
7	G	701	DTP	2	0
4	L	706	0KX	2	0
5	J	705	GTP	1	0
7	J	707	DTP	1	0
4	Е	704	0KX	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	0	706	GTP	1	0
7	Р	701	DTP	2	0
4	N	704	0KX	2	0
7	N	706	DTP	1	0
5	D	707	GTP	1	0
5	N	705	GTP	1	0
5	F	705	GTP	1	0
4	Н	705	0KX	1	0
7	Н	701	DTP	2	0
5	G	707	GTP	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	481/520~(92%)	0.01	1 (0%) 95 94	21, 41, 68, 81	0
1	В	478/520 (91%)	-0.00	2 (0%) 92 91	18, 37, 79, 110	0
1	С	480/520~(92%)	-0.01	0 100 100	17, 36, 58, 90	0
1	D	481/520~(92%)	-0.04	0 100 100	18, 37, 58, 83	0
1	E	478/520~(91%)	0.40	15 (3%) 49 42	36, 66, 114, 142	0
1	F	463/520~(89%)	0.41	13 (2%) 53 47	39, 64, 105, 120	0
1	G	463/520~(89%)	0.41	17 (3%) 41 33	35, 61, 107, 120	0
1	Н	478/520 (91%)	0.16	4 (0%) 86 85	28, 50, 74, 86	0
1	Ι	477/520~(91%)	0.07	1 (0%) 95 94	25, 50, 74, 93	0
1	J	479/520~(92%)	0.02	0 100 100	21, 41, 72, 87	0
1	K	480/520~(92%)	0.04	0 100 100	25, 45, 68, 81	0
1	L	475/520~(91%)	0.14	4 (0%) 86 85	25, 49, 91, 120	0
1	М	471/520~(90%)	0.59	28 (5%) 22 16	49, 75, 98, 107	0
1	N	475/520~(91%)	0.44	12 (2%) 57 52	44, 68, 89, 105	0
1	Ο	465/520 (89%)	0.42	22 (4%) 31 24	36, 64, 104, 124	0
1	Р	461/520 (88%)	0.37	13 (2%) 53 47	36, 57, 104, 120	0
All	All	7585/8320~(91%)	0.21	132 (1%) 70 66	17, 52, 95, 142	0

The worst 5 of 132 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	Е	464	GLY	4.8
1	Р	582	GLN	4.0
1	А	403	GLY	4.0
1	Е	554	CYS	3.8
1	М	498	PHE	3.8

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	MG	Ι	702	1/1	0.81	0.15	$55,\!55,\!55,\!55$	0
6	SO4	Ι	707	5/5	0.81	0.15	92,93,97,97	0
3	MG	G	703	1/1	0.86	0.13	52,52,52,52	0
3	MG	N	702	1/1	0.89	0.15	40,40,40,40	0
3	MG	В	702	1/1	0.89	0.31	61,61,61,61	0
6	SO4	L	708	5/5	0.89	0.17	72,75,77,80	0
3	MG	K	703	1/1	0.90	0.31	68,68,68,68	0
6	SO4	В	707	5/5	0.90	0.16	67,68,70,71	0
3	MG	N	703	1/1	0.91	0.11	40,40,40,40	0
6	SO4	А	707	5/5	0.92	0.17	83,84,84,85	0
6	SO4	J	706	5/5	0.92	0.14	70,72,73,74	0
3	MG	Н	704	1/1	0.92	0.08	37,37,37,37	0
3	MG	М	702	1/1	0.93	0.21	59, 59, 59, 59, 59	0
3	MG	Е	702	1/1	0.93	0.23	32,32,32,32	0
3	MG	K	705	1/1	0.93	0.08	30,30,30,30	0
3	MG	Р	703	1/1	0.93	0.09	39,39,39,39	0
4	0KX	М	705	28/28	0.93	0.17	52,56,59,61	0
6	SO4	М	707	5/5	0.93	0.15	88,89,90,92	0
3	MG	М	703	1/1	0.94	0.18	46,46,46,46	0
3	MG	Н	703	1/1	0.94	0.17	$25,\!25,\!25,\!25$	0
6	SO4	Н	707	5/5	0.94	0.14	94,94,94,95	0
3	MG	L	703	1/1	0.94	0.19	37,37,37,37	0
3	MG	L	704	1/1	0.94	0.17	20,20,20,20	0
3	MG	D	703	1/1	0.94	0.15	32,32,32,32	0
5	GTP	F	705	32/32	0.94	0.16	44,48,53,55	0
4	0KX	G	706	28/28	0.95	0.15	40,45,47,49	0
3	MG	F	703	1/1	0.95	0.09	44,44,44,44	0

Continued on next page...

