

wwPDB EM Validation Summary Report (i)

Mar 2, 2024 – 12:10 PM EST

5TZS
EMD-8473
Architecture of the yeast small subunit processome
Chaker-Margot, M.; Barandun, J.; Hunziker, M.; Klinge, S.
2016-11-22
5.10 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 5.10 Å.

Ramachandran outliers

RNA backbone

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

154571

4643

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<=5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

4023

859

Mol	Chain	Length	Quality of chain									
1	0	364	21%									
2	1	1800	12% 14% 12% • 71%									
3	2	126	48%	49% •								
4	3	236	79%	6% 8%								
5	5	261	48%	7% 8%								
6	6	225	9%	8% 10%								
7	7	190	95% 88%	9% •								
8	8	200	63% 84%	• 14%								
9	9	197	21%	8% • 6%								

Continued on next page...

Mol	Chain	Length	Quality of chain							
10	А	39	100%							
11	D	100	45%							
	В	108	100%							
12	С	143	80% • 20%							
13	р	156	72%							
10		100	81%							
14	E	130	97%							
15	F	135	64% ••• 33%							
16	G	67	9% 91% • 7%							
17	TT	F 4 4	44%							
11	Н	544	99% • 22%							
18	Ι	176	94% 6%							
19	J	107	98% •							
19	K	107	16%							
			8%							
20	М	258	99% ·							
21	Ν	545	99%							
22	Ο	638	98% •							
	D	200	7%							
23	Р	306	100%							
24	Q	710	99%							
25	В	717	78%							
	10	111	14%							
26	S	250	98% ·							
27	Т	781	96% •							
28	U	284	13%							
			72%							
29	V	263	9%							
30	W	104	90% 10%							
31	Х	640	72%							
30	V	641	93%							
52	1	041	5%							
33	Ζ	151	99% •							

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain	
24	2	210	15%	
94	a	312	98%	•
35	b	341	100%	
26	0	991	7%	_
- 30	C	221	99% 24%	•
37	d	216	99%	•
38	е	126	97%	•
38	f	126	90%	10%
39	g	573	11% 63% • 36%	
40	h	367	10%	
10		001	10%	
41	i	511	92%	• 7%
42	j	252	84%	16%
42	k	252	86%	13%
/3	1	194	6%	
40	1	124	14%	
44	m	156	99%	•
45	n	160	14%	
46	0	175	71%	
40	0	175		•
47	р	924	96%	•
48	q	372	9%	
49	r	145	56% • 43%	
50	S	290	97%	•
50		200	· · · · · · · · · · · · · · · · · · ·	
50	t	290	9%	• 7%
50	u	290	94%	6%
51	v	580	97%	••
52	у	507	93%	7%
50	-	76	32%	
- 55	Z	10	100%	

Continued from previous page...

2 Entry composition (i)

There are 53 unique types of molecules in this entry. The entry contains 98451 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 5' external transcribed spacer.

Mol	Chain	Residues		A	AltConf	Trace			
1	0	364	Total 4476	C 1871	N 43	0 2198	Р 364	0	0

• Molecule 2 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
9	1	515	Total	С	Ν	Ο	Р	0	0
	T	515	10978	4908	1957	3598	515	0	0

• Molecule 3 is a RNA chain called U3 snoRNA.

Mol	Chain	Residues		A	AltConf	Trace			
3	2	126	Total 2468	C 1095	N 388	O 859	Р 126	0	0

• Molecule 4 is a protein called 40S ribosomal protein S6-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
4	3	216	Total 1063	C 631	N 216	O 216	0	0

• Molecule 5 is a protein called 40S ribosomal protein S4-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
5	5	241	Total 1185	C 703	N 241	O 241	0	0

• Molecule 6 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
6	6	202	Total	С	Ν	Ο	0	0
0	0	202	1000	596	202	202	0	0

• Molecule 7 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
7	7	186	Total 923	C 551	N 186	O 186	0	0

