

Full wwPDB X-ray Structure Validation Report (i)

Aug 7, 2020 – 06:04 PM BST

PDB ID	:	6U3O
Title	:	JR51 DQ2-p.aeru-alpha2a complex
Authors	:	Petersen, J.; Rossjohn, J.
Deposited on	:	2019-08-22
Resolution	:	2.74 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.13.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.13.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.74 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	1271 (2.76-2.72)
Clashscore	141614	1322(2.76-2.72)
Ramachandran outliers	138981	1297 (2.76-2.72)
Sidechain outliers	138945	1298 (2.76-2.72)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	202	81%	14% • •
1	G	202	81%	15% •
2	В	244	89%	10% ••
2	Н	244	90%	9% •
3	С	191	85%	10% 5%
3	Е	191	82%	12% • 5%
4	D	206	73% 14%	• 12%

Mol	Chain	Length	\mathbf{Q}	uality of chain	
4	F	206	69%		18% • 12%
5	Ι	20	45%	20%	35%
5	J	20	55%	35%	
6	K	2		100%	
6	L	2		100%	

6U3O

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 12888 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	C	104	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	G	194	1480	924	254	292	10	0	0	0
1	Δ	10.4	Total	С	Ν	Ο	S	0	0	0
	А	194	1490	931	254	295	10	0	0	0

• Molecule 1 is a protein called T-CELL RECEPTOR, JR5.1 alpha.

• Molecule 2 is a protein called T-CELL RECEPTOR, JR5.1 beta.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	п	242	Total	С	Ν	Ο	S	0	0	0
	11		1877	1182	328	362	5	0	0	0
0	р	242	Total	С	Ν	0	S	0	0	0
			1877	1182	328	362	5		U	

• Molecule 3 is a protein called MHC class II HLA-DQ-alpha chain.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	C	191	Total	С	Ν	Ο	S	0	0	0
J		181	1445	931	236	276	2	0	0	0
2	Б	191	Total	С	Ν	Ο	S	0	0	0
3		101	1445	931	236	276	2		0	U

There are 18 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	44	SER	CYS	$\operatorname{conflict}$	UNP 019705
С	182	THR	-	expression tag	UNP 019705
С	183	SER	-	expression tag	UNP 019705
С	184	GLY	-	expression tag	UNP 019705
С	185	ASP	-	expression tag	UNP 019705
С	186	ASP	-	expression tag	UNP 019705
С	187	ASP	-	expression tag	UNP 019705
Ċ	188	ASP	_	expression tag	UNP 019705

6U3O

Chain	Residue	Modelled	Actual	Comment	Reference
С	189	LYS	-	expression tag	UNP 019705
Е	44	SER	CYS	$\operatorname{conflict}$	UNP 019705
Е	182	THR	-	expression tag	UNP 019705
Е	183	SER	-	expression tag	UNP 019705
E	184	GLY	-	expression tag	UNP 019705
Е	185	ASP	-	expression tag	UNP 019705
Е	186	ASP	-	expression tag	UNP 019705
E	187	ASP	-	expression tag	UNP 019705
Ē	188	ASP	-	expression tag	UNP 019705
Е	189	LYS	-	expression tag	UNP 019705

• Molecule 4 is a protein called MHC class II HLA-DQ-beta-1.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	л	191	Total	С	Ν	Ο	\mathbf{S}	0	0	0
4		181	1480	935	264	274	7	0	0	0
4	Б	191	Total	С	Ν	0	S	0	0	0
4	L L	101	1480	935	264	274	7		U	U

There are 28 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	-5	GLY	-	expression tag	UNP 019712
D	-4	GLY	-	expression tag	UNP 019712
D	-3	SER	-	expression tag	UNP 019712
D	-2	GLY	-	expression tag	UNP 019712
D	-1	ALA	-	expression tag	UNP 019712
D	0	SER	-	expression tag	UNP 019712
D	193	THR	-	expression tag	UNP 019712
D	194	GLY	-	expression tag	UNP 019712
D	195	GLY	-	expression tag	UNP 019712
D	196	ASP	-	expression tag	UNP 019712
D	197	ASP	-	expression tag	UNP 019712
D	198	ASP	-	expression tag	UNP 019712
D	199	ASP	-	expression tag	UNP 019712
D	200	LYS	-	expression tag	UNP 019712
F	-5	GLY	-	expression tag	UNP 019712
F	-4	GLY	-	expression tag	UNP 019712
F	-3	SER	-	expression tag	UNP 019712
F	-2	GLY	-	expression tag	UNP 019712
F	-1	ALA	-	expression tag	UNP 019712
F	0	SER	-	expression tag	UNP 019712

