

# Full wwPDB X-ray Structure Validation Report (i)

#### Aug 15, 2023 – 12:03 PM EDT

| PDB ID       | : | 1U0W                                                                         |
|--------------|---|------------------------------------------------------------------------------|
| Title        | : | An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Speci- |
|              |   | ficity of Type III Polyketide Synthases: 18xCHS+resveratrol Structure        |
| Authors      | : | Austin, M.B.; Bowman, M.E.; Ferrer, JL.; Schroder, J.; Noel, J.P.            |
| Deposited on | : | 2004-07-14                                                                   |
| Resolution   | : | 2.00 Å(reported)                                                             |
|              |   |                                                                              |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.35                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motric                | Whole archive       | Similar resolution                                          |
|-----------------------|---------------------|-------------------------------------------------------------|
| IVIEUTIC              | $(\# { m Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| R <sub>free</sub>     | 130704              | 8085 (2.00-2.00)                                            |
| Clashscore            | 141614              | 9178 (2.00-2.00)                                            |
| Ramachandran outliers | 138981              | 9054 (2.00-2.00)                                            |
| Sidechain outliers    | 138945              | 9053 (2.00-2.00)                                            |
| RSRZ outliers         | 127900              | 7900 (2.00-2.00)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain  |     |     |
|-----|-------|--------|-------------------|-----|-----|
| 1   | А     | 393    | <sup>2%</sup> 70% | 26% | ••• |
| 1   | В     | 393    | 73%               | 24% | ••• |
| 1   | С     | 393    | .%<br><b>7</b> 6% | 21% |     |
| 1   | D     | 393    | 65%               | 32% | ••• |



#### 1U0W

# 2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 13154 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | At   | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|--------------|---------|---------|-------|
| 1   | Δ     | 200      | Total | С    | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | A     | 300      | 2974  | 1892 | 505 | 560 | 17           | 0       | U       | U     |
| 1   | D     | 200      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | I D   | 300      | 2974  | 1892 | 505 | 560 | 17           | 0       | 0       | 0     |
| 1   | 1 0   | 200      | Total | С    | Ν   | 0   | S            | 0       | 0       | 0     |
|     | 900   | 2974     | 1892  | 505  | 560 | 17  | 0            | U       |         |       |
| 1 D | 200   | Total    | С     | Ν    | 0   | S   | 0            | 0       | 0       |       |
|     | 388   | 2974     | 1892  | 505  | 560 | 17  | U            | 0       | U       |       |

• Molecule 1 is a protein called Chalcone synthase 2.

There are 88 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| А     | -3      | GLY      | -      | cloning artifact    | UNP P30074 |
| А     | -2      | SER      | -      | cloning artifact    | UNP P30074 |
| А     | -1      | HIS      | -      | cloning artifact    | UNP P30074 |
| А     | 0       | GLY      | -      | cloning artifact    | UNP P30074 |
| А     | 96      | ALA      | ASP    | engineered mutation | UNP P30074 |
| А     | 98      | LEU      | VAL    | engineered mutation | UNP P30074 |
| А     | 99      | ALA      | VAL    | engineered mutation | UNP P30074 |
| А     | 100     | MET      | VAL    | engineered mutation | UNP P30074 |
| А     | 131     | SER      | THR    | engineered mutation | UNP P30074 |
| А     | 133     | THR      | SER    | engineered mutation | UNP P30074 |
| А     | 134     | THR      | GLY    | engineered mutation | UNP P30074 |
| А     | 135     | PRO      | VAL    | engineered mutation | UNP P30074 |
| А     | 137     | LEU      | MET    | engineered mutation | UNP P30074 |
| А     | 157     | VAL      | TYR    | engineered mutation | UNP P30074 |
| А     | 158     | GLY      | MET    | engineered mutation | UNP P30074 |
| А     | 159     | VAL      | MET    | engineered mutation | UNP P30074 |
| А     | 160     | PHE      | TYR    | engineered mutation | UNP P30074 |
| А     | 162     | HIS      | GLN    | engineered mutation | UNP P30074 |
| А     | 268     | LYS      | LEU    | engineered mutation | UNP P30074 |
| А     | 269     | GLY      | LYS    | engineered mutation | UNP P30074 |
| А     | 270     | ALA      | ASP    | engineered mutation | UNP P30074 |



| ChainResidueModelledActualCommentReferenceA273ASPGLYengineered mutationUNP P3007B-3GLY-cloning artifactUNP P3007B-2SER-cloning artifactUNP P3007B-1HIS-cloning artifactUNP P3007B0GLY-cloning artifactUNP P3007B96ALAASPengineered mutationUNP P3007B98LEUVALengineered mutationUNP P3007B99ALAVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THBSEBengineered mutationUNP P3007 |                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| A273ASPGLYengineered mutationUNP P300B-3GLY-cloning artifactUNP P300B-2SER-cloning artifactUNP P300B-1HIS-cloning artifactUNP P300B0GLY-cloning artifactUNP P300B96ALAASPengineered mutationUNP P300B96ALAASPengineered mutationUNP P300B98LEUVALengineered mutationUNP P300B99ALAVALengineered mutationUNP P300B131SERTHRengineered mutationUNP P300B133THBSERengineered mutationUNP P300                 | $74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\$ |
| B-3GLY-cloning artifactUNP P3007B-2SER-cloning artifactUNP P3007B-1HIS-cloning artifactUNP P3007B0GLY-cloning artifactUNP P3007B96ALAASPengineered mutationUNP P3007B98LEUVALengineered mutationUNP P3007B99ALAVALengineered mutationUNP P3007B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THBSEBengineered mutationUNP P3007                                           | $74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\ 74 \\$ |
| B-2SER-cloning artifactUNP P3007B-1HIS-cloning artifactUNP P3007B0GLY-cloning artifactUNP P3007B96ALAASPengineered mutationUNP P3007B98LEUVALengineered mutationUNP P3007B99ALAVALengineered mutationUNP P3007B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THBSEBengineered mutationUNP P3007                                                                           | $\frac{74}{74}$ $\frac{74}{74}$                   |
| B-1HIS-cloning artifactUNP P3007B0GLY-cloning artifactUNP P3007B96ALAASPengineered mutationUNP P3007B98LEUVALengineered mutationUNP P3007B99ALAVALengineered mutationUNP P3007B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THBSEBengineered mutationUNP P3007                                                                                                           | $\frac{74}{74}$ $\frac{74}{74}$                   |
| B0GLY-cloning artifactUNP P3007B96ALAASPengineered mutationUNP P3007B98LEUVALengineered mutationUNP P3007B99ALAVALengineered mutationUNP P3007B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THRSERengineered mutationUNP P3007                                                                                                                                           | $\frac{74}{74}$                                   |
| B96ALAASPengineered mutationUNP P3007B98LEUVALengineered mutationUNP P3007B99ALAVALengineered mutationUNP P3007B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THBSERengineered mutationUNP P3007                                                                                                                                                                          | $\frac{74}{-}$                                    |
| B98LEUVALengineered mutationUNP P3007B99ALAVALengineered mutationUNP P3007B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THRSERengineered mutationUNP P3007                                                                                                                                                                                                               |                                                   |
| B99ALAVALengineered mutationUNP P3007B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THRSERengineered mutationUNP P3007                                                                                                                                                                                                                                                    | 14                                                |
| B100METVALengineered mutationUNP P3007B131SERTHRengineered mutationUNP P3007B133THRSERengineered mutationUNP P3007                                                                                                                                                                                                                                                                                         | 74                                                |
| B     131     SER     THR     engineered mutation     UNP P3007       B     133     THR     SER     engineered mutation     UNP P3007                                                                                                                                                                                                                                                                      | 74                                                |
| B 133 THR SER engineered mutation UNP P300                                                                                                                                                                                                                                                                                                                                                                 | 74                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                            | 74                                                |
| B 134 THR GLY engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B 135 PRO VAL engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B 137 LEU MET engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B 157 VAL TYR engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B 158 GLY MET engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B   159   VAL   MET   engineered mutation   UNP P3007                                                                                                                                                                                                                                                                                                                                                      | 74                                                |
| B 160 PHE TYR engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B 162 HIS GLN engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B   268   LYS   LEU   engineered mutation   UNP P3007                                                                                                                                                                                                                                                                                                                                                      | 74                                                |
| B 269 GLY LYS engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B 270 ALA ASP engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| B 273 ASP GLY engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C -3 GLY - cloning artifact UNP P3007                                                                                                                                                                                                                                                                                                                                                                      | 74                                                |
| C -2 SER - cloning artifact UNP P3007                                                                                                                                                                                                                                                                                                                                                                      | 74                                                |
| C -1 HIS - cloning artifact UNP P3007                                                                                                                                                                                                                                                                                                                                                                      | 74                                                |
| C 0 GLY - cloning artifact UNP P3007                                                                                                                                                                                                                                                                                                                                                                       | 74                                                |
| C 96 ALA ASP engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                 | 74                                                |
| C 98 LEU VAL engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                 | 74                                                |
| C 99 ALA VAL engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                 | 74                                                |
| C 100 MET VAL engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 131 SER THR engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 133 THR SER engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 134 THR GLY engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 135 PRO VAL engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 137 LEU MET engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 157 VAL TYR engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 158 GLY MET engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 159 VAL MET engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 160 PHE TYR engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 162 HIS GLN engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |
| C 268 LYS LEU engineered mutation UNP P3007                                                                                                                                                                                                                                                                                                                                                                | 74                                                |



| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| С     | 269     | GLY      | LYS    | engineered mutation | UNP P30074 |
| С     | 270     | ALA      | ASP    | engineered mutation | UNP P30074 |
| С     | 273     | ASP      | GLY    | engineered mutation | UNP P30074 |
| D     | -3      | GLY      | -      | cloning artifact    | UNP P30074 |
| D     | -2      | SER      | -      | cloning artifact    | UNP P30074 |
| D     | -1      | HIS      | -      | cloning artifact    | UNP P30074 |
| D     | 0       | GLY      | -      | cloning artifact    | UNP P30074 |
| D     | 96      | ALA      | ASP    | engineered mutation | UNP P30074 |
| D     | 98      | LEU      | VAL    | engineered mutation | UNP P30074 |
| D     | 99      | ALA      | VAL    | engineered mutation | UNP P30074 |
| D     | 100     | MET      | VAL    | engineered mutation | UNP P30074 |
| D     | 131     | SER      | THR    | engineered mutation | UNP P30074 |
| D     | 133     | THR      | SER    | engineered mutation | UNP P30074 |
| D     | 134     | THR      | GLY    | engineered mutation | UNP P30074 |
| D     | 135     | PRO      | VAL    | engineered mutation | UNP P30074 |
| D     | 137     | LEU      | MET    | engineered mutation | UNP P30074 |
| D     | 157     | VAL      | TYR    | engineered mutation | UNP P30074 |
| D     | 158     | GLY      | MET    | engineered mutation | UNP P30074 |
| D     | 159     | VAL      | MET    | engineered mutation | UNP P30074 |
| D     | 160     | PHE      | TYR    | engineered mutation | UNP P30074 |
| D     | 162     | HIS      | GLN    | engineered mutation | UNP P30074 |
| D     | 268     | LYS      | LEU    | engineered mutation | UNP P30074 |
| D     | 269     | GLY      | LYS    | engineered mutation | UNP P30074 |
| D     | 270     | ALA      | ASP    | engineered mutation | UNP P30074 |
| D     | 273     | ASP      | GLY    | engineered mutation | UNP P30074 |

• Molecule 2 is RESVERATROL (three-letter code: STL) (formula:  $C_{14}H_{12}O_3$ ).







| Mol | Chain | Residues | Atoms                                                       | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------------------------|---------|---------|
| 2   | А     | 1        | Total         C         O           17         14         3 | 0       | 0       |
| 2   | В     | 1        | Total         C         O           17         14         3 | 0       | 0       |
| 2   | С     | 1        | Total         C         O           17         14         3 | 0       | 0       |
| 2   | D     | 1        | Total         C         O           17         14         3 | 0       | 0       |

• Molecule 3 is water.

| Mol | Chain | Residues | Atoms              | ZeroOcc | AltConf |
|-----|-------|----------|--------------------|---------|---------|
| 3   | А     | 275      | Total O<br>275 275 | 0       | 0       |
| 3   | В     | 310      | Total O<br>310 310 | 0       | 0       |
| 3   | С     | 315      | Total O<br>315 315 | 0       | 0       |
| 3   | D     | 290      | Total O<br>290 290 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Chalcone synthase 2

# E288 H162 P289 F162 P289 F179 C305 K182 R336 F199 R347 V196 R348 V196 R349 V196 R353 F198 R354 V196 R355 K182 R356 K182 R356 K198 R356 K198 R356 K198 R356 K219 R356 K220 R356 K220 R357 L222 R356 R220 R357 L222 R356 R220 R356 R256 R356 L222 R356 L222 R356 L222 R357 L222 R356 L226 R356 L226 R369 L226 R389 L226 R389 L226 R389</t

• Molecule 1: Chalcone synthase 2





# 4 Data and refinement statistics (i)

| Property                                           | Value                                            | Source    |
|----------------------------------------------------|--------------------------------------------------|-----------|
| Space group                                        | P 1                                              | Depositor |
| Cell constants                                     | 64.33Å 71.72Å 85.75Å                             | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$             | $111.39^{\circ}$ $91.61^{\circ}$ $90.07^{\circ}$ | Depositor |
| $\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$ | 49.34 - 2.00                                     | Depositor |
| Resolution (A)                                     | 49.34 - 2.00                                     | EDS       |
| % Data completeness                                | 97.0 (49.34-2.00)                                | Depositor |
| (in resolution range)                              | 97.1 (49.34-2.00)                                | EDS       |
| R <sub>merge</sub>                                 | (Not available)                                  | Depositor |
| $R_{sym}$                                          | (Not available)                                  | Depositor |
| $< I/\sigma(I) > 1$                                | 2.38 (at 2.00Å)                                  | Xtriage   |
| Refinement program                                 | CNS 1.0                                          | Depositor |
| D D.                                               | 0.203 , $0.264$                                  | Depositor |
| $\Lambda, \Lambda_{free}$                          | 0.197 , $0.258$                                  | DCC       |
| $R_{free}$ test set                                | 4706 reflections $(5.06%)$                       | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                            | 23.8                                             | Xtriage   |
| Anisotropy                                         | 0.725                                            | Xtriage   |
| Bulk solvent $k_{sol}(e/A^3)$ , $B_{sol}(A^2)$     | 0.33 , $50.3$                                    | EDS       |
| L-test for twinning <sup>2</sup>                   | $< L >=0.50, < L^2>=0.33$                        | Xtriage   |
| Estimated twinning fraction                        | 0.119 for h,-k,-l                                | Xtriage   |
| $F_o, F_c$ correlation                             | 0.95                                             | EDS       |
| Total number of atoms                              | 13154                                            | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                       | 31.0                                             | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 15.43% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: STL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | Bond lengths |      | ond angles     |
|-----|-------|------|--------------|------|----------------|
|     | Chain | RMSZ | # Z  > 5     | RMSZ | # Z  > 5       |
| 1   | А     | 0.49 | 0/3032       | 0.72 | 0/4106         |
| 1   | В     | 0.49 | 0/3032       | 0.72 | 1/4106~(0.0%)  |
| 1   | С     | 0.50 | 0/3032       | 0.71 | 0/4106         |
| 1   | D     | 0.49 | 0/3032       | 0.72 | 0/4106         |
| All | All   | 0.49 | 0/12128      | 0.72 | 1/16424~(0.0%) |

There are no bond length outliers.

All (1) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|--------|-------|------------------|---------------|
| 1   | В     | 137 | LEU  | N-CA-C | -5.11 | 97.20            | 111.00        |

There are no chirality outliers.

There are no planarity outliers.

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 2974  | 0        | 3021     | 100     | 0            |
| 1   | В     | 2974  | 0        | 3021     | 92      | 0            |
| 1   | С     | 2974  | 0        | 3021     | 83      | 0            |
| 1   | D     | 2974  | 0        | 3021     | 118     | 0            |
| 2   | А     | 17    | 0        | 10       | 2       | 0            |
| 2   | В     | 17    | 0        | 10       | 1       | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 2   | С     | 17    | 0        | 9        | 1       | 0            |
| 2   | D     | 17    | 0        | 9        | 2       | 0            |
| 3   | А     | 275   | 0        | 0        | 16      | 0            |
| 3   | В     | 310   | 0        | 0        | 16      | 0            |
| 3   | С     | 315   | 0        | 0        | 9       | 0            |
| 3   | D     | 290   | 0        | 0        | 12      | 0            |
| All | All   | 13154 | 0        | 12122    | 364     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 15.