• Molecule 8 is a protein called 40S ribosomal protein S8-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
8	8	173	Total 849	C 503	N 173	О 173	0	0

• Molecule 9 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
9	9	185	Total 915	C 545	N 185	0 185	0	0

• Molecule 10 is a DNA chain called 5' domain-associated.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
10	А	39	Total 468	C 195	0 234	Р 39	0	0

• Molecule 11 is a DNA chain called 3' domain-associated.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
11	В	108	Total	C 540	0 648	P 108	0	0

• Molecule 12 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues	Atoms				AltConf	Trace
12	С	115	Total 566	C 336	N 115	0 115	0	0

• Molecule 13 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
13	D	146	Total 721	C 429	N 146	O 146	0	0

• Molecule 14 is a protein called 40S ribosomal protein S22-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
14	E	127	Total 624	C 370	N 127	O 127	0	0

• Molecule 15 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
15	F	90	Total 444	C 264	N 90	O 90	0	0

• Molecule 16 is a protein called 40S ribosomal protein S28-A.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
16	G	62	Total 306	C 182	N 62	0 62	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	17	ALA	GLY	conflict	UNP Q3E7X9

• Molecule 17 is a protein called Utp4.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
17	Ц	544	Total	С	N	0	0	0
11	11	044	2680	1592	544	544	0	0

• Molecule 18 is a protein called UtpA_CTD1.

Mol	Chain	Residues	Atoms				AltConf	Trace
18	Ι	176	Total 880	C 528	N 176	O 176	0	0

• Molecule 19 is a protein called UtpA_CTD2.

Mol	Chain	Residues	Atoms				AltConf	Trace
19	J	107	Total 535	C 321	N 107	O 107	0	0
19	Κ	105	Total 525	C 315	N 105	O 105	0	0

• Molecule 20 is a protein called Beta-propeller 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
20	М	258	Total 1275	C 759	N 258	O 258	0	0

• Molecule 21 is a protein called Utp17.

Mol	Chain	Residues	Atoms				AltConf	Trace
21	Ν	545	Total 2678	C 1588	N 545	O 545	0	0

• Molecule 22 is a protein called Utp1.

Mol	Chain	Residues	Atoms				AltConf	Trace
22	О	638	Total 3153	C 1877	N 638	O 638	0	0

• Molecule 23 is a protein called Utp6.

Mol	Chain	Residues	Atoms				AltConf	Trace
93	D	206	Total	С	Ν	Ο	0	0
20	L_	500	1530	918	306	306	U	U

• Molecule 24 is a protein called Utp12.

Mol	Chain	Residues	Atoms				AltConf	Trace
24	Q	710	Total 3503	C 2083	N 710	0 710	0	0

• Molecule 25 is a protein called Utp13.

Mol	Chain	Residues	Atoms				AltConf	Trace
25	R	717	Total 3539	C 2105	N 717	O 717	0	0

• Molecule 26 is a protein called Utp18.

Mol	Chain	Residues	Atoms				AltConf	Trace
26	S	250	Total 1228	C 728	N 250	O 250	0	0

• Molecule 27 is a protein called U3 small nucleolar RNA-associated protein 21,Utp21.

Mol	Chain	Residues	Atoms				AltConf	Trace
27	Т	749	Total 3691	C 2193	N 749	O 749	0	0

• Molecule 28 is a protein called Beta-propeller 5.

Mol	Chain	Residues	Atoms				AltConf	Trace
28	U	284	Total	C 820	N 284	0	0	0
			1398	830	284	284		

• Molecule 29 is a protein called Enp2.

Mol	Chain	Residues	Atoms				AltConf	Trace
29	V	263	Total 1298	С 772	N 263	O 263	0	0

• Molecule 30 is a protein called UtpA_CTD4.

Mol	Chain	Residues	Atoms				AltConf	Trace
30	W	104	Total 520	C 312	N 104	O 104	0	0

• Molecule 31 is a protein called Kre33.