0 0 . 00 0 . 0 0 0	Jiene Fie	Fagein			
Chain	Residue	Modelled	Actual	Comment	Reference
F	193	THR	-	expression tag	UNP 019712
F	194	GLY	-	expression tag	UNP 019712
F	195	GLY	-	expression tag	UNP 019712
F	196	ASP	-	expression tag	UNP 019712
F	197	ASP	-	expression tag	UNP 019712
F	198	ASP	-	expression tag	UNP 019712
F	199	ASP	-	expression tag	UNP 019712
F	200	LYS	-	expression tag	UNP 019712

• Molecule 5 is a protein called Peptide.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
5	Т	13	Total	С	Ν	Ο	0	Ο	0
0	L	10	96	61	14	21	0	0	0
5	т	19	Total	С	Ν	Ο	0	0	0
0	1	10	96	61	14	21		U	U

• Molecule 6 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
6	K	2	Total C N O 28 16 2 10	0	0	0
6	L	2	Total C N O 28 16 2 10	0	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	G	9	Total O 9 9	0	0
7	Н	6	TotalO66	0	0
7	А	12	Total O 12 12	0	0
7	В	2	Total O 2 2	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	С	10	Total O 10 10	0	0
7	D	9	Total O 9 9	0	0
7	Е	11	Total O 11 11	0	0
7	F	6	TotalO66	0	0
7	Ι	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: T-CELL RECEPTOR, JR5.1 alpha

GLU ASP 11 V2 B30 B30 B30 C1 D96 D96 C1 10 M11	L122 L138 L138 L153 L153 S156 D162 C163 V164 V165 V165	L170 D171 L174 L174 P180 E181 THR SER SER	ASP ASP ASP ASP LYS		
• Molecule 3: MHC cla	ss II HLA-DQ-alpl	na chain			
Chain E:	82%		12	2% • 5%	
GLU ASP 11 11 11 11 11 11 11 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16	L70 190 190 110 110 1118 1118	E159 E166 L170 D171 L174	E179 P180 THR SER GLY ASP ASP	ASP ASP LYS	
• Molecule 4: MHC cla	ss II HLA-DQ-beta	a-1			
Chain D:	73%		14%	• 12%	
GLY GLY GLY GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	R23 V27 131 137 137 137 V38 R39 R39 P44 D41 D41 045 045	E46 F47 F48 151 L52 L53 L53 L68 L68	R77 N82 E86 S104 ARG	THR GLU ALA LEU ASN HIS H112	V116 C117 S118
V119 T120 A125 A125 L147 L147 D169 D169 E176	A190 GLN SER SER GLY GLY ASP ASP ASP ASP ASP ASP ASP				
• Molecule 4: MHC cla	ss II HLA-DQ-beta	a-1			
Chain F:					
	69%		18% •	12%	
CHAIN L.	T21 T21 131 131 131 131 131 134 144 144 144 14	E 46 E 47 E 48 E 51 E 53 L 53 A 57 A 57	18% • 847 886 886 886 887 887 887 887 887 887 88	12% ARC DIR NIL SUR VI	HIS H112 L115
M116 G117 G117 C117 C117 G117 C117 G117 G117 C117 G117 G117 G117 G117 G117 M129 AIA AIA M130 M132 AIA M131 M132 AIA M133 M133 AIA M131 M133 AIA M133 M131 M131 M133 M131 M131 M131 M131 M131 M132 M131 M131 M133 M131 M131 M133 M131 M131 M133 M131 M131 M133 M131 M131 M134 M133 M131	M60 1161 1161 1161 1161 1160 1131 1184 1184 1184 1184 1184 1184 1184	SER E46 THR F47 GLY F44 GLY F46 GLY F46 ASP 151 ASP 153 ASP 153 ASP 153 ASP 153 ASP 153	18% • 889 889 890 800 800 800 800 800 800 800	12%	HIS H12 L115
Image: Second state Image: Second state<	M60 M60 1161 1161 1161 1166 1176 1184 11	SER E46 THR E46 CLY E48 GLY E48 GLY E48 ASP L53 ASP L53 ASP L53 ASP L53 ASP L53	18% • 886 886 887 877 887 887 887 887 887 887	12%	HIS HI12 L115
Image: Second state Image: Second state<	69%	20%	18% • 028 28 88 88 98 98 98 98 98 98 98 98 98 98 98		HIS HI2 112 115
Image: Second state Image: Second state<	222 H160 H213 H23 H24	ACCOMPANY OF A COMPANY OF A COM	18% • 02H 28M 98 35%		HIS HI2 L115
Chain F. Chain F. Chain I: Chain I: Chain I: Chain I: Chain I:	69%	ACCOMPANY OF A CONTRACT OF A C	18% • 02H 2H 28M 98 35%	- 12%	HIS HI2 L115
Chain F. Chain F. Chain I: Chain I: Chain J:	69%	20%	18% • 26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		HIS HI2 112 115

