

# Full wwPDB X-ray Structure Validation Report (i)

### Oct 9, 2023 – 01:45 PM EDT

| PDB ID       | : | 7U1Z                                            |
|--------------|---|-------------------------------------------------|
| Title        | : | Crystal structure of the DRBD and CROPs of TcdA |
| Authors      | : | Baohua, C.; Peng, C.; Kay, P.; Rongsheng, J.    |
| Deposited on | : | 2022-02-22                                      |
| Resolution   | : | 3.18  Å(reported)                               |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.35.1                                                             |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.35.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 3.18 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motrie                | Whole archive       | Similar resolution                                          |
|-----------------------|---------------------|-------------------------------------------------------------|
|                       | $(\# { m Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |
| R <sub>free</sub>     | 130704              | 1467 (3.20-3.16)                                            |
| Clashscore            | 141614              | 1599 (3.20-3.16)                                            |
| Ramachandran outliers | 138981              | 1574 (3.20-3.16)                                            |
| Sidechain outliers    | 138945              | 1573 (3.20-3.16)                                            |
| RSRZ outliers         | 127900              | 1423 (3.20-3.16)                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |     |
|-----|-------|--------|------------------|-----|-----|
| 1   | А     | 1640   | 70%              | 28% |     |
| 1   | В     | 1640   | 70%              | 27% | ••• |

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:



| Mol | Type | Chain | Res  | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|------|-----------|----------|---------|------------------|
| 2   | SO4  | А     | 2502 | -         | -        | Х       | -                |



# 2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 25621 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms          |           |           |           | ZeroOcc | AltConf | Trace |   |
|-----|-------|----------|----------------|-----------|-----------|-----------|---------|---------|-------|---|
| 1   | В     | 1612     | Total<br>12649 | C<br>8130 | N<br>2021 | O<br>2480 | S<br>18 | 14      | 0     | 0 |
| 1   | А     | 1620     | Total<br>12792 | C<br>8213 | N<br>2050 | 0<br>2511 | S<br>18 | 4       | 0     | 0 |

• Molecule 1 is a protein called Toxin A.

There are 2 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment        | Reference  |
|-------|---------|----------|--------|----------------|------------|
| В     | 842     | SER      | -      | expression tag | UNP P16154 |
| А     | 842     | SER      | -      | expression tag | UNP P16154 |

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O<sub>4</sub>S) (labeled as "Ligand of Interest" by depositor).

WIDE



| Mol                    | Chain | Residues | Ato        | $\mathbf{ms}$ |           | ZeroOcc | AltConf |
|------------------------|-------|----------|------------|---------------|-----------|---------|---------|
| 2                      | В     | 1        | Total<br>5 | 0<br>4        | ${f S}$ 1 | 0       | 0       |
| Continued on next page |       |          |            |               |           |         |         |

Continued from previous page...

| Mol | Chain | Residues | Atoms       | ZeroOcc                               | AltConf  |
|-----|-------|----------|-------------|---------------------------------------|----------|
| 9   | В     | 1        | Total O S   | 0                                     | 0        |
|     | D     | L        | $5 \ 4 \ 1$ | 0                                     | 0        |
| 9   | В     | 1        | Total O S   | 0                                     | 0        |
|     | D     | L        | $5 \ 4 \ 1$ | 0                                     | 0        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     | D     | I        | 5 4 1       | 0                                     | 0        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     | D     | 1        | 5 4 1       | 0                                     | 0        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     | D     | T        | 5 4 1       | 0                                     |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       | -        | 5 4 1       | Ŭ                                     |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       | -        | 5 4 1       | Ŭ,                                    | <u> </u> |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       | -        | 5 4 1       | Ŭ                                     |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       | -        | 5 4 1       | , , , , , , , , , , , , , , , , , , , | 0        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       | -        | 5 4 1       | Ŭ                                     | 0        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       | _        | 5 $4$ $1$   |                                       |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          | 5 4 1       |                                       | -        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          | 5 4 1       |                                       | -        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          | 5 $4$ $1$   |                                       | -        |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          | 5 $4$ $1$   |                                       |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          | 5 $4$ $1$   |                                       |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          | 5 $4$ $1$   |                                       |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          |             |                                       |          |
| 2   | В     | 1        | Total O S   | 0                                     | 0        |
|     |       |          |             |                                       |          |
| 2   | А     | 1        | Total O S   | 0                                     | 0        |
|     |       |          |             |                                       |          |
| 2   | А     | 1        | Total O S   | 0                                     | 0        |
|     |       |          |             |                                       |          |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 2   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

| Chain B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27% ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| SER<br>LEU<br>CLU<br>CLU<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>CVAL<br>ASN<br>ASN<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0879<br>0880<br>0881<br>0883<br>1883<br>1893<br>1928<br>1928<br>1928<br>1928<br>1928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1938<br>1938<br>1940<br>1944<br>1946<br>1946<br>1946<br>1948<br>1955<br>1955<br>1955<br>1955<br>1955<br>1955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V958<br>N959   |
| 1960<br>464<br>464<br>464<br>1969<br>1988<br>1980<br>1982<br>1982<br>1982<br>1983<br>1983<br>1983<br>1983<br>1983<br>1983<br>1983<br>1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4990<br>1991<br>1992<br>1992<br>6999<br>1006<br>1006<br>1006<br>1008<br>1008<br>1008<br>1008<br>1003<br>10016<br>1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L1024<br>11027<br>11037<br>11037<br>11037<br>11041<br>11041<br>11043<br>11048<br>K1048<br>K1048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K1060          |
| V1068<br>1007<br>11071<br>11077<br>11077<br>11077<br>11077<br>11077<br>11085<br>1087<br>1087<br>11082<br>11092<br>11093<br>11093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L1113<br>11114<br>11115<br>11115<br>11116<br>11116<br>11116<br>11116<br>11122<br>11122<br>11138<br>11138<br>11138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D1151<br>L1152<br>V1153<br>E1156<br>E1156<br>L1156<br>L1156<br>A1171<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1173<br>A1174<br>A1174<br>A1175<br>A1174<br>A1175<br>A1174<br>A1175<br>A1174<br>A1175<br>A1175<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A1177<br>A11777<br>A11777<br>A11777<br>A11777<br>A11777<br>A11777<br>A11777<br>A117777<br>A1177777<br>A1177777777 | <b>S1196</b>   |
| 11199<br>11200<br>11202<br>11202<br>11203<br>11204<br>11208<br>11208<br>11208<br>11208<br>11208<br>11208<br>11208<br>11208<br>11208<br>11208<br>11208<br>11243<br>1243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N1247<br>D1248<br>D1249<br>01249<br>T1250<br>R1251<br>L1253<br>L1253<br>L1253<br>L1253<br>L1256<br>L1253<br>L1256<br>R1266<br>R1266<br>R1266<br>R1266<br>R1266<br>R1266<br>R1266<br>R1266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R1267<br>71268<br>71269<br>11279<br>11285<br>71286<br>71303<br>11303<br>11304<br>71305<br>71305<br>71305<br>71312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1321          |
| G1322           11323           11325           11325           11325           11325           11325           11325           11325           11335           11335           11335           11335           11335           11335           11335           11335           11335           11335           11335           11335           11346           11345           11345           11346           11345           11345           11346           11346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D1350<br>K1365<br>L1368<br>L1368<br>L1368<br>L1368<br>N1377<br>D1377<br>L1384<br>L1384<br>R1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11402<br>11403<br>11405<br>11406<br>11406<br>11410<br>11411<br>11412<br>11418<br>11418<br>11418<br>11418<br>11420<br>11421<br>11420<br>11420<br>11420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L1428          |
| L1429<br>L1420<br>S1432<br>G1432<br>G1432<br>D1433<br>D1433<br>T1446<br>L1446<br>T1446<br>T1449<br>T1449<br>T1449<br>T1449<br>T1449<br>T1449<br>T1451<br>S1455<br>S1455<br>S1455<br>N1467<br>T1451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y1462<br>X1469<br>X1469<br>X1470<br>C1472<br>C1472<br>A1473<br>A1473<br>A1473<br>A1475<br>X1476<br>X1480<br>X1499<br>X1496<br>Y1496<br>Y1496<br>Y1497<br>N1497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E1502<br>F1516<br>M1517<br>M1517<br>T1523<br>T1523<br>T1523<br>T1523<br>V1530<br>M1531<br>M1531<br>S1537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11538<br>D1539 |
| 11542<br>11543<br>11544<br>11544<br>11545<br>11555<br>11555<br>11555<br>11556<br>11556<br>11556<br>11557<br>11570<br>11578<br>11578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81579<br>81581<br>81581<br>81581<br>81586<br>81586<br>81586<br>81586<br>81586<br>81586<br>81669<br>81606<br>81606<br>81606<br>81606<br>81600<br>81601<br>81601<br>81601<br>81610<br>81601<br>81610<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>81611<br>8161181<br>81611811<br>8161181<br>8161181<br>81611811<br>8161181<br>81611811<br>8161181<br>81611811<br>8161181<br>8161181<br>81611811<br>8161181<br>81611811<br>8161181<br>81611811<br>81611811<br>81611811<br>81611811<br>81611811<br>8161181181<br>8161181181<br>8161181181181181181181181181181181181181 | L1616<br>L1616<br>11622<br>L1623<br>L1623<br>D1624<br>N1626<br>N1626<br>N1636<br>K1637<br>K1637<br>K1637<br>K1637<br>S1640<br>S1640<br>S1640<br>S1640<br>S1668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y1659<br>N1660 |
| RR0<br>ASP<br>TASP<br>TASP<br>TASP<br>CLY<br>GLY<br>GLY<br>GL/<br>ASP<br>T1671<br>D1672<br>C1680<br>C1680<br>C1681<br>D1682<br>T1681<br>D1682<br>C1680<br>C1683<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C1680<br>C16800<br>C1680<br>C1680<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C168000<br>C16800<br>C16800<br>C16800<br>C16800<br>C16800<br>C168000<br>C168 | S1697<br>11701<br>11702<br>11703<br>11703<br>11703<br>11705<br>11705<br>81705<br>81705<br>81705<br>81705<br>81710<br>11712<br>11712<br>11713<br>11713<br>11713<br>11719<br>11719<br>11719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N1727<br>11730<br>11730<br>11731<br>31732<br>31734<br>81734<br>11735<br>11735<br>11735<br>11745<br>11745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R1750<br>Y1751 |
| L1752<br>E153<br>K1758<br>L1756<br>L1760<br>L1766<br>L1766<br>L1766<br>N1771<br>S1774<br>N1778<br>N1778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K1785<br>K1787<br>L1788<br>L1789<br>L1790<br>C1791<br>C1792<br>C1797<br>F1792<br>F1797<br>F1793<br>F1797<br>F1800<br>F1800<br>F1800<br>D1804<br>D1804<br>D1807<br>D1807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K1828<br>L1829<br>V1830<br>V1830<br>L1833<br>L1834<br>N1838<br>R1846<br>E1846<br>E1846<br>E1846<br>E1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K1860          |
| Y1863<br>F1264<br>D1865<br>11866<br>G1869<br>G1869<br>F1873<br>F1873<br>M1891<br>Q1890<br>Q1891<br>Q1892<br>V1895<br>P1899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F1902<br>1908<br>11908<br>11914<br>11915<br>11915<br>11920<br>11920<br>11922<br>F1926<br>11927<br>11924<br>Y1934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F1936<br>M1939<br>S1940<br>K1941<br>K1943<br>V1943<br>V1943<br>D1971<br>D1962<br>D1971<br>C1984<br>C1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R1995          |

• Molecule 1: Toxin A





• Molecule 1: Toxin A









## 4 Data and refinement statistics (i)

| Property                                    | Value                                            | Source    |
|---------------------------------------------|--------------------------------------------------|-----------|
| Space group                                 | C 1 2 1                                          | Depositor |
| Cell constants                              | 379.51Å 187.64Å 95.32Å                           | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | $90.00^{\circ}$ $101.30^{\circ}$ $90.00^{\circ}$ | Depositor |
| Bosolution(A)                               | 186.08 - 3.18                                    | Depositor |
| Resolution (A)                              | 186.08 - 3.18                                    | EDS       |
| % Data completeness                         | 98.8 (186.08-3.18)                               | Depositor |
| (in resolution range)                       | 98.8 (186.08-3.18)                               | EDS       |
| $R_{merge}$                                 | 0.28                                             | Depositor |
| $R_{sym}$                                   | (Not available)                                  | Depositor |
| $< I/\sigma(I) > 1$                         | $1.30 (at 3.19 \text{\AA})$                      | Xtriage   |
| Refinement program                          | PHENIX 1.19.2_4158                               | Depositor |
| P. P.                                       | 0.207 , $0.254$                                  | Depositor |
| $n, n_{free}$                               | 0.208 , $0.256$                                  | DCC       |
| $R_{free}$ test set                         | 5513 reflections $(5.07\%)$                      | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 59.6                                             | Xtriage   |
| Anisotropy                                  | 0.125                                            | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$ | $0.35 \;,\; 53.3$                                | EDS       |
| L-test for $twinning^2$                     | $ < L >=0.48, < L^2>=0.31$                       | Xtriage   |
| Estimated twinning fraction                 | No twinning to report.                           | Xtriage   |
| $F_o, F_c$ correlation                      | 0.91                                             | EDS       |
| Total number of atoms                       | 25621                                            | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 53.0                                             | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.37% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | lengths  | Bond | angles   |
|-----|-------|------|----------|------|----------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5 |
| 1   | А     | 0.53 | 0/13082  | 0.69 | 0/17780  |
| 1   | В     | 0.52 | 0/12936  | 0.70 | 0/17588  |
| All | All   | 0.52 | 0/26018  | 0.70 | 0/35368  |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 12792 | 0        | 12186    | 335     | 0            |
| 1   | В     | 12649 | 0        | 11970    | 337     | 0            |
| 2   | А     | 80    | 0        | 0        | 7       | 0            |
| 2   | В     | 100   | 0        | 0        | 3       | 0            |
| All | All   | 25621 | 0        | 24156    | 665     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (665) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.