All (364) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2           | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:58:ARG:HG2   | 1:B:62:LYS:HE2   | 1.51         | 0.91        |
| 1:D:171:LEU:HD22 | 1:D:239:MET:HE3  | 1.53         | 0.91        |
| 1:A:284:VAL:HG13 | 1:A:288:GLU:HG3  | 1.55         | 0.88        |
| 1:C:353:SER:HA   | 1:C:358:LEU:HD22 | 1.56         | 0.86        |
| 1:D:281:LYS:HE2  | 1:D:281:LYS:O    | 1.76         | 0.85        |
| 1:C:232:ILE:HG23 | 1:C:233:GLU:HG3  | 1.59         | 0.84        |
| 1:B:265:PHE:CD2  | 1:B:265:PHE:N    | 2.45         | 0.83        |
| 1:B:349:MET:HE3  | 1:B:362:GLY:HA2  | 1.60         | 0.83        |
| 1:A:136:ASP:HB3  | 1:B:256:GLY:O    | 1.78         | 0.82        |
| 1:A:196:VAL:HG13 | 1:A:197:THR:HG23 | 1.62         | 0.80        |
| 1:A:52:LEU:HA    | 1:A:55:LYS:HD2   | 1.62         | 0.79        |
| 1:A:55:LYS:HD3   | 3:A:2158:HOH:O   | 1.83         | 0.78        |
| 1:C:78:LYS:HD3   | 1:C:79:GLU:HG3   | 1.67         | 0.76        |
| 1:C:229:VAL:O    | 1:C:232:ILE:HG22 | 1.84         | 0.76        |
| 1:C:267:LEU:HG   | 1:C:269:GLY:H    | 1.49         | 0.76        |
| 1:A:122:SER:HB3  | 3:A:2206:HOH:O   | 1.86         | 0.74        |
| 1:A:158:GLY:H    | 1:B:162:HIS:CE1  | 2.06         | 0.73        |
| 1:D:207:ASP:O    | 1:D:210:VAL:HG12 | 1.88         | 0.73        |
| 1:A:288:GLU:HG2  | 3:A:2232:HOH:O   | 1.87         | 0.73        |
| 1:B:267:LEU:C    | 1:B:267:LEU:HD13 | 2.09         | 0.73        |
| 1:C:58:ARG:CD    | 1:C:62:LYS:HD2   | 2.19         | 0.71        |
| 1:D:281:LYS:HE3  | 1:D:281:LYS:HA   | 1.72         | 0.71        |
| 1:D:129:VAL:HG21 | 1:D:141:ASP:HA   | 1.72         | 0.71        |
| 1:B:267:LEU:HD22 | 1:B:268:LYS:N    | 2.07         | 0.70        |
| 1:B:3:SER:HB2    | 3:B:2190:HOH:O   | 1.92         | 0.70        |
| 1:C:58:ARG:NE    | 1:C:62:LYS:HD2   | 2.07         | 0.69        |
| 1:D:196:VAL:HG23 | 3:D:2152:HOH:O   | 1.91         | 0.69        |