Mol	Chain	Residues	Atoms				AltConf	Trace
31	Х	640	Total 3155	C 1875	N 640	O 640	0	0

• Molecule 32 is a protein called Kre33.

Mol	Chain	Residues	Atoms				AltConf	Trace
32	Y	641	Total 3160	C 1878	N 641	O 641	0	0

• Molecule 33 is a protein called Imp3.

Mol	Chain	Residues	Atoms				AltConf	Trace
33	Ζ	151	Total 748	C 446	N 151	0 151	0	0

• Molecule 34 is a protein called Nop56.

Mol	Chain	Residues	Atoms				AltConf	Trace
34	a	312	Total 1544	C 920	N 312	O 312	0	0

• Molecule 35 is a protein called Nop58.

Mol	Chain	Residues	Atoms				AltConf	Trace
35	b	341	Total 1687	C 1005	N 341	0 341	0	0

• Molecule 36 is a protein called Nop1.

Mol	Chain	Residues	Atoms				AltConf	Trace
36	с	221	Total 1088	C 646	N 221	O 221	0	0

• Molecule 37 is a protein called Nop1.

Mol	Chain	Residues	Atoms				AltConf	Trace
37	d	216	Total 1064	C 632	N 216	O 216	0	0

• Molecule 38 is a protein called 13 kDa ribonucleoprotein-associated protein.

Mol	Chain	Residues	Atoms				AltConf	Trace
38	е	122	Total 606	C 362	N 122	O 122	0	0
38	f	114	Total 566	$\overline{\mathrm{C}}$ 338	N 114	0 114	0	0

• Molecule 39 is a protein called Ribosomal RNA-processing protein 9.

Mol	Chain	Residues	Atoms				AltConf	Trace
39	g	365	Total 1799	C 1069	N 365	O 365	0	0

• Molecule 40 is a protein called RNA 3'-terminal phosphate cyclase-like protein.

Mol	Chain	Residues		Ator	AltConf	Trace		
40	h	355	Total 1742	C 1032	N 355	O 355	0	0

• Molecule 41 is a protein called Bms1,Ribosome biogenesis protein BMS1,Bms1,Ribosome

biogenesis protein BMS1.

Mol	Chain	Residues	Atoms				AltConf	Trace
41	i	475	Total 2347	C 1398	N 475	0 474	0	0

• Molecule 42 is a protein called Ribosomal RNA small subunit methyltransferase NEP1.

Mol	Chain	Residues	Atoms				AltConf	Trace
42	j	211	Total	C 625	N 211	0	0	0
		210	Total	$\frac{025}{C}$	<u></u> N	$\frac{211}{0}$		
42	k	218	1081	645	218	218	0	0

• Molecule 43 is a protein called Utp24.

Mol	Chain	Residues	Atoms				AltConf	Trace
43	1	124	Total 613	C 365	N 124	O 124	0	0

• Molecule 44 is a protein called Imp4.

Mol	Chain	Residues	Atoms				AltConf	Trace
44	m	156	Total 775	C 463	N 156	O 156	0	0

• Molecule 45 is a protein called Utp30.

Mol	Chain	Residues	Atoms				AltConf	Trace
45	n	160	Total 791	C 471	N 160	O 160	0	0

• Molecule 46 is a protein called Unassigned KH domain.

Mol	Chain	Residues	Atoms				AltConf	Trace
46	Ο	173	Total 858	C 512	N 173	О 173	0	0

• Molecule 47 is a protein called Utp20.

Mol	Chain	Residues		Ator	AltConf	Trace		
47	р	924	Total 4620	C 2772	N 924	O 924	0	0

• Molecule 48 is a protein called Repeat protein 2.