| Atom 1            | Atom 2            | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:A:939:ILE:HG13  | 1:A:949:ASN:HB2   | 1.42         | 0.99        |
| 1:A:1624:ASP:HB3  | 1:A:1626:ASN:H    | 1.39         | 0.88        |
| 1:A:951:GLN:HE22  | 1:A:960:THR:HG21  | 1.37         | 0.87        |
| 1:B:1781:ASP:HB2  | 1:B:1786:LYS:HA   | 1.57         | 0.86        |
| 1:B:1428:LEU:HD22 | 1:B:1455:SER:HB2  | 1.57         | 0.85        |
| 1:B:1895:VAL:HG21 | 1:B:1934:TYR:CE2  | 2.14         | 0.83        |
| 1:B:1846:ILE:HG13 | 1:B:1847:GLU:HG2  | 1.63         | 0.80        |
| 1:B:2376:LYS:HB3  | 1:B:2406:ILE:HG23 | 1.65         | 0.79        |
| 1:B:1914:ASN:HD22 | 1:B:1920:ILE:HG21 | 1.48         | 0.78        |
| 1:A:1692:PRO:HG3  | 1:A:1699:ILE:HD11 | 1.64         | 0.77        |
| 1:B:1530:VAL:HG21 | 1:B:1589:ILE:HG13 | 1.66         | 0.76        |
| 1:B:1241:GLY:H    | 1:B:1243:ARG:HH12 | 1.33         | 0.76        |
| 1:B:2190:TYR:H    | 1:B:2208:SER:HB2  | 1.50         | 0.76        |
| 1:A:2411:VAL:HG21 | 1:A:2450:TYR:CE2  | 2.21         | 0.76        |
| 1:A:1659:TYR:O    | 1:A:1660:ASN:ND2  | 2.19         | 0.75        |
| 1:A:897:THR:HG22  | 1:A:916:GLU:OE2   | 1.87         | 0.75        |
| 1:B:2103:THR:HG22 | 1:B:2108:LYS:HG3  | 1.69         | 0.75        |
| 1:B:2290:ALA:HB2  | 1:B:2298:GLU:HG2  | 1.70         | 0.73        |
| 1:A:1240:PRO:HB2  | 1:A:2252:GLN:HG2  | 1.70         | 0.73        |
| 1:B:1369:ILE:HG23 | 1:B:1372:VAL:HG21 | 1.68         | 0.72        |
| 1:B:955:THR:HA    | 1:B:958:VAL:HG12  | 1.72         | 0.72        |
| 1:B:2215:ARG:HE   | 1:B:2216:ILE:H    | 1.36         | 0.71        |
| 1:B:2170:PHE:HB2  | 1:B:2210:ALA:HB3  | 1.73         | 0.71        |
| 1:B:2418:PHE:HB2  | 1:B:2458:ALA:HB3  | 1.72         | 0.71        |
| 1:A:1517:MET:HE1  | 1:A:1520:ASP:HA   | 1.73         | 0.71        |
| 1:A:1624:ASP:HB2  | 1:A:1628:ASN:H    | 1.53         | 0.71        |
| 1:B:1579:SER:HB2  | 1:B:1604:ILE:HG22 | 1.71         | 0.71        |
| 1:A:1071:ILE:HD11 | 1:A:1073:MET:HE3  | 1.72         | 0.71        |
| 1:A:1122:VAL:HG13 | 1:A:1279:LEU:HD22 | 1.73         | 0.70        |
| 1:B:1545:VAL:HG23 | 1:B:1549:GLN:HG2  | 1.72         | 0.70        |
| 1:B:2200:LYS:HG2  | 1:B:2230:ILE:HD11 | 1.73         | 0.70        |
| 1:B:1886:ASN:ND2  | 1:B:1890:VAL:HG12 | 2.06         | 0.70        |
| 1:B:1134:LYS:HG2  | 1:B:1135:TYR:CE1  | 2.26         | 0.70        |
| 1:B:2410:GLY:HA2  | 1:B:2445:LEU:HD21 | 1.73         | 0.70        |
| 1:B:1638:THR:HG23 | 1:B:1640:SER:H    | 1.57         | 0.70        |
| 1:A:1156:GLU:HB3  | 1:A:1165:LYS:HB2  | 1.71         | 0.70        |
| 1:B:2286:TYR:HD2  | 1:B:2304:TYR:HD2  | 1.38         | 0.70        |
| 1:B:927:ILE:HD11  | 1:B:987:VAL:HG13  | 1.72         | 0.69        |
| 1:B:1475:SER:HB3  | 1:B:1517:MET:HE1  | 1.72         | 0.69        |
| 1:A:1988:TRP:HE1  | 1:A:1995:ARG:HG2  | 1.55         | 0.69        |
| 1:A:1630:ASP:OD1  | 1:A:1631:ILE:N    | 2.25         | 0.69        |
| 1:A:1095:LEU:HD11 | 1:A:1362:THR:HB   | 1.75         | 0.68        |



|                   |                   | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:A:2002:THR:HG23 | 1:A:2004:ILE:HG22 | 1.76         | 0.68        |
| 1:B:1908:ALA:HB2  | 1:B:1916:GLU:HG2  | 1.75         | 0.68        |
| 1:B:2264:TYR:HB2  | 1:B:2287:PHE:CE2  | 2.28         | 0.68        |
| 1:A:2026:LYS:NZ   | 2:A:2502:SO4:O2   | 2.28         | 0.67        |
| 1:B:1939:ASN:O    | 1:B:1939:ASN:ND2  | 2.28         | 0.67        |
| 1:A:2476:THR:OG1  | 1:A:2478:VAL:HG12 | 1.95         | 0.66        |
| 1:A:950:ILE:HG13  | 1:A:1037:ILE:HD13 | 1.76         | 0.66        |
| 1:A:1614:THR:HG23 | 1:A:1616:LEU:H    | 1.60         | 0.66        |
| 1:A:2370:TRP:HB2  | 1:A:2378:TYR:O    | 1.95         | 0.66        |
| 1:A:1395:ASP:OD2  | 1:A:1401:ARG:NH2  | 2.29         | 0.65        |
| 1:B:2214:TRP:CZ2  | 1:B:2238:ILE:HD11 | 2.32         | 0.65        |
| 1:B:1091:VAL:HG12 | 1:B:1327:LEU:HD22 | 1.78         | 0.65        |
| 1:A:1616:LEU:HD12 | 1:A:1636:TRP:HB2  | 1.76         | 0.65        |
| 1:A:1428:LEU:HD22 | 1:A:1455:SER:HB2  | 1.78         | 0.65        |
| 1:B:1173:ALA:HB3  | 1:B:1199:ILE:HG23 | 1.77         | 0.65        |
| 1:A:2290:ALA:HB2  | 1:A:2298:GLU:HB2  | 1.79         | 0.65        |
| 1:B:1545:VAL:CG2  | 1:B:1549:GLN:HG2  | 2.27         | 0.65        |
| 1:B:2164:PHE:HB2  | 1:B:2173:PHE:CE2  | 2.32         | 0.65        |
| 1:B:1370:LYS:HE3  | 1:B:1450:THR:HG23 | 1.79         | 0.64        |
| 1:A:2370:TRP:HB3  | 1:A:2379:TYR:HA   | 1.79         | 0.64        |
| 1:A:1068:VAL:HG12 | 1:A:1518:LYS:HB2  | 1.80         | 0.64        |
| 1:B:1609:THR:HG22 | 1:B:1622:ILE:HG13 | 1.80         | 0.64        |
| 1:A:1115:LEU:O    | 1:A:1116:HIS:ND1  | 2.30         | 0.64        |
| 1:B:1202:LEU:HD12 | 1:B:1260:TYR:CG   | 2.32         | 0.64        |
| 1:B:1557:LEU:HD11 | 1:B:1610:LEU:HD11 | 1.81         | 0.63        |
| 1:A:974:SER:HB3   | 1:A:984:SER:OG    | 1.98         | 0.63        |
| 1:B:1202:LEU:HD12 | 1:B:1260:TYR:CD2  | 2.33         | 0.63        |
| 1:B:1751:TYR:CE2  | 1:B:1753:GLU:HB3  | 2.34         | 0.63        |
| 1:B:1605:ASP:OD1  | 1:B:1606:LYS:N    | 2.32         | 0.62        |
| 1:B:2056:TYR:HD2  | 1:B:2070:PHE:CD2  | 2.16         | 0.62        |
| 1:A:1911:GLN:HG2  | 1:A:1921:VAL:HG23 | 1.81         | 0.62        |
| 1:B:1073:MET:HG2  | 1:B:1471:PHE:CG   | 2.33         | 0.62        |
| 1:A:2056:TYR:H    | 1:A:2074:SER:HB3  | 1.63         | 0.62        |
| 1:B:1885:PHE:CE1  | 1:B:1891:MET:HG3  | 2.35         | 0.62        |
| 1:A:1034:VAL:HG22 | 1:A:1539:ASP:HB3  | 1.81         | 0.62        |
| 1:B:1071:ILE:HG21 | 1:B:1473:ALA:HB2  | 1.82         | 0.62        |
| 1:B:1886:ASN:HD21 | 1:B:1890:VAL:HG12 | 1.62         | 0.62        |
| 1:A:860:GLU:OE2   | 1:A:926:HIS:NE2   | 2.32         | 0.62        |
| 1:A:1611:VAL:HG12 | 1:A:1620:GLU:HA   | 1.81         | 0.62        |
| 1:A:1824:ASP:HB3  | 1:A:1826:ASP:H    | 1.65         | 0.62        |
| 1:B:2399:PHE:HZ   | 1:B:2431:ILE:HD11 | 1.63         | 0.62        |



|                   | A A               | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:A:2006:PHE:CD2  | 1:A:2010:LYS:HG2  | 2.34         | 0.62        |
| 1:B:1804:ASN:HB3  | 1:B:1807:ASP:HB3  | 1.81         | 0.62        |
| 1:A:1199:ILE:HG13 | 1:A:1200:PRO:HD2  | 1.82         | 0.62        |
| 1:A:2291:ASN:ND2  | 1:A:2295:ASN:OD1  | 2.33         | 0.61        |
| 1:B:1441:LEU:HD11 | 1:B:1474:ILE:HD13 | 1.82         | 0.61        |
| 1:B:1683:ARG:NH2  | 1:B:1709:GLU:OE1  | 2.32         | 0.61        |
| 1:B:1606:LYS:HA   | 1:B:1623:CYS:HB3  | 1.82         | 0.61        |
| 1:A:1380:LYS:HG2  | 1:A:1396:ILE:HD12 | 1.81         | 0.61        |
| 1:B:950:ILE:HG13  | 1:B:1037:ILE:HD13 | 1.81         | 0.61        |
| 1:B:1546:SER:HB3  | 1:B:1549:GLN:HB3  | 1.83         | 0.61        |
| 1:A:2160:GLN:O    | 1:A:2161:ILE:HD12 | 2.00         | 0.61        |
| 1:A:2368:THR:HB   | 1:A:2385:PHE:HE1  | 1.64         | 0.61        |
| 1:B:2235:LEU:HD22 | 1:B:2258:ILE:HD13 | 1.83         | 0.60        |
| 1:A:1330:SER:OG   | 1:A:1356:ILE:HG13 | 2.01         | 0.60        |
| 1:B:1446:GLU:HA   | 1:B:1449:ASN:HD22 | 1.67         | 0.60        |
| 1:B:2246:SER:HB3  | 1:B:2252:GLN:HE21 | 1.66         | 0.60        |
| 1:A:2253:ASN:HB3  | 1:A:2271:SER:HB3  | 1.82         | 0.60        |
| 1:A:1060:LYS:HD2  | 1:A:1425:SER:HB3  | 1.81         | 0.60        |
| 1:A:1474:ILE:HG12 | 1:A:1481:SER:HB3  | 1.84         | 0.60        |
| 1:A:1240:PRO:CB   | 1:A:2252:GLN:HG2  | 2.31         | 0.59        |
| 1:B:1742:GLU:OE1  | 1:B:1764:ARG:NH1  | 2.30         | 0.59        |
| 1:B:1538:ILE:HG13 | 1:B:1557:LEU:HD23 | 1.84         | 0.59        |
| 1:B:2388:SER:HB2  | 1:B:2392:THR:HG21 | 1.85         | 0.59        |
| 1:B:2031:SER:HB3  | 1:B:2036:PHE:CE1  | 2.38         | 0.59        |
| 1:A:893:LYS:HD2   | 1:A:898:TYR:CE1   | 2.38         | 0.59        |
| 1:A:1831:LYS:HD3  | 1:A:1848:PHE:HE1  | 1.67         | 0.59        |
| 1:B:1108:LEU:HD13 | 1:B:1113:LEU:HD12 | 1.83         | 0.59        |
| 1:A:871:LEU:O     | 1:A:875:LYS:HG3   | 2.02         | 0.59        |
| 1:A:1850:LEU:HD12 | 1:A:1851:VAL:H    | 1.67         | 0.58        |
| 1:A:1852:THR:HB   | 1:A:1866:ILE:HA   | 1.84         | 0.58        |
| 1:B:2215:ARG:HE   | 1:B:2216:ILE:N    | 2.00         | 0.58        |
| 1:A:1967:LEU:CD2  | 1:A:1991:VAL:HG11 | 2.33         | 0.58        |
| 1:A:2402:ASN:ND2  | 1:A:2408:GLN:OE1  | 2.36         | 0.58        |
| 1:B:1051:LEU:HD21 | 1:B:1070:ALA:HB1  | 1.84         | 0.58        |
| 1:B:2225:ASN:OD1  | 1:B:2226:PRO:HD2  | 2.03         | 0.58        |
| 1:B:2286:TYR:CD2  | 1:B:2304:TYR:HD2  | 2.21         | 0.58        |
| 1:B:1033:ILE:HG21 | 1:B:1048:LYS:HD2  | 1.84         | 0.58        |
| 1:A:1850:LEU:HD12 | 1:A:1851:VAL:N    | 2.19         | 0.58        |
| 1:B:951:GLN:OE1   | 1:B:960:THR:HG21  | 2.02         | 0.58        |
| 1:B:1090:GLU:O    | 1:B:1093:ILE:HG22 | 2.02         | 0.58        |
| 1:A:1682:ASP:OD1  | 1:A:1683:ARG:NH1  | 2.37         | 0.58        |