Continued from previous page									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors (A^2)	Q<0.9	
6	SO4	D	708	5/5	0.95	0.11	69,71,72,73	0	
3	MG	G	704	1/1	0.95	0.21	$33,\!33,\!33,\!33$	0	
5	GTP	Н	706	32/32	0.95	0.13	36, 39, 43, 45	0	
5	GTP	М	706	32/32	0.95	0.17	$48,\!51,\!56,\!56$	0	
5	GTP	Ν	705	32/32	0.95	0.15	$50,\!52,\!54,\!54$	0	
5	GTP	0	706	32/32	0.95	0.15	$45,\!50,\!58,\!61$	0	
3	MG	Ι	703	1/1	0.96	0.17	20,20,20,20	0	
3	MG	Р	705	1/1	0.96	0.08	43,43,43,43	0	
3	MG	С	703	1/1	0.96	0.16	32,32,32,32	0	
3	MG	F	702	1/1	0.96	0.25	$35,\!35,\!35,\!35$	0	
4	0KX	N	704	28/28	0.96	0.16	$51,\!54,\!55,\!55$	0	
5	GTP	0	707	32/32	0.96	0.14	37,41,47,48	0	
4	0KX	0	705	28/28	0.96	0.17	48,51,56,59	0	
7	DTP	Е	706	30/30	0.96	0.14	28,29,34,34	0	
7	DTP	F	706	30/30	0.96	0.15	$36,\!39,\!45,\!47$	0	
7	DTP	G	701	30/30	0.96	0.17	41,44,52,54	0	
7	DTP	Р	701	30/30	0.96	0.16	44,45,49,51	0	
5	GTP	А	706	32/32	0.97	0.14	21,23,27,29	0	
5	GTP	Е	705	32/32	0.97	0.12	45,49,55,57	0	
3	MG	D	704	1/1	0.97	0.21	13,13,13,13	0	
5	GTP	G	707	32/32	0.97	0.12	30,31,32,33	0	
3	MG	K	704	1/1	0.97	0.14	$19,\!19,\!19,\!19$	0	
5	GTP	Ι	706	32/32	0.97	0.16	26,29,37,38	0	
5	GTP	J	705	32/32	0.97	0.12	21,23,25,26	0	
5	GTP	K	707	32/32	0.97	0.15	36,40,44,46	0	
5	GTP	L	707	32/32	0.97	0.14	21,24,26,27	0	
3	MG	D	705	1/1	0.97	0.11	23,23,23,23	0	
2	FE	Ι	701	1/1	0.97	0.10	$25,\!25,\!25,\!25$	0	
4	0KX	А	705	28/28	0.97	0.14	23,29,32,33	0	
4	0KX	С	706	28/28	0.97	0.14	$19,\!21,\!26,\!27$	0	
4	0KX	D	706	28/28	0.97	0.15	21,23,27,30	0	
4	0KX	Е	704	28/28	0.97	0.13	42,45,48,50	0	
6	SO4	С	708	5/5	0.97	0.11	57,57,59,60	0	
4	0KX	F	704	28/28	0.97	0.15	42,47,50,52	0	
3	MG	Е	703	1/1	0.97	0.09	52,52,52,52	0	
4	0KX	Н	705	28/28	0.97	0.14	38,40,42,44	0	
4	0KX	Ι	705	28/28	0.97	0.14	28,31,33,34	0	
4	0KX	J	704	28/28	0.97	0.16	23,26,28,29	0	
4	0KX	L	706	28/28	0.97	0.13	31,35,39,41	0	
7	DTP	А	708	30/30	0.97	0.17	21,25,26,28	0	
7	DTP	D	701	30/30	0.97	0.15	20,25,28,30	0	
3	MG	L	705	1/1	0.97	0.13	22,22,22,22	0	

ntia J fa α

Continued on next page...

