

Full wwPDB X-ray Structure Validation Report (i)

Jun 25, 2024 – 10:07 AM EDT

Biomimetic Complex -
ł

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.99 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	2092 (3.00-3.00)
Clashscore	141614	2416 (3.00-3.00)
Ramachandran outliers	138981	2333 (3.00-3.00)
Sidechain outliers	138945	2336 (3.00-3.00)
RSRZ outliers	127900	1990 (3.00-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	365	% 79%	15%	••
1	В	365	76%	18%	• •
1	С	365	% 76%	17%	• •
1	D	365	% • 78%	17%	••
1	Е	365	2% 78 %	17%	••

Mol	Chain	Length	Quality of chain		
1	F	365	% • 75%	18%	• 5%
1	G	365	% 	13%	•••
1	Н	365	^{2%} 77%	17%	
1	Ι	365	% 74%	20%	• •
1	J	365	2% 65%	28%	• •
1	Κ	365	^{2%} 71%	23%	• •
1	L	365	^{2%} 69%	26%	• •

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 30414 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	250	Total	С	Ν	0	S	0	0	0
1	A	502	2526	1594	445	475	12	0	0	0
1	D	240	Total	С	Ν	0	S	0	1	0
1	D	349	2511	1583	444	472	12	0	L	0
1	C	240	Total	С	Ν	0	S	0	0	0
	U	349	2504	1578	442	472	12	0	0	0
1	Л	351	Total	С	Ν	0	S	0	0	0
	D	331	2518	1588	444	474	12	0	0	0
1	F	340	Total	С	Ν	0	S	0	0	0
1	Ľ	549	2504	1578	442	472	12	0	0	0
1	Б	248	Total	С	Ν	Ο	S	0	0	0
	T.	040	2493	1572	438	471	12	0	0	0
1	C	350	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	G	550	2511	1583	443	473	12	0	0	0
1	п	250	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	11	550	2511	1583	443	473	12	0	0	0
1	Т	340	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	0
1	L	549	2504	1578	442	472	12	0	0	0
1	Т	340	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	0
1	J	549	2504	1578	442	472	12	0	0	0
1	K	340	Total	С	Ν	0	S	0	0	0
		049	2504	1578	442	472	12	0	U	0
1	T	340	Total	С	Ν	0	S	0	0	0
		949	2504	1578	442	472	12	0	0	U

• Molecule 1 is a protein called Rhodococcus ruber ADH.

• Molecule 2 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	2	Total Zn 2 2	0	0
2	В	2	Total Zn 2 2	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	С	2	Total Zn 2 2	0	0
2	D	2	Total Zn 2 2	0	0
2	Е	2	Total Zn 2 2	0	0
2	F	2	Total Zn 2 2	0	0
2	G	2	Total Zn 2 2	0	0
2	Н	2	Total Zn 2 2	0	0
2	Ι	2	Total Zn 2 2	0	0
2	J	2	Total Zn 2 2	0	0
2	К	2	Total Zn 2 2	0	0
2	L	2	Total Zn 2 2	0	0

Continued from previous page...

• Molecule 3 is $1-\{[4-(hydroxymethyl)phenyl]methyl\}-1,4-dihydropyridine-3-carboxa mide (three-letter code: W46) (formula: <math>C_{14}H_{16}N_2O_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C N O	0	0
0	11	Ĩ	18 14 2 2	0	0
3	В	1	Total C N O	0	0
0	D	I	18 14 2 2	0	0
3	С	1	Total C N O	0	0
0	U	T	18 14 2 2	0	0
3	Л	1	Total C N O	0	0
0	D	T	18 14 2 2	0	0
2	F	1	Total C N O	0	0
0	Ľ	L	18 14 2 2	0	0
2	Б	1	Total C N O	0	0
0	Г	L	18 14 2 2	0	0
2	Ц	1	Total C N O	0	0
5	п	L	18 14 2 2	0	0
9	т	1	Total C N O	0	0
0	1	L	18 14 2 2	0	0
2	т	1	Total C N O	0	0
0	1	L	18 14 2 2	0	0
2	K	1	Total C N O	0	0
3	IX I	L	18 14 2 2	0	U
2	т	1	Total C N O	0	0
3			18 14 2 2	0	

• Molecule 4 is CITRIC ACID (three-letter code: CIT) (formula: $C_6H_8O_7$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	Total C O 13 6 7	0	0
4	Н	1	Total C O 13 6 7	0	0
4	Ι	1	Total C O 13 6 7	0	0
4	K	1	Total C O 13 6 7	0	0
4	L	1	Total C O 13 6 7	0	0

• Molecule 5 is ISOPROPYL ALCOHOL (three-letter code: IPA) (formula: C_3H_8O).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
5	В	1	Total 4	С 3	0 1	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	Total O 1 1	0	0
6	С	2	Total O 2 2	0	0
6	D	3	Total O 3 3	0	0
6	Ε	2	$\begin{array}{cc} \text{Total} & \text{O} \\ 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	F	2	Total O 2 2	0	0
6	G	9	Total O 9 9	0	0
6	Н	3	Total O 3 3	0	0
6	K	6	Total O 6 6	0	0
6	L	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Rhodococcus ruber ADH

• Molecule 1: Rhodococcus ruber ADH

 \bullet Molecule 1: Rhodococcus ruber ADH

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	78.30Å 158.18Å 272.94Å	Deperitor
a, b, c, α , β , γ	90.00° 91.05° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.18 - 2.99	Depositor
Resolution (A)	49.18 - 2.99	EDS
% Data completeness	99.4 (49.18-2.99)	Depositor
(in resolution range)	99.4(49.18-2.99)	EDS
R _{merge}	0.15	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.85 (at 3.01 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0419	Depositor
D D.	0.193 , 0.246	Depositor
Π, Π_{free}	0.194 , 0.245	DCC
R_{free} test set	2006 reflections $(1.50%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	42.8	Xtriage
Anisotropy	0.279	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.32 , 39.2	EDS
L-test for $twinning^2$	$< L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	0.019 for h,-k,-l	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	30414	wwPDB-VP
Average B, all atoms $(Å^2)$	40.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.17% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: IPA, ZN, CIT, W46

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.42	0/2579	0.93	4/3522~(0.1%)
1	В	0.42	0/2567	0.95	8/3504~(0.2%)
1	С	0.39	0/2556	0.90	5/3489~(0.1%)
1	D	0.41	0/2571	0.93	3/3511~(0.1%)
1	Е	0.40	0/2556	0.88	2/3489~(0.1%)
1	F	0.39	0/2545	0.89	4/3475~(0.1%)
1	G	0.42	0/2564	0.92	5/3500~(0.1%)
1	Н	0.40	0/2564	0.90	3/3500~(0.1%)
1	Ι	0.39	0/2556	0.86	1/3489~(0.0%)
1	J	0.38	0/2556	0.92	9/3489~(0.3%)
1	Κ	0.39	0/2556	0.88	3/3489~(0.1%)
1	L	0.37	0/2556	0.89	3/3489~(0.1%)
All	All	0.40	0/30726	0.91	$50/\overline{41946}~(0.1\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	С	0	1
1	D	0	2
1	Е	0	1
1	Н	0	1
All	All	0	5

There are no bond length outliers.