Mol	Chain	Residues	Atoms				AltConf	Trace
48	q	372	Total 1860	C 1116	N 372	O 372	0	0

• Molecule 49 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues	Atoms				AltConf	Trace
49	r	82	Total 402	C 238	N 82	O 82	0	0

• Molecule 50 is a protein called Beta-propeller 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
50	S	290	Total 1429	C 849	N 290	O 290	0	0
50	t	269	Total 1076	C 538	N 269	O 269	0	0
50	u	274	Total 1346	C 798	N 274	0 274	0	0

• Molecule 51 is a protein called Repeat protein 1.

Mol	Chain	Residues	Atoms				AltConf	Trace
51	v	577	Total 2885	C 1731	N 577	O 577	0	0

• Molecule 52 is a protein called Unassigned protein helices.

Mol	Chain	Residues	Atoms				AltConf	Trace
52	У	507	Total 2535	C 1521	N 507	O 507	0	0

• Molecule 53 is a DNA chain called Unassigned RNA helices.

Mol	Chain	Residues	Atoms				AltConf	Trace
53	Z	76	Total 912	C 380	0 456	Р 76	0	0
00	2	10	912	380	456	76	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 5' external transcribed spacer

• Molecule 6: 40S ribosomal protein S5

G151 G152 G153 A154 A155 A156 A159 A169 A191 A191 A210 A210

• Molecule 7: 40S ribosomal protein S7-A

 \bullet Molecule 8: 40S ribosomal protein S8-A

	•••••	*** ** ** * *	•••
GLU CHR VAL VAL LYS SER LYS SER LYS ALA ALA ALA ALA ALA ALA	ARG ALA ALA ALA ALA AL5 SER 1152 S155 S155 S155 S155 S156 C155 S156 S156 S156 S156 S156 S156 S156 S	A167 C168 1169 S171 S171 S177 A172 S176 C177 A172 C179 C177 C179 C177 C178 C177 C178 C178 C178 C178 C178	E185 G186 E187 Y192 L193 R194 R194
R195 T197 A198 K199 K200			
• Molecule 9: 40S ribe	osomal protein S9-A		
21% Chain 9:	86%	8% • 6%	
MET P2 R3 R6 P5 R6 P5 R6 S9 K10 Y11 Y12 S13	R17 846 A55 A55 B58 B63 B63 B63 B63 F71 F71 E72 C67 C67 C67 C67 C67 C67 C67 C67 C67 C67	E88 189 189 190 1103 1103 1103 1103 1103 1115 115	1121 1126 1126 1134
G137 G137 1143 H147 N148 N148 N148 S162 D151 G165	P169 P169 A181 A183 A183 A184 A184 A184 A184 A184 A184 A184 A184		
• Molecule 10: 5' dom	nain-associated		
Chain A: There are no outlier r • Molecule 11: 3' dom	100% esidues recorded for this chain. nain-associated		
Chain B:	45%		
N1111 N1114 N1116 N1116 N1117 N1118 N11120 N1120 N1132 N1132 N1132	NI135 NI136 NI137 NI138 NI140 NI141 NI142 NI143 NI143 NI146 NI153 NI154 NI155 NI155 NI155 NI156 NI156	N1160 N1161 N1102 N1103 N1173 N1177 N1173 N1173 N1179 N1179 N1179 N1505	N1647 N1648 N1649 N1649 N1741 N1742 N1743 N1744 N1744 N1744
• Molecule 12: 40S rik	posomal protein S16-A		
Chain C:	80%	• 20%	
MET SER ALA ALA B5 86 86 87 2 85 87 8119 85 85 85 85 85 85 85 85 85 85 85 85 85	PRIO PRO LYS LYS LYS LYS GLY GLY GLY GLY GLY CLY SER SER SER SER SER ARG CYN SER ARG CYN SER ARG CYN SER ARG CYN ARG CYN ARG CHU ARG CHU ARG CHU CYS CHU CHU CYS CHU CHU CYS CHU CHU CYS CHU CHU CYS CHU CYS CHU CHU CYS CHU CHU CYS CHU CHU CYS CHU CHU CHU CHU CHU CHU CHU CHU CHU CHU		
• Molecule 13: 40S rit	posomal protein S11-A		
Chain D:	94%	6%	
MET 32 53 54 15 15 76 89 89 89 812 712 712 712 712	K15 Q16 P17 P17 F20 F20 F20 N21 N21 V25 V25 V25 V25 K24 K24 F23 Y28 K24 K26 K28 K28 K28 K28 K28 K28 K28 K28 K28 K28	Y35 Y35 N37 A38 A38 A38 C41 F42 F42 F42 F42 F45 F45 F45 F45 F45 F45 F45 F45 F45 F45	S52 Y53 I54 K57 K57 C58 F60 F60 F60 F60 C58 F60 C58 F60 F60
L63 V64 S65 L66 R67 G68 K69 K69 L71 L71 C73 C73 C73 C73 C73	V76 577 178 178 K79 184 V85 A89 A89 A89 Y992 L91 H92 194 Y93 Y93 Y93 Y95 Y95 Y95 Y95 Y95 Y96 Y96 Y96 Y96 Y97	Y100 E101 K102 A103 H104 V105 V105 V105 S112 S112 S112 V111 V111 V111 V111	V119 G120 D121 V123 V123 C128 C128 P130
	WORLDWIDE PROTEIN DATA BANK		