| A + 1             |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:2394:ILE:HG13 | 1:A:2394:ILE:O    | 2.04                    | 0.58        |
| 1:B:864:LEU:HD11  | 1:B:970:LEU:HG    | 1.84                    | 0.58        |
| 1:B:1315:TYR:HD2  | 1:B:1335:THR:HG22 | 1.69                    | 0.58        |
| 1:A:1967:LEU:HD23 | 1:A:1991:VAL:HG11 | 1.85                    | 0.57        |
| 1:A:1482:ILE:HD11 | 1:A:1524:ILE:HD11 | 1.85                    | 0.57        |
| 1:A:1540:PHE:CD2  | 1:A:1542:ILE:HD12 | 2.39                    | 0.57        |
| 1:A:939:ILE:CD1   | 1:A:1041:ILE:HG12 | 2.34                    | 0.57        |
| 1:B:1368:LEU:HB2  | 2:B:2511:SO4:O2   | 2.05                    | 0.57        |
| 1:A:1578:THR:O    | 1:A:1581:PHE:HB3  | 2.04                    | 0.57        |
| 1:A:1091:VAL:HG12 | 1:A:1327:LEU:HD22 | 1.86                    | 0.57        |
| 1:A:1493:LEU:HD21 | 1:A:1524:ILE:HD13 | 1.87                    | 0.57        |
| 1:B:881:ASP:HB3   | 1:B:883:LYS:HG2   | 1.86                    | 0.57        |
| 1:A:934:ILE:HD11  | 1:A:964:ALA:HA    | 1.85                    | 0.56        |
| 1:A:938:ILE:HG21  | 1:A:946:LEU:HD22  | 1.88                    | 0.56        |
| 1:A:1377:ASP:HB3  | 1:A:1384:ILE:HB   | 1.88                    | 0.56        |
| 1:B:1241:GLY:H    | 1:B:1243:ARG:NH1  | 2.03                    | 0.56        |
| 1:A:1227:ALA:HB1  | 1:A:1230:ARG:HH12 | 1.71                    | 0.56        |
| 1:A:1831:LYS:HB3  | 1:A:1848:PHE:HD1  | 1.71                    | 0.56        |
| 1:B:1241:GLY:N    | 1:B:1243:ARG:HH12 | 2.03                    | 0.56        |
| 1:B:1866:ILE:HD12 | 1:B:1866:ILE:H    | 1.71                    | 0.56        |
| 1:B:2164:PHE:HB2  | 1:B:2173:PHE:HE2  | 1.69                    | 0.56        |
| 1:A:958:VAL:HG23  | 1:A:1648:GLY:O    | 2.06                    | 0.56        |
| 1:B:1682:ASP:OD1  | 1:B:1683:ARG:NH1  | 2.38                    | 0.56        |
| 1:B:2264:TYR:HB2  | 1:B:2287:PHE:CD2  | 2.41                    | 0.56        |
| 1:A:1937:ASP:OD1  | 1:A:1939:ASN:N    | 2.36                    | 0.56        |
| 1:A:1166:LEU:HD21 | 1:A:1210:ILE:HG13 | 1.87                    | 0.56        |
| 1:A:1353:VAL:O    | 1:A:1369:ILE:HG22 | 2.05                    | 0.56        |
| 1:A:1638:THR:HG22 | 1:A:1641:SER:H    | 1.71                    | 0.56        |
| 1:B:1909:ASN:N    | 1:B:1914:ASN:OD1  | 2.39                    | 0.56        |
| 1:B:2328:TRP:CD1  | 1:B:2335:LYS:HE2  | 2.41                    | 0.56        |
| 1:A:1632:TYR:HA   | 1:A:1647:SER:OG   | 2.05                    | 0.56        |
| 1:B:893:LYS:HB2   | 1:B:898:TYR:CE1   | 2.41                    | 0.56        |
| 1:B:1935:TYR:O    | 1:B:1943:VAL:HG12 | 2.06                    | 0.56        |
| 1:A:2370:TRP:CB   | 1:A:2379:TYR:HA   | 2.36                    | 0.56        |
| 1:B:2060:PHE:HB2  | 2:B:2506:SO4:O2   | 2.06                    | 0.55        |
| 1:A:2328:TRP:CZ2  | 1:A:2352:ILE:HD11 | 2.40                    | 0.55        |
| 1:B:1005:ASP:HB3  | 1:B:1008:GLN:HB3  | 1.88                    | 0.55        |
| 1:B:874:LEU:HD13  | 1:B:920:PHE:CE2   | 2.42                    | 0.55        |
| 1:B:1788:LEU:HD22 | 1:B:1792:TYR:CG   | 2.41                    | 0.55        |
| 1:B:1806:LEU:HD13 | 1:B:1829:LEU:HD21 | 1.89                    | 0.55        |
| 1:B:1824:ASP:OD2  | 1:B:1828:LYS:HE2  | 2.07                    | 0.55        |



|                   | <b>A t</b> area <b>D</b> | Interatomic             | Clash       |
|-------------------|--------------------------|-------------------------|-------------|
| Atom-1            | Atom-2                   | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:939:ILE:HG22  | 1:A:940:THR:HG22         | 1.87                    | 0.55        |
| 1:A:1034:VAL:CG2  | 1:A:1539:ASP:HB3         | 2.36                    | 0.55        |
| 1:B:2328:TRP:HE1  | 1:B:2335:LYS:HG2         | 1.71                    | 0.55        |
| 1:A:2372:THR:HG22 | 1:A:2377:LYS:HD3         | 1.88                    | 0.55        |
| 1:B:1570:LYS:NZ   | 1:B:1707:SER:O           | 2.39                    | 0.54        |
| 1:A:1927:LEU:HD11 | 1:A:1929:LEU:HD13        | 1.89                    | 0.54        |
| 1:A:2080:LEU:HD13 | 1:A:2104:ILE:HD11        | 1.89                    | 0.54        |
| 1:A:1179:GLY:N    | 2:A:2501:SO4:O4          | 2.35                    | 0.54        |
| 1:B:1115:LEU:O    | 1:B:1116:HIS:ND1         | 2.40                    | 0.54        |
| 1:B:2203:TYR:O    | 1:B:2211:VAL:HG12        | 2.08                    | 0.54        |
| 1:A:1833:LEU:HD11 | 1:A:1840:LEU:HG          | 1.90                    | 0.54        |
| 1:B:1495:PHE:HB2  | 1:B:1544:LEU:HD23        | 1.90                    | 0.54        |
| 1:B:1482:ILE:HG13 | 1:B:1522:ASN:HB2         | 1.88                    | 0.54        |
| 1:B:2056:TYR:CE1  | 1:B:2059:LYS:HD2         | 2.43                    | 0.54        |
| 1:B:980:LEU:HD12  | 1:B:982:ASP:H            | 1.73                    | 0.54        |
| 1:B:1703:THR:OG1  | 1:B:1732:SER:OG          | 2.25                    | 0.54        |
| 1:A:2277:VAL:HG21 | 1:A:2316:TYR:CE2         | 2.43                    | 0.54        |
| 1:B:1043:LEU:HD22 | 1:B:1068:VAL:HG21        | 1.89                    | 0.53        |
| 1:B:1733:SER:HB3  | 1:B:1735:PHE:CE2         | 2.43                    | 0.53        |
| 1:A:1005:ASP:HB3  | 1:A:1008:GLN:HB3         | 1.89                    | 0.53        |
| 1:A:1475:SER:HB3  | 1:A:1517:MET:HE1         | 1.90                    | 0.53        |
| 1:B:893:LYS:HB2   | 1:B:898:TYR:CD1          | 2.43                    | 0.53        |
| 1:A:1542:ILE:HG23 | 1:A:1550:VAL:HG13        | 1.91                    | 0.53        |
| 1:A:1956:PHE:CE1  | 1:A:1963:ALA:HB2         | 2.44                    | 0.53        |
| 1:A:1247:ASN:HB3  | 1:A:1249:GLY:H           | 1.74                    | 0.53        |
| 1:A:2128:LYS:HE3  | 1:A:2158:ILE:HD13        | 1.90                    | 0.53        |
| 1:B:1204:ILE:HG23 | 1:B:1256:ILE:HD11        | 1.91                    | 0.53        |
| 1:A:2040:ALA:HB2  | 1:A:2054:ILE:HD13        | 1.90                    | 0.53        |
| 1:B:1156:GLU:HB3  | 1:B:1165:LYS:HB2         | 1.91                    | 0.53        |
| 1:B:1532:ASN:ND2  | 1:B:1532:ASN:O           | 2.41                    | 0.53        |
| 1:B:2321:ASP:O    | 1:B:2323:LYS:HG3         | 2.08                    | 0.53        |
| 1:A:1288:ILE:HD12 | 1:A:1315:TYR:CE1         | 2.44                    | 0.53        |
| 1:B:2238:ILE:HG13 | 1:B:2238:ILE:O           | 2.09                    | 0.53        |
| 1:A:2201:LYS:NZ   | 1:A:2248:ASP:O           | 2.40                    | 0.53        |
| 1:B:2445:LEU:HD12 | 1:B:2446:ASN:HB2         | 1.91                    | 0.53        |
| 1:B:1208:ILE:HG12 | 1:B:1252:LEU:HD11        | 1.91                    | 0.52        |
| 1:B:1368:LEU:HG   | 1:B:1451:LEU:HD11        | 1.91                    | 0.52        |
| 1:B:956:SER:O     | 1:B:960:THR:HG23         | 2.09                    | 0.52        |
| 1:B:1060:LYS:HD2  | 1:B:1425:SER:HB3         | 1.91                    | 0.52        |
| 1:B:1303:THR:HG23 | 1:B:1331:TYR:HD2         | 1.73                    | 0.52        |
| 1:B:1749:VAL:HG21 | 1:B:1800:PHE:CZ          | 2.44                    | 0.52        |