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:

100%

NAG1 NAG2

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain L:

100%

NAG1 NAG2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	69.06Å 157.65 Å 106.10 Å	Deperitor
a, b, c, α , β , γ	90.00° 96.53° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}\left(\overset{\text{``A}}{\to}\right)$	47.03 - 2.74	Depositor
Resolution (A)	48.12 - 2.74	EDS
% Data completeness	99.3 (47.03-2.74)	Depositor
(in resolution range)	99.3 (48.12-2.74)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.57 (at 2.73 Å)	Xtriage
Refinement program	PHENIX	Depositor
D D.	(Not available) , (Not available)	Depositor
Π, Π_{free}	0.214 , 0.247	DCC
R_{free} test set	2000 reflections $(3.42%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	61.6	Xtriage
Anisotropy	0.648	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29, 52.2	EDS
L-test for twinning ²	$< L > = 0.49, < L^2 > = 0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	12888	wwPDB-VP
Average B, all atoms $(Å^2)$	84.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.13% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Cham	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.25	0/1523	0.47	0/2074
1	G	0.25	0/1512	0.49	0/2060
2	В	0.25	0/1926	0.46	0/2624
2	Н	0.25	0/1926	0.45	0/2624
3	С	0.25	0/1487	0.44	0/2031
3	Е	0.25	0/1487	0.44	0/2031
4	D	0.23	0/1513	0.43	0/2056
4	F	0.24	0/1513	0.43	0/2056
5	Ι	0.22	0/98	0.37	0/134
5	J	0.24	0/98	0.39	0/134
All	All	0.25	0/13083	0.45	0/17824

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1490	0	1381	18	0
1	G	1480	0	1369	14	0
2	B	1877	0	1776	17	1

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	Н	1877	0	1776	12	2
3	С	1445	0	1397	13	0
3	Е	1445	0	1397	12	1
4	D	1480	0	1443	18	0
4	F	1480	0	1443	24	0
5	Ι	96	0	92	3	0
5	J	96	0	92	1	0
6	Κ	28	0	25	0	0
6	L	28	0	25	0	0
7	А	12	0	0	0	0
7	В	2	0	0	0	0
7	С	10	0	0	0	0
7	D	9	0	0	0	0
7	Е	11	0	0	0	0
7	F	6	0	0	0	0
7	G	9	0	0	0	0
7	Н	6	0	0	0	0
7	Ι	1	0	0	0	0
All	All	12888	0	12216	117	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (117) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	${ m distance}~({ m \AA})$	overlap (Å)
2:B:109:ARG:NH2	3:C:62:ASN:OD1	2.18	0.76
2:H:109:ARG:NH2	3:E:62:ASN:OD1	2.22	0.73
3:E:96:PRO:HD3	4:F:120:THR:HG21	1.74	0.70
4:D:10:GLN:HB2	4:D:31:ILE:HB	1.73	0.69
3:C:96:PRO:HD3	4:D:120:THR:HG21	1.74	0.69
3:E:118:ASN:HB2	3:E:166:GLU:HB2	1.75	0.68
1:G:53:ILE:O	1:G:68:ASN:ND2	2.27	0.68
1:A:101:VAL:HG22	1:A:123:ARG:HD2	1.76	0.67
1:G:57:LEU:O	1:G:84:ARG:NH1	2.27	0.67
1:G:43:ARG:HB3	1:G:53:ILE:HD11	1.80	0.64
1:A:43:ARG:HB3	1:A:53:ILE:HD11	1.82	0.62
2:H:109:ARG:HH21	5:I:8:PRO:HD2	1.65	0.62
3:C:118:ASN:HB2	3:C:166:GLU:HB2	1.81	0.61
1:A:147:ASP:HB3	1:A:148:LYS:HD3	1.81	0.61
3:E:179:GLU:HG3	3:E:180:PRO:HD2	1.81	0.61

