

Full wwPDB X-ray Structure Validation Report (i)

Aug 15, 2023 – 11:56 PM EDT

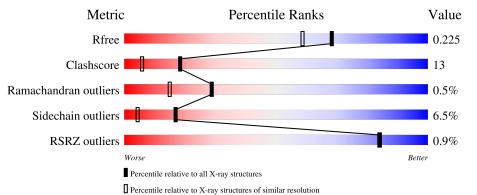
PDB ID	:	1U5V
Title	:	Structure of CitE complexed with triphosphate group of ATP form Mycobac-
		terium tuberculosis
Authors	:	Goulding, C.W.; Lerkin, T.; Kim, C.Y.; Segelke, B.; Terwilliger, T.; Eisenberg,
		E.; TB Structural Genomics Consortium (TBSGC)
Deposited on		
Resolution	:	1.85 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.85 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2469(1.86-1.86)
Clashscore	141614	2625 (1.86-1.86)
Ramachandran outliers	138981	2592 (1.86-1.86)
Sidechain outliers	138945	2592 (1.86-1.86)
RSRZ outliers	127900	2436 (1.86-1.86)

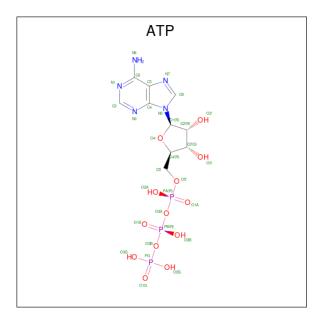
The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	L		
1	А	273	% 63%	15%	••	18%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 1804 atoms, of which 0 are hydrogens and 0 are deuteriums.

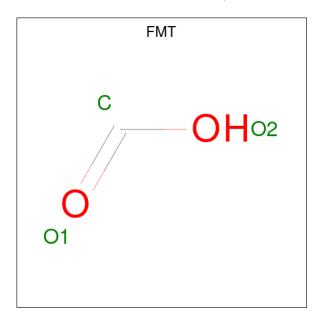
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called citE.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	А	223	Total 1613	C 1004	N 290	0 312	S 7	0	0	0

There are 6 discrepancies between the modelled and reference sequences:

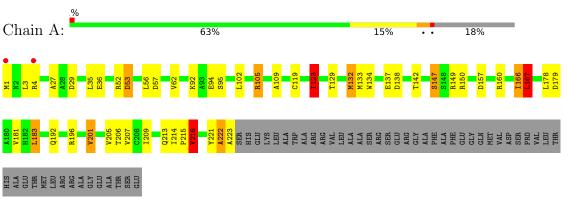
Chain	Residue	Modelled	Actual	Comment	Reference
А	17	ALA	ARG	engineered mutation	UNP 006162
А	20	ALA	ARG	engineered mutation	UNP 006162
А	23	ALA	LYS	engineered mutation	UNP 006162
А	41	ALA	GLU	engineered mutation	UNP 006162
А	222	ALA	ARG	engineered mutation	UNP 006162
А	223	ALA	PRO	engineered mutation	UNP 006162


• Molecule 2 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
2	А	1	Total 12	0 9	Р 3	0	0

• Molecule 3 is FORMIC ACID (three-letter code: FMT) (formula: CH_2O_2).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
3	А	1	Total 3	С 1	O 2	0	0


• Molecule 4 is water.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf
4	А	176	Total 176	O 176	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: citE

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	H 3 2	Depositor	
Cell constants	91.21Å 91.21Å 220.23Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor	
Resolution (Å)	45.61 - 1.85	Depositor	
Resolution (A)	45.61 - 1.85	EDS	
% Data completeness	97.4 (45.61-1.85)	Depositor	
(in resolution range)	$97.6\ (45.61-1.85)$	EDS	
R _{merge}	(Not available)	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	4.65 (at 1.86Å)	Xtriage	
Refinement program	CNS 1.1	Depositor	
D D	0.212 , 0.234	Depositor	
R, R_{free}	0.205 , 0.225	DCC	
R_{free} test set	2982 reflections $(9.85%)$	wwPDB-VP	
Wilson B-factor $(Å^2)$	30.0	Xtriage	
Anisotropy	0.207	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36 , 41.6	EDS	
L-test for twinning ²	$< L >=0.48, < L^2>=0.32$	Xtriage	
	0.017 for -h,1/3*h-1/3*k-1/3*l,-4/3*h-8/3*k		
	+1/3*l		
Estimated twinning fraction	0.010 for $-1/3$ *h $+1/3$ *k $+1/3$ *l,-k, $8/3$ *h $+4/3$ *h $+4/3$ *l,-k, $8/3$ *h $+4/3$ *l,-k, $8/3$ *h $+4/3$ *l,-k, $8/3$ *h $+4/3$	Xtriage	
0	$3^{*}k+1/3^{*}l$	0	
	0.023 for $-2/3$ *h- $1/3$ *k- $1/3$ *l, $-1/3$ *h- $2/3$ *k+ $1/3$ *l, $-4/3$ *h+ $4/3$ *k+ $1/3$ *l		
$F_{o}F_{c}$ correlation	$\frac{1/3}{0.95}$	EDS	
Total number of atoms	1804	wwPDB-VP	
Average B, all atoms (Å ²)	35.0	wwPDB-VP	
	00.0		