|                   | AL O              | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:B:2056:TYR:HD2  | 1:B:2070:PHE:HD2  | 1.55         | 0.52        |
| 1:B:2058:SER:HA   | 1:B:2070:PHE:O    | 2.08         | 0.52        |
| 1:B:2246:SER:OG   | 1:B:2248:ASP:OD1  | 2.28         | 0.52        |
| 1:A:1132:SER:HB2  | 1:A:1210:ILE:HD12 | 1.92         | 0.52        |
| 1:B:1027:ILE:HG13 | 1:B:1632:TYR:CE2  | 2.44         | 0.52        |
| 1:B:1186:ILE:HD11 | 1:B:1243:ARG:HB2  | 1.92         | 0.52        |
| 1:B:2284:PHE:CB   | 1:B:2324:ALA:HB3  | 2.39         | 0.52        |
| 1:B:934:ILE:HD11  | 1:B:964:ALA:HA    | 1.91         | 0.52        |
| 1:A:1327:LEU:HA   | 1:A:1348:ASN:HB2  | 1.90         | 0.52        |
| 1:A:2368:THR:HB   | 1:A:2385:PHE:CE1  | 2.45         | 0.52        |
| 1:A:2399:PHE:HZ   | 1:A:2431:ILE:HD11 | 1.73         | 0.52        |
| 1:A:880:LEU:HD22  | 1:A:884:TYR:CG    | 2.45         | 0.52        |
| 1:A:1728:ILE:HG13 | 1:A:1778:MET:HE3  | 1.92         | 0.52        |
| 1:A:1566:LEU:HD22 | 1:A:1680:GLY:HA3  | 1.92         | 0.52        |
| 1:B:2264:TYR:HE1  | 1:B:2266:ASP:HA   | 1.75         | 0.51        |
| 1:B:2225:ASN:HB3  | 1:B:2228:ASN:OD1  | 2.10         | 0.51        |
| 1:B:1989:GLN:HB2  | 1:B:1998:PHE:HE2  | 1.76         | 0.51        |
| 1:A:1062:LEU:HD22 | 1:A:1068:VAL:HG21 | 1.93         | 0.51        |
| 1:B:1151:ASP:HA   | 1:B:1227:ALA:HB2  | 1.93         | 0.51        |
| 1:B:2422:ALA:HB2  | 1:B:2436:ILE:HD13 | 1.92         | 0.51        |
| 1:A:2020:ASP:HB2  | 2:A:2502:SO4:O3   | 2.10         | 0.51        |
| 1:B:1247:ASN:HB3  | 1:B:1249:GLY:H    | 1.75         | 0.51        |
| 1:B:2032:THR:HG23 | 1:B:2034:ASN:H    | 1.76         | 0.51        |
| 1:A:1793:ILE:HG23 | 1:A:1797:PHE:CG   | 2.46         | 0.51        |
| 1:A:1935:TYR:CD1  | 1:A:1949:ILE:HD13 | 2.45         | 0.51        |
| 1:A:1556:TYR:HD1  | 1:A:1611:VAL:HG23 | 1.76         | 0.51        |
| 1:A:1842:TYR:HB2  | 1:A:1864:PHE:CZ   | 2.45         | 0.51        |
| 1:B:2212:THR:HB   | 1:B:2226:PRO:HA   | 1.93         | 0.51        |
| 1:B:2190:TYR:H    | 1:B:2208:SER:CB   | 2.23         | 0.51        |
| 1:B:2287:PHE:HE1  | 1:B:2301:ALA:HB2  | 1.75         | 0.51        |
| 1:A:1050:LEU:HD11 | 1:A:1059:LYS:HB2  | 1.93         | 0.51        |
| 1:A:1517:MET:CE   | 1:A:1520:ASP:HA   | 2.40         | 0.51        |
| 1:A:1922:TYR:O    | 1:A:1940:SER:HA   | 2.11         | 0.51        |
| 1:B:939:ILE:HG13  | 1:B:1041:ILE:HG23 | 1.93         | 0.51        |
| 1:B:1530:VAL:CG2  | 1:B:1589:ILE:HG13 | 2.40         | 0.51        |
| 1:B:2266:ASP:HB2  | 1:B:2274:VAL:HG21 | 1.92         | 0.51        |
| 1:A:2228:ASN:HD22 | 1:A:2230:ILE:HD12 | 1.76         | 0.51        |
| 1:B:875:LYS:NZ    | 1:B:982:ASP:OD2   | 2.43         | 0.50        |
| 1:B:1305:THR:HG23 | 1:A:1004:TYR:CE2  | 2.46         | 0.50        |
| 1:B:1616:LEU:HB3  | 1:B:1636:TRP:HB2  | 1.93         | 0.50        |
| 1:A:1240:PRO:CG   | 1:A:2252:GLN:HG2  | 2.41         | 0.50        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:1706:TYR:CE1  | 1:A:1752:LEU:HD11 | 2.46                    | 0.50        |
| 1:B:1377:ASP:HB2  | 1:B:1384:ILE:HB   | 1.93                    | 0.50        |
| 1:B:1863:TYR:CZ   | 1:B:1878:ILE:HD12 | 2.46                    | 0.50        |
| 1:A:1994:SER:HB3  | 1:A:2024:VAL:HG21 | 1.92                    | 0.50        |
| 1:B:1445:ILE:O    | 1:B:1449:ASN:ND2  | 2.45                    | 0.50        |
| 1:A:1641:SER:HB3  | 1:A:1671:LEU:HD23 | 1.94                    | 0.50        |
| 1:A:1902:PHE:HB3  | 1:A:1942:ALA:HB3  | 1.93                    | 0.50        |
| 1:B:1328:LEU:HG   | 1:B:1388:GLN:HG3  | 1.92                    | 0.50        |
| 1:A:2196:THR:O    | 1:A:2197:LEU:HD23 | 2.12                    | 0.50        |
| 1:B:879:ASN:HB3   | 1:A:2297:ILE:HD12 | 1.94                    | 0.50        |
| 1:B:1886:ASN:HD22 | 1:B:1892:GLN:HE21 | 1.59                    | 0.50        |
| 1:B:2251:LEU:HD12 | 1:B:2252:GLN:H    | 1.77                    | 0.50        |
| 1:A:1651:ARG:HD2  | 1:A:1826:ASP:OD2  | 2.12                    | 0.50        |
| 1:A:2056:TYR:H    | 1:A:2074:SER:CB   | 2.24                    | 0.50        |
| 1:B:2376:LYS:HB2  | 1:B:2378:TYR:CE1  | 2.47                    | 0.50        |
| 1:A:2007:ASN:HA   | 1:A:2019:PHE:HB2  | 1.93                    | 0.50        |
| 1:B:1527:LYS:HD3  | 1:B:1537:SER:HB2  | 1.93                    | 0.50        |
| 1:B:1556:TYR:HD1  | 1:B:1611:VAL:HG13 | 1.77                    | 0.50        |
| 1:A:889:GLU:HB2   | 1:A:1001:ASN:HB3  | 1.94                    | 0.50        |
| 1:B:1247:ASN:HB2  | 1:B:1250:THR:H    | 1.76                    | 0.50        |
| 1:B:1927:LEU:HD23 | 1:B:1936:PHE:HE2  | 1.76                    | 0.50        |
| 1:A:888:PHE:HB3   | 1:A:924:SER:HB2   | 1.93                    | 0.50        |
| 1:B:1751:TYR:CD1  | 1:B:1760:LEU:HD12 | 2.47                    | 0.49        |
| 1:B:1793:ILE:HG23 | 1:B:1797:PHE:CG   | 2.47                    | 0.49        |
| 1:B:1864:PHE:HB3  | 1:B:1869:GLY:O    | 2.13                    | 0.49        |
| 1:A:1185:ASN:ND2  | 1:A:1185:ASN:O    | 2.46                    | 0.49        |
| 1:A:1201:SER:OG   | 2:A:2512:SO4:O1   | 2.30                    | 0.49        |
| 1:B:1687:LYS:HD3  | 1:B:1713:GLU:HB3  | 1.93                    | 0.49        |
| 1:B:1971:ASP:OD2  | 1:A:1897:LYS:HE2  | 2.12                    | 0.49        |
| 1:A:2320:ASN:C    | 1:A:2322:SER:H    | 2.16                    | 0.49        |
| 1:A:1976:TYR:HB2  | 1:A:1998:PHE:CZ   | 2.47                    | 0.49        |
| 1:A:1013:ILE:O    | 1:A:1017:VAL:HG23 | 2.12                    | 0.49        |
| 1:A:1122:VAL:HG11 | 1:A:1276:ILE:HG12 | 1.95                    | 0.49        |
| 1:A:1556:TYR:CD1  | 1:A:1611:VAL:HG23 | 2.47                    | 0.49        |
| 1:A:1831:LYS:HB3  | 1:A:1848:PHE:CD1  | 2.48                    | 0.49        |
| 1:A:2062:THR:HA   | 1:A:2066:LYS:O    | 2.13                    | 0.49        |
| 1:B:1152:LEU:HD12 | 1:B:1205:TYR:CZ   | 2.48                    | 0.49        |
| 1:B:1530:VAL:CG1  | 1:B:1536:LYS:HB3  | 2.42                    | 0.49        |
| 1:B:1640:SER:OG   | 1:B:1672:ASP:OD2  | 2.26                    | 0.49        |
| 1:A:1217:PHE:HB3  | 1:A:1297:ARG:HH12 | 1.77                    | 0.49        |
| 1:A:2243:TYR:CE2  | 1:A:2272:LYS:HB3  | 2.47                    | 0.49        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:1899:PRO:O    | 1:A:1953:LYS:NZ   | 2.42                    | 0.49        |
| 1:B:2464:THR:OG1  | 1:B:2469:LYS:NZ   | 2.45                    | 0.49        |
| 1:A:881:ASP:OD1   | 1:A:881:ASP:N     | 2.37                    | 0.49        |
| 1:A:2228:ASN:HD22 | 1:A:2230:ILE:CD1  | 2.26                    | 0.49        |
| 1:B:981:ASN:O     | 1:B:985:THR:HG23  | 2.12                    | 0.49        |
| 1:A:1073:MET:HA   | 1:A:1471:PHE:CE1  | 2.48                    | 0.49        |
| 1:A:1118:LYS:O    | 1:A:1122:VAL:HG23 | 2.13                    | 0.49        |
| 1:B:1156:GLU:OE1  | 1:B:1165:LYS:HD3  | 2.13                    | 0.48        |
| 1:B:1497:ASN:HB2  | 1:B:1502:GLU:HG3  | 1.95                    | 0.48        |
| 1:A:1347:PHE:CE1  | 1:A:1390:ILE:HD13 | 2.47                    | 0.48        |
| 1:A:1833:LEU:HD12 | 1:A:1841:PHE:O    | 2.13                    | 0.48        |
| 1:B:1342:ASP:OD1  | 1:B:1342:ASP:N    | 2.39                    | 0.48        |
| 1:B:2420:TYR:CD2  | 1:B:2443:LEU:HD22 | 2.49                    | 0.48        |
| 1:B:2286:TYR:CD2  | 1:B:2304:TYR:CD2  | 3.01                    | 0.48        |
| 1:A:2330:THR:HA   | 1:A:2334:LYS:O    | 2.13                    | 0.48        |
| 1:B:940:THR:OG1   | 1:B:941:ASP:N     | 2.46                    | 0.48        |
| 1:B:1259:LEU:HD22 | 1:B:1260:TYR:CZ   | 2.49                    | 0.48        |
| 1:B:1885:PHE:HE1  | 1:B:1891:MET:HG3  | 1.77                    | 0.48        |
| 1:B:2055:VAL:HG22 | 1:B:2057:GLN:HG3  | 1.94                    | 0.48        |
| 1:B:968:GLN:HG2   | 1:B:1024:LEU:HD11 | 1.96                    | 0.48        |
| 1:B:1122:VAL:HG13 | 1:B:1279:LEU:HD22 | 1.95                    | 0.48        |
| 1:A:2328:TRP:CE2  | 1:A:2352:ILE:HD11 | 2.49                    | 0.48        |
| 1:B:1108:LEU:HD23 | 1:A:909:GLU:OE1   | 2.13                    | 0.48        |
| 1:B:1126:PHE:HD2  | 1:B:1252:LEU:HD22 | 1.78                    | 0.48        |
| 1:B:1926:PHE:CD1  | 1:B:1935:TYR:HD1  | 2.32                    | 0.48        |
| 1:B:1074:SER:HB3  | 1:B:1077:ILE:HD13 | 1.95                    | 0.48        |
| 1:B:2328:TRP:HD1  | 1:B:2335:LYS:HE2  | 1.77                    | 0.48        |
| 1:A:888:PHE:O     | 1:A:891:ILE:HG13  | 2.13                    | 0.48        |
| 1:A:943:ASN:ND2   | 1:A:1057:LEU:HD23 | 2.29                    | 0.48        |
| 1:A:1061:GLU:HB3  | 1:A:1065:LYS:HD2  | 1.94                    | 0.48        |
| 1:A:1380:LYS:HB2  | 2:A:2504:SO4:O1   | 2.13                    | 0.48        |
| 1:A:1744:SER:HB2  | 1:A:1767:GLY:HA2  | 1.95                    | 0.48        |
| 1:A:955:THR:O     | 1:A:958:VAL:HG12  | 2.14                    | 0.48        |
| 1:A:1403:ILE:HG22 | 1:A:1419:ILE:O    | 2.14                    | 0.48        |
| 1:A:1479:GLN:NE2  | 1:A:1498:ASP:OD1  | 2.43                    | 0.48        |
| 1:B:1369:ILE:O    | 1:B:1372:VAL:HG23 | 2.14                    | 0.48        |
| 1:B:1405:LEU:HB2  | 1:B:1417:ILE:HB   | 1.95                    | 0.48        |
| 1:A:1562:TYR:CD1  | 1:A:1612:GLY:HA3  | 2.49                    | 0.48        |
| 1:A:1840:LEU:HB3  | 1:A:1871:ALA:HB3  | 1.96                    | 0.48        |
| 1:B:1262:GLY:HA2  | 1:B:1265:TYR:CE2  | 2.49                    | 0.47        |
| 1:A:1199:ILE:CG1  | 1:A:1200:PRO:HD2  | 2.44                    | 0.47        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:1321:GLY:HA2  | 1:A:1343:ASP:HB3  | 1.96                    | 0.47        |
| 1:B:1126:PHE:CE2  | 1:B:1204:ILE:HD13 | 2.49                    | 0.47        |
| 1:B:1671:LEU:HD23 | 1:B:1671:LEU:HA   | 1.69                    | 0.47        |
| 1:B:1936:PHE:CE1  | 1:B:1942:ALA:HB2  | 2.49                    | 0.47        |
| 1:A:1517:MET:HG2  | 1:A:1522:ASN:HA   | 1.96                    | 0.47        |
| 1:B:2036:PHE:HB3  | 1:B:2076:ALA:HB3  | 1.96                    | 0.47        |
| 1:A:1242:LEU:O    | 1:A:1267:ARG:NH1  | 2.45                    | 0.47        |
| 1:A:1670:SER:HB3  | 1:A:1698:LEU:HD23 | 1.96                    | 0.47        |
| 1:B:1753:GLU:O    | 1:B:1758:LYS:NZ   | 2.39                    | 0.47        |
| 1:B:2018:TYR:HB3  | 1:B:2026:LYS:HB2  | 1.95                    | 0.47        |
| 1:B:1118:LYS:HD3  | 1:B:2234:HIS:CD2  | 2.50                    | 0.47        |
| 1:A:1788:LEU:HD22 | 1:A:1792:TYR:CD1  | 2.49                    | 0.47        |
| 1:A:1998:PHE:HB3  | 1:A:2003:ALA:O    | 2.15                    | 0.47        |
| 1:B:1433:ASP:HA   | 1:B:1462:TYR:CE2  | 2.50                    | 0.47        |
| 1:A:2225:ASN:ND2  | 1:A:2228:ASN:OD1  | 2.47                    | 0.47        |
| 1:B:1186:ILE:CD1  | 1:B:1243:ARG:HB2  | 2.45                    | 0.47        |
| 1:B:1227:ALA:HB1  | 1:B:1230:ARG:HH12 | 1.79                    | 0.47        |
| 1:B:2202:TYR:HD1  | 1:B:2229:ALA:O    | 1.96                    | 0.47        |
| 1:A:956:SER:O     | 1:A:960:THR:HG23  | 2.15                    | 0.47        |
| 1:A:1336:ASN:HA   | 1:A:1391:ASP:O    | 2.15                    | 0.47        |
| 1:B:2232:ALA:O    | 1:B:2249:GLY:HA2  | 2.15                    | 0.47        |
| 1:B:1793:ILE:HG23 | 1:B:1797:PHE:CD2  | 2.49                    | 0.47        |
| 1:A:1745:ASP:OD2  | 1:A:1764:ARG:HD3  | 2.15                    | 0.47        |
| 1:A:1824:ASP:HB3  | 1:A:1826:ASP:N    | 2.29                    | 0.47        |
| 1:A:1230:ARG:O    | 1:A:1230:ARG:HG2  | 2.14                    | 0.46        |
| 1:A:1623:CYS:SG   | 1:A:1627:LYS:HA   | 2.55                    | 0.46        |
| 1:B:1405:LEU:HD13 | 1:B:1419:ILE:HD12 | 1.97                    | 0.46        |
| 1:B:2037:GLU:HG2  | 1:B:2075:LYS:HE3  | 1.97                    | 0.46        |
| 1:A:1719:PRO:HG2  | 1:A:1721:THR:HG23 | 1.96                    | 0.46        |
| 1:A:2338:PHE:CE1  | 1:A:2345:ALA:HB2  | 2.50                    | 0.46        |
| 1:A:1433:ASP:HA   | 1:A:1462:TYR:CE2  | 2.50                    | 0.46        |
| 1:A:1952:GLU:HG2  | 1:A:1983:ILE:HG21 | 1.97                    | 0.46        |
| 1:B:1984:ILE:HD12 | 1:B:1984:ILE:O    | 2.16                    | 0.46        |
| 1:B:2287:PHE:CE1  | 1:B:2301:ALA:HB2  | 2.50                    | 0.46        |
| 1:A:1084:ILE:HG12 | 1:A:1346:ILE:HG12 | 1.98                    | 0.46        |
| 1:B:2284:PHE:HB3  | 1:B:2324:ALA:HB3  | 1.97                    | 0.46        |
| 1:A:1034:VAL:HG22 | 1:A:1539:ASP:CB   | 2.43                    | 0.46        |
| 1:B:1321:GLY:H    | 1:B:1343:ASP:HB3  | 1.81                    | 0.46        |
| 1:B:1886:ASN:ND2  | 1:B:1892:GLN:HE21 | 2.14                    | 0.46        |
| 1:A:1881:LYS:HB2  | 1:A:1883:PHE:CE1  | 2.51                    | 0.46        |
| 1:A:1988:TRP:NE1  | 1:A:1995:ARG:HG2  | 2.27                    | 0.46        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:1348:ASN:HA   | 1:B:1406:THR:O    | 2.16                    | 0.46        |
| 1:B:2459:VAL:HG11 | 1:B:2463:ARG:HG3  | 1.96                    | 0.46        |
| 1:A:1153:VAL:CG1  | 1:A:1167:GLY:HA3  | 2.45                    | 0.46        |
| 1:B:1410:ASP:OD1  | 1:B:1447:LYS:NZ   | 2.49                    | 0.46        |
| 1:B:1751:TYR:HD1  | 1:B:1760:LEU:HD12 | 1.81                    | 0.46        |
| 1:A:888:PHE:HB3   | 1:A:924:SER:CB    | 2.46                    | 0.46        |
| 1:A:2443:LEU:HD11 | 1:A:2445:LEU:HD21 | 1.98                    | 0.46        |
| 1:B:1138:LEU:HD23 | 1:B:1148:PRO:HA   | 1.98                    | 0.45        |
| 1:B:1703:THR:HB   | 1:B:1761:GLN:OE1  | 2.16                    | 0.45        |
| 1:A:1279:LEU:HA   | 1:A:1279:LEU:HD12 | 1.73                    | 0.45        |
| 1:A:1806:LEU:HD23 | 1:A:1806:LEU:HA   | 1.74                    | 0.45        |
| 1:B:1118:LYS:HD3  | 1:B:2234:HIS:NE2  | 2.31                    | 0.45        |
| 1:B:1202:LEU:CD1  | 1:B:1260:TYR:CG   | 2.98                    | 0.45        |
| 1:B:1262:GLY:HA2  | 1:B:1265:TYR:HE2  | 1.81                    | 0.45        |
| 1:B:1347:PHE:HE2  | 1:B:1403:ILE:HD11 | 1.81                    | 0.45        |
| 1:B:1697:SER:O    | 1:B:1727:ASN:ND2  | 2.49                    | 0.45        |
| 1:B:1860:LYS:HB3  | 1:B:1890:VAL:HG23 | 1.97                    | 0.45        |
| 1:B:2278:PHE:O    | 1:B:2284:PHE:HA   | 2.17                    | 0.45        |
| 1:A:1208:ILE:HG12 | 1:A:1252:LEU:HD13 | 1.97                    | 0.45        |
| 1:A:1243:ARG:HH21 | 1:A:1269:TYR:HD2  | 1.64                    | 0.45        |
| 1:A:1824:ASP:HB2  | 1:A:1828:LYS:H    | 1.81                    | 0.45        |
| 1:B:1085:VAL:HG11 | 1:B:1431:SER:HB3  | 1.99                    | 0.45        |
| 1:A:1202:LEU:HG   | 1:A:1260:TYR:CG   | 2.51                    | 0.45        |
| 1:A:2370:TRP:HE3  | 1:A:2379:TYR:HB2  | 1.81                    | 0.45        |
| 1:B:923:TYR:O     | 1:B:927:ILE:HG22  | 2.16                    | 0.45        |
| 1:B:1350:ASP:HB3  | 1:B:1365:LYS:HD3  | 1.99                    | 0.45        |
| 1:B:1863:TYR:OH   | 1:B:1866:ILE:HD11 | 2.16                    | 0.45        |
| 1:A:1151:ASP:OD1  | 1:A:1230:ARG:NH2  | 2.48                    | 0.45        |
| 1:A:1153:VAL:HG12 | 1:A:1167:GLY:HA3  | 1.98                    | 0.45        |
| 1:A:1349:ILE:HG12 | 1:A:1406:THR:O    | 2.17                    | 0.45        |
| 1:A:1944:THR:CG2  | 1:A:1958:PRO:HA   | 2.47                    | 0.45        |
| 1:A:1990:THR:OG1  | 1:A:1995:ARG:NH1  | 2.49                    | 0.45        |
| 1:B:2286:TYR:HD2  | 1:B:2304:TYR:CD2  | 2.25                    | 0.45        |
| 1:A:1883:PHE:HZ   | 1:A:1915:ILE:HD11 | 1.80                    | 0.45        |
| 1:A:1981:THR:OG1  | 1:A:1983:ILE:HG12 | 2.16                    | 0.45        |
| 1:B:1624:ASP:CB   | 1:B:1626:ASN:H    | 2.30                    | 0.45        |
| 1:B:1771:ASN:HB3  | 1:B:1774:SER:HB2  | 1.99                    | 0.45        |
| 1:B:1875:TYR:CE2  | 1:B:1899:PRO:HD2  | 2.50                    | 0.45        |
| 1:A:983:LEU:HD12  | 1:A:983:LEU:O     | 2.16                    | 0.45        |
| 1:B:1412:LYS:HB2  | 1:B:1436:TYR:CE2  | 2.51                    | 0.45        |
| 1:B:1737:TYR:CE2  | 1:B:1750:ARG:HB2  | 2.52                    | 0.45        |