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:H:191:LYS:HE2	2:H:199:SER:HB3	1.82	0.60	
4:D:130:ARG:NH1	4:D:176:GLU:OE2	2.30	0.60	
4:F:51:THR:HG23	4:F:53:LEU:H	1.66	0.60	
1:A:53:ILE:O	1:A:68:ASN:ND2	2.35	0.59	
1:A:114:GLN:NE2	2:B:67:ASP:OD2	2.35	0.59	
4:F:77:ARG:NH2	5:I:5:SER:O	2.36	0.58	
1:A:14:ALA:HB3	1:A:17:ARG:HD3	1.86	0.57	
4:D:116:VAL:HG22	4:D:160:MET:HG3	1.86	0.57	
1:A:57:LEU:O	1:A:84:ARG:NH1	2.36	0.57	
3:C:122:LEU:O	3:C:162:ASP:N	2.31	0.56	
4:D:51:THR:HG23	4:D:53:LEU:H	1.70	0.56	
3:E:70:LEU:HD13	4:F:9:TYR:HB2	1.87	0.56	
2:B:80:ARG:HG3	2:B:87:SER:HB2	1.87	0.56	
2:B:21:LEU:HD12	2:B:89:LEU:HD23	1.90	0.54	
4:D:46:GLU:OE2	4:D:48:ARG:NH1	2.41	0.54	
4:D:133:ARG:NH2	4:D:169:ASP:OD2	2.41	0.54	
4:F:23:ARG:NH2	4:F:43:ASP:OD2	2.39	0.53	
3:C:122:LEU:HB2	3:C:162:ASP:HB2	1.90	0.53	
4:F:10:GLN:HB2	4:F:31:ILE:HB	1.90	0.53	
2:H:80:ARG:HG3	2:H:87:SER:HB2	1.92	0.52	
2:B:21:LEU:HD22	2:B:122:THR:HG21	1.90	0.52	
4:F:130:ARG:NH1	4:F:176:GLU:OE2	2.32	0.51	
4:F:46:GLU:OE2	4:F:48:ARG:NH1	2.43	0.51	
2:B:185:THR:HG23	2:B:205:SER:HB2	1.92	0.51	
1:A:4:THR:HG22	1:A:25:HIS:HB3	1.91	0.51	
1:A:37:GLU:HG3	1:A:108:GLN:HB3	1.92	0.51	
4:D:37:ILE:HG13	4:D:38:VAL:HG12	1.91	0.51	
4:D:18:THR:HB	4:D:23:ARG:HB3	1.92	0.51	
4:F:133:ARG:NH2	4:F:166:GLN:OE1	2.43	0.51	
3:E:39:LYS:HG2	3:E:60:LEU:HD11	1.93	0.50	
3:E:105:LEU:HG	3:E:153:LEU:HD22	1.93	0.50	
1:A:167:ASP:HB3	1:A:170:VAL:HB	1.94	0.49	
4:F:41:ASP:HB3	4:F:44:VAL:HG13	1.92	0.49	
3:C:122:LEU:HD11	3:C:164:LYS:HD3	1.93	0.49	
1:G:101:VAL:HG22	1:G:123:ARG:HD2	1.94	0.48	
3:E:1:ILE:HG23	3:E:2:VAL:HG23	1.96	0.48	
4:F:37:ILE:HG13	4:F:38:VAL:HG12	1.95	0.48	
2:H:21:LEU:HD22	2:H:122:THR:HG21	1.95	0.48	
1:G:46:HIS:HA	1:G:47:SER:HA	1.64	0.48	
3:E:170:LEU:HD13	3:E:174:LEU:HB2	1.95	0.48	
4:D:125:ALA:HB1	4:D:147:LEU:HD21	1.96	0.48	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:D:77:ARG:NH2	5:J:5:SER:O	2.46	0.48	
1:A:208:SER:H	1:A:209:ILE:HA	1.80	0.47	
2:B:216:ASN:ND2	2:B:218:ARG:H	2.12	0.47	
3:E:11:ASN:HB2	4:F:11:PHE:HB3	1.97	0.47	
3:C:105:LEU:HG	3:C:153:LEU:HD22	1.98	0.46	
4:F:18:THR:HB	4:F:23:ARG:HB3	1.95	0.46	
1:A:3:LYS:HD2	1:A:3:LYS:HA	1.81	0.46	
4:F:143:VAL:HG13	4:F:160:MET:HB2	1.97	0.46	
2:H:185:THR:HG23	2:H:205:SER:HB2	1.97	0.46	
2:H:143:PRO:HD2	2:H:214:TRP:CZ2	2.51	0.46	
2:B:216:ASN:C	2:B:216:ASN:HD22	2.19	0.46	
4:F:125:ALA:HB1	4:F:147:LEU:HD21	1.98	0.46	
1:G:173:THR:HG22	2:H:190:LEU:HD21	1.98	0.46	
2:B:143:PRO:HD2	2:B:214:TRP:CZ2	2.51	0.45	
2:B:216:ASN:HD21	2:B:218:ARG:CZ	2.30	0.45	
1:A:208:SER:N	1:A:209:ILE:HA	2.30	0.45	
4:F:82:ASN:O	4:F:86:GLU:HG2	2.17	0.45	
1:G:68:ASN:HB3	1:G:75:MET:H	1.82	0.45	
1:A:165:SER:HB2	1:A:172:ILE:HG13	1.99	0.44	
3:C:30:GLU:HB2	3:C:138:LEU:HD21	1.99	0.44	
2:B:236:TRP:CE2	2:B:238:GLN:HB2	2.53	0.44	
4:F:116:VAL:HG22	4:F:160:MET:HG3	2.00	0.44	
1:G:200:ALA:O	1:G:202:ALA:N	2.45	0.44	
3:C:156:SER:O	3:C:180:PRO:HG3	2.17	0.44	
1:A:96:LEU:HD21	1:A:186:LYS:HD3	2.00	0.44	
4:F:57:ALA:HA	5:I:11:GLU:HG3	1.99	0.44	
1:A:68:ASN:HB3	1:A:75:MET:H	1.83	0.43	
1:A:46:HIS:HA	1:A:47:SER:HA	1.64	0.43	
2:B:216:ASN:HD22	2:B:217:PRO:N	2.16	0.43	
2:B:216:ASN:HD21	2:B:218:ARG:NH1	2.15	0.43	
3:C:170:LEU:HD13	3:C:174:LEU:HB2	2.00	0.43	
3:C:70:LEU:HD13	4:D:9:TYR:HB2	2.00	0.43	
4:F:128:LYS:HB3	4:F:176:GLU:HB2	1.99	0.43	
2:H:242:LYS:O	2:H:244:VAL:N	2.52	0.43	
3:C:1:ILE:HG23	3:C:2:VAL:HG23	2.00	0.43	
1:G:58:LYS:HG2	1:G:84:ARG:HD3	2.01	0.43	
4:D:82:ASN:O	4:D:86:GLU:HG2	2.18	0.43	
4:F:117:CYS:HB2	4:F:131:TRP:CZ2	2.52	0.43	
3:C:96:PRO:HG3	4:D:118:SER:CB	2.49	0.43	
4:F:128:LYS:HA	4:F:128:LYS:HD2	1.82	0.42	
2:H:147:GLU:O	2:H:151:THR:HG22	2.19	0.42	