• Molecule 14: 40S ribosomal protein S22-A

• Molecule 15: 40S ribosomal protein S24-A

• Molecule 16: 40S ribosomal protein S28-A

9% Chain G: 91% • 7% MET ASP ASN LYS LYS T5 • Molecule 17: Utp4 44% Chain H: 99% X369 X370 X368 K381 K371 X376 X377 K37: X37. X37! X37

Chain W:

10%

90%

• Molecule 31: Kre33

• Molecule 38: 13 kDa ribonucleoprotein-associated protein

X851 X852 X917 X920 X935 X943 X943 X91015 X1015

• Molecule 42: Ribosomal RNA small subunit methyltransferase NEP1

• Molecule 52: Unassigned protein helices

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	33813	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.56	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	2600	Depositor
Magnification	22500	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.086	Depositor
Minimum map value	-0.043	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.018	Depositor
Map size (Å)	503.50003, 503.50003, 503.50003	wwPDB
Map dimensions	380, 380, 380	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.325, 1.325, 1.325	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Mol Chain		Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	0	1.11	0/268	1.42	5/417~(1.2%)		
2	1	1.25	39/12260~(0.3%)	1.71	368/19055~(1.9%)		
3	2	1.66	26/2443~(1.1%)	1.69	73/3787~(1.9%)		
4	3	0.57	0/1061	0.81	1/1472~(0.1%)		
5	5	0.63	0/1182	0.92	0/1638		
6	6	0.70	2/998~(0.2%)	1.22	7/1388~(0.5%)		
7	7	0.51	0/922	0.85	0/1285		
8	8	0.65	0/847	0.93	0/1173		
9	9	0.56	0/914	0.82	0/1272		
12	С	0.50	0/565	0.77	0/784		
13	D	0.30	0/720	0.62	0/1001		
14	Е	0.34	0/623	0.63	0/864		
15	F	0.38	0/443	0.73	0/615		
16	G	0.46	0/305	0.80	0/423		
27	Т	0.51	0/3055	0.69	0/4243		
38	е	0.25	0/605	0.56	0/843		
38	f	0.26	0/565	0.57	0/787		
39	g	0.41	0/1793	0.64	2/2485~(0.1%)		
40	h	0.40	0/1741	0.59	0/2416		
41	i	0.32	0/265	0.50	0/367		
42	j	0.36	0/1044	0.62	0/1452		
42	k	0.39	0/1079	0.57	0/1502		
49	r	0.37	0/399	0.58	0/549		
All	All	0.95	67/34097~(0.2%)	1.28	456/49818~(0.9%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	2	0	1
6	6	0	3

Continued on next page...