|                  |                  | Interatomic    | Clash       |
|------------------|------------------|----------------|-------------|
| Atom-1           | Atom-2           | distance $(Å)$ | overlap (Å) |
| 1:D:281:LYS:HE2  | 1:D:285:GLU:HG2  | 1.75           | 0.69        |
| 1:A:253:ALA:HA   | 1:A:268:LYS:HB2  | 1.74           | 0.69        |
| 1:B:204:THR:HG21 | 3:B:2246:HOH:O   | 1.92           | 0.69        |
| 1:D:171:LEU:HB3  | 1:D:239:MET:CE   | 2.22           | 0.68        |
| 1:B:54:GLU:HG2   | 1:B:58:ARG:HH22  | 1.58           | 0.68        |
| 1:B:349:MET:CE   | 1:B:362:GLY:HA2  | 2.23           | 0.68        |
| 1:B:56:PHE:HA    | 1:B:59:MET:HE2   | 1.74           | 0.68        |
| 1:B:58:ARG:HG2   | 1:B:62:LYS:CE    | 2.22           | 0.68        |
| 1:A:102:VAL:HB   | 1:A:103:PRO:HD3  | 1.76           | 0.67        |
| 1:D:268:LYS:O    | 1:D:271:VAL:HG23 | 1.94           | 0.67        |
| 1:B:265:PHE:N    | 1:B:265:PHE:HD2  | 1.87           | 0.67        |
| 1:A:158:GLY:H    | 1:B:162:HIS:HE1  | 1.43           | 0.67        |
| 1:C:274:ILE:HA   | 3:C:2303:HOH:O   | 1.95           | 0.66        |
| 1:D:54:GLU:O     | 1:D:58:ARG:HG3   | 1.96           | 0.66        |
| 1:D:295:TYR:CD2  | 1:D:317:LEU:HD12 | 2.32           | 0.65        |
| 1:D:239:MET:HE2  | 1:D:382:VAL:HG11 | 1.76           | 0.65        |
| 1:A:12:ARG:NH1   | 1:B:12:ARG:HD3   | 2.10           | 0.65        |
| 1:C:55:LYS:HE3   | 1:C:59:MET:CE    | 2.26           | 0.65        |
| 1:B:196:VAL:HG13 | 1:B:197:THR:HG23 | 1.78           | 0.65        |
| 1:D:239:MET:CE   | 1:D:382:VAL:HG11 | 2.26           | 0.65        |
| 1:B:277:LYS:HG3  | 3:B:2263:HOH:O   | 1.96           | 0.65        |
| 1:D:309:ILE:O    | 1:D:313:VAL:HG23 | 1.97           | 0.64        |
| 1:A:115:LYS:NZ   | 1:A:115:LYS:HB3  | 2.11           | 0.64        |
| 1:A:16:PRO:HG3   | 1:B:4:VAL:HG11   | 1.80           | 0.64        |
| 1:D:192:GLU:HG3  | 1:D:338:SER:HB3  | 1.79           | 0.64        |
| 1:D:314:GLU:OE1  | 1:D:321:PRO:HA   | 1.98           | 0.64        |
| 1:A:12:ARG:HD3   | 1:B:12:ARG:NH1   | 2.14           | 0.63        |
| 1:C:229:VAL:HB   | 1:C:232:ILE:CG2  | 2.28           | 0.63        |
| 1:D:112:LYS:HG2  | 3:D:2068:HOH:O   | 1.98           | 0.63        |
| 1:C:254:ILE:HD12 | 1:C:377:LEU:HG   | 1.81           | 0.63        |
| 1:B:267:LEU:HD22 | 1:B:268:LYS:H    | 1.64           | 0.62        |
| 1:C:267:LEU:HG   | 1:C:268:LYS:N    | 2.15           | 0.62        |
| 1:D:171:LEU:HB3  | 1:D:239:MET:HE1  | 1.81           | 0.62        |
| 1:A:18:THR:HG21  | 1:A:235:PRO:HB3  | 1.81           | 0.62        |
| 1:D:263:LEU:HD21 | 2:D:2003:STL:H6  | 1.82           | 0.62        |
| 1:A:58:ARG:NH1   | 1:A:62:LYS:HZ2   | 1.99           | 0.61        |
| 1:C:196:VAL:HG13 | 1:C:197:THR:HG23 | 1.82           | 0.61        |
| 1:D:206:LEU:N    | 1:D:206:LEU:HD22 | 2.16           | 0.61        |
| 1:C:75:GLU:HG3   | 3:C:2155:HOH:O   | 1.99           | 0.61        |
| 1:C:359:LYS:O    | 1:C:389:ILE:HD12 | 2.00           | 0.61        |
| 1:D:234:LYS:HD2  | 3:D:2180:HOH:O   | 1.99           | 0.61        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:338:SER:HB2  | 2:A:2000:STL:C10 | 2.30         | 0.60        |
| 1:D:164:CYS:HB2  | 3:D:2095:HOH:O   | 2.00         | 0.60        |
| 1:D:353:SER:HA   | 1:D:358:LEU:HD22 | 1.83         | 0.60        |
| 1:C:102:VAL:HB   | 1:C:103:PRO:HD3  | 1.81         | 0.60        |
| 1:B:59:MET:HE1   | 1:B:209:LEU:HD23 | 1.83         | 0.60        |
| 1:C:268:LYS:O    | 1:C:270:ALA:N    | 2.34         | 0.60        |
| 1:A:162:HIS:CE1  | 1:B:158:GLY:H    | 2.20         | 0.60        |
| 1:B:102:VAL:HB   | 1:B:103:PRO:HD3  | 1.84         | 0.59        |
| 1:B:207:ASP:O    | 1:B:210:VAL:HG12 | 2.02         | 0.59        |
| 1:D:222:LEU:HD11 | 1:D:343:LEU:HD22 | 1.81         | 0.59        |
| 1:A:58:ARG:HG3   | 1:A:58:ARG:HH11  | 1.67         | 0.59        |
| 1:D:42:LYS:HA    | 1:D:47:GLU:HG2   | 1.85         | 0.59        |
| 1:D:295:TYR:HD2  | 1:D:317:LEU:HD12 | 1.65         | 0.59        |
| 1:B:228:PRO:O    | 1:B:230:PRO:HD3  | 2.03         | 0.59        |
| 1:C:12:ARG:NH1   | 1:D:12:ARG:HD3   | 2.18         | 0.59        |
| 1:D:241:TRP:CZ3  | 1:D:286:ALA:HB2  | 2.37         | 0.59        |
| 1:A:171:LEU:HD23 | 3:A:2164:HOH:O   | 2.01         | 0.59        |
| 1:C:55:LYS:HE3   | 1:C:59:MET:HE2   | 1.85         | 0.59        |
| 1:C:388:ALA:O    | 1:C:389:ILE:OXT  | 2.21         | 0.59        |
| 1:C:158:GLY:H    | 1:D:162:HIS:CE1  | 2.20         | 0.58        |
| 1:B:58:ARG:HG3   | 1:B:58:ARG:HH11  | 1.67         | 0.58        |
| 1:C:158:GLY:H    | 1:D:162:HIS:HE1  | 1.51         | 0.58        |
| 1:D:46:SER:HA    | 1:D:48:HIS:CE1   | 2.39         | 0.58        |
| 1:A:52:LEU:HD12  | 1:A:55:LYS:HD2   | 1.85         | 0.57        |
| 1:A:276:SER:O    | 1:A:279:ILE:HG22 | 2.04         | 0.57        |
| 1:A:12:ARG:HH11  | 1:B:12:ARG:HD3   | 1.70         | 0.57        |
| 1:D:268:LYS:HG2  | 3:D:2042:HOH:O   | 2.04         | 0.57        |
| 1:C:58:ARG:HD2   | 1:C:62:LYS:HD2   | 1.86         | 0.57        |
| 1:C:279:ILE:HD11 | 1:C:371:PHE:CE2  | 2.40         | 0.57        |
| 1:D:348:GLU:OE2  | 1:D:352:LYS:NZ   | 2.30         | 0.57        |
| 1:C:12:ARG:HH11  | 1:D:12:ARG:HH11  | 1.52         | 0.56        |
| 1:A:129:VAL:HG21 | 1:A:141:ASP:HA   | 1.88         | 0.56        |
| 1:B:320:LYS:O    | 1:B:323:LYS:HG2  | 2.05         | 0.56        |
| 1:B:281:LYS:HD2  | 3:B:2154:HOH:O   | 2.05         | 0.56        |
| 1:D:312:GLN:O    | 1:D:316:LYS:HB2  | 2.06         | 0.55        |
| 1:C:240:VAL:HG21 | 1:C:367:TRP:HZ3  | 1.71         | 0.55        |
| 1:C:32:GLU:OE2   | 1:C:67:ARG:HD3   | 2.06         | 0.55        |
| 1:D:287:PHE:HB3  | 1:D:292:ILE:HB   | 1.89         | 0.55        |
| 1:D:358:LEU:HD23 | 1:D:363:GLU:HA   | 1.89         | 0.55        |
| 1:A:100:MET:HG2  | 3:A:2238:HOH:O   | 2.05         | 0.55        |
| 1:A:338:SER:HB2  | 2:A:2000:STL:H10 | 1.89         | 0.55        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:358:LEU:HD23 | 1:A:363:GLU:HA   | 1.89         | 0.55        |
| 1:D:171:LEU:HB3  | 1:D:239:MET:HE3  | 1.89         | 0.54        |
| 1:B:254:ILE:O    | 1:B:375:PRO:HA   | 2.08         | 0.54        |
| 1:A:253:ALA:O    | 1:A:267:LEU:HA   | 2.06         | 0.54        |
| 1:D:254:ILE:HG12 | 1:D:267:LEU:HD12 | 1.90         | 0.54        |
| 1:C:7:ILE:O      | 1:C:11:GLN:HB2   | 2.08         | 0.54        |
| 1:A:288:GLU:HB2  | 1:A:289:PRO:HD3  | 1.88         | 0.54        |
| 1:C:55:LYS:HG3   | 1:C:59:MET:HE3   | 1.90         | 0.54        |
| 1:D:277:LYS:HG3  | 3:D:2104:HOH:O   | 2.08         | 0.54        |
| 1:B:323:LYS:HB2  | 3:B:2054:HOH:O   | 2.06         | 0.54        |
| 1:A:162:HIS:HE1  | 1:B:158:GLY:H    | 1.54         | 0.53        |
| 1:D:102:VAL:HB   | 1:D:103:PRO:HD3  | 1.90         | 0.53        |
| 1:C:249:ASP:HB3  | 3:C:2156:HOH:O   | 2.08         | 0.53        |
| 1:D:160:PHE:O    | 1:D:162:HIS:HD2  | 1.91         | 0.53        |
| 1:B:255:ASP:OD1  | 1:B:266:HIS:HB2  | 2.09         | 0.53        |
| 1:C:268:LYS:NZ   | 3:C:2082:HOH:O   | 2.42         | 0.53        |
| 1:B:370:LEU:C    | 1:B:370:LEU:HD23 | 2.29         | 0.53        |
| 1:D:287:PHE:O    | 1:D:290:LEU:N    | 2.41         | 0.53        |
| 1:A:207:ASP:O    | 1:A:210:VAL:HG12 | 2.10         | 0.52        |
| 1:B:230:PRO:O    | 1:B:231:GLU:HB2  | 2.09         | 0.52        |
| 1:C:12:ARG:HH11  | 1:D:12:ARG:HD3   | 1.74         | 0.52        |
| 1:A:207:ASP:OD2  | 1:A:208:SER:N    | 2.42         | 0.52        |
| 1:A:58:ARG:NH1   | 1:A:62:LYS:NZ    | 2.58         | 0.52        |
| 1:B:298:ILE:HG22 | 1:B:367:TRP:HB2  | 1.90         | 0.52        |
| 1:D:151:ARG:O    | 1:D:154:VAL:HG12 | 2.09         | 0.52        |
| 1:A:12:ARG:HH11  | 1:B:12:ARG:HH11  | 1.57         | 0.52        |
| 1:A:142:TYR:OH   | 1:A:146:LYS:NZ   | 2.39         | 0.52        |
| 1:C:268:LYS:C    | 1:C:270:ALA:H    | 2.12         | 0.52        |
| 1:D:288:GLU:HG3  | 3:D:2173:HOH:O   | 2.10         | 0.52        |
| 1:A:284:VAL:CG1  | 1:A:288:GLU:HG3  | 2.34         | 0.52        |
| 1:C:255:ASP:OD1  | 1:C:266:HIS:HB2  | 2.10         | 0.52        |
| 1:B:56:PHE:CE1   | 1:B:213:ALA:HB2  | 2.45         | 0.52        |
| 1:C:389:ILE:HD12 | 1:C:389:ILE:N    | 2.25         | 0.51        |
| 1:B:115:LYS:HG2  | 3:B:2149:HOH:O   | 2.10         | 0.51        |
| 1:B:256:GLY:HA3  | 2:B:2001:STL:O3  | 2.10         | 0.51        |
| 1:C:55:LYS:HE3   | 1:C:59:MET:HE3   | 1.91         | 0.51        |
| 1:D:51:GLU:OE2   | 3:D:2236:HOH:O   | 2.19         | 0.51        |
| 1:B:160:PHE:O    | 1:B:162:HIS:HD2  | 1.94         | 0.51        |
| 1:C:260:GLU:HG3  | 1:D:92:ASP:OD1   | 2.10         | 0.51        |
| 1:A:171:LEU:HA   | 3:A:2164:HOH:O   | 2.10         | 0.51        |
| 1:A:276:SER:OG   | 1:A:312:GLN:HB3  | 2.11         | 0.51        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:C:2:VAL:HG21   | 1:D:290:LEU:CD2  | 2.41         | 0.51        |
| 1:C:389:ILE:HD12 | 1:C:389:ILE:H    | 1.74         | 0.51        |
| 1:D:281:LYS:O    | 1:D:281:LYS:CE   | 2.54         | 0.51        |
| 1:A:317:LEU:HB2  | 1:A:319:LEU:HG   | 1.92         | 0.51        |
| 1:D:251:GLU:OE1  | 1:D:268:LYS:NZ   | 2.42         | 0.51        |
| 1:A:116:GLU:O    | 1:A:234:LYS:NZ   | 2.44         | 0.50        |
| 1:B:6:GLU:HG2    | 3:B:2304:HOH:O   | 2.11         | 0.50        |
| 1:D:86:TYR:O     | 1:D:199:ARG:HD3  | 2.10         | 0.50        |
| 1:A:29:ASN:HB3   | 1:A:70:MET:O     | 2.11         | 0.50        |
| 1:C:258:LEU:C    | 1:C:258:LEU:HD13 | 2.32         | 0.50        |
| 3:A:2240:HOH:O   | 1:B:157:VAL:HG23 | 2.10         | 0.50        |
| 1:A:288:GLU:N    | 1:A:289:PRO:CD   | 2.75         | 0.50        |
| 1:B:51:GLU:HB2   | 3:B:2123:HOH:O   | 2.12         | 0.50        |
| 1:C:305:GLY:HA2  | 1:C:336:ASN:ND2  | 2.27         | 0.50        |
| 1:C:229:VAL:HB   | 1:C:232:ILE:HG21 | 1.93         | 0.50        |
| 1:D:46:SER:HB3   | 1:D:49:LYS:HG3   | 1.93         | 0.49        |
| 1:C:256:GLY:HA3  | 2:C:2002:STL:O3  | 2.12         | 0.49        |
| 1:A:234:LYS:HE2  | 3:A:2162:HOH:O   | 2.12         | 0.49        |
| 1:C:173:LEU:HG   | 3:C:2283:HOH:O   | 2.11         | 0.49        |
| 1:C:376:GLY:N    | 1:C:377:LEU:HA   | 2.28         | 0.49        |
| 1:D:151:ARG:HA   | 1:D:151:ARG:NE   | 2.27         | 0.49        |
| 1:D:271:VAL:HB   | 1:D:272:PRO:HD3  | 1.94         | 0.49        |
| 1:B:56:PHE:HD1   | 1:B:59:MET:HE3   | 1.77         | 0.49        |
| 1:C:2:VAL:HG21   | 1:D:290:LEU:HD22 | 1.94         | 0.49        |
| 1:B:58:ARG:O     | 1:B:62:LYS:HG3   | 2.13         | 0.49        |
| 1:C:188:VAL:O    | 1:C:221:ALA:HA   | 2.12         | 0.49        |
| 1:C:237:PHE:CZ   | 1:C:349:MET:HE3  | 2.47         | 0.49        |
| 1:A:299:PHE:CD2  | 1:A:349:MET:HE1  | 2.48         | 0.49        |
| 1:A:58:ARG:HH12  | 1:A:62:LYS:NZ    | 2.11         | 0.48        |
| 1:B:42:LYS:HD3   | 3:B:2260:HOH:O   | 2.13         | 0.48        |
| 1:B:376:GLY:N    | 1:B:377:LEU:HA   | 2.27         | 0.48        |
| 1:B:287:PHE:HB3  | 1:B:292:ILE:HB   | 1.95         | 0.48        |
| 1:B:360:THR:H    | 1:B:364:GLY:HA2  | 1.77         | 0.48        |
| 1:A:59:MET:CE    | 1:A:209:LEU:HD23 | 2.42         | 0.48        |
| 1:D:36:TYR:N     | 1:D:37:PRO:CD    | 2.77         | 0.48        |
| 1:B:58:ARG:NH2   | 3:B:2252:HOH:O   | 2.46         | 0.48        |
| 1:D:171:LEU:CD2  | 1:D:239:MET:HE3  | 2.36         | 0.48        |
| 1:D:82:ASN:HD22  | 1:D:90:SER:HA    | 1.77         | 0.48        |
| 1:C:13:ALA:HB3   | 1:C:179:GLU:O    | 2.13         | 0.48        |
| 1:D:24:THR:HB    | 1:D:344:PHE:CZ   | 2.48         | 0.48        |
| 1:B:129:VAL:HG21 | 1:B:141:ASP:HA   | 1.96         | 0.47        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:256:GLY:HA3  | 2:D:2003:STL:O3  | 2.13         | 0.47        |
| 1:B:322:GLU:HG2  | 3:B:2232:HOH:O   | 2.14         | 0.47        |
| 1:C:284:VAL:HG21 | 3:C:2193:HOH:O   | 2.14         | 0.47        |
| 1:A:268:LYS:O    | 1:A:270:ALA:N    | 2.48         | 0.47        |
| 1:A:316:LYS:O    | 1:A:316:LYS:HD3  | 2.13         | 0.47        |
| 1:A:341:CYS:O    | 1:A:345:ILE:HG13 | 2.13         | 0.47        |
| 1:C:151:ARG:HD3  | 1:C:153:TYR:OH   | 2.13         | 0.47        |
| 1:D:295:TYR:CD2  | 1:D:317:LEU:CD1  | 2.97         | 0.47        |
| 1:A:370:LEU:HD12 | 1:A:370:LEU:C    | 2.35         | 0.47        |
| 1:C:359:LYS:HG3  | 1:C:360:THR:HG23 | 1.96         | 0.47        |
| 1:D:63:SER:O     | 1:D:64:MET:HB2   | 2.15         | 0.47        |
| 1:B:249:ASP:HA   | 3:B:2240:HOH:O   | 2.14         | 0.47        |
| 1:B:377:LEU:C    | 1:B:377:LEU:HD23 | 2.35         | 0.47        |
| 1:C:4:VAL:CG2    | 1:D:385:ARG:HD2  | 2.45         | 0.47        |
| 1:A:128:ILE:HG12 | 1:A:157:VAL:CG1  | 2.45         | 0.47        |
| 1:B:347:ASP:O    | 1:B:350:ARG:HG3  | 2.15         | 0.47        |
| 1:A:40:TYR:O     | 1:A:43:ILE:HG22  | 2.14         | 0.46        |
| 1:C:190:CYS:O    | 1:C:219:ALA:HA   | 2.14         | 0.46        |
| 1:A:59:MET:HE3   | 1:A:209:LEU:HD23 | 1.97         | 0.46        |
| 1:D:98:LEU:HD11  | 1:D:196:VAL:HB   | 1.96         | 0.46        |
| 1:D:165:PHE:CD2  | 1:D:378:THR:HB   | 2.50         | 0.46        |
| 1:D:196:VAL:HG13 | 1:D:197:THR:HG23 | 1.97         | 0.46        |
| 1:D:236:ILE:HG22 | 1:D:237:PHE:CD2  | 2.49         | 0.46        |
| 1:A:248:PRO:HG2  | 3:A:2145:HOH:O   | 2.13         | 0.46        |
| 1:A:41:PHE:CZ    | 1:A:53:LYS:HA    | 2.51         | 0.46        |
| 1:B:51:GLU:HG3   | 1:D:315:GLN:HE22 | 1.81         | 0.46        |
| 1:C:16:PRO:HG3   | 1:D:4:VAL:HG11   | 1.97         | 0.46        |
| 1:C:230:PRO:O    | 1:C:231:GLU:HB2  | 2.15         | 0.46        |
| 1:C:232:ILE:HG23 | 1:C:233:GLU:N    | 2.30         | 0.46        |
| 1:D:188:VAL:O    | 1:D:221:ALA:HA   | 2.14         | 0.46        |
| 1:A:237:PHE:CZ   | 1:A:349:MET:HE3  | 2.50         | 0.46        |
| 1:D:13:ALA:HB3   | 1:D:179:GLU:O    | 2.16         | 0.46        |
| 1:D:347:ASP:O    | 1:D:350:ARG:HG3  | 2.16         | 0.46        |
| 1:D:234:LYS:HE3  | 3:D:2170:HOH:O   | 2.16         | 0.46        |
| 1:B:188:VAL:O    | 1:B:221:ALA:HA   | 2.15         | 0.46        |
| 1:C:12:ARG:O     | 1:C:182:LYS:HB2  | 2.15         | 0.46        |
| 1:D:288:GLU:HB3  | 1:D:289:PRO:HD3  | 1.98         | 0.46        |
| 1:B:288:GLU:N    | 1:B:289:PRO:CD   | 2.79         | 0.46        |
| 1:B:227:ASP:N    | 1:B:228:PRO:HD3  | 2.31         | 0.45        |
| 1:A:370:LEU:HB3  | 1:A:382:VAL:HB   | 1.98         | 0.45        |
| 1:A:32:GLU:OE2   | 1:A:67:ARG:HD3   | 2.17         | 0.45        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:277:LYS:NZ   | 1:A:277:LYS:CB   | 2.80         | 0.45        |
| 1:A:370:LEU:HD12 | 1:A:371:PHE:N    | 2.31         | 0.45        |
| 1:C:151:ARG:HD3  | 1:C:153:TYR:CZ   | 2.51         | 0.45        |
| 1:D:294:ASP:OD2  | 1:D:297:SER:HB3  | 2.16         | 0.45        |
| 1:B:166:ALA:O    | 1:B:170:VAL:HG13 | 2.16         | 0.45        |
| 1:D:56:PHE:CE1   | 1:D:213:ALA:HB2  | 2.51         | 0.45        |
| 1:D:356:ASN:O    | 1:D:358:LEU:HD13 | 2.16         | 0.45        |
| 1:D:157:VAL:O    | 1:D:157:VAL:CG2  | 2.65         | 0.45        |
| 1:C:4:VAL:HG23   | 1:D:385:ARG:HD2  | 1.98         | 0.45        |
| 1:A:215:PHE:CD1  | 1:A:215:PHE:N    | 2.84         | 0.45        |
| 1:B:126:HIS:HB2  | 1:B:186:VAL:HG22 | 1.99         | 0.45        |
| 1:D:42:LYS:NZ    | 3:D:2284:HOH:O   | 2.47         | 0.45        |
| 1:D:279:ILE:HD11 | 1:D:371:PHE:CE2  | 2.52         | 0.45        |
| 1:D:286:ALA:HB1  | 1:D:383:VAL:CG2  | 2.46         | 0.45        |
| 1:A:24:THR:HB    | 1:A:344:PHE:CZ   | 2.52         | 0.45        |
| 1:A:62:LYS:HE3   | 3:A:2221:HOH:O   | 2.16         | 0.45        |
| 1:A:301:ILE:HG21 | 1:A:370:LEU:HD22 | 1.99         | 0.45        |
| 1:A:12:ARG:HD3   | 1:B:12:ARG:HH11  | 1.81         | 0.44        |
| 1:C:286:ALA:HB1  | 1:C:383:VAL:CG2  | 2.47         | 0.44        |
| 1:D:65:ILE:HA    | 1:D:332:SER:HA   | 1.99         | 0.44        |
| 1:A:177:LEU:N    | 1:A:177:LEU:HD23 | 2.32         | 0.44        |
| 1:C:22:ILE:HG21  | 1:C:347:ASP:HB2  | 1.98         | 0.44        |
| 1:D:279:ILE:HG23 | 1:D:280:THR:N    | 2.31         | 0.44        |
| 1:B:52:LEU:HD22  | 1:B:203:ASP:HB3  | 1.99         | 0.44        |
| 1:C:265:PHE:HB3  | 3:C:2252:HOH:O   | 2.17         | 0.44        |
| 1:A:38:ASP:HA    | 1:A:53:LYS:HE3   | 1.99         | 0.44        |
| 1:B:230:PRO:O    | 1:B:231:GLU:CB   | 2.65         | 0.44        |
| 1:D:204:THR:O    | 1:D:204:THR:HG22 | 2.17         | 0.44        |
| 1:D:324:MET:O    | 1:D:328:ARG:HG3  | 2.17         | 0.44        |
| 1:A:37:PRO:HG2   | 1:A:57:GLN:HA    | 1.99         | 0.44        |
| 1:A:102:VAL:CB   | 1:A:103:PRO:HD3  | 2.47         | 0.44        |
| 1:D:107:LYS:HD2  | 1:D:147:LEU:HB3  | 2.00         | 0.44        |
| 1:B:277:LYS:HE2  | 3:B:2186:HOH:O   | 2.17         | 0.44        |
| 1:D:68:ARG:HG2   | 1:D:335:GLY:HA3  | 1.99         | 0.44        |
| 1:A:257:HIS:HB3  | 1:A:259:ARG:CZ   | 2.48         | 0.44        |
| 1:B:58:ARG:HH11  | 1:B:58:ARG:CG    | 2.29         | 0.44        |
| 1:A:151:ARG:HD3  | 1:A:153:TYR:CZ   | 2.53         | 0.43        |
| 1:A:251:GLU:HG3  | 3:A:2177:HOH:O   | 2.17         | 0.43        |
| 1:D:37:PRO:HG2   | 1:D:57:GLN:OE1   | 2.18         | 0.43        |
| 1:D:56:PHE:O     | 1:D:59:MET:HB2   | 2.17         | 0.43        |
| 1:A:49:LYS:O     | 1:A:51:GLU:N     | 2.51         | 0.43        |