|                   | A + 0             | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:1134:LYS:HG2  | 1:B:1135:TYR:CD1  | 2.52                    | 0.45        |
| 1:B:1368:LEU:HG   | 1:B:1451:LEU:CD1  | 2.47                    | 0.45        |
| 1:B:2038:TYR:HB2  | 1:B:2070:PHE:CZ   | 2.51                    | 0.45        |
| 1:A:1305:THR:HG22 | 1:A:1306:THR:N    | 2.32                    | 0.45        |
| 1:A:2317:TYR:O    | 1:A:2325:VAL:HG22 | 2.17                    | 0.45        |
| 1:A:2409:ILE:CD1  | 1:A:2433:GLY:HA2  | 2.47                    | 0.45        |
| 1:B:2200:LYS:CG   | 1:B:2230:ILE:HD11 | 2.44                    | 0.45        |
| 1:A:1353:VAL:C    | 1:A:1369:ILE:HG22 | 2.37                    | 0.45        |
| 1:A:1638:THR:HG23 | 1:A:1639:SER:N    | 2.32                    | 0.45        |
| 1:A:2423:PRO:O    | 1:A:2430:ASN:ND2  | 2.47                    | 0.45        |
| 1:B:938:ILE:HG21  | 1:B:946:LEU:HD22  | 1.99                    | 0.45        |
| 1:B:1846:ILE:CG1  | 1:B:1847:GLU:HG2  | 2.43                    | 0.45        |
| 1:A:1429:LEU:HD12 | 1:A:1430:LEU:N    | 2.32                    | 0.45        |
| 1:A:1705:TYR:O    | 1:A:1711:TYR:OH   | 2.23                    | 0.45        |
| 1:A:2070:PHE:HA   | 1:A:2076:ALA:HA   | 1.99                    | 0.45        |
| 1:A:2251:LEU:HD23 | 1:A:2252:GLN:N    | 2.31                    | 0.45        |
| 1:B:1267:ARG:O    | 1:B:1267:ARG:HG2  | 2.17                    | 0.44        |
| 1:B:1902:PHE:O    | 1:B:1941:LYS:HA   | 2.17                    | 0.44        |
| 1:A:1944:THR:HG21 | 1:A:1958:PRO:HA   | 1.99                    | 0.44        |
| 1:A:2132:PHE:CE2  | 1:A:2139:ALA:HB2  | 2.52                    | 0.44        |
| 1:B:1578:THR:O    | 1:B:1581:PHE:HB3  | 2.18                    | 0.44        |
| 1:A:1174:MET:CG   | 1:A:1195:ILE:HG22 | 2.47                    | 0.44        |
| 1:A:1291:LYS:HA   | 1:A:1318:ASP:HB2  | 1.99                    | 0.44        |
| 1:A:1340:SER:HB3  | 1:A:1343:ASP:OD2  | 2.17                    | 0.44        |
| 1:A:1574:GLY:HA2  | 1:A:1576:HIS:CD2  | 2.53                    | 0.44        |
| 1:B:1305:THR:HG23 | 1:A:1004:TYR:CD2  | 2.52                    | 0.44        |
| 1:B:1542:ILE:HD13 | 1:B:1542:ILE:HA   | 1.77                    | 0.44        |
| 1:B:1554:GLY:HA2  | 1:B:1609:THR:O    | 2.18                    | 0.44        |
| 1:B:2339:ASN:HB3  | 1:B:2342:THR:H    | 1.82                    | 0.44        |
| 1:A:1071:ILE:HG21 | 1:A:1071:ILE:HD13 | 1.72                    | 0.44        |
| 1:A:1831:LYS:HD3  | 1:A:1848:PHE:CE1  | 2.51                    | 0.44        |
| 1:B:1323:THR:HG23 | 1:B:1344:LEU:HD13 | 2.00                    | 0.44        |
| 1:B:1539:ASP:O    | 1:B:1555:LEU:HA   | 2.17                    | 0.44        |
| 1:B:1558:ASN:OD1  | 1:B:1561:VAL:HG23 | 2.17                    | 0.44        |
| 1:B:1934:TYR:CE2  | 1:B:1962:ILE:HG12 | 2.53                    | 0.44        |
| 1:A:1082:ALA:O    | 1:A:1085:VAL:HG12 | 2.18                    | 0.44        |
| 1:A:1638:THR:HG23 | 1:A:1640:SER:H    | 1.82                    | 0.44        |
| 1:B:1253:LEU:HD23 | 1:B:1253:LEU:HA   | 1.82                    | 0.44        |
| 1:A:1292:LEU:HB2  | 1:A:1318:ASP:O    | 2.18                    | 0.44        |
| 1:A:1338:ASN:HA   | 1:A:1393:SER:O    | 2.17                    | 0.44        |
| 1:B:1151:ASP:OD1  | 1:B:1230:ARG:NH2  | 2.47                    | 0.44        |