All (50) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	164	ARG	NE-CZ-NH2	-11.49	114.55	120.30
1	L	338	ARG	NE-CZ-NH1	10.46	125.53	120.30
1	L	338	ARG	CD-NE-CZ	9.48	136.87	123.60
1	G	37	LEU	CB-CG-CD2	-8.18	97.10	111.00
1	J	164	ARG	NE-CZ-NH1	-8.13	116.23	120.30
1	С	37	LEU	CB-CG-CD2	-7.93	97.51	111.00
1	L	164	ARG	NE-CZ-NH2	-7.66	116.47	120.30
1	С	309	ARG	NE-CZ-NH2	-7.51	116.54	120.30
1	D	-3	ARG	CD-NE-CZ	7.15	133.60	123.60
1	D	47	MET	CG-SD-CE	6.87	111.19	100.20
1	G	345	PRO	CA-C-O	-6.86	103.74	120.20
1	А	47	MET	CG-SD-CE	6.76	111.02	100.20
1	А	238	GLN	CB-CA-C	6.75	123.90	110.40
1	D	302	MET	CG-SD-CE	-6.70	89.48	100.20
1	В	37	LEU	CB-CG-CD2	-6.53	99.90	111.00
1	В	345	PRO	CA-C-O	-6.49	104.62	120.20
1	F	319	THR	CA-CB-OG1	-6.31	95.75	109.00
1	Κ	0	HIS	CB-CA-C	-6.13	98.14	110.40
1	С	73	GLU	CB-CG-CD	-5.94	98.15	114.20
1	С	168	LEU	CB-CG-CD1	-5.90	100.97	111.00
1	F	47	MET	CG-SD-CE	5.87	109.59	100.20
1	Н	100	ARG	NE-CZ-NH2	-5.71	117.44	120.30
1	J	47	MET	CG-SD-CE	5.66	109.25	100.20
1	J	100	ARG	NE-CZ-NH2	-5.65	117.47	120.30
1	Н	204	LEU	CB-CG-CD2	5.65	120.61	111.00
1	J	183	LEU	CB-CG-CD1	5.64	120.59	111.00
1	J	302	MET	CG-SD-CE	5.56	109.10	100.20
1	С	319	THR	CA-CB-OG1	-5.55	97.34	109.00
1	J	100	ARG	NE-CZ-NH1	5.44	123.02	120.30
1	Ε	47	MET	CG-SD-CE	5.44	108.90	100.20
1	В	307	LEU	CB-CG-CD1	-5.40	101.82	111.00
1	А	143	LEU	CB-CG-CD1	-5.39	101.83	111.00
1	В	142	ASP	CB-CA-C	5.38	121.16	110.40
1	F	312	ARG	CB-CG-CD	5.36	125.53	111.60
1	В	164	ARG	NH1-CZ-NH2	5.29	$1\overline{25.22}$	119.40
1	J	164	ARG	NH1-CZ-NH2	5.29	125.22	119.40
1	J	100	ARG	CD-NE-CZ	5.27	130.98	123.60
1	Н	238	GLN	CB-CA-C	5.24	120.89	110.40
1	В	164	ARG	CD-NE-CZ	5.22	130.90	123.60
1	J	164	ARG	CD-NE-CZ	5.22	130.90	123.60
1	F	302	MET	CG-SD-CE	5.17	108.48	100.20
1	A	309	ARG	NE-CZ-NH1	5.16	122.88	120.30
1	E	37	LEU	CB-CG-CD2	-5.15	102.24	111.00

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	В	76	THR	CA-CB-OG1	-5.12	98.25	109.00
1	Ι	108	ARG	CD-NE-CZ	5.09	130.72	123.60
1	Κ	100	ARG	CA-CB-CG	5.07	124.55	113.40
1	G	309	ARG	NE-CZ-NH2	-5.05	117.78	120.30
1	G	312	ARG	CD-NE-CZ	5.03	130.63	123.60
1	G	48	PRO	N-CD-CG	-5.02	95.67	103.20
1	Κ	135	ARG	NE-CZ-NH1	5.01	122.80	120.30

There are no chirality outliers.

All (5) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	С	309	ARG	Sidechain
1	D	213	ARG	Sidechain
1	D	338	ARG	Sidechain
1	Е	208	ARG	Sidechain
1	Н	338	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2526	0	2520	36	0
1	В	2511	0	2500	42	0
1	С	2504	0	2493	51	0
1	D	2518	0	2509	51	1
1	Е	2504	0	2493	43	1
1	F	2493	0	2480	47	0
1	G	2511	0	2500	42	0
1	Н	2511	0	2500	41	0
1	Ι	2504	0	2494	50	0
1	J	2504	0	2494	78	0
1	Κ	2504	0	2493	56	0
1	L	2504	0	2493	61	0
2	А	2	0	0	0	0
2	В	2	0	0	0	0
2	С	2	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	D	2	0	0	0	0
2	Е	2	0	0	0	0
2	F	2	0	0	0	0
2	G	2	0	0	0	0
2	Н	2	0	0	0	0
2	Ι	2	0	0	0	0
2	J	2	0	0	0	0
2	Κ	2	0	0	0	0
2	L	2	0	0	0	0
3	А	18	0	0	1	0
3	В	18	0	0	1	0
3	С	18	0	0	0	0
3	D	18	0	0	0	0
3	Ε	18	0	0	1	0
3	F	18	0	0	0	0
3	Н	18	0	0	0	0
3	Ι	18	0	0	0	0
3	J	18	0	0	1	0
3	Κ	18	0	0	0	0
3	L	18	0	0	4	0
4	В	13	0	5	2	0
4	Н	13	0	5	0	0
4	Ι	13	0	5	1	0
4	Κ	13	0	5	1	0
4	L	13	0	5	3	0
5	В	4	0	8	0	0
6	А	1	0	0	0	0
6	С	2	0	0	0	0
6	D	3	0	0	0	0
6	Ε	2	0	0	0	0
6	F	2	0	0	0	0
6	G	9	0	0	0	0
6	Н	3	0	0	0	0
6	K	6	0	0	0	0
6	L	1	0	0	0	0
All	All	30414	0	30002	578	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (578) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:209:LEU:HD22	1:F:220:ALA:HB1	1.41	1.03
1:D:42:ILE:HD12	1:D:43:PHE:N	1.75	1.01
1:E:45:MET:CE	1:E:60:LEU:HD11	1.92	0.98
1:E:45:MET:HE2	1:E:60:LEU:HD11	1.44	0.97
1:E:318:GLU:OE2	1:E:331:ARG:NH1	1.99	0.95
1:J:125:MET:HE3	1:J:329:TYR:HE2	1.32	0.94
1:L:316:HIS:HB3	1:L:338:ARG:HH11	1.39	0.87
1:B:316:HIS:HB3	1:B:338:ARG:NH1	1.90	0.85
1:J:125:MET:HE3	1:J:329:TYR:CE2	2.11	0.85
1:C:232:ARG:NH1	1:C:258:GLN:O	2.11	0.83
1:F:150:PRO:HB3	1:F:340:ARG:HG2	1.58	0.82
1:K:180:VAL:HG11	1:K:212:ALA:HB2	1.61	0.82
1:C:211:LEU:HD12	1:C:212:ALA:H	1.46	0.81
1:I:105:TYR:OH	1:I:160:HIS:HE1	1.64	0.80
1:J:48:PRO:O	1:J:50:ALA:N	2.15	0.80
1:E:52:TYR:HE1	1:E:55:GLY:H	1.30	0.80
1:E:18:ILE:HB	1:E:19:PRO:HD2	1.63	0.80
1:I:209:LEU:HD22	1:I:220:ALA:HB1	1.64	0.79
1:K:340:ARG:HG2	1:K:340:ARG:HH11	1.47	0.78
1:G:206:ASP:OD1	1:G:222:LYS:NZ	2.15	0.78
1:C:211:LEU:HD12	1:C:212:ALA:N	2.00	0.76
1:I:180:VAL:HG11	1:I:212:ALA:HB2	1.67	0.75
1:C:211:LEU:CD1	1:C:212:ALA:N	2.49	0.75
1:G:230:ALA:O	1:G:234:LEU:HD12	1.87	0.75
1:J:45:MET:HE1	1:J:60:LEU:HD11	1.68	0.74
1:I:190:ILE:O	1:I:194:VAL:HG22	1.88	0.74
1:J:0:HIS:NE2	1:J:17:ASP:O	2.19	0.74
1:C:190:ILE:O	1:C:194:VAL:HG22	1.89	0.73
1:C:1:MET:CE	1:C:21:PRO:HD3	2.19	0.73
1:J:18:ILE:HB	1:J:19:PRO:HD2	1.70	0.72
1:B:316:HIS:HB3	1:B:338:ARG:HH11	1.53	0.72
1:E:45:MET:CE	1:E:60:LEU:CD1	2.68	0.72
1:K:170:GLY:O	1:K:173:SER:OG	2.07	0.71
1:H:-3:ARG:NH1	1:H:-3:ARG:HB3	2.06	0.71
1:G:180:VAL:HG12	1:G:180:VAL:O	1.90	0.71
1:D:271:ILE:HD12	1:D:271:ILE:H	1.54	0.70
1:E:116:PRO:HG2	1:E:119:LEU:HB2	1.73	0.70
1:E:99:ALA:HB3	1:K:302:MET:CE	2.22	0.69
1:E:99:ALA:CB	1:K:302:MET:CE	2.71	0.69
1:C:90:TRP:CZ2	1:C:117:PRO:HG3	2.26	0.69
1:J:16:VAL:HG12	1:J:18:ILE:HG23	1.73	0.69
1:D:321:THR:HG22	1:D:324:GLU:CG	2.22	0.69