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	
2:B:216:ASN:HD22	2:B:218:ARG:H	1.67	0.42
2:H:236:TRP:CE2	2:H:238:GLN:HB2	2.54	0.42
2:H:113:ALA:O	4:F:70:ARG:NH2	2.29	0.42
1:G:140:LEU:O	1:G:149:SER:HA	2.19	0.42
1:A:3:LYS:HE3	1:A:4:THR:H	1.85	0.42
1:G:45:ILE:HG12	1:G:100:ALA:HB2	2.01	0.42
3:E:55:ASP:HB3	3:E:58:PHE:HD2	1.84	0.41
2:B:101:VAL:HG22	2:B:123:ARG:HG3	2.02	0.41
3:E:59:ALA:O	3:E:63:ILE:HG12	2.21	0.41
1:G:4:THR:HG22	1:G:25:HIS:HB3	2.03	0.41
4:D:68:LEU:HA	4:D:68:LEU:HD12	1.92	0.41
4:D:44:VAL:HG22	4:D:46:GLU:H	1.86	0.41
2:B:242:LYS:O	2:B:244:VAL:N	2.54	0.41
4:D:41:ASP:HB3	4:D:44:VAL:HG13	2.02	0.41
2:B:136:PRO:CA	2:B:163:PHE:HB3	2.51	0.41
4:D:27:VAL:HG13	4:D:39:ARG:HD3	2.02	0.41
1:G:3:LYS:HD2	1:G:3:LYS:HA	1.86	0.41
4:F:115:LEU:O	4:F:161:LEU:N	2.54	0.40
4:F:180:LEU:HD13	4:F:184:ILE:HG13	2.03	0.40
1:G:171:TYR:O	1:G:192:ALA:HA	2.21	0.40