|                   | 1 J               | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:1189:PHE:N    | 1:B:1269:TYR:O    | 2.47                    | 0.44        |
| 1:B:1285:ASP:HA   | 1:B:1312:LYS:HB3  | 2.00                    | 0.44        |
| 1:B:1421:LEU:HD23 | 1:B:1421:LEU:HA   | 1.70                    | 0.44        |
| 1:B:1445:ILE:CD1  | 1:B:1479:GLN:HG2  | 2.48                    | 0.44        |
| 1:B:1659:TYR:O    | 1:B:1660:ASN:HB3  | 2.18                    | 0.44        |
| 1:A:1358:ILE:HG22 | 1:A:1360:ASN:O    | 2.17                    | 0.44        |
| 1:B:999:GLY:O     | 1:B:1003:ILE:HG12 | 2.17                    | 0.44        |
| 1:B:1585:PHE:O    | 1:B:1589:ILE:HG22 | 2.17                    | 0.44        |
| 1:B:1745:ASP:OD1  | 1:B:1766:LYS:HD2  | 2.18                    | 0.44        |
| 1:A:2074:SER:O    | 1:A:2075:LYS:HG3  | 2.17                    | 0.44        |
| 1:A:2163:VAL:HG21 | 1:A:2202:TYR:CD1  | 2.53                    | 0.44        |
| 1:A:2228:ASN:HD22 | 1:A:2230:ILE:CG1  | 2.31                    | 0.44        |
| 1:A:2430:ASN:HB2  | 1:A:2434:GLN:HG2  | 1.99                    | 0.44        |
| 1:A:934:ILE:HD13  | 1:A:1023:VAL:HG21 | 2.00                    | 0.44        |
| 1:A:1063:GLU:O    | 1:A:1067:GLY:HA2  | 2.18                    | 0.44        |
| 1:B:1220:LYS:HD2  | 1:B:1296:THR:O    | 2.18                    | 0.44        |
| 1:A:1683:ARG:HH11 | 1:A:1683:ARG:HG2  | 1.83                    | 0.44        |
| 1:A:1939:ASN:O    | 1:A:1941:LYS:HG2  | 2.18                    | 0.44        |
| 1:B:1516:PHE:CZ   | 1:B:1523:THR:HB   | 2.53                    | 0.43        |
| 1:B:2265:PHE:CE2  | 1:B:2273:MET:HB2  | 2.52                    | 0.43        |
| 1:B:2459:VAL:CG1  | 1:B:2463:ARG:HG3  | 2.48                    | 0.43        |
| 1:A:1134:LYS:HG2  | 1:A:1135:TYR:CE1  | 2.52                    | 0.43        |
| 1:A:1221:ILE:HA   | 1:A:1298:ASN:O    | 2.17                    | 0.43        |
| 1:A:1380:LYS:HD2  | 1:A:1397:ASP:OD1  | 2.17                    | 0.43        |
| 1:A:2144:THR:HB   | 1:A:2153:PHE:HE1  | 1.83                    | 0.43        |
| 1:A:2265:PHE:CE2  | 1:A:2273:MET:HB3  | 2.53                    | 0.43        |
| 1:A:2430:ASN:CB   | 1:A:2434:GLN:HE21 | 2.32                    | 0.43        |
| 1:B:1456:LYS:HB3  | 1:B:1456:LYS:HE2  | 1.79                    | 0.43        |
| 1:B:1555:LEU:HD11 | 1:B:1586:LEU:HD21 | 1.98                    | 0.43        |
| 1:B:2232:ALA:HB1  | 1:B:2236:CYS:SG   | 2.58                    | 0.43        |
| 1:A:1062:LEU:HB3  | 1:A:1068:VAL:CG2  | 2.48                    | 0.43        |
| 1:A:1575:HIS:CD2  | 1:A:1833:LEU:HD23 | 2.53                    | 0.43        |
| 1:B:1037:ILE:HA   | 1:B:1041:ILE:O    | 2.18                    | 0.43        |
| 1:B:2198:ASN:OD1  | 1:B:2198:ASN:O    | 2.36                    | 0.43        |
| 1:A:1313:LEU:HD23 | 1:A:1313:LEU:HA   | 1.69                    | 0.43        |
| 1:B:1073:MET:HG2  | 1:B:1471:PHE:CD2  | 2.53                    | 0.43        |
| 1:B:1717:LEU:HA   | 1:B:1717:LEU:HD23 | 1.72                    | 0.43        |
| 1:B:2377:LYS:HB3  | 1:B:2377:LYS:HE3  | 1.76                    | 0.43        |
| 1:A:2141:THR:HA   | 1:A:2153:PHE:HB2  | 1.99                    | 0.43        |
| 1:B:928:THR:HG22  | 1:B:990:GLN:OE1   | 2.19                    | 0.43        |
| 1:B:941:ASP:HA    | 1:B:945:ASN:O     | 2.19                    | 0.43        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:1156:GLU:HB3  | 1:B:1165:LYS:CB   | 2.49                    | 0.43        |
| 1:B:1975:TYR:CE2  | 1:B:2004:ILE:HD13 | 2.52                    | 0.43        |
| 1:A:1031:ILE:HA   | 1:A:1032:PRO:HD3  | 1.70                    | 0.43        |
| 1:A:1095:LEU:CD1  | 1:A:1362:THR:HB   | 2.47                    | 0.43        |
| 1:A:1240:PRO:HB2  | 1:A:2252:GLN:CG   | 2.45                    | 0.43        |
| 1:A:1517:MET:HE2  | 1:A:1517:MET:HB3  | 1.77                    | 0.43        |
| 1:A:1860:LYS:HA   | 1:A:1860:LYS:HD3  | 1.84                    | 0.43        |
| 1:A:1907:PRO:HG2  | 1:A:1910:THR:HG23 | 1.99                    | 0.43        |
| 1:A:2379:TYR:O    | 1:A:2388:SER:HB2  | 2.18                    | 0.43        |
| 1:B:1830:VAL:HG21 | 1:B:1834:ILE:HD13 | 2.01                    | 0.43        |
| 1:B:1833:LEU:HD12 | 1:B:1841:PHE:O    | 2.18                    | 0.43        |
| 1:B:2375:GLY:O    | 1:B:2376:LYS:HD3  | 2.19                    | 0.43        |
| 1:A:1161:ASN:HB3  | 1:A:1163:SER:OG   | 2.17                    | 0.43        |
| 1:A:1509:ILE:HD11 | 1:A:1593:LYS:O    | 2.19                    | 0.43        |
| 1:A:2104:ILE:O    | 1:A:2104:ILE:HG13 | 2.17                    | 0.43        |
| 1:A:2424:ALA:HB2  | 1:A:2432:GLU:HB2  | 2.00                    | 0.43        |
| 1:A:1239:VAL:CG1  | 1:A:1275:ALA:HB3  | 2.49                    | 0.43        |
| 1:A:1353:VAL:HG22 | 1:A:1451:LEU:HD11 | 2.00                    | 0.43        |
| 1:A:2394:ILE:HG12 | 1:A:2399:PHE:CE1  | 2.54                    | 0.43        |
| 1:B:1305:THR:CG2  | 1:A:1004:TYR:CZ   | 3.01                    | 0.43        |
| 1:A:1151:ASP:HA   | 1:A:1227:ALA:HB2  | 2.00                    | 0.43        |
| 1:A:1556:TYR:HD1  | 1:A:1611:VAL:CG2  | 2.32                    | 0.43        |
| 1:B:1080:THR:HG23 | 1:B:1344:LEU:HD11 | 1.99                    | 0.43        |
| 1:B:2073:ASN:O    | 1:B:2075:LYS:HG3  | 2.19                    | 0.43        |
| 1:B:2255:TYR:CD2  | 1:B:2281:PRO:HD2  | 2.53                    | 0.43        |
| 1:A:1413:ILE:HD12 | 1:A:1444:THR:HG21 | 2.00                    | 0.43        |
| 1:A:1973:ASN:HB3  | 1:A:2004:ILE:HD12 | 2.01                    | 0.43        |
| 1:A:2372:THR:O    | 1:A:2372:THR:OG1  | 2.35                    | 0.43        |
| 1:A:1031:ILE:HD13 | 1:A:1031:ILE:HG21 | 1.73                    | 0.43        |
| 1:A:1085:VAL:HG23 | 1:A:1414:SER:CB   | 2.49                    | 0.43        |
| 1:B:942:VAL:HG22  | 1:B:947:LEU:CD1   | 2.49                    | 0.42        |
| 1:B:1013:ILE:O    | 1:B:1017:VAL:HG22 | 2.19                    | 0.42        |
| 1:B:1778:MET:HG2  | 1:B:1790:LEU:HD21 | 2.01                    | 0.42        |
| 1:B:2204:PHE:CE1  | 1:B:2210:ALA:HB2  | 2.54                    | 0.42        |
| 1:B:2284:PHE:HB2  | 1:B:2324:ALA:HB3  | 2.01                    | 0.42        |
| 1:B:2351:THR:HB   | 1:B:2356:LYS:HG2  | 2.00                    | 0.42        |
| 1:A:2464:THR:HA   | 1:A:2469:LYS:HA   | 2.01                    | 0.42        |
| 1:B:2129:LYS:HB3  | 1:B:2159:MET:HE2  | 2.00                    | 0.42        |
| 1:A:939:ILE:HD12  | 1:A:1041:ILE:HG23 | 2.01                    | 0.42        |
| 1:A:1174:MET:HG2  | 1:A:1195:ILE:HG22 | 2.00                    | 0.42        |
| 1:A:1299:PHE:O    | 1:A:1326:LEU:HA   | 2.19                    | 0.42        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:1328:LEU:HG   | 1:A:1388:GLN:HG3  | 2.00                    | 0.42        |
| 1:A:1796:ASN:OD1  | 1:A:1796:ASN:N    | 2.51                    | 0.42        |
| 1:A:2296:ASN:ND2  | 1:A:2302:ILE:HG21 | 2.34                    | 0.42        |
| 1:B:1279:LEU:HD12 | 1:B:1279:LEU:HA   | 1.82                    | 0.42        |
| 1:B:1337:ILE:CD1  | 1:B:1347:PHE:HZ   | 2.32                    | 0.42        |
| 1:B:1380:LYS:HB2  | 2:B:2503:SO4:O4   | 2.19                    | 0.42        |
| 1:B:1480:LYS:HG2  | 1:B:1497:ASN:OD1  | 2.18                    | 0.42        |
| 1:B:1842:TYR:HB2  | 1:B:1864:PHE:CZ   | 2.54                    | 0.42        |
| 1:B:2027:ILE:HD11 | 1:B:2050:GLU:HG2  | 2.00                    | 0.42        |
| 1:B:2039:PHE:CE1  | 1:B:2053:ALA:HB2  | 2.54                    | 0.42        |
| 1:A:977:LYS:HA    | 1:A:981:ASN:HD22  | 1.84                    | 0.42        |
| 1:B:1048:LYS:HE3  | 1:B:1052:ASP:OD2  | 2.20                    | 0.42        |
| 1:B:1166:LEU:HD23 | 1:B:1205:TYR:CD2  | 2.54                    | 0.42        |
| 1:A:1904:TYR:HB2  | 1:A:1936:PHE:CZ   | 2.54                    | 0.42        |
| 1:A:2370:TRP:CE3  | 1:A:2379:TYR:HB2  | 2.54                    | 0.42        |
| 1:A:969:SER:HA    | 1:A:972:ASP:HB2   | 2.02                    | 0.42        |
| 1:A:1153:VAL:HG22 | 1:A:1230:ARG:HH11 | 1.84                    | 0.42        |
| 1:A:2310:THR:HA   | 1:A:2314:LYS:O    | 2.19                    | 0.42        |
| 1:A:1245:LEU:HD12 | 1:A:1245:LEU:HA   | 1.80                    | 0.42        |
| 1:A:1451:LEU:HD12 | 1:A:1451:LEU:HA   | 1.82                    | 0.42        |
| 1:A:2192:ASN:N    | 1:A:2204:PHE:O    | 2.52                    | 0.42        |
| 1:B:983:LEU:O     | 1:B:987:VAL:HG23  | 2.19                    | 0.42        |
| 1:B:1303:THR:HG23 | 1:B:1331:TYR:CD2  | 2.54                    | 0.42        |
| 1:B:1469:LYS:HB3  | 1:B:1471:PHE:CZ   | 2.55                    | 0.42        |
| 1:B:2176:ALA:HA   | 1:B:2182:ASN:O    | 2.20                    | 0.42        |
| 1:A:1586:LEU:HD23 | 1:A:1586:LEU:HA   | 1.91                    | 0.42        |
| 1:A:1893:LEU:CD2  | 1:A:1917:GLY:HA2  | 2.50                    | 0.42        |
| 1:A:2304:TYR:CZ   | 1:A:2307:LYS:HD2  | 2.55                    | 0.42        |
| 1:B:1196:SER:HB3  | 1:B:1199:ILE:HG22 | 2.02                    | 0.42        |
| 1:B:2224:PHE:N    | 1:B:2224:PHE:CD1  | 2.87                    | 0.42        |
| 1:A:1703:THR:O    | 1:A:1750:ARG:NH1  | 2.53                    | 0.42        |
| 1:A:1765:ILE:HG22 | 1:A:1768:ILE:HB   | 2.01                    | 0.42        |
| 1:B:2247:TYR:CD1  | 1:B:2247:TYR:C    | 2.92                    | 0.42        |
| 1:A:1549:GLN:HG2  | 1:A:1601:ASN:OD1  | 2.20                    | 0.42        |
| 1:A:1566:LEU:HD23 | 1:A:1566:LEU:HA   | 1.82                    | 0.42        |
| 1:A:1882:HIS:O    | 1:A:1918:GLN:HA   | 2.19                    | 0.42        |
| 1:A:2228:ASN:OD1  | 1:A:2228:ASN:N    | 2.52                    | 0.42        |
| 1:B:1087:ILE:HD12 | 1:B:1346:ILE:HD12 | 2.02                    | 0.42        |
| 1:B:1171:ILE:HD13 | 1:B:1264:PHE:CE1  | 2.55                    | 0.42        |
| 1:B:2056:TYR:H    | 1:B:2074:SER:CB   | 2.33                    | 0.42        |
| 1:A:2107:LYS:HB3  | 1:A:2138:ILE:CG2  | 2.49                    | 0.42        |