	h a	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:208:ARG:HA	1:C:211:LEU:HG	1.75	0.69	
1:D:124:SER:HA	1:D:129:MET:HE2	1.76	0.68	
1:D:90:TRP:CZ2	1:D:117:PRO:HG3	2.28	0.68	
1:E:204:LEU:HD23	1:E:223:SER:HB3	1.75	0.68	
1:J:118:GLY:O	1:J:119:LEU:HD23	1.94	0.68	
1:J:18:ILE:HB	1:J:19:PRO:CD	2.23	0.68	
1:I:116:PRO:HG2	1:I:119:LEU:HB2	1.76	0.68	
1:I:180:VAL:HG12	1:I:180:VAL:O	1.93	0.67	
1:H:202:VAL:HG21	1:H:231:ILE:HD11	1.75	0.67	
1:G:180:VAL:HG11	1:G:212:ALA:HB2	1.76	0.67	
1:A:9:ILE:HG13	1:A:56:LEU:HD11	1.77	0.67	
1:D:271:ILE:HD12	1:D:271:ILE:N	2.09	0.67	
1:D:321:THR:HG22	1:D:324:GLU:HG3	1.76	0.67	
1:B:331:ARG:NH1	1:B:336:SER:O	2.28	0.66	
1:G:230:ALA:O	1:G:234:LEU:CD1	2.43	0.66	
1:F:230:ALA:O	1:F:234:LEU:HD13	1.96	0.65	
1:L:316:HIS:HB3	1:L:338:ARG:NH1	2.10	0.65	
1:E:45:MET:HE1	1:E:60:LEU:HD11	1.76	0.65	
1:G:165:VAL:HG11	1:G:265:HIS:CG	2.32	0.65	
1:A:8:GLU:HA	1:A:8:GLU:OE1	1.95	0.65	
1:C:180:VAL:CG1	1:C:211:LEU:HD11	2.27	0.65	
1:K:192:ARG:HD2	1:K:216:GLY:O	1.97	0.65	
1:I:12:GLU:CG	1:I:13:PRO:HD2	2.26	0.64	
1:H:321:THR:OG1	1:H:324:GLU:HG3	1.96	0.64	
1:F:227:ALA:O	1:F:231:ILE:HG13	1.98	0.64	
1:E:99:ALA:CB	1:K:302:MET:HE1	2.29	0.63	
1:D:42:ILE:HD12	1:D:43:PHE:H	1.62	0.63	
1:L:157:THR:HB	1:L:158:PRO:HD3	1.81	0.63	
1:J:5:GLN:NE2	1:J:57:PRO:HB2	2.12	0.63	
1:J:322:LEU:HD22	1:J:345:PRO:HA	1.80	0.62	
1:E:157:THR:HB	1:E:158:PRO:HD3	1.82	0.62	
1:J:286:PHE:HD1	1:J:286:PHE:N	1.97	0.62	
1:F:180:VAL:HG11	1:F:212:ALA:HB2	1.82	0.62	
1:F:9:ILE:CD1	1:F:56:LEU:HD11	2.28	0.62	
1:F:9:ILE:HD12	1:F:56:LEU:HD11	1.81	0.62	
1:I:12:GLU:HG3	1:I:13:PRO:HD2	1.81	0.62	
1:B:156:LEU:HD23	1:B:295:TRP:CD1	2.35	0.62	
1:I:316:HIS:HB2	1:I:339:GLY:HA3	1.81	0.61	
1:J:130:ILE:HD12	1:J:130:ILE:O	1.99	0.61	
1:C:1:MET:HE1	1:C:21:PRO:HD3	1.81	0.61	
1:G:340:ARG:HG3	1:G:340:ARG:HH11	1.65	0.61	

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:316:HIS:ND1	1:B:338:ARG:NH1	2.47	0.61
1:D:-2:GLY:O	1:D:-1:SER:HB3	1.99	0.61
1:I:186:VAL:O	1:I:190:ILE:HG13	2.01	0.61
1:D:209:LEU:HD22	1:D:220:ALA:HB1	1.83	0.61
1:F:47:MET:HE3	1:F:52:TYR:HB2	1.81	0.61
1:I:321:THR:HG22	1:I:324:GLU:HG3	1.82	0.61
1:K:174:THR:HG23	1:K:198:ARG:HB3	1.83	0.61
1:B:309:ARG:HG2	1:B:309:ARG:HH11	1.66	0.60
1:C:157:THR:HB	1:C:158:PRO:HD3	1.84	0.60
1:J:322:LEU:HD23	1:J:322:LEU:H	1.67	0.60
1:L:318:GLU:OE1	1:L:337:ILE:HG23	2.02	0.60
1:L:278:LYS:HD3	4:L:503:CIT:O1	2.01	0.60
1:I:255:THR:O	1:I:259:VAL:HG22	2.02	0.60
1:L:147:ALA:O	1:L:150:PRO:HD2	2.02	0.60
1:G:340:ARG:HG3	1:G:340:ARG:NH1	2.15	0.59
1:J:286:PHE:N	1:J:286:PHE:CD1	2.68	0.59
1:B:149:ALA:HB3	1:B:150:PRO:HD3	1.84	0.59
1:A:103:GLU:OE2	1:A:135:ARG:HD2	2.03	0.59
1:J:14:VAL:HG13	1:J:16:VAL:HG23	1.85	0.59
1:K:278:LYS:HE2	4:K:401:CIT:O5	2.02	0.59
1:C:331:ARG:HH11	1:C:331:ARG:HG3	1.67	0.59
1:E:69:ALA:O	1:E:80:VAL:CG2	2.50	0.59
1:C:52:TYR:CZ	1:C:54:TYR:HB2	2.38	0.59
1:F:174:THR:HG23	1:F:198:ARG:HB3	1.84	0.59
1:L:156:LEU:HD23	1:L:295:TRP:CD1	2.38	0.58
1:L:286:PHE:CD1	1:L:286:PHE:N	2.70	0.58
1:H:-4:PRO:HB3	1:H:29:LEU:HD21	1.85	0.58
1:C:1:MET:HE2	1:C:21:PRO:HD3	1.83	0.58
1:H:-3:ARG:NH1	1:H:-3:ARG:CB	2.67	0.58
1:A:0:HIS:HB2	1:G:324:GLU:OE1	2.04	0.58
1:L:276:HIS:CE1	4:L:503:CIT:O5	2.57	0.58
1:H:56:LEU:C	1:H:56:LEU:HD12	2.24	0.58
1:H:47:MET:SD	1:H:51:GLN:O	2.62	0.57
1:C:37:LEU:HD21	1:C:328:ALA:HB1	1.86	0.57
1:K:42:ILE:CD1	1:K:332:LEU:HD23	2.33	0.57
1:D:165:VAL:HG11	1:D:265:HIS:CG	2.39	0.57
1:F:157:THR:HB	1:F:158:PRO:HD3	1.86	0.57
1:J:182:GLY:HA3	1:J:340:ARG:HH12	1.70	0.57
1:H:147:ALA:O	1:H:150:PRO:HD2	2.05	0.57
1:H:202:VAL:CG2	1:H:231:ILE:HD11	2.35	0.57
1:K:42:ILE:HD11	1:K:332:LEU:HD23	1.87	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:209:LEU:HD22	1:C:220:ALA:HB1	1.86	0.56
1:L:28:ILE:HD12	1:L:137:LEU:HD12	1.86	0.56
1:C:212:ALA:HA	1:C:215:VAL:HG22	1.87	0.56
1:F:192:ARG:HD2	1:F:216:GLY:O	2.05	0.56
1:F:271:ILE:HD13	1:I:281:PHE:HB2	1.87	0.56
1:J:154:ALA:HA	1:J:183:LEU:HD12	1.86	0.56
1:F:271:ILE:HD13	1:I:281:PHE:CB	2.35	0.56
1:K:165:VAL:HG11	1:K:265:HIS:CG	2.41	0.56
1:L:204:LEU:HD12	1:L:223:SER:HB3	1.87	0.56
1:B:165:VAL:HG11	1:B:265:HIS:CG	2.40	0.56
1:A:271:ILE:HD12	1:A:271:ILE:H	1.70	0.56
1:L:151:LEU:CD1	1:L:308:ALA:HB2	2.36	0.56
1:K:188:ILE:HG23	1:K:199:VAL:HG11	1.87	0.56
1:L:28:ILE:HD12	1:L:137:LEU:CD1	2.35	0.56
1:G:135:ARG:NH1	1:G:135:ARG:HG2	2.21	0.55
1:H:-3:ARG:HB3	1:H:-3:ARG:CZ	2.36	0.55
1:L:18:ILE:HB	1:L:19:PRO:CD	2.35	0.55
1:L:274:GLY:O	1:L:276:HIS:HD2	1.88	0.55
1:F:135:ARG:O	1:F:298:ARG:HD3	2.07	0.55
1:I:47:MET:HE2	1:I:51:GLN:HB2	1.86	0.55
1:B:278:LYS:HE2	4:B:503:CIT:H22	1.88	0.55
1:L:42:ILE:HG12	1:L:332:LEU:HD23	1.89	0.55
1:G:37:LEU:N	1:G:37:LEU:HD12	2.22	0.55
1:A:108:ARG:HH11	1:A:108:ARG:HG2	1.71	0.55
1:L:166:LEU:N	1:L:167:PRO:CD	2.70	0.55
1:D:16:VAL:HG23	1:D:18:ILE:HG23	1.88	0.55
1:E:227:ALA:O	1:E:231:ILE:HG13	2.07	0.55
1:F:278:LYS:HE2	4:I:503:CIT:H21	1.87	0.55
1:L:165:VAL:HG11	1:L:265:HIS:CG	2.41	0.55
1:D:16:VAL:CG2	1:D:18:ILE:HG23	2.36	0.55
1:B:278:LYS:CE	4:B:503:CIT:H22	2.36	0.55
1:B:166:LEU:N	1:B:167:PRO:CD	2.71	0.54
1:F:190:ILE:O	1:F:194:VAL:HG22	2.07	0.54
1:H:132:ASP:OD1	1:H:136:HIS:ND1	2.40	0.54
1:I:333:ARG:HH11	1:I:333:ARG:HG2	1.71	0.54
1:L:178:ILE:HG21	1:L:252:THR:HB	1.88	0.54
1:C:331:ARG:HG3	1:C:331:ARG:NH1	2.22	0.54
1:F:31:LYS:HG3	1:F:128:TYR:CE2	2.43	0.54
1:J:205:ASP:CB	1:J:207:ASP:OD1	2.56	0.54
1:F:185:HIS:O	1:F:189:GLN:HG3	2.07	0.54
1:L:155:GLY:HA2	1:L:186:VAL:HG11	1.90	0.54