Mol		Chain	Bes	Atoms	BSCC	BSB	B -factors($Å^2$)	0<0.9
2	FE FE	P	702	1/1	0.07	0.12	30 30 30 30	Q<0.5
$\frac{2}{3}$	MC	Δ	702	1/1	0.97	0.12	18 48 48 48	0
7	DTP	Н	702	30/30	0.97	0.15	30 / 3 / 0 52	0
7	DTP	I	701	30/30	0.97	0.15	30 33 38 30	0
7	DTP	I	707	30/30	0.97	0.10	10 21 23 23	0
7	DTP	J L	701	30/30	0.97	0.17	26 28 31 32	0
7	DTP	M	701	30/30	0.97	0.10	41 45 58 59	0
7	DTP	N	706	$\frac{30}{30}$	0.97	0.10	38 43 48 50	0
7	DTP	0	701	30/30	0.97	0.10	44 46 49 49	0
4	0KX	P	706	$\frac{30/30}{28/28}$	0.97	0.10	40.43.50.53	0
5	GTP	C I	707	$\frac{20/20}{32/32}$	0.91	0.10	21 23 26 27	0
5	GTP	D	707	$\frac{02}{02}$	0.00	0.14	16 17 19 20	0
3	MG	B	704	$\frac{02}{02}$	0.98	0.10	20 20 20 20 20	0
$\frac{0}{2}$	FE	N	704	1/1	0.98	0.12	38 38 38 38	0
3	MG	C	704	1/1	0.98	0.03	13 13 13 13	0
3	MG		704	1/1	0.98	0.21	20 20 20 20 20	0
7	DTP	B	708	$\frac{1}{30}$	0.98	0.00	15 16 19 19	0
7	DTP	C	701	30/30	0.98	0.13	16 18 23 24	0
3	MG	I	704	1/1	0.98	0.09	23 23 23 23 23	0
3	MG	J	702	1/1	0.98	0.09	17.17.17.17	0
3	MG	J	703	1/1	0.98	0.00	18 18 18 18	0
3	MG	0	703	1/1	0.98	0.12	31 31 31 31	0
4	0KX	K	706	$\frac{1}{28/28}$	0.98	0.16	31.34.38.40	0
3	MG	0	704	1/1	0.98	0.06	43.43.43.43	0
2	FE	G	702	1/1	0.98	0.10	30.30.30.30	0
7	DTP	K	701	$\frac{-7}{30/30}$	0.98	0.14	25.28.30.30	0
3	MG	Р	704	1/1	0.98	0.24	28,28,28,28	0
3	MG	В	703	1/1	0.98	0.15	13,13,13,13	0
3	MG	G	705	1/1	0.98	0.07	25,25,25,25	0
4	0KX	В	705	28/28	0.98	0.14	19,22,24,25	0
5	GTP	В	706	32/32	0.98	0.14	20,22,26,27	0
3	MG	М	704	1/1	0.99	0.05	49,49,49,49	0
2	FE	0	702	1/1	0.99	0.09	39,39,39,39	0
2	FE	Е	701	1/1	0.99	0.09	42,42,42,42	0
2	FE	А	701	1/1	0.99	0.12	22,22,22,22	0
3	MG	А	703	1/1	0.99	0.23	16,16,16,16	0
2	FE	Н	702	1/1	0.99	0.08	26,26,26,26	0
2	FE	В	701	1/1	0.99	0.12	16,16,16,16	0
2	FE	J	701	1/1	0.99	0.11	18,18,18,18	0
2	FE	K	702	1/1	0.99	0.10	28,28,28,28	0
2	FE	L	702	1/1	0.99	0.10	25,25,25,25	0
2	FE	М	701	1/1	0.99	0.08	44,44,44,44	0

Continued from previous page...

Continued on next page...

J I I J									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9	
3	MG	С	705	1/1	0.99	0.04	24,24,24,24	0	
2	FE	D	702	1/1	0.99	0.14	14,14,14,14	0	
2	FE	F	701	1/1	1.00	0.10	33,33,33,33	0	
2	FE	С	702	1/1	1.00	0.09	17,17,17,17	0	

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