|                  | pagem            | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:267:LEU:C    | 1:B:267:LEU:CD1  | 2.81         | 0.43        |
| 1:D:281:LYS:HE3  | 1:D:281:LYS:CA   | 2.46         | 0.43        |
| 1:A:31:VAL:HG11  | 1:A:36:TYR:CD1   | 2.52         | 0.43        |
| 1:A:107:LYS:HD2  | 1:A:147:LEU:HB3  | 2.00         | 0.43        |
| 1:B:299:PHE:CD2  | 1:B:349:MET:CE   | 3.02         | 0.43        |
| 1:A:72:LEU:HD11  | 1:A:195:ALA:HA   | 2.00         | 0.43        |
| 1:C:288:GLU:N    | 1:C:289:PRO:CD   | 2.81         | 0.43        |
| 1:C:299:PHE:CD2  | 1:C:349:MET:HE1  | 2.54         | 0.43        |
| 1:D:254:ILE:O    | 1:D:375:PRO:HA   | 2.18         | 0.43        |
| 1:C:347:ASP:O    | 1:C:350:ARG:HG3  | 2.19         | 0.43        |
| 1:D:206:LEU:N    | 1:D:206:LEU:CD2  | 2.80         | 0.43        |
| 1:D:281:LYS:CE   | 1:D:285:GLU:HG2  | 2.46         | 0.43        |
| 1:D:284:VAL:O    | 1:D:288:GLU:HB2  | 2.19         | 0.43        |
| 1:A:115:LYS:HE3  | 3:A:2222:HOH:O   | 2.19         | 0.43        |
| 1:B:206:LEU:HD12 | 1:B:206:LEU:N    | 2.34         | 0.43        |
| 1:D:29:ASN:HB3   | 1:D:70:MET:O     | 2.19         | 0.43        |
| 1:A:198:PHE:CD1  | 1:A:198:PHE:C    | 2.92         | 0.43        |
| 1:C:188:VAL:HB   | 1:C:222:LEU:HB2  | 2.00         | 0.43        |
| 1:A:4:VAL:HG23   | 1:B:385:ARG:HD2  | 2.00         | 0.43        |
| 1:D:172:ARG:HG3  | 3:D:2025:HOH:O   | 2.19         | 0.43        |
| 1:B:264:THR:C    | 1:B:265:PHE:HD2  | 2.20         | 0.42        |
| 1:C:358:LEU:HD23 | 1:C:363:GLU:HA   | 1.99         | 0.42        |
| 1:D:279:ILE:CG2  | 1:D:280:THR:N    | 2.81         | 0.42        |
| 1:A:151:ARG:HD3  | 1:A:153:TYR:OH   | 2.18         | 0.42        |
| 1:A:238:GLU:OE1  | 1:B:4:VAL:HG21   | 2.19         | 0.42        |
| 1:A:256:GLY:O    | 1:B:136:ASP:HB3  | 2.18         | 0.42        |
| 1:C:237:PHE:CE1  | 1:C:349:MET:HE3  | 2.54         | 0.42        |
| 1:B:269:GLY:O    | 1:B:272:PRO:HD2  | 2.20         | 0.42        |
| 1:D:234:LYS:HE3  | 1:D:234:LYS:HB2  | 1.84         | 0.42        |
| 1:A:188:VAL:O    | 1:A:221:ALA:HA   | 2.19         | 0.42        |
| 1:D:271:VAL:HG13 | 1:D:377:LEU:HD11 | 2.01         | 0.42        |
| 1:B:190:CYS:O    | 1:B:219:ALA:HA   | 2.19         | 0.42        |
| 1:C:143:GLN:O    | 1:C:147:LEU:HG   | 2.20         | 0.42        |
| 1:D:182:LYS:HB2  | 1:D:182:LYS:NZ   | 2.33         | 0.42        |
| 1:A:58:ARG:HH11  | 1:A:58:ARG:CG    | 2.33         | 0.42        |
| 1:A:115:LYS:HB3  | 1:A:115:LYS:HZ3  | 1.84         | 0.42        |
| 1:D:288:GLU:N    | 1:D:289:PRO:CD   | 2.83         | 0.42        |
| 1:D:301:ILE:O    | 1:D:370:LEU:HA   | 2.19         | 0.42        |
| 1:A:241:TRP:CH2  | 1:A:243:ALA:HB2  | 2.55         | 0.42        |
| 1:B:192:GLU:HG3  | 1:B:338:SER:HB3  | 2.01         | 0.42        |
| 1:D:281:LYS:CE   | 1:D:281:LYS:CA   | 2.97         | 0.42        |