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:K:147:ALA:O	1:K:150:PRO:HD2	2.08	0.54
1:J:254:ASP:O	1:J:258:GLN:HG3	2.08	0.54
1:B:4:VAL:HG22	1:B:15:VAL:HG22	1.90	0.54
1:H:156:LEU:HG	1:H:296:GLY:HA3	1.90	0.54
1:C:211:LEU:CD1	1:C:212:ALA:HB2	2.37	0.54
1:F:37:LEU:HD12	1:F:341:GLY:O	2.07	0.54
1:K:154:ALA:HA	1:K:183:LEU:CD1	2.38	0.54
1:F:155:GLY:O	1:F:158:PRO:HD2	2.09	0.53
1:K:33:THR:O	1:K:344:VAL:HG13	2.09	0.53
1:A:16:VAL:HG23	1:A:18:ILE:HG23	1.91	0.53
1:C:302:MET:CE	1:D:99:ALA:CB	2.87	0.53
1:B:210:ALA:O	1:B:213:ARG:HB2	2.08	0.53
1:C:180:VAL:CG1	1:C:180:VAL:O	2.57	0.53
1:F:89:PRO:HD3	1:F:295:TRP:CD2	2.44	0.53
1:H:87:TYR:CE2	1:H:89:PRO:HD2	2.44	0.53
1:D:149:ALA:HB3	1:D:150:PRO:HD3	1.91	0.53
1:C:340:ARG:HH11	1:C:340:ARG:HG2	1.73	0.53
1:E:40:SER:HB3	3:E:503:W46:C15	2.38	0.53
1:G:320:PHE:CD2	1:G:328:ALA:HB2	2.44	0.53
1:L:202:VAL:HG21	1:L:231:ILE:HD11	1.89	0.53
1:H:37:LEU:N	1:H:37:LEU:HD12	2.24	0.52
1:J:91:GLY:O	1:J:135:ARG:NH2	2.43	0.52
1:J:155:GLY:O	1:J:158:PRO:HD2	2.09	0.52
1:J:265:HIS:HD2	1:J:289:SER:OG	1.91	0.52
1:L:228:ALA:HA	1:L:259:VAL:CG1	2.39	0.52
1:K:340:ARG:HG2	1:K:340:ARG:NH1	2.17	0.52
1:K:204:LEU:O	1:K:222:LYS:NZ	2.42	0.52
1:A:149:ALA:HB3	1:A:150:PRO:HD3	1.90	0.52
1:D:-3:ARG:HA	1:D:-3:ARG:NE	2.25	0.52
1:F:45:MET:HE3	1:F:60:LEU:HD21	1.90	0.52
1:I:18:ILE:HB	1:I:19:PRO:HD2	1.92	0.52
1:K:186:VAL:HG13	1:K:313:LEU:HD22	1.91	0.52
1:K:318:GLU:OE2	1:K:331:ARG:NH2	2.43	0.52
1:C:166:LEU:N	1:C:167:PRO:CD	2.73	0.52
1:E:1:MET:HB2	1:E:127:GLU:HB2	1.91	0.52
1:G:180:VAL:O	1:G:180:VAL:CG1	2.58	0.52
1:I:321:THR:CG2	1:I:324:GLU:HG3	2.39	0.52
1:L:286:PHE:N	1:L:286:PHE:HD1	2.07	0.52
1:A:125:MET:HE3	1:A:329:TYR:HE2	1.74	0.51
1:F:9:ILE:HG21	1:F:49:ALA:HB2	1.92	0.51
1:L:18:ILE:HB	1:L:19:PRO:HD2	1.92	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:189:GLN:OE1	1:D:313:LEU:HA	2.10	0.51
1:H:25:PRO:HA	1:H:73:GLU:HB2	1.93	0.51
1:L:5:GLN:OE1	1:L:57:PRO:HB2	2.09	0.51
1:C:211:LEU:HD13	1:C:212:ALA:N	2.24	0.51
1:H:203:ASP:OD1	1:H:204:LEU:HD22	2.11	0.51
1:I:157:THR:HB	1:I:158:PRO:HD3	1.93	0.51
1:K:331:ARG:HD2	1:K:336:SER:OG	2.11	0.51
1:A:155:GLY:O	1:A:158:PRO:HD2	2.10	0.51
1:J:180:VAL:HG12	1:J:180:VAL:O	2.10	0.51
1:B:131:VAL:HG21	1:B:137:LEU:HD21	1.93	0.51
1:C:208:ARG:CA	1:C:211:LEU:HG	2.41	0.51
1:H:5:GLN:OE1	1:H:57:PRO:HB2	2.10	0.51
1:J:143:LEU:O	1:J:145:PRO:HD3	2.10	0.51
1:L:204:LEU:CD1	1:L:223:SER:HB3	2.39	0.51
1:L:271:ILE:HD13	3:L:504:W46:O13	2.11	0.51
1:B:180:VAL:HG11	1:B:201:ALA:HB1	1.92	0.51
1:I:180:VAL:O	1:I:180:VAL:CG1	2.58	0.51
1:J:8:GLU:HA	1:J:56:LEU:HD13	1.93	0.50
1:G:149:ALA:HB3	1:G:150:PRO:HD3	1.93	0.50
1:H:-4:PRO:HB3	1:H:29:LEU:CD2	2.41	0.50
1:L:235:THR:O	1:L:238:GLN:HB2	2.10	0.50
1:L:162:ILE:HD13	1:L:191:LEU:HG	1.94	0.50
1:H:166:LEU:N	1:H:167:PRO:CD	2.74	0.50
1:K:15:VAL:HG21	1:K:323:ASP:HA	1.93	0.50
1:E:69:ALA:O	1:E:80:VAL:HG21	2.12	0.50
1:I:89:PRO:HB3	1:I:295:TRP:CE3	2.46	0.50
1:C:305:VAL:HG12	1:C:309:ARG:HD3	1.94	0.50
1:J:31:LYS:HB3	1:J:67:THR:HG22	1.92	0.50
1:K:132:ASP:OD1	1:K:136:HIS:ND1	2.43	0.50
1:H:71:LEU:HD11	1:H:78:PHE:O	2.12	0.50
1:D:-5:VAL:O	1:D:128:TYR:CE2	2.65	0.49
1:I:42:ILE:HG23	1:I:333:ARG:NH1	2.27	0.49
1:G:151:LEU:HD11	1:G:308:ALA:HB2	1.93	0.49
1:H:180:VAL:O	1:H:180:VAL:HG12	2.11	0.49
1:E:45:MET:HE1	1:E:60:LEU:CD1	2.36	0.49
1:J:327:ALA:HA	1:J:330:ARG:HD2	1.93	0.49
1:H:5:GLN:NE2	1:H:18:ILE:HD13	2.28	0.49
1:H:185:HIS:CD2	1:H:215:VAL:HG11	2.47	0.49
1:J:205:ASP:HB3	1:J:207:ASP:OD1	2.12	0.49
1:A:47:MET:HB3	1:A:51:GLN:HB3	1.95	0.49
1:C:185:HIS:NE2	1:C:215:VAL:HG11	2.27	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:26:GLY:HA2	1:H:75:VAL:HG22	1.94	0.49
1:D:193:ALA:HA	1:D:312:ARG:NH2	2.27	0.49
1:J:180:VAL:HG11	1:J:212:ALA:HB2	1.95	0.49
1:A:65:VAL:HG13	1:A:149:ALA:HA	1.93	0.49
1:A:294:TYR:HA	3:A:503:W46:N01	2.28	0.49
1:D:42:ILE:HD12	1:D:42:ILE:C	2.32	0.49
1:E:99:ALA:HB2	1:K:302:MET:HE1	1.94	0.49
1:L:131:VAL:HG21	1:L:137:LEU:HD21	1.95	0.49
1:A:309:ARG:HH11	1:A:309:ARG:HG2	1.78	0.48
1:B:284:ILE:HG12	1:B:285:PRO:HD2	1.95	0.48
1:E:131:VAL:HG21	1:E:137:LEU:HD21	1.96	0.48
1:F:271:ILE:CD1	1:I:281:PHE:HB2	2.43	0.48
1:I:5:GLN:HA	1:I:58:LEU:O	2.12	0.48
1:I:105:TYR:OH	1:I:160:HIS:CE1	2.54	0.48
1:I:316:HIS:HB3	1:I:338:ARG:HH21	1.76	0.48
1:J:90:TRP:CZ2	1:J:117:PRO:HG3	2.48	0.48
1:D:124:SER:HA	1:D:129:MET:CE	2.43	0.48
1:D:205:ASP:HB3	1:D:208:ARG:CG	2.43	0.48
1:F:192:ARG:HD2	1:F:216:GLY:HA3	1.94	0.48
1:L:324:GLU:O	1:L:325:GLY:C	2.51	0.48
1:D:157:THR:HB	1:D:158:PRO:HD3	1.95	0.48
1:I:179:GLY:O	1:I:184:GLY:HA3	2.13	0.48
1:A:180:VAL:HG12	1:A:180:VAL:O	2.12	0.48
1:E:52:TYR:HE1	1:E:55:GLY:N	2.06	0.48
1:F:247:VAL:HB	1:F:252:THR:HG21	1.95	0.48
1:K:88:GLY:HA3	1:K:295:TRP:CZ2	2.48	0.48
1:J:202:VAL:HG22	1:J:221:VAL:HG22	1.95	0.48
1:L:143:LEU:HD23	1:L:148:ALA:HB2	1.95	0.48
1:A:22:THR:HG22	1:A:23:PRO:HD2	1.96	0.48
1:C:1:MET:HB2	1:C:127:GLU:HB2	1.95	0.48
1:G:90:TRP:CD1	1:G:136:HIS:ND1	2.81	0.48
1:I:316:HIS:HB3	1:I:338:ARG:NH2	2.29	0.48
1:J:0:HIS:CE1	1:J:17:ASP:O	2.66	0.48
1:F:165:VAL:HG11	1:F:265:HIS:CG	2.49	0.47
1:I:8:GLU:O	1:I:11:SER:HB3	2.14	0.47
1:L:265:HIS:HD2	1:L:289:SER:OG	1.96	0.47
1:E:9:ILE:HG12	1:E:56:LEU:HD11	1.96	0.47
1:G:317:THR:HA	1:G:340:ARG:O	2.14	0.47
1:I:88:GLY:O	1:I:117:PRO:HD2	2.14	0.47
1:K:321:THR:HG22	1:K:324:GLU:CD	2.35	0.47
1:B:115:THR:HB	1:B:120:GLY:HA3	1.94	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:232:ARG:NH1	1:C:259:VAL:HA	2.29	0.47
1:J:149:ALA:HB3	1:J:150:PRO:HD3	1.96	0.47
1:B:166:LEU:N	1:B:167:PRO:HD2	2.30	0.47
1:C:180:VAL:HG21	1:C:201:ALA:HB1	1.97	0.47
1:F:202:VAL:HA	1:F:221:VAL:O	2.15	0.47
1:H:260:VAL:O	1:H:285:PRO:HG2	2.15	0.47
1:I:321:THR:HG22	1:I:324:GLU:CG	2.44	0.47
1:J:26:GLY:HA2	1:J:75:VAL:CG2	2.45	0.47
1:J:37:LEU:HB3	1:J:332:LEU:HD22	1.96	0.47
1:L:276:HIS:HE1	4:L:503:CIT:O5	1.97	0.47
1:A:209:LEU:HD22	1:A:220:ALA:HB1	1.96	0.47
1:B:87:TYR:CZ	1:B:89:PRO:HG2	2.49	0.47
1:F:166:LEU:N	1:F:167:PRO:CD	2.76	0.47
1:D:2:LYS:NZ	1:D:323:ASP:OD2	2.48	0.47
1:G:158:PRO:HB3	1:G:246:PHE:CE1	2.49	0.47
1:J:16:VAL:HG12	1:J:18:ILE:CG2	2.41	0.47
1:J:37:LEU:HD11	1:J:343:VAL:HG23	1.97	0.47
1:C:274:GLY:O	1:C:276:HIS:HD2	1.98	0.47
1:D:59:THR:HB	1:D:123:GLY:H	1.79	0.47
1:E:322:LEU:CD1	1:E:345:PRO:HB3	2.45	0.47
1:I:231:ILE:HB	1:I:259:VAL:HG11	1.96	0.47
1:J:86:VAL:HG21	1:J:129:MET:HE1	1.96	0.47
1:J:205:ASP:HB2	1:J:207:ASP:OD1	2.15	0.47
1:C:52:TYR:CE1	1:C:54:TYR:CD2	3.02	0.47
1:C:165:VAL:HG11	1:C:265:HIS:CG	2.50	0.47
1:D:188:ILE:HG23	1:D:199:VAL:HG11	1.96	0.47
1:F:71:LEU:HD11	1:F:78:PHE:O	2.15	0.47
1:G:165:VAL:HG11	1:G:265:HIS:CD2	2.49	0.47
1:D:166:LEU:N	1:D:167:PRO:CD	2.78	0.47
1:D:205:ASP:HB3	1:D:208:ARG:HG3	1.97	0.47
1:F:18:ILE:HB	1:F:19:PRO:CD	2.45	0.47
1:A:116:PRO:HG2	1:A:119:LEU:HB2	1.97	0.46
1:G:151:LEU:HD11	1:G:308:ALA:CB	2.45	0.46
1:J:16:VAL:CG1	1:J:18:ILE:HG23	2.44	0.46
1:L:40:SER:CB	3:L:504:W46:C15	2.93	0.46
1:D:-4:PRO:HG3	1:D:70:GLU:HB2	1.96	0.46
1:H:-3:ARG:CB	1:H:-3:ARG:HH11	2.28	0.46
1:H:87:TYR:CZ	1:H:89:PRO:HD2	2.51	0.46
1:J:239:GLY:O	1:J:261:ALA:HB2	2.14	0.46
1:J:340:ARG:HG2	1:J:340:ARG:HH11	1.79	0.46
1:D:-5:VAL:H2	1:D:-4:PRO:HD3	1.80	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:37:LEU:HD12	1:G:37:LEU:H	1.79	0.46
1:J:41:ASP:O	1:J:45:MET:HG3	2.14	0.46
1:L:1:MET:HA	1:L:127:GLU:OE2	2.15	0.46
1:C:9:ILE:HD13	1:C:49:ALA:HA	1.97	0.46
1:D:98:CYS:SG	1:D:103:GLU:HG3	2.55	0.46
1:J:188:ILE:HG21	1:J:215:VAL:HG23	1.98	0.46
1:B:248:GLY:HA3	1:B:270:GLY:O	2.15	0.46
1:H:260:VAL:HG11	1:H:266:ILE:HD11	1.97	0.46
1:I:156:LEU:HD11	1:I:296:GLY:HA3	1.97	0.46
1:I:248:GLY:O	1:I:272:HIS:HB2	2.16	0.46
1:B:165:VAL:HG11	1:B:265:HIS:CD2	2.51	0.46
1:B:316:HIS:CB	1:B:338:ARG:NH1	2.71	0.46
1:D:165:VAL:HG11	1:D:265:HIS:ND1	2.31	0.46
1:D:271:ILE:N	1:D:271:ILE:CD1	2.76	0.46
1:C:180:VAL:HG11	1:C:211:LEU:HD11	1.97	0.46
1:F:230:ALA:O	1:F:233:GLU:HB3	2.16	0.46
1:D:276:HIS:HB3	1:E:283:MET:HE1	1.97	0.46
1:F:25:PRO:HG2	1:L:73:GLU:HG3	1.97	0.46
1:H:157:THR:HB	1:H:158:PRO:HD3	1.97	0.46
1:K:32:VAL:HG11	1:K:124:SER:O	2.16	0.46
1:A:157:THR:HB	1:A:158:PRO:HD3	1.97	0.46
1:K:146:VAL:HG11	1:K:319:THR:HG22	1.98	0.46
1:D:309:ARG:HG2	1:D:309:ARG:HH11	1.81	0.46
1:E:99:ALA:HB3	1:K:302:MET:HE1	1.93	0.45
1:G:160:HIS:HB2	1:G:300:GLU:OE1	2.15	0.45
1:G:179:GLY:O	1:G:184:GLY:HA3	2.16	0.45
1:J:324:GLU:O	1:J:327:ALA:HB3	2.17	0.45
1:L:271:ILE:CD1	3:L:504:W46:O13	2.64	0.45
1:A:-4:PRO:HG3	1:A:31:LYS:HE2	1.99	0.45
1:A:202:VAL:HG12	1:A:223:SER:HB3	1.99	0.45
1:D:340:ARG:HG2	1:D:340:ARG:HH11	1.81	0.45
1:G:221:VAL:HG21	1:G:230:ALA:CB	2.46	0.45
1:I:307:LEU:HB3	1:I:313:LEU:HD13	1.99	0.45
1:J:157:THR:HB	1:J:158:PRO:HD3	1.97	0.45
1:J:162:ILE:HD13	1:J:191:LEU:HG	1.99	0.45
1:E:18:ILE:HB	1:E:19:PRO:CD	2.41	0.45
1:L:323:ASP:O	1:L:326:PRO:HD2	2.17	0.45
1:C:37:LEU:HD21	1:C:328:ALA:CB	2.46	0.45
1:G:158:PRO:HB3	1:G:246:PHE:CZ	2.51	0.45
1:G:320:PHE:CG	1:G:328:ALA:HB2	2.52	0.45
1:J:29:LEU:HA	1:J:129:MET:O	2.16	0.45