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.84% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ATP, FMT

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bo	ond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	1.18	7/1637~(0.4%)	1.25	15/2236~(0.7%)

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	216	VAL	CB-CG1	-7.40	1.37	1.52
1	А	160	ARG	CD-NE	-7.15	1.34	1.46
1	А	62	VAL	CB-CG2	-6.67	1.38	1.52
1	А	201	VAL	CB-CG1	-6.25	1.39	1.52
1	А	132	MET	SD-CE	-6.20	1.43	1.77
1	А	105	ARG	CB-CG	-5.64	1.37	1.52
1	А	147	SER	CA-CB	5.57	1.61	1.52

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	160	ARG	NE-CZ-NH1	19.40	130.00	120.30
1	А	160	ARG	NE-CZ-NH2	-19.38	110.61	120.30
1	А	53	ASP	CB-CG-OD2	7.05	124.64	118.30
1	А	160	ARG	CD-NE-CZ	6.46	132.65	123.60
1	А	29	ASP	CB-CG-OD2	6.36	124.03	118.30
1	А	57	ASP	CB-CG-OD2	6.28	123.95	118.30
1	А	105	ARG	CG-CD-NE	6.19	124.79	111.80
1	А	149	ARG	NE-CZ-NH1	6.15	123.38	120.30
1	А	105	ARG	NE-CZ-NH2	6.09	123.35	120.30
1	А	123	ILE	CG1-CB-CG2	-5.76	98.74	111.40
1	А	150	ARG	NE-CZ-NH1	5.62	123.11	120.30
1	А	157	ASP	CB-CG-OD1	5.48	123.23	118.30
1	А	167	LEU	CB-CG-CD1	5.36	120.11	111.00
1	А	167	LEU	CA-CB-CG	5.17	127.18	115.30

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	А	167	LEU	CB-CG-CD2	5.15	119.76	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1613	0	1615	43	0
2	А	12	0	0	0	0
3	А	3	0	1	0	0
4	А	176	0	0	3	0
All	All	1804	0	1616	43	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (43) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance (A)	overlap (Å)
1:A:102:LEU:O	1:A:105:ARG:HG2	1.78	0.84
1:A:129:THR:HG21	1:A:132:MET:CE	2.09	0.82
1:A:133:MET:CE	1:A:207:VAL:HG11	2.13	0.80
1:A:133:MET:HE3	1:A:207:VAL:HG11	1.66	0.77
1:A:138:ASP:O	1:A:142:THR:HG22	1.85	0.77
1:A:129:THR:HG21	1:A:132:MET:HE3	1.69	0.72
1:A:142:THR:HG23	4:A:416:HOH:O	1.91	0.71
1:A:206:THR:HG23	1:A:221:TYR:OH	1.92	0.70
1:A:137:GLU:HG3	1:A:183:LEU:HD21	1.74	0.69
1:A:147:SER:HB2	4:A:422:HOH:O	1.97	0.65
1:A:129:THR:CG2	1:A:132:MET:CE	2.75	0.65
1:A:179:ASP:O	1:A:207:VAL:HG12	1.98	0.63
1:A:167:LEU:HD11	1:A:201:VAL:HG12	1.81	0.62
1:A:129:THR:HG21	1:A:132:MET:HE1	1.82	0.61
1:A:129:THR:CG2	1:A:132:MET:HE3	2.30	0.61

Continued on next page...

Continued from prev		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:134:TRP:HB3	1:A:166:ILE:HG12	1.85	0.59
1:A:178:LEU:HD22	1:A:205:VAL:HB	1.85	0.58
1:A:222:ALA:O	1:A:223:ALA:C	2.42	0.58
1:A:133:MET:HE1	1:A:207:VAL:HG11	1.85	0.56
1:A:1:MET:CE	1:A:3:LEU:HD21	2.37	0.55
1:A:201:VAL:HG12	1:A:201:VAL:O	2.07	0.54
1:A:109:ALA:HB3	1:A:132:MET:HE2	1.90	0.54
1:A:95:SER:HA	1:A:123:ILE:HD11	1.91	0.53
1:A:137:GLU:CG	1:A:183:LEU:HD21	2.39	0.51
1:A:137:GLU:HG2	4:A:300:HOH:O	2.11	0.50
1:A:181:VAL:HG11	1:A:209:ILE:HG23	1.94	0.50
1:A:95:SER:CA	1:A:123:ILE:HD11	2.43	0.49
1:A:35:LEU:N	1:A:35:LEU:CD1	2.79	0.45
1:A:92:LYS:O	1:A:94:GLU:HG3	2.15	0.45
1:A:181:VAL:CG2	1:A:207:VAL:HG13	2.47	0.45
1:A:192:GLN:NE2	1:A:196:ARG:HH21	2.15	0.44
1:A:102:LEU:O	1:A:105:ARG:CG	2.58	0.44
1:A:35:LEU:N	1:A:35:LEU:HD12	2.32	0.44
1:A:119:CYS:O	1:A:123:ILE:HD13	2.17	0.44
1:A:3:LEU:HD23	1:A:3:LEU:HA	1.88	0.43
1:A:123:ILE:N	1:A:123:ILE:CD1	2.80	0.42
1:A:206:THR:HG23	1:A:221:TYR:CE1	2.55	0.42
1:A:27:ALA:O	1:A:214:ILE:HG21	2.20	0.42
1:A:214:ILE:HB	1:A:215:PRO:HD3	2.01	0.42
1:A:167:LEU:CD1	1:A:201:VAL:HG12	2.50	0.41
1:A:178:LEU:N	1:A:178:LEU:HD23	2.37	0.40
1:A:213:GLN:O	1:A:216:VAL:HG13	2.21	0.40
1:A:181:VAL:HG23	1:A:207:VAL:HG13	2.03	0.40