Mol	Chain	#Chirality outliers	#Planarity outliers
9	9	0	3
12	С	0	1
15	F	0	2
16	G	0	1
17	Н	0	4
18	Ι	0	11
19	J	0	2
19	К	0	3
20	М	0	3
21	N	0	4
22	0	0	12
24	Q	0	4
26	S	0	4
27	Т	0	2
28	U	0	1
30	W	0	10
31	Х	0	2
33	Ζ	0	2
34	a	0	6
35	b	0	1
36	с	0	3
37	d	0	3
39	g	0	2
41	i	0	5
44	m	0	2
47	р	0	38
50	s	0	9
50	t	0	11
50	u	0	1
51	V	0	13
52	У	0	33
All	All	0	202

Continued from previous page...

The worst 5 of 67 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
3	2	308	U	O3'-P	-63.84	0.84	1.61
2	1	1615	С	O3'-P	-41.94	1.10	1.61
6	6	145	ASP	C-N	-12.45	1.05	1.34
2	1	337	G	C2-N2	10.63	1.45	1.34
3	2	118	A	C1'-N9	-10.57	1.32	1.46

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	1	1615	С	OP2-P-O3'	-30.61	37.85	105.20
6	6	145	ASP	O-C-N	-22.20	87.17	122.70
3	2	118	А	O4'-C1'-N9	-21.15	91.28	108.20
2	1	1615	С	OP1-P-O3'	17.13	142.90	105.20
2	1	1615	С	O3'-P-O5'	-16.35	72.93	104.00

The worst 5 of 456 bond angle outliers are listed below:

There are no chirality outliers.

5 of 202 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	2	118	A	Sidechain
6	6	145	ASP	Mainchain
6	6	44	ASN	Peptide
6	6	99	MET	Peptide
9	9	88	GLU	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
4	3	212/236~(90%)	180 (85%)	20 (9%)	12 (6%)	1	20
5	5	235/261~(90%)	199 (85%)	19 (8%)	17 (7%)	1	16
6	6	198/225~(88%)	148 (75%)	36 (18%)	14 (7%)	1	16
7	7	184/190~(97%)	143 (78%)	23 (12%)	18 (10%)	0	10
8	8	169/200~(84%)	150 (89%)	14 (8%)	5(3%)	4	31
9	9	183/197~(93%)	152 (83%)	17 (9%)	14 (8%)	1	14

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
12	С	113/143~(79%)	107 (95%)	6 (5%)	0	100	100
13	D	144/156~(92%)	125 (87%)	19 (13%)	0	100	100
14	Е	125/130~(96%)	113 (90%)	11 (9%)	1 (1%)	19	60
15	F	88/135~(65%)	72 (82%)	13 (15%)	3(3%)	3	29
16	G	60/67~(90%)	53 (88%)	7 (12%)	0	100	100
27	Т	613/781~(78%)	565 (92%)	48 (8%)	0	100	100
38	е	120/126~(95%)	118 (98%)	2 (2%)	0	100	100
38	f	112/126~(89%)	110 (98%)	2 (2%)	0	100	100
39	g	353/573~(62%)	337~(96%)	15 (4%)	1 (0%)	41	76
40	h	353/367~(96%)	340 (96%)	13 (4%)	0	100	100
41	i	50/511~(10%)	48 (96%)	2(4%)	0	100	100
42	j	205/252~(81%)	190 (93%)	15 (7%)	0	100	100
42	k	214/252~(85%)	201 (94%)	11 (5%)	2(1%)	17	56
49	r	76/145~(52%)	66 (87%)	9 (12%)	1 (1%)	12	48
All	All	3807/5073~(75%)	3417 (90%)	302 (8%)	88 (2%)	9	36

Continued from previous page...