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:K:243:VAL:HG11	1:K:256:ALA:CB	2.46	0.45
1:L:260:VAL:O	1:L:285:PRO:HG2	2.17	0.45
1:B:14:VAL:HG13	1:B:16:VAL:HG13	1.98	0.45
1:B:37:LEU:HD12	1:B:37:LEU:N	2.31	0.45
1:C:88:GLY:HA3	1:C:295:TRP:CH2	2.52	0.45
1:F:156:LEU:HD23	1:F:295:TRP:CD1	2.52	0.45
1:L:40:SER:HB2	3:L:504:W46:C14	2.47	0.45
1:A:52:TYR:CZ	1:A:54:TYR:HB2	2.51	0.45
1:C:211:LEU:HD13	1:C:212:ALA:HB2	1.97	0.45
1:D:202:VAL:HG12	1:D:223:SER:HB2	1.98	0.45
1:J:166:LEU:N	1:J:167:PRO:CD	2.79	0.45
1:J:298:ARG:O	1:J:302:MET:HG3	2.17	0.45
1:L:98:CYS:SG	1:L:103:GLU:HG2	2.57	0.45
1:F:131:VAL:HG21	1:F:137:LEU:HD21	1.99	0.45
1:K:272:HIS:O	1:K:273:ALA:C	2.55	0.45
1:L:209:LEU:HD22	1:L:220:ALA:HB1	1.99	0.45
1:D:91:GLY:HA3	1:D:103:GLU:HG2	1.98	0.45
1:H:49:ALA:O	1:H:52:TYR:HB3	2.17	0.45
1:I:254:ASP:O	1:I:258:GLN:HG3	2.17	0.45
1:K:186:VAL:CG1	1:K:313:LEU:HD22	2.47	0.45
1:K:102:ARG:HG2	1:K:102:ARG:HH11	1.81	0.44
1:L:59:THR:HB	1:L:123:GLY:H	1.82	0.44
1:D:-5:VAL:HG21	1:D:31:LYS:HZ2	1.81	0.44
1:J:52:TYR:CZ	1:J:54:TYR:HB2	2.52	0.44
1:J:131:VAL:HG21	1:J:137:LEU:HD21	1.98	0.44
1:J:183:LEU:HB3	1:J:246:PHE:CD1	2.52	0.44
1:K:38:CYS:SG	1:K:40:SER:OG	2.75	0.44
1:C:284:ILE:HG12	1:C:285:PRO:HD2	1.99	0.44
1:I:165:VAL:HG11	1:I:265:HIS:CG	2.52	0.44
1:I:233:GLU:OE2	1:I:233:GLU:HA	2.18	0.44
1:L:65:VAL:HG12	1:L:66:GLY:N	2.33	0.44
1:L:146:VAL:HG13	1:L:342:VAL:HG11	1.99	0.44
1:B:151:LEU:HD23	1:B:315:ILE:HD11	1.98	0.44
1:G:190:ILE:O	1:G:194:VAL:HG22	2.17	0.44
1:C:250:GLN:NE2	1:C:254:ASP:OD1	2.47	0.44
1:E:46:ASP:OD1	1:E:333:ARG:NH2	2.34	0.44
1:I:37:LEU:N	1:I:37:LEU:HD23	2.33	0.44
1:K:67:THR:HA	1:K:82:ASP:O	2.18	0.44
1:L:180:VAL:HG12	1:L:180:VAL:O	2.18	0.44
1:A:179:GLY:O	1:A:184:GLY:HA3	2.18	0.44
1:C:47:MET:HA	1:C:48:PRO:HD3	1.86	0.44