|                   | A + 0             | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:1027:ILE:HG13 | 1:B:1632:TYR:CD2  | 2.55                    | 0.41        |
| 1:A:1071:ILE:CD1  | 1:A:1073:MET:HE3  | 2.45                    | 0.41        |
| 1:A:1301:MET:HG3  | 1:A:1302:PRO:HD2  | 2.01                    | 0.41        |
| 1:A:1576:HIS:CD2  | 1:A:1683:ARG:HD3  | 2.54                    | 0.41        |
| 1:A:2422:ALA:CB   | 1:A:2436:ILE:HD13 | 2.49                    | 0.41        |
| 1:B:1071:ILE:HG21 | 1:B:1071:ILE:HD13 | 1.76                    | 0.41        |
| 1:B:2070:PHE:HD1  | 1:B:2075:LYS:C    | 2.23                    | 0.41        |
| 1:A:1028:THR:O    | 1:A:1031:ILE:HG12 | 2.19                    | 0.41        |
| 1:A:1111:ASN:O    | 1:A:1111:ASN:ND2  | 2.54                    | 0.41        |
| 1:A:1239:VAL:HA   | 1:A:1240:PRO:HD2  | 1.89                    | 0.41        |
| 1:A:1778:MET:HG3  | 1:A:1779:SER:N    | 2.36                    | 0.41        |
| 1:A:1793:ILE:O    | 1:A:1797:PHE:HB2  | 2.20                    | 0.41        |
| 1:A:1978:ASN:ND2  | 1:A:1981:THR:OG1  | 2.53                    | 0.41        |
| 1:A:2026:LYS:NZ   | 2:A:2502:SO4:S    | 2.94                    | 0.41        |
| 1:A:2248:ASP:OD1  | 1:A:2248:ASP:N    | 2.50                    | 0.41        |
| 1:B:934:ILE:HD13  | 1:B:1023:VAL:HG21 | 2.02                    | 0.41        |
| 1:B:1706:TYR:HA   | 1:B:1711:TYR:OH   | 2.20                    | 0.41        |
| 1:A:2228:ASN:HD22 | 1:A:2230:ILE:HG13 | 1.86                    | 0.41        |
| 1:B:1234:TRP:CD1  | 1:B:1234:TRP:N    | 2.89                    | 0.41        |
| 1:B:1412:LYS:HB2  | 1:B:1436:TYR:CD2  | 2.55                    | 0.41        |
| 1:B:2246:SER:HB3  | 1:B:2252:GLN:NE2  | 2.32                    | 0.41        |
| 1:A:901:ARG:HB2   | 1:A:912:TYR:CD2   | 2.55                    | 0.41        |
| 1:A:935:LYS:HD2   | 1:A:994:GLN:HG3   | 2.02                    | 0.41        |
| 1:A:1378:ILE:HG22 | 1:A:1424:LYS:HA   | 2.02                    | 0.41        |
| 1:A:1394:GLY:O    | 1:A:1396:ILE:N    | 2.53                    | 0.41        |
| 1:A:1683:ARG:NH1  | 1:A:1683:ARG:HG2  | 2.36                    | 0.41        |
| 1:B:2002:THR:OG1  | 1:B:2004:ILE:HG12 | 2.20                    | 0.41        |
| 1:B:2335:LYS:HB3  | 1:B:2366:ALA:HB3  | 2.03                    | 0.41        |
| 1:A:942:VAL:HG23  | 1:A:942:VAL:O     | 2.21                    | 0.41        |
| 1:A:1751:TYR:CD1  | 1:A:1760:LEU:HD12 | 2.56                    | 0.41        |
| 1:B:1430:LEU:HG   | 1:B:1458:ILE:HG21 | 2.03                    | 0.41        |
| 1:A:1051:LEU:HD21 | 1:A:1070:ALA:HB1  | 2.02                    | 0.41        |
| 1:A:1793:ILE:HG23 | 1:A:1797:PHE:CD1  | 2.56                    | 0.41        |
| 1:B:1854:TRP:HE1  | 1:B:1878:ILE:HG21 | 1.85                    | 0.41        |
| 1:B:2254:GLY:O    | 1:B:2264:TYR:HA   | 2.21                    | 0.41        |
| 1:A:1721:THR:OG1  | 1:A:1722:PHE:N    | 2.53                    | 0.41        |
| 1:A:2132:PHE:CD2  | 1:A:2139:ALA:HB2  | 2.56                    | 0.41        |
| 1:B:1828:LYS:HE2  | 1:B:1828:LYS:HB2  | 1.73                    | 0.41        |
| 1:B:2264:TYR:CE1  | 1:B:2266:ASP:HA   | 2.55                    | 0.41        |
| 1:A:1132:SER:CB   | 1:A:1210:ILE:HD12 | 2.51                    | 0.41        |
| 1:A:1173:ALA:HB3  | 1:A:1199:ILE:HG23 | 2.03                    | 0.41        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:1815:ILE:HG13 | 1:A:1820:THR:HG22 | 2.02                    | 0.41        |
| 1:A:2359:PHE:HA   | 1:A:2365:GLU:O    | 2.21                    | 0.41        |
| 1:B:970:LEU:O     | 1:B:984:SER:HB2   | 2.21                    | 0.41        |
| 1:B:1597:PHE:CD1  | 1:B:1597:PHE:N    | 2.89                    | 0.41        |
| 1:B:1701:ILE:HB   | 1:B:1730:LEU:HD23 | 2.03                    | 0.41        |
| 1:B:2174:ALA:HB1  | 1:B:2175:PRO:HD2  | 2.03                    | 0.41        |
| 1:B:2207:ASP:OD1  | 1:B:2207:ASP:N    | 2.54                    | 0.41        |
| 1:B:2422:ALA:CB   | 1:B:2436:ILE:HD13 | 2.50                    | 0.41        |
| 1:A:905:LYS:HB2   | 1:A:905:LYS:HE2   | 1.81                    | 0.41        |
| 1:A:1738:LYS:HD3  | 1:A:1799:SER:O    | 2.20                    | 0.41        |
| 1:A:1810:HIS:CG   | 1:A:1811:LEU:H    | 2.39                    | 0.41        |
| 1:B:864:LEU:HD13  | 1:B:983:LEU:HD21  | 2.03                    | 0.41        |
| 1:B:1153:VAL:HG13 | 1:B:1227:ALA:O    | 2.20                    | 0.41        |
| 1:B:2107:LYS:CB   | 1:B:2138:ILE:HD11 | 2.51                    | 0.41        |
| 1:B:2401:PHE:CD1  | 1:B:2407:MET:HA   | 2.55                    | 0.41        |
| 1:A:1403:ILE:HD13 | 1:A:1403:ILE:HG21 | 1.66                    | 0.41        |
| 1:A:1589:ILE:HG21 | 1:A:1589:ILE:HD13 | 1.72                    | 0.41        |
| 1:A:1815:ILE:HA   | 1:A:1820:THR:HA   | 2.03                    | 0.41        |
| 1:A:2235:LEU:HD23 | 1:A:2235:LEU:HA   | 1.73                    | 0.41        |
| 1:B:1769:LEU:HA   | 1:B:1769:LEU:HD23 | 1.78                    | 0.40        |
| 1:B:1792:TYR:CD1  | 1:B:1792:TYR:C    | 2.94                    | 0.40        |
| 1:B:2143:TYR:OH   | 1:B:2150:HIS:ND1  | 2.41                    | 0.40        |
| 1:A:1609:THR:HG23 | 1:A:1622:ILE:HG13 | 2.04                    | 0.40        |
| 1:A:2295:ASN:ND2  | 1:A:2295:ASN:O    | 2.53                    | 0.40        |
| 1:B:992:TYR:CD2   | 1:B:1016:ALA:HA   | 2.56                    | 0.40        |
| 1:B:1174:MET:N    | 1:B:1263:LYS:O    | 2.52                    | 0.40        |
| 1:B:1199:ILE:HG13 | 1:B:1200:PRO:HD2  | 2.03                    | 0.40        |
| 1:A:1195:ILE:HG21 | 1:A:1195:ILE:HD13 | 1.87                    | 0.40        |
| 1:A:2455:ASP:N    | 1:A:2455:ASP:OD1  | 2.53                    | 0.40        |
| 1:B:1304:ILE:HD12 | 1:B:1333:ILE:HD11 | 2.03                    | 0.40        |
| 1:B:1482:ILE:HD12 | 1:B:1482:ILE:HG23 | 1.75                    | 0.40        |
| 1:B:1637:LYS:HD3  | 1:B:1658:ILE:HD12 | 2.03                    | 0.40        |
| 1:B:2030:PHE:HD2  | 1:B:2039:PHE:HD2  | 1.70                    | 0.40        |
| 1:B:2063:LEU:HD23 | 1:B:2063:LEU:HA   | 1.77                    | 0.40        |
| 1:A:1453:LEU:HD23 | 1:A:1453:LEU:HA   | 1.87                    | 0.40        |
| 1:A:1748:LEU:HD23 | 1:A:1748:LEU:HA   | 1.91                    | 0.40        |
| 1:A:2409:ILE:HD11 | 1:A:2433:GLY:HA2  | 2.03                    | 0.40        |
| 1:B:927:ILE:HG21  | 1:B:927:ILE:HD13  | 1.87                    | 0.40        |
| 1:B:1680:GLY:O    | 1:B:1683:ARG:HD2  | 2.21                    | 0.40        |
| 1:B:1781:ASP:CB   | 1:B:1787:LYS:H    | 2.34                    | 0.40        |
| 1:B:2401:PHE:CE1  | 1:B:2407:MET:HG3  | 2.57                    | 0.40        |



| 7 | U1 | lΖ |
|---|----|----|
|---|----|----|

| contraca from proces | ao pago           |                         |             |
|----------------------|-------------------|-------------------------|-------------|
| Atom 1               | Atom 2            | Interatomic             | Clash       |
| Atom-1               | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:1750:ARG:O       | 1:A:1750:ARG:HG2  | 2.22                    | 0.40        |
| 1:A:1825:GLU:H       | 1:A:1825:GLU:HG3  | 1.52                    | 0.40        |
| 1:A:1924:SER:OG      | 2:A:2509:SO4:O1   | 2.34                    | 0.40        |
| 1:B:2230:ILE:HG21    | 1:B:2230:ILE:HD13 | 1.77                    | 0.40        |
| 1:A:971:ILE:O        | 1:A:974:SER:OG    | 2.33                    | 0.40        |
| 1:A:1038:LEU:HD23    | 1:A:1518:LYS:HB3  | 2.02                    | 0.40        |
| 1:A:1344:LEU:HD11    | 1:A:1404:PHE:HE2  | 1.87                    | 0.40        |
| 1:A:2409:ILE:HA      | 1:A:2409:ILE:HD13 | 1.77                    | 0.40        |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | А     | 1616/1640~(98%) | 1492 (92%) | 124 (8%) | 0        | 100   | 100    |
| 1   | В     | 1606/1640~(98%) | 1483 (92%) | 123 (8%) | 0        | 100   | 100    |
| All | All   | 3222/3280~(98%) | 2975 (92%) | 247 (8%) | 0        | 100   | 100    |

There are no Ramachandran outliers to report.

### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | ain Analysed Rotameric Outliers |            | Percentiles |       |
|-----|-------|---------------------------------|------------|-------------|-------|
| 1   | А     | 1379/1455~(95%)                 | 1362~(99%) | 17 (1%)     | 71 87 |



| Continucu from previous puge |       |                 |            |          |        |        |   |
|------------------------------|-------|-----------------|------------|----------|--------|--------|---|
| Mol                          | Chain | Analysed        | Rotameric  | Outliers | Percen | ntiles | ; |
| 1                            | В     | 1345/1455~(92%) | 1320 (98%) | 25~(2%)  | 57     | 80     |   |
| All                          | All   | 2724/2910~(94%) | 2682~(98%) | 42 (2%)  | 65     | 85     |   |

All (42) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | В     | 874  | LEU  |
| 1   | В     | 948  | ASP  |
| 1   | В     | 981  | ASN  |
| 1   | В     | 1234 | TRP  |
| 1   | В     | 1401 | ARG  |
| 1   | В     | 1410 | ASP  |
| 1   | В     | 1436 | TYR  |
| 1   | В     | 1573 | ASP  |
| 1   | В     | 1581 | PHE  |
| 1   | В     | 1597 | PHE  |
| 1   | В     | 1695 | TYR  |
| 1   | В     | 1718 | ASN  |
| 1   | В     | 1760 | LEU  |
| 1   | В     | 1838 | ASN  |
| 1   | В     | 1860 | LYS  |
| 1   | В     | 1922 | TYR  |
| 1   | В     | 1926 | PHE  |
| 1   | В     | 1939 | ASN  |
| 1   | В     | 1995 | ARG  |
| 1   | В     | 2018 | TYR  |
| 1   | В     | 2045 | TYR  |
| 1   | В     | 2126 | ASP  |
| 1   | В     | 2129 | LYS  |
| 1   | В     | 2304 | TYR  |
| 1   | В     | 2335 | LYS  |
| 1   | А     | 980  | LEU  |
| 1   | А     | 1230 | ARG  |
| 1   | А     | 1234 | TRP  |
| 1   | А     | 1295 | ASP  |
| 1   | А     | 1410 | ASP  |
| 1   | А     | 1486 | LYS  |
| 1   | А     | 1683 | ARG  |
| 1   | А     | 1808 | ARG  |
| 1   | А     | 1838 | ASN  |
| 1   | А     | 1951 | ASN  |
| 1   | А     | 1988 | TRP  |



Continued from previous page...