5 of 88 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	3	153	VAL
4	3	173	PRO
4	3	174	LYS
5	5	24	SER
5	5	95	THR

5.3.2 Protein sidechains (i)

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	0	10/364~(2%)	1 (10%)	0
2	1	496/1800~(27%)	119 (23%)	22 (4%)
3	2	95/126~(75%)	20 (21%)	3(3%)
All	All	601/2290~(26%)	140 (23%)	25 (4%)

5 of 140 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	0	287	G
2	1	57	G
2	1	60	U
2	1	67	А
2	1	68	А

5 of 25 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
2	1	512	А
2	1	1572	G
3	2	318	U
2	1	1535	U
2	1	1573	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
47	р	58
	a	

Continued on next page...

Mol	Chain	Number of breaks
1	0	45
51	v	31
22	0	27
48	q	23
25	R	20
52	У	18
24	Q	18
41	i	16
17	Н	16
23	Р	15
26	S	13
21	N	11
18	Ι	11
29	V	11
20	М	11
45	n	10
11	В	9
3	2	8
2	1	8
53	Z	7
34	a	7
44	m	7
31	Х	7
32	Y	7
50	t	6
35	b	6
30	W	6
50	s	6
19	K	5
10	А	5
19	J	5
28	U	5
50	u	4
27	Т	3
43	1	3
6	6	3
46	0	2
37	d	2
36	с	1

Continued from previous page...

The worst 5 of 476 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	у	204:UNK	С	213:UNK	Ν	135.82
1	у	180:UNK	С	185:UNK	Ν	133.64
1	у	618:UNK	С	625:UNK	Ν	128.71
1	Z	950:N	O3'	1110:N	Р	127.24
1	у	144:UNK	С	150:UNK	N	117.41

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-8473. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 190

Y Index: 190

Z Index: 190

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 217

Y Index: 219

Z Index: 151

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.018. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1219 $\rm nm^3;$ this corresponds to an approximate mass of 1101 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.196 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.196 \AA^{-1}

8.2 Resolution estimates (i)

$\mathbf{Bosolution ostimato}(\mathbf{\hat{A}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	5.10	-	-
Author-provided FSC curve	5.06	7.66	5.67
Unmasked-calculated*	-	-	_

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-8473 and PDB model 5TZS. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.018 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.018).

9.4 Atom inclusion (i)

At the recommended contour level, 65% of all backbone atoms, 59% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.018) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.5910	0.2220
0	0.6070	0.2240
1	0.4540	0.1320
2	0.7480	0.2460
3	0.1550	0.0920
5	0.4780	0.2120
6	0.7840	0.3030
7	0.0630	0.1230
8	0.2990	0.1450
9	0.6980	0.2580
А	0.7050	0.2770
В	0.4340	0.1860
С	0.8680	0.3440
D	0.2520	0.0990
E	0.2210	0.2220
F	0.6010	0.2400
G	0.8170	0.3800
Н	0.5250	0.1500
Ι	0.7210	0.2200
J	0.8110	0.2700
K	0.7600	0.2390
М	0.8220	0.3410
N	0.7080	0.2560
0	0.8240	0.3370
Р	0.8320	0.2500
Q	0.7260	0.2480
R	0.2290	0.0620
S	0.7890	0.3220
T	0.8460	0.3420
U	0.7640	0.2990
V	0.2930	0.1150
W	0.8270	0.2800
X	0.2850	0.1060
Y	0.0920	0.0530
Z	0.8280	0.3300

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
a	0.7590	0.2500
b	0.7180	0.2690
с	0.8280	0.3400
d	0.6760	0.3030
е	0.7920	0.3070
f	0.7830	0.2920
g	0.7400	0.2740
h	0.7830	0.3100
i	0.7840	0.3150
j	0.6710	0.2490
k	0.7150	0.2920
1	0.8550	0.3440
m	0.7830	0.3260
n	0.7660	0.2590
0	0.3090	0.1520
р	0.1710	0.1420
\mathbf{q}	0.8020	0.2450
r	0.8010	0.3590
S	0.7180	0.2400
\mathbf{t}	0.9130	0.3770
u	0.8100	0.3320
V	0.7580	0.2380
У	0.7500	0.2570
Z	0.4700	0.2040