	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:104:ASN:OD1	1:F:104:ASN:N	2.51	0.44
1:G:324:GLU:O	1:G:327:ALA:HB3	2.18	0.44
1:I:42:ILE:HD12	1:I:333:ARG:HG3	1.99	0.44
1:J:272:HIS:O	1:J:275:ALA:HB3	2.18	0.44
1:J:281:PHE:HB3	1:J:282:PHE:HD1	1.82	0.44
1:K:179:GLY:O	1:K:184:GLY:HA3	2.18	0.44
1:K:180:VAL:HG12	1:K:180:VAL:O	2.18	0.44
1:I:102:ARG:HA	1:I:297:THR:HG22	1.99	0.43
1:K:331:ARG:O	1:K:336:SER:HB3	2.17	0.43
1:L:291:VAL:HG13	1:L:293:PRO:HD3	2.00	0.43
1:E:62:HIS:HA	1:E:117:PRO:O	2.18	0.43
1:E:99:ALA:HB3	1:K:302:MET:HE3	1.99	0.43
1:E:322:LEU:HD12	1:E:345:PRO:HB3	2.00	0.43
1:F:62:HIS:HA	1:F:117:PRO:O	2.18	0.43
1:F:52:TYR:CE1	1:F:56:LEU:HG	2.53	0.43
1:G:156:LEU:HD11	1:G:296:GLY:HA3	2.00	0.43
1:H:2:LYS:N	1:H:127:GLU:OE2	2.42	0.43
1:I:166:LEU:N	1:I:167:PRO:CD	2.81	0.43
1:J:37:LEU:HD21	1:J:328:ALA:HB1	2.00	0.43
1:A:37:LEU:HD23	1:A:329:TYR:CZ	2.53	0.43
1:F:6:TYR:CZ	1:F:45:MET:HB3	2.54	0.43
1:F:54:TYR:O	1:F:54:TYR:CG	2.70	0.43
1:J:150:PRO:O	1:J:154:ALA:N	2.45	0.43
1:K:59:THR:HB	1:K:123:GLY:H	1.84	0.43
1:K:185:HIS:NE2	1:K:215:VAL:HG11	2.33	0.43
1:H:265:HIS:HE1	1:H:291:VAL:HG12	1.83	0.43
1:I:272:HIS:O	1:I:273:ALA:C	2.55	0.43
1:J:18:ILE:CB	1:J:19:PRO:CD	2.92	0.43
1:J:26:GLY:HA2	1:J:75:VAL:HG22	2.00	0.43
1:J:207:ASP:O	1:J:211:LEU:HD13	2.18	0.43
1:B:185:HIS:NE2	1:B:215:VAL:HG11	2.33	0.43
1:D:321:THR:HG22	1:D:324:GLU:CD	2.37	0.43
1:E:209:LEU:HD22	1:E:220:ALA:HB1	2.01	0.43
1:G:202:VAL:HA	1:G:221:VAL:O	2.18	0.43
1:L:6:TYR:O	1:L:56:LEU:HD22	2.19	0.43
1:K:150:PRO:O	1:K:154:ALA:N	2.52	0.43
1:A:165:VAL:HG11	1:A:265:HIS:CG	2.54	0.43
1:D:39:HIS:O	1:D:42:ILE:HG13	2.19	0.43
1:D:190:ILE:O	1:D:194:VAL:HG22	2.19	0.43
1:F:4:VAL:HG22	1:F:15:VAL:HG22	2.01	0.43
1:D:268:VAL:HB	1:D:292:THR:HG22	1.99	0.43