|                  | A state of the sta | Interatomic  | Clash       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| Atom-1           | Atom-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | distance (Å) | overlap (Å) |
| 1:D:352:LYS:HD3  | 1:D:352:LYS:HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.87         | 0.42        |
| 1:C:12:ARG:HD3   | 1:D:12:ARG:NH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.35         | 0.42        |
| 1:A:172:ARG:HB3  | 3:A:2115:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20         | 0.42        |
| 1:B:48:HIS:C     | 1:B:50:THR:H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.24         | 0.42        |
| 1:C:252:GLY:O    | 1:C:268:LYS:HE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.20         | 0.42        |
| 1:B:385:ARG:HH11 | 1:B:385:ARG:HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.85         | 0.41        |
| 1:C:288:GLU:HB3  | 1:C:289:PRO:HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.02         | 0.41        |
| 1:C:359:LYS:HD2  | 3:C:2226:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20         | 0.41        |
| 1:A:2:VAL:O      | 1:A:2:VAL:HG23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.19         | 0.41        |
| 1:C:284:VAL:HG23 | 1:C:285:GLU:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.35         | 0.41        |
| 1:D:190:CYS:O    | 1:D:219:ALA:HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20         | 0.41        |
| 1:A:58:ARG:CZ    | 1:A:62:LYS:HZ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.32         | 0.41        |
| 1:B:236:ILE:HG22 | 1:B:237:PHE:CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.54         | 0.41        |
| 1:C:145:THR:HG23 | 1:C:150:LEU:HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.01         | 0.41        |
| 1:D:295:TYR:HD2  | 1:D:317:LEU:CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.33         | 0.41        |
| 1:C:277:LYS:HB3  | 3:C:2303:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20         | 0.41        |
| 1:A:58:ARG:O     | 1:A:62:LYS:HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20         | 0.41        |
| 1:C:162:HIS:CE1  | 1:D:158:GLY:H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.38         | 0.41        |
| 1:D:370:LEU:HD23 | 1:D:370:LEU:C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.40         | 0.41        |
| 1:B:36:TYR:N     | 1:B:37:PRO:CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.84         | 0.41        |
| 1:B:46:SER:HA    | 1:B:48:HIS:CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.55         | 0.41        |
| 1:B:51:GLU:OE2   | 1:D:316:LYS:HE3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.21         | 0.41        |
| 1:B:56:PHE:HA    | 1:B:59:MET:CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.46         | 0.41        |
| 1:B:202:SER:C    | 1:B:204:THR:H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.24         | 0.41        |
| 1:C:58:ARG:HD2   | 1:C:62:LYS:CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.49         | 0.41        |
| 1:D:287:PHE:CZ   | 1:D:369:VAL:HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.56         | 0.41        |
| 1:A:144:LEU:HA   | 1:A:144:LEU:HD23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.77         | 0.41        |
| 1:B:357:GLY:HA2  | 3:B:2118:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20         | 0.41        |
| 1:D:36:TYR:HB3   | 1:D:37:PRO:HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.03         | 0.41        |
| 1:D:388:ALA:O    | 1:D:389:ILE:HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.21         | 0.41        |
| 1:A:104:ARG:HD3  | 3:A:2254:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.21         | 0.41        |
| 1:A:160:PHE:O    | 1:A:162:HIS:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.03         | 0.41        |
| 1:A:271:VAL:N    | 1:A:272:PRO:CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.83         | 0.41        |
| 1:B:29:ASN:HB3   | 1:B:70:MET:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.21         | 0.41        |
| 1:B:148:LEU:HB3  | 1:B:150:LEU:HG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.02         | 0.41        |
| 1:C:160:PHE:O    | 1:C:162:HIS:HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.04         | 0.41        |
| 1:D:22:ILE:HG12  | 1:D:222:LEU:HD22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.02         | 0.41        |
| 1:D:341:CYS:HB2  | 3:D:2005:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.20         | 0.41        |
| 1:A:79:GLU:C     | 1:A:81:PRO:HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.41         | 0.41        |
| 1:B:115:LYS:HD3  | 3:B:2269:HOH:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.21         | 0.40        |
| 1:C:198:PHE:CD1  | 1:C:198:PHE:C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.95         | 0.40        |