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
2:H:210:SER:OG	3:E:159:GLU:OE1[1_556]	2.10	0.10	
2:H:22:ARG:NH2	2:B:79:GLU:OE2[2_458]	2.19	0.01	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	190/202~(94%)	177~(93%)	12 (6%)	1 (0%)	29	48
1	G	190/202~(94%)	175~(92%)	15 (8%)	0	100	100
2	В	240/244~(98%)	232~(97%)	8 (3%)	0	100	100
2	Н	240/244~(98%)	232~(97%)	8 (3%)	0	100	100
3	С	179/191~(94%)	177 (99%)	2 (1%)	0	100	100
3	Ε	179/191~(94%)	177 (99%)	2 (1%)	0	100	100
4	D	177/206~(86%)	171 (97%)	6 (3%)	0	100	100
4	F	177/206~(86%)	$171 \ (97\%)$	6 (3%)	0	100	100
5	Ι	11/20~(55%)	11 (100%)	0	0	100	100
5	J	11/20~(55%)	11 (100%)	0	0	100	100
All	All	1594/1726~(92%)	1534 (96%)	59 (4%)	1 (0%)	51	75

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	207	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	162/181~(90%)	157~(97%)	5(3%)	40 60
1	G	159/181~(88%)	151~(95%)	8 (5%)	24 42
2	В	200/209~(96%)	195~(98%)	5(2%)	47 67
2	Н	200/209~(96%)	198~(99%)	2(1%)	76 85
3	С	165/174~(95%)	164 (99%)	1 (1%)	86 91
3	Ε	165/174~(95%)	161~(98%)	4 (2%)	49 68
4	D	164/184~(89%)	161~(98%)	3~(2%)	59 75
4	F	164/184~(89%)	160 (98%)	4 (2%)	49 68
5	Ι	$1\overline{1/15}\;(73\%)$	10 (91%)	1(9%)	9 17

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
5	J	11/15~(73%)	10 (91%)	1 (9%)	9 17
All	All	1401/1526~(92%)	1367~(98%)	34 (2%)	49 68

All (34) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	G	82	GLU
1	G	111	GLN
1	G	115	LYS
1	G	148	LYS
1	G	152	LEU
1	G	168	SER
1	G	177	VAL
1	G	207	ASN
2	Н	156	LEU
2	Н	206	ARG
1	А	96	LEU
1	А	114	GLN
1	А	115	LYS
1	А	148	LYS
1	А	198	ASP
2	В	79	GLU
2	В	88	THR
2	В	156	LEU
2	В	206	ARG
2	В	216	ASN
3	С	171	ASP
4	D	21	THR
4	D	48	ARG
4	D	51	THR
3	Е	90	THR
3	Ε	132	VAL
3	Е	171	ASP
3	Е	179	GLU
4	F	19	ASN
4	F	21	THR
4	F	48	ARG
4	F	51	THR
5	Ι	6	GLU
5	J	6	GLU

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such

sidechains are listed below:

Mol	Chain	Res	Type
2	В	216	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

4 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Turne Ch	Chain	Dog	Tink	Bond lengths		Bond angles				
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	NAG	K	1	3,6	14,14,15	0.29	0	17,19,21	0.41	0
6	NAG	K	2	6	14,14,15	0.43	0	17,19,21	0.41	0
6	NAG	L	1	3,6	14,14,15	0.33	0	17,19,21	0.39	0
6	NAG	L	2	6	14,14,15	0.41	0	17,19,21	0.44	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	Κ	1	3,6	-	0/6/23/26	0/1/1/1
6	NAG	Κ	2	6	-	2/6/23/26	0/1/1/1
6	NAG	L	1	3,6	-	2/6/23/26	0/1/1/1
6	NAG	L	2	6	-	2/6/23/26	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (6) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
6	K	2	NAG	O5-C5-C6-O6
6	L	1	NAG	O5-C5-C6-O6
6	K	2	NAG	C4-C5-C6-O6
6	L	1	NAG	C4-C5-C6-O6
6	L	2	NAG	O5-C5-C6-O6
6	L	2	NAG	C4-C5-C6-O6

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