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:166:LEU:N	1:E:167:PRO:CD	2.81	0.43
1:E:322:LEU:HG	1:E:345:PRO:HB3	2.01	0.43
1:J:324:GLU:O	1:J:325:GLY:C	2.57	0.43
1:A:254:ASP:O	1:A:258:GLN:HG3	2.19	0.43
1:C:344:VAL:O	1:C:344:VAL:HG12	2.19	0.43
1:F:18:ILE:HB	1:F:19:PRO:HD2	2.01	0.43
1:J:14:VAL:HG22	1:J:15:VAL:N	2.34	0.43
1:K:192:ARG:HH11	1:K:192:ARG:HB3	1.84	0.43
1:L:324:GLU:O	1:L:327:ALA:N	2.51	0.43
1:A:302:MET:CE	1:B:99:ALA:HB3	2.49	0.42
1:E:165:VAL:HG11	1:E:265:HIS:CG	2.54	0.42
1:I:149:ALA:N	1:I:150:PRO:CD	2.82	0.42
1:J:39:HIS:CE1	1:J:42:ILE:HD11	2.54	0.42
1:B:40:SER:OG	3:B:504:W46:C15	2.68	0.42
1:C:302:MET:HE1	1:D:99:ALA:HB2	2.01	0.42
1:I:59:THR:HB	1:I:123:GLY:H	1.84	0.42
1:L:251:SER:O	1:L:254:ASP:HB2	2.18	0.42
1:L:263:ASP:HA	1:L:287:GLY:O	2.18	0.42
1:C:180:VAL:HG22	1:C:188:ILE:HD11	2.02	0.42
1:L:272:HIS:O	1:L:273:ALA:C	2.58	0.42
1:C:99:ALA:HB2	1:D:302:MET:HE1	2.00	0.42
1:K:146:VAL:HG13	1:K:342:VAL:HG11	2.01	0.42
1:A:0:HIS:HE1	1:G:319:THR:O	2.03	0.42
1:A:302:MET:CE	1:B:99:ALA:CB	2.97	0.42
1:B:148:ALA:HA	1:B:151:LEU:HD12	2.02	0.42
1:B:183:LEU:HD12	1:B:183:LEU:N	2.34	0.42
1:C:98:CYS:SG	1:C:103:GLU:HG3	2.60	0.42
1:C:155:GLY:HA2	1:C:186:VAL:HG11	2.00	0.42
1:G:155:GLY:HA2	1:G:186:VAL:HG11	2.02	0.42
1:H:179:GLY:HA3	1:H:247:VAL:HG23	2.02	0.42
1:K:166:LEU:N	1:K:167:PRO:CD	2.83	0.42
1:C:18:ILE:HB	1:C:19:PRO:HD2	2.02	0.42
1:E:268:VAL:HB	1:E:292:THR:HG22	2.00	0.42
1:K:103:GLU:OE2	1:K:135:ARG:HD2	2.19	0.42
1:K:162:ILE:HD13	1:K:191:LEU:HG	2.02	0.42
1:A:88:GLY:HA3	1:A:295:TRP:CZ2	2.55	0.42
1:F:88:GLY:HA3	1:F:295:TRP:CZ2	2.54	0.42
1:G:135:ARG:HG2	1:G:135:ARG:HH11	1.84	0.42
1:H:26:GLY:HA2	1:H:75:VAL:CG2	2.50	0.42
1:J:71:LEU:HD22	1:J:75:VAL:HG12	2.01	0.42
1:A:203:ASP:OD1	1:A:204:LEU:N	2.48	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:42:ILE:CD1	1:G:332:LEU:HG	2.50	0.42
1:K:16:VAL:HG12	1:K:18:ILE:HG23	2.02	0.42
1:K:112:LEU:CD1	1:K:112:LEU:N	2.83	0.42
1:E:272:HIS:O	1:E:273:ALA:C	2.57	0.42
1:H:156:LEU:CD1	1:H:296:GLY:HA3	2.50	0.42
1:J:153:ASP:OD1	3:J:503:W46:C16	2.68	0.42
1:J:37:LEU:HD21	1:J:328:ALA:CB	2.50	0.41
1:J:185:HIS:NE2	1:J:215:VAL:HG11	2.35	0.41
1:K:49:ALA:O	1:K:52:TYR:HB3	2.20	0.41
1:L:42:ILE:CG1	1:L:332:LEU:HD23	2.50	0.41
1:L:284:ILE:HG12	1:L:285:PRO:HD2	2.01	0.41
1:B:192:ARG:HA	1:B:192:ARG:CZ	2.49	0.41
1:A:74:GLY:HA3	1:B:25:PRO:HB2	2.03	0.41
1:D:39:HIS:O	1:D:42:ILE:CD1	2.68	0.41
1:K:155:GLY:O	1:K:158:PRO:HD2	2.21	0.41
1:H:264:GLY:O	1:H:288:ALA:HA	2.20	0.41
1:J:45:MET:HE1	1:J:60:LEU:CD1	2.46	0.41
1:J:68:VAL:O	1:J:81:GLY:N	2.46	0.41
1:J:151:LEU:HD23	1:J:315:ILE:HD11	2.02	0.41
1:A:47:MET:HB2	1:A:52:TYR:HB2	2.02	0.41
1:B:32:VAL:HG11	1:B:124:SER:O	2.20	0.41
1:B:88:GLY:HA3	1:B:295:TRP:CZ2	2.54	0.41
1:F:45:MET:HE3	1:F:60:LEU:CD2	2.51	0.41
1:G:37:LEU:CD1	1:G:341:GLY:O	2.68	0.41
1:H:318:GLU:OE2	1:H:331:ARG:NH1	2.46	0.41
1:I:229:ASP:O	1:I:232:ARG:HB2	2.21	0.41
1:J:205:ASP:O	1:J:208:ARG:HB2	2.21	0.41
1:B:49:ALA:O	1:B:52:TYR:HB3	2.20	0.41
1:B:67:THR:HA	1:B:82:ASP:O	2.20	0.41
1:B:155:GLY:HA2	1:B:186:VAL:HG11	2.03	0.41
1:D:-3:ARG:HA	1:D:-3:ARG:CZ	2.50	0.41
1:G:128:TYR:CD1	1:G:128:TYR:N	2.89	0.41
1:I:232:ARG:O	1:I:237:GLY:N	2.49	0.41
1:I:333:ARG:HG2	1:I:333:ARG:NH1	2.34	0.41
1:J:13:PRO:HG3	1:J:45:MET:CE	2.50	0.41
1:J:157:THR:N	1:J:158:PRO:CD	2.83	0.41
1:L:30:LEU:HD23	1:L:68:VAL:HA	2.01	0.41
1:L:149:ALA:HB3	1:L:150:PRO:HD3	2.02	0.41
1:B:104:ASN:OD1	1:B:104:ASN:N	2.54	0.41
1:E:324:GLU:O	1:E:325:GLY:C	2.59	0.41
1:J:14:VAL:CG1	1:J:16:VAL:HG23	2.51	0.41