Continued from previous page...

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	А	221/273~(81%)	216~(98%)	4 (2%)	1 (0%)	29 15	

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	222	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	А	155/193~(80%)	145~(94%)	10 (6%)	17 4	

All (10) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	4	ARG
1	А	36	GLU
1	А	52	ARG
1	А	53	ASP
1	А	56	LEU
1	А	123	ILE
1	А	166	ILE
1	А	167	LEU
1	А	183	LEU
1	А	216	VAL

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type
1	А	192	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

2 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res Link		B	ond leng	gths	В	ond ang	gles
	Type	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	FMT	А	275	-	2,2,2	0.64	0	$1,\!1,\!1$	0.43	0
2	ATP	А	274	-	5,11,33	0.61	0	8,17,52	1.07	1 (12%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	ATP	А	274	-	-	2/9/11/38	-

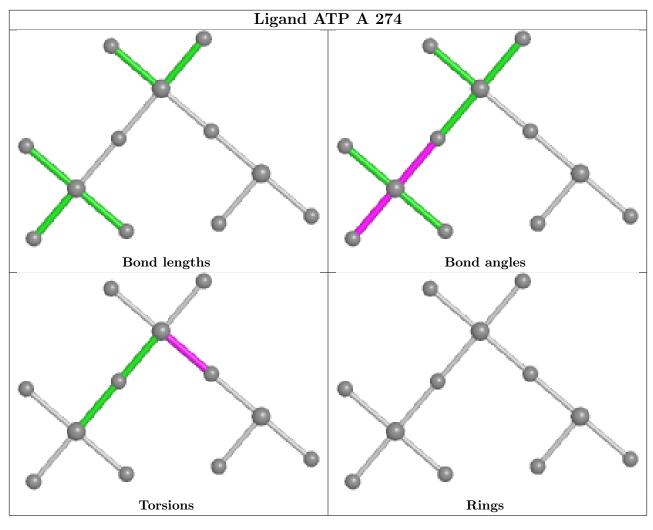
There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	274	ATP	O2G-PG-O3B	2.56	113.21	104.64

There are no chirality outliers.

All (2) torsion outliers are listed below:



Mol	Chain	Res	Type	Atoms
2	А	274	ATP	PA-O3A-PB-O1B
2	А	274	ATP	PA-O3A-PB-O3B

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
1	А	223/273~(81%)	-0.06	2 (0%) 84	84	22, 32, 53, 64	0

All (2) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	4	ARG	3.2
1	А	1	MET	2.9

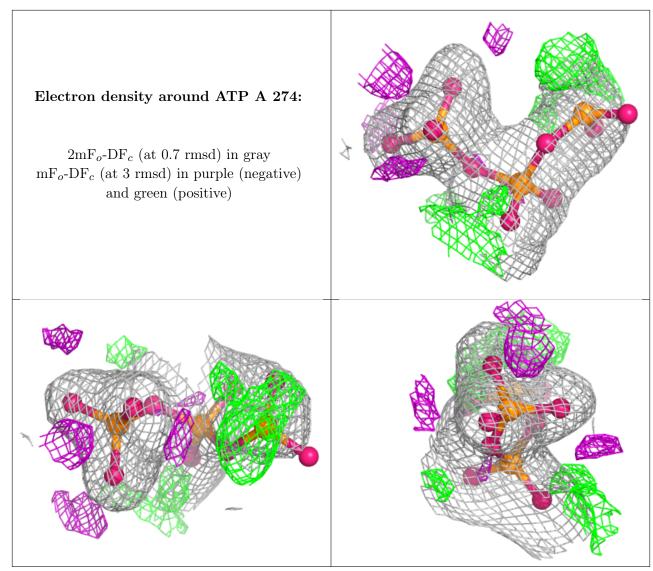
6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)


In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
3	FMT	А	275	3/3	0.96	0.38	27,27,28,30	3
2	ATP	А	274	12/31	0.98	0.10	22,32,40,42	12

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different

orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