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 2126           | ASP  |
| 1   | А     | 2149           | LYS  |
| 1   | А     | 2215           | ARG  |
| 1   | А     | 2357           | TYR  |
| 1   | А     | 2370           | TRP  |
| 1   | А     | 2427           | ASP  |

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such side chains are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | В     | 990  | GLN  |
| 1   | В     | 1892 | GLN  |
| 1   | В     | 1939 | ASN  |
| 1   | А     | 943  | ASN  |
| 1   | А     | 951  | GLN  |
| 1   | А     | 981  | ASN  |
| 1   | А     | 1484 | HIS  |
| 1   | А     | 1978 | ASN  |
| 1   | А     | 2291 | ASN  |
| 1   | А     | 2434 | GLN  |

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

36 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and



the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Trme |        | Chain | Res  | Link | Bond lengths |          |        | Bond angles |          |   |
|----------|--------|-------|------|------|--------------|----------|--------|-------------|----------|---|
|          | Counts |       |      |      | RMSZ         | # Z  > 2 | Counts | RMSZ        | # Z  > 2 |   |
| 2        | SO4    | В     | 2510 | -    | 4,4,4        | 0.20     | 0      | $6,\!6,\!6$ | 0.21     | 0 |
| 2        | SO4    | В     | 2520 | -    | 4,4,4        | 0.19     | 0      | $6,\!6,\!6$ | 0.52     | 0 |
| 2        | SO4    | А     | 2506 | -    | 4,4,4        | 0.22     | 0      | $6,\!6,\!6$ | 0.40     | 0 |
| 2        | SO4    | А     | 2501 | -    | 4,4,4        | 0.29     | 0      | $6,\!6,\!6$ | 0.30     | 0 |
| 2        | SO4    | В     | 2508 | -    | 4,4,4        | 0.20     | 0      | $6,\!6,\!6$ | 0.31     | 0 |
| 2        | SO4    | А     | 2510 | -    | 4,4,4        | 0.19     | 0      | $6,\!6,\!6$ | 0.17     | 0 |
| 2        | SO4    | В     | 2518 | -    | 4,4,4        | 0.26     | 0      | $6,\!6,\!6$ | 0.47     | 0 |
| 2        | SO4    | В     | 2503 | -    | 4,4,4        | 0.23     | 0      | $6,\!6,\!6$ | 0.46     | 0 |
| 2        | SO4    | В     | 2513 | -    | 4,4,4        | 0.14     | 0      | $6,\!6,\!6$ | 0.26     | 0 |
| 2        | SO4    | В     | 2517 | -    | 4,4,4        | 0.23     | 0      | $6,\!6,\!6$ | 0.46     | 0 |
| 2        | SO4    | А     | 2504 | -    | 4,4,4        | 0.17     | 0      | $6,\!6,\!6$ | 0.20     | 0 |
| 2        | SO4    | А     | 2514 | -    | 4,4,4        | 0.19     | 0      | $6,\!6,\!6$ | 0.16     | 0 |
| 2        | SO4    | В     | 2507 | -    | 4,4,4        | 0.21     | 0      | $6,\!6,\!6$ | 0.17     | 0 |
| 2        | SO4    | А     | 2512 | -    | 4,4,4        | 0.21     | 0      | $6,\!6,\!6$ | 0.26     | 0 |
| 2        | SO4    | В     | 2505 | -    | 4,4,4        | 0.17     | 0      | $6,\!6,\!6$ | 0.19     | 0 |
| 2        | SO4    | А     | 2513 | -    | 4,4,4        | 0.21     | 0      | $6,\!6,\!6$ | 0.37     | 0 |
| 2        | SO4    | В     | 2515 | -    | 4,4,4        | 0.20     | 0      | $6,\!6,\!6$ | 0.40     | 0 |
| 2        | SO4    | А     | 2515 | -    | 4,4,4        | 0.08     | 0      | $6,\!6,\!6$ | 0.34     | 0 |
| 2        | SO4    | В     | 2501 | -    | 4,4,4        | 0.21     | 0      | $6,\!6,\!6$ | 0.29     | 0 |
| 2        | SO4    | В     | 2509 | -    | 4,4,4        | 0.18     | 0      | $6,\!6,\!6$ | 0.21     | 0 |
| 2        | SO4    | В     | 2512 | -    | 4,4,4        | 0.10     | 0      | $6,\!6,\!6$ | 0.46     | 0 |
| 2        | SO4    | В     | 2506 | -    | 4,4,4        | 0.15     | 0      | $6,\!6,\!6$ | 0.18     | 0 |
| 2        | SO4    | В     | 2511 | -    | 4,4,4        | 0.24     | 0      | $6,\!6,\!6$ | 0.32     | 0 |
| 2        | SO4    | А     | 2508 | -    | 4,4,4        | 0.21     | 0      | $6,\!6,\!6$ | 0.27     | 0 |
| 2        | SO4    | А     | 2511 | -    | 4,4,4        | 0.23     | 0      | $6,\!6,\!6$ | 0.34     | 0 |
| 2        | SO4    | А     | 2509 | -    | 4,4,4        | 0.24     | 0      | $6,\!6,\!6$ | 0.49     | 0 |
| 2        | SO4    | В     | 2502 | -    | 4,4,4        | 0.24     | 0      | $6,\!6,\!6$ | 0.31     | 0 |
| 2        | SO4    | В     | 2516 | -    | 4,4,4        | 0.17     | 0      | $6,\!6,\!6$ | 0.19     | 0 |
| 2        | SO4    | В     | 2514 | -    | 4,4,4        | 0.17     | 0      | $6,\!6,\!6$ | 0.23     | 0 |
| 2        | SO4    | А     | 2503 | -    | 4,4,4        | 0.26     | 0      | $6,\!6,\!6$ | 0.22     | 0 |
| 2        | SO4    | А     | 2505 | -    | 4,4,4        | 0.26     | 0      | $6,\!6,\!6$ | 0.50     | 0 |
| 2        | SO4    | A     | 2502 | -    | 4,4,4        | 0.21     | 0      | $6,\!6,\!6$ | 0.55     | 0 |
| 2        | SO4    | В     | 2504 | -    | 4,4,4        | 0.14     | 0      | $6,\!6,\!6$ | 0.32     | 0 |
| 2        | SO4    | А     | 2507 | -    | 4,4,4        | 0.24     | 0      | $6,\!6,\!6$ | 0.14     | 0 |
| 2        | SO4    | A     | 2516 | -    | 4,4,4        | 0.19     | 0      | 6,6,6       | 0.28     | 0 |
| 2        | SO4    | В     | 2519 | -    | 4,4,4        | 0.23     | 0      | $6,\!6,\!6$ | 0.22     | 0 |



There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

8 monomers are involved in 10 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 2   | А     | 2501 | SO4  | 1       | 0            |
| 2   | В     | 2503 | SO4  | 1       | 0            |
| 2   | А     | 2504 | SO4  | 1       | 0            |
| 2   | А     | 2512 | SO4  | 1       | 0            |
| 2   | В     | 2506 | SO4  | 1       | 0            |
| 2   | В     | 2511 | SO4  | 1       | 0            |
| 2   | А     | 2509 | SO4  | 1       | 0            |
| 2   | А     | 2502 | SO4  | 3       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.












































































































 $7\mathrm{U1Z}$ 













































## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSRZ>2 |    | $OWAB(Å^2)$ | Q < 0.9         |         |
|-----|-------|-----------------|-----------|---------|----|-------------|-----------------|---------|
| 1   | А     | 1620/1640~(98%) | 0.12      | 1 (0%)  | 95 | 95          | 28, 48, 77, 125 | 3~(0%)  |
| 1   | В     | 1612/1640~(98%) | 0.14      | 3 (0%)  | 95 | 94          | 26, 52, 86, 148 | 10 (0%) |
| All | All   | 3232/3280~(98%) | 0.13      | 4 (0%)  | 95 | 95          | 26, 50, 84, 148 | 13 (0%) |

All (4) RSRZ outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | В     | 1878           | ILE  | 3.0  |
| 1   | А     | 1755           | SER  | 2.5  |
| 1   | В     | 1720           | ASN  | 2.3  |
| 1   | В     | 2368           | THR  | 2.0  |

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|------|-------|------|------|------------------------------------------|-------|
| 2   | SO4  | В     | 2504 | 5/5   | 0.79 | 0.19 | 90,96,113,119                            | 0     |

Continued on next page...



| Mol | Type | Chain | Res  | Atoms | RSCC | RSR  | $B-factors(A^2)$ | Q<0.9 |
|-----|------|-------|------|-------|------|------|------------------|-------|
| 2   | SO4  | В     | 2519 | 5/5   | 0.81 | 0.23 | 94,95,104,118    | 0     |
| 2   | SO4  | В     | 2510 | 5/5   | 0.82 | 0.19 | 81,90,114,123    | 0     |
| 2   | SO4  | А     | 2506 | 5/5   | 0.82 | 0.22 | 91,94,98,115     | 0     |
| 2   | SO4  | В     | 2518 | 5/5   | 0.85 | 0.17 | 73,73,100,102    | 0     |
| 2   | SO4  | А     | 2507 | 5/5   | 0.85 | 0.13 | 87,88,101,119    | 0     |
| 2   | SO4  | А     | 2516 | 5/5   | 0.86 | 0.21 | 90,91,95,106     | 0     |
| 2   | SO4  | В     | 2517 | 5/5   | 0.87 | 0.16 | 81,91,103,117    | 0     |
| 2   | SO4  | А     | 2508 | 5/5   | 0.88 | 0.14 | 101,101,116,126  | 0     |
| 2   | SO4  | В     | 2501 | 5/5   | 0.89 | 0.18 | 78,85,90,100     | 0     |
| 2   | SO4  | А     | 2501 | 5/5   | 0.89 | 0.13 | 80,87,98,111     | 0     |
| 2   | SO4  | В     | 2520 | 5/5   | 0.90 | 0.18 | 62,65,78,83      | 0     |
| 2   | SO4  | В     | 2503 | 5/5   | 0.90 | 0.18 | 77,79,95,104     | 0     |
| 2   | SO4  | А     | 2511 | 5/5   | 0.91 | 0.18 | 61,82,98,99      | 0     |
| 2   | SO4  | А     | 2513 | 5/5   | 0.91 | 0.16 | 63,77,96,98      | 0     |
| 2   | SO4  | В     | 2512 | 5/5   | 0.91 | 0.16 | 75,76,88,102     | 0     |
| 2   | SO4  | В     | 2507 | 5/5   | 0.92 | 0.14 | 77,81,90,102     | 0     |
| 2   | SO4  | В     | 2515 | 5/5   | 0.92 | 0.14 | 75,76,86,95      | 0     |
| 2   | SO4  | В     | 2508 | 5/5   | 0.92 | 0.25 | 83,93,102,106    | 0     |
| 2   | SO4  | А     | 2505 | 5/5   | 0.92 | 0.23 | 59,70,94,94      | 0     |
| 2   | SO4  | В     | 2502 | 5/5   | 0.92 | 0.16 | 81,91,96,103     | 0     |
| 2   | SO4  | А     | 2514 | 5/5   | 0.93 | 0.22 | 91,97,102,108    | 0     |
| 2   | SO4  | А     | 2504 | 5/5   | 0.93 | 0.17 | 70,70,96,100     | 0     |
| 2   | SO4  | В     | 2514 | 5/5   | 0.94 | 0.22 | 101,108,114,117  | 0     |
| 2   | SO4  | А     | 2510 | 5/5   | 0.94 | 0.17 | 66,67,74,81      | 0     |
| 2   | SO4  | А     | 2502 | 5/5   | 0.94 | 0.12 | 78,81,88,95      | 0     |
| 2   | SO4  | В     | 2505 | 5/5   | 0.95 | 0.14 | 79,88,92,102     | 0     |
| 2   | SO4  | В     | 2511 | 5/5   | 0.95 | 0.20 | 61,61,71,78      | 0     |
| 2   | SO4  | А     | 2515 | 5/5   | 0.95 | 0.25 | 77,82,93,97      | 0     |
| 2   | SO4  | В     | 2509 | 5/5   | 0.95 | 0.13 | 84,90,103,108    | 0     |
| 2   | SO4  | А     | 2509 | 5/5   | 0.96 | 0.18 | 57,64,79,89      | 0     |
| 2   | SO4  | А     | 2503 | 5/5   | 0.96 | 0.14 | 72,74,88,90      | 0     |
| 2   | SO4  | В     | 2516 | 5/5   | 0.96 | 0.18 | 74,76,80,89      | 0     |
| 2   | SO4  | А     | 2512 | 5/5   | 0.96 | 0.13 | 65,67,80,90      | 0     |
| 2   | SO4  | В     | 2506 | 5/5   | 0.97 | 0.20 | 84,84,95,100     | 0     |
| 2   | SO4  | В     | 2513 | 5/5   | 0.98 | 0.12 | 60,66,71,84      | 0     |

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.
















































































































































## 6.5 Other polymers (i)

There are no such residues in this entry.