| Atom-1           | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|------------------|-----------------------------|----------------------|
| 1:C:267:LEU:CG   | 1:C:268:LYS:N    | 2.82                        | 0.40                 |
| 1:A:47:GLU:HB3   | 3:A:2233:HOH:O   | 2.21                        | 0.40                 |
| 1:A:292:ILE:HD11 | 1:A:367:TRP:CD1  | 2.57                        | 0.40                 |
| 1:B:348:GLU:OE2  | 1:B:352:LYS:HE2  | 2.21                        | 0.40                 |
| 1:C:154:VAL:O    | 1:C:154:VAL:HG13 | 2.21                        | 0.40                 |
| 1:A:62:LYS:HD3   | 3:A:2187:HOH:O   | 2.21                        | 0.40                 |
| 1:A:115:LYS:HB3  | 1:A:115:LYS:HZ2  | 1.84                        | 0.40                 |
| 1:B:385:ARG:NE   | 3:B:2077:HOH:O   | 2.54                        | 0.40                 |
| 1:D:230:PRO:O    | 1:D:231:GLU:HB2  | 2.20                        | 0.40                 |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|---------|----------|-------|--------|
| 1   | А     | 386/393~(98%)   | 362~(94%)  | 21 (5%) | 3~(1%)   | 19    | 13     |
| 1   | В     | 386/393~(98%)   | 369~(96%)  | 17 (4%) | 0        | 100   | 100    |
| 1   | С     | 386/393~(98%)   | 370~(96%)  | 15~(4%) | 1 (0%)   | 41    | 37     |
| 1   | D     | 386/393~(98%)   | 372~(96%)  | 12 (3%) | 2(0%)    | 29    | 23     |
| All | All   | 1544/1572~(98%) | 1473 (95%) | 65 (4%) | 6 (0%)   | 34    | 30     |

All (6) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 269 | GLY  |
| 1   | D     | 251 | GLU  |
| 1   | А     | 50  | THR  |
| 1   | С     | 269 | GLY  |
| 1   | D     | 252 | GLY  |
| 1   | А     | 232 | ILE  |



#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric Outliers |         | Percentiles |  |  |
|-----|-------|-----------------|--------------------|---------|-------------|--|--|
| 1   | А     | 321/324~(99%)   | 310~(97%)          | 11 (3%) | 37 36       |  |  |
| 1   | В     | 321/324~(99%)   | 310~(97%)          | 11 (3%) | 37 36       |  |  |
| 1   | С     | 321/324~(99%)   | 310~(97%)          | 11 (3%) | 37 36       |  |  |
| 1   | D     | 321/324~(99%)   | 308~(96%)          | 13 (4%) | 31 29       |  |  |
| All | All   | 1284/1296~(99%) | 1238 (96%)         | 46 (4%) | 35 34       |  |  |

All (46) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 5              | SER  |
| 1   | А     | 67             | ARG  |
| 1   | А     | 115            | LYS  |
| 1   | А     | 136            | ASP  |
| 1   | А     | 144            | LEU  |
| 1   | А     | 151            | ARG  |
| 1   | А     | 177            | LEU  |
| 1   | А     | 234            | LYS  |
| 1   | А     | 350            | ARG  |
| 1   | А     | 358            | LEU  |
| 1   | А     | 370            | LEU  |
| 1   | В     | 6              | GLU  |
| 1   | В     | 14             | GLU  |
| 1   | В     | 144            | LEU  |
| 1   | В     | 146            | LYS  |
| 1   | В     | 151            | ARG  |
| 1   | В     | 249            | ASP  |
| 1   | В     | 265            | PHE  |
| 1   | В     | 267            | LEU  |
| 1   | В     | 268            | LYS  |
| 1   | В     | 350            | ARG  |
| 1   | В     | 358            | LEU  |
| 1   | С     | 42             | LYS  |
| 1   | С     | 58             | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 78  | LYS  |
| 1   | С     | 115 | LYS  |
| 1   | С     | 123 | LYS  |
| 1   | С     | 146 | LYS  |
| 1   | С     | 151 | ARG  |
| 1   | С     | 231 | GLU  |
| 1   | С     | 350 | ARG  |
| 1   | С     | 355 | GLN  |
| 1   | С     | 358 | LEU  |
| 1   | D     | 43  | ILE  |
| 1   | D     | 47  | GLU  |
| 1   | D     | 54  | GLU  |
| 1   | D     | 66  | LYS  |
| 1   | D     | 67  | ARG  |
| 1   | D     | 78  | LYS  |
| 1   | D     | 157 | VAL  |
| 1   | D     | 251 | GLU  |
| 1   | D     | 276 | SER  |
| 1   | D     | 281 | LYS  |
| 1   | D     | 317 | LEU  |
| 1   | D     | 350 | ARG  |
| 1   | D     | 358 | LEU  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (9) such side chains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 162 | HIS  |
| 1   | А     | 312 | GLN  |
| 1   | В     | 162 | HIS  |
| 1   | В     | 325 | ASN  |
| 1   | С     | 162 | HIS  |
| 1   | D     | 119 | GLN  |
| 1   | D     | 162 | HIS  |
| 1   | D     | 315 | GLN  |
| 1   | D     | 325 | ASN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.



### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

4 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Turne | Chain | Dec  | Tink | Bond lengths |      |          | Bond angles |      |          |
|-------|-------|-------|------|------|--------------|------|----------|-------------|------|----------|
| INIOI | туре  | Chain | nes  |      | Counts       | RMSZ | # Z  > 2 | Counts      | RMSZ | # Z  > 2 |
| 2     | STL   | В     | 2001 | -    | 18,18,18     | 1.72 | 6 (33%)  | 24,24,24    | 1.04 | 1 (4%)   |
| 2     | STL   | D     | 2003 | -    | 18,18,18     | 1.71 | 5 (27%)  | 24,24,24    | 1.05 | 2 (8%)   |
| 2     | STL   | А     | 2000 | -    | 18,18,18     | 1.85 | 10 (55%) | 24,24,24    | 1.18 | 3 (12%)  |
| 2     | STL   | С     | 2002 | -    | 18,18,18     | 1.69 | 4 (22%)  | 24,24,24    | 1.06 | 1 (4%)   |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions | Rings   |
|-----|------|-------|------|------|---------|----------|---------|
| 2   | STL  | В     | 2001 | -    | -       | 0/5/5/5  | 0/2/2/2 |
| 2   | STL  | D     | 2003 | -    | -       | 0/5/5/5  | 0/2/2/2 |
| 2   | STL  | А     | 2000 | -    | -       | 0/5/5/5  | 0/2/2/2 |
| 2   | STL  | С     | 2002 | -    | -       | 0/5/5/5  | 0/2/2/2 |

All (25) bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms   | Z    | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|------|------|---------|------|-------------|--------------------------------|
| 2   | D     | 2003 | STL  | C10-C9  | 2.82 | 1.44        | 1.39                           |
| 2   | С     | 2002 | STL  | C11-C10 | 2.74 | 1.43        | 1.38                           |



| Mol | Chain | Res  | Type | Atoms   | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|---------|------|-------------|----------|
| 2   | С     | 2002 | STL  | C11-C12 | 2.72 | 1.44        | 1.38     |
| 2   | В     | 2001 | STL  | C10-C9  | 2.60 | 1.44        | 1.39     |
| 2   | А     | 2000 | STL  | C4-C3   | 2.58 | 1.43        | 1.39     |
| 2   | С     | 2002 | STL  | C6-C1   | 2.54 | 1.42        | 1.39     |
| 2   | В     | 2001 | STL  | C2-C3   | 2.54 | 1.42        | 1.39     |
| 2   | В     | 2001 | STL  | C2-C1   | 2.50 | 1.42        | 1.39     |
| 2   | А     | 2000 | STL  | C2-C3   | 2.49 | 1.42        | 1.39     |
| 2   | А     | 2000 | STL  | C14-C9  | 2.46 | 1.44        | 1.39     |
| 2   | А     | 2000 | STL  | C6-C1   | 2.44 | 1.42        | 1.39     |
| 2   | С     | 2002 | STL  | C10-C9  | 2.35 | 1.44        | 1.39     |
| 2   | В     | 2001 | STL  | C11-C12 | 2.30 | 1.43        | 1.38     |
| 2   | А     | 2000 | STL  | C2-C1   | 2.29 | 1.42        | 1.39     |
| 2   | D     | 2003 | STL  | C6-C1   | 2.28 | 1.42        | 1.39     |
| 2   | D     | 2003 | STL  | C11-C12 | 2.21 | 1.43        | 1.38     |
| 2   | А     | 2000 | STL  | C6-C5   | 2.19 | 1.43        | 1.39     |
| 2   | А     | 2000 | STL  | C11-C12 | 2.16 | 1.43        | 1.38     |
| 2   | А     | 2000 | STL  | C13-C12 | 2.14 | 1.43        | 1.38     |
| 2   | D     | 2003 | STL  | C6-C5   | 2.14 | 1.43        | 1.39     |
| 2   | А     | 2000 | STL  | C14-C13 | 2.14 | 1.42        | 1.38     |
| 2   | А     | 2000 | STL  | C11-C10 | 2.10 | 1.42        | 1.38     |
| 2   | В     | 2001 | STL  | C6-C5   | 2.07 | 1.43        | 1.39     |
| 2   | D     | 2003 | STL  | C13-C12 | 2.05 | 1.42        | 1.38     |
| 2   | В     | 2001 | STL  | C14-C9  | 2.02 | 1.43        | 1.39     |

All (7) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|------|------------------|---------------|
| 2   | D     | 2003 | STL  | C3-C2-C1 | 2.45 | 122.14           | 119.20        |
| 2   | А     | 2000 | STL  | C3-C2-C1 | 2.45 | 122.13           | 119.20        |
| 2   | С     | 2002 | STL  | C3-C2-C1 | 2.41 | 122.08           | 119.20        |
| 2   | В     | 2001 | STL  | C3-C2-C1 | 2.36 | 122.03           | 119.20        |
| 2   | А     | 2000 | STL  | C5-C4-C3 | 2.24 | 122.28           | 120.28        |
| 2   | А     | 2000 | STL  | C5-C6-C1 | 2.07 | 122.12           | 120.28        |
| 2   | D     | 2003 | STL  | C5-C4-C3 | 2.06 | 122.12           | 120.28        |

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

4 monomers are involved in 6 short contacts:



| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 2   | В     | 2001 | STL  | 1       | 0            |
| 2   | D     | 2003 | STL  | 2       | 0            |
| 2   | А     | 2000 | STL  | 2       | 0            |
| 2   | С     | 2002 | STL  | 1       | 0            |

# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | < <b>RSRZ</b> > | #RSRZ>2      |   | $OWAB(Å^2)$    | Q<0.9 |
|-----|-------|-----------------|-----------------|--------------|---|----------------|-------|
| 1   | А     | 388/393~(98%)   | -0.36           | 7 (1%) 68 66 | 5 | 15, 27, 53, 65 | 0     |
| 1   | В     | 388/393~(98%)   | -0.39           | 3 (0%) 86 85 | 5 | 14, 27, 50, 61 | 0     |
| 1   | С     | 388/393~(98%)   | -0.43           | 3 (0%) 86 85 | 5 | 15, 28, 45, 61 | 0     |
| 1   | D     | 388/393~(98%)   | -0.41           | 1 (0%) 94 93 | 3 | 16, 28, 47, 61 | 0     |
| All | All   | 1552/1572~(98%) | -0.40           | 14 (0%) 84 8 | 3 | 14, 28, 49, 65 | 0     |

All (14) RSRZ outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | В     | 267            | LEU  | 3.4  |
| 1   | С     | 267            | LEU  | 3.2  |
| 1   | В     | 265            | PHE  | 2.9  |
| 1   | С     | 2              | VAL  | 2.9  |
| 1   | А     | 58             | ARG  | 2.8  |
| 1   | А     | 206            | LEU  | 2.6  |
| 1   | А     | 49             | LYS  | 2.3  |
| 1   | А     | 265            | PHE  | 2.3  |
| 1   | А     | 2              | VAL  | 2.1  |
| 1   | А     | 203            | ASP  | 2.1  |
| 1   | А     | 267            | LEU  | 2.1  |
| 1   | В     | 2              | VAL  | 2.1  |
| 1   | D     | 251            | GLU  | 2.1  |
| 1   | С     | 265            | PHE  | 2.0  |

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



## 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

## 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|------|-------|------|------|------------------------------------------|-------|
| 2   | STL  | С     | 2002 | 17/17 | 0.87 | 0.14 | 22,29,41,49                              | 0     |
| 2   | STL  | D     | 2003 | 17/17 | 0.87 | 0.19 | 24,32,49,53                              | 0     |
| 2   | STL  | А     | 2000 | 17/17 | 0.89 | 0.15 | 32,34,43,45                              | 0     |
| 2   | STL  | В     | 2001 | 17/17 | 0.90 | 0.15 | 22,30,47,52                              | 0     |

## 6.5 Other polymers (i)

There are no such residues in this entry.