	i i i i i i i i i i i i i i i i i i i	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:K:321:THR:HG22	1:K:324:GLU:CG	2.50	0.41
1:L:174:THR:CG2	1:L:200:ILE:HD12	2.51	0.41
1:G:324:GLU:O	1:G:325:GLY:C	2.59	0.41
1:A:179:GLY:HA3	1:A:247:VAL:HG23	2.01	0.41
1:E:18:ILE:CB	1:E:19:PRO:HD2	2.42	0.41
1:E:67:THR:HA	1:E:82:ASP:O	2.21	0.41
1:F:14:VAL:HG23	1:F:16:VAL:HG13	2.03	0.41
1:G:62:HIS:HA	1:G:117:PRO:O	2.20	0.41
1:G:221:VAL:HG21	1:G:230:ALA:HB1	2.03	0.41
1:G:295:TRP:HB3	1:G:296:GLY:H	1.66	0.41
1:G:298:ARG:H	1:G:298:ARG:HG3	1.69	0.41
1:H:12:GLU:HB3	1:H:13:PRO:HD2	2.02	0.41
1:K:291:VAL:HG13	1:K:293:PRO:HD3	2.01	0.41
1:D:33:THR:O	1:D:344:VAL:HG13	2.21	0.41
1:E:205:ASP:HB3	1:E:208:ARG:HB2	2.02	0.41
1:F:149:ALA:HB3	1:F:150:PRO:HD3	2.03	0.41
1:H:178:ILE:HB	1:H:245:ASP:HA	2.03	0.41
1:H:307:LEU:HD23	1:H:307:LEU:HA	1.90	0.41
1:L:203:ASP:O	1:L:223:SER:N	2.52	0.41
1:A:302:MET:HE1	1:B:96:HIS:HA	2.03	0.40
1:C:149:ALA:HB3	1:C:150:PRO:HD3	2.03	0.40
1:C:154:ALA:O	1:C:158:PRO:HG2	2.20	0.40
1:D:47:MET:HA	1:D:48:PRO:HD3	1.90	0.40
1:E:135:ARG:O	1:E:298:ARG:CD	2.69	0.40
1:L:42:ILE:HD12	1:L:333:ARG:HG3	2.04	0.40
1:C:52:TYR:OH	1:C:54:TYR:HB2	2.20	0.40
1:G:340:ARG:HH11	1:G:340:ARG:CG	2.30	0.40
1:J:83:ALA:HB1	1:J:140:ILE:HD11	2.02	0.40
1:B:37:LEU:HD21	1:B:328:ALA:HB1	2.01	0.40
1:B:71:LEU:HD22	1:B:75:VAL:HG12	2.03	0.40
1:D:202:VAL:HG21	1:D:231:ILE:HD11	2.03	0.40
1:I:206:ASP:OD1	1:I:222:LYS:HE2	2.21	0.40
1:K:327:ALA:HA	1:K:330:ARG:NH1	2.36	0.40
1:A:32:VAL:HG11	1:A:124:SER:O	2.21	0.40
1:D:88:GLY:O	1:D:116:PRO:HB3	2.20	0.40
1:E:185:HIS:CE1	1:E:189:GLN:NE2	2.89	0.40
1:I:90:TRP:CE2	1:I:117:PRO:HD3	2.56	0.40
1:J:24:GLY:N	1:J:27:GLU:OE1	2.45	0.40
1:J:324:GLU:O	1:J:328:ALA:N	2.52	0.40
1:K:87:TYR:CE1	1:K:89:PRO:HD2	2.57	0.40
1:K:160:HIS:HB2	1:K:300:GLU:OE1	2.21	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:L:28:ILE:CG2	1:L:68:VAL:HG13	2.51	0.40
1:F:30:LEU:HD23	1:F:68:VAL:HA	2.04	0.40
1:H:144:ASP:HA	1:H:145:PRO:HD3	1.98	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:338:ARG:NH2	$1:E:324:GLU:OE1[1_455]$	2.06	0.14

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	350/365~(96%)	330 (94%)	18 (5%)	2(1%)	25	64
1	В	348/365~(95%)	328 (94%)	19 (6%)	1 (0%)	41	76
1	С	347/365~(95%)	331 (95%)	15 (4%)	1 (0%)	41	76
1	D	349/365~(96%)	327 (94%)	21 (6%)	1 (0%)	41	76
1	Ε	347/365~(95%)	327 (94%)	18 (5%)	2(1%)	25	64
1	F	346/365~(95%)	329~(95%)	17 (5%)	0	100	100
1	G	348/365~(95%)	327 (94%)	20 (6%)	1 (0%)	41	76
1	Н	348/365~(95%)	329 (94%)	19 (6%)	0	100	100
1	Ι	347/365~(95%)	327 (94%)	18 (5%)	2(1%)	25	64
1	J	347/365~(95%)	315 (91%)	30 (9%)	2(1%)	25	64
1	Κ	347/365~(95%)	331 (95%)	15 (4%)	1 (0%)	41	76
1	L	347/365~(95%)	324 (93%)	23 (7%)	0	100	100
All	All	4171/4380 (95%)	3925 (94%)	233 (6%)	13 (0%)	41	76

Mol	Chain	Res	Type
1	J	49	ALA
1	В	182	GLY
1	Е	24	GLY
1	Κ	181	GLY
1	D	225	ALA
1	J	325	GLY
1	С	182	GLY
1	Ι	182	GLY
1	А	24	GLY
1	Е	180	VAL
1	G	325	GLY
1	А	55	GLY
1	Ι	181	GLY

All (13) Ramachandran outliers are listed below:

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	254/265~(96%)	242 (95%)	12~(5%)	26	63
1	В	252/265~(95%)	242~(96%)	10 (4%)	31	68
1	С	251/265~(95%)	236~(94%)	15~(6%)	19	53
1	D	253/265~(96%)	250~(99%)	3~(1%)	71	90
1	Е	251/265~(95%)	243 (97%)	8 (3%)	39	74
1	F	250/265~(94%)	237~(95%)	13~(5%)	23	59
1	G	252/265~(95%)	243~(96%)	9 (4%)	35	70
1	Н	252/265~(95%)	242 (96%)	10 (4%)	31	68
1	Ι	251/265~(95%)	238~(95%)	13 (5%)	23	59
1	J	251/265~(95%)	237~(94%)	14 (6%)	21	56
1	Κ	251/265~(95%)	234 (93%)	17 (7%)	16	48
1	L	251/265~(95%)	242 (96%)	9 (4%)	35	70
All	All	3019/3180~(95%)	2886 (96%)	133 (4%)	28	65

1 A 17 ASP 1 A 22 THR 1 A 51 GLN 1 A 122 PRO 1 A 163 SER 1 A 163 SER 1 A 163 SER 1 A 204 LEU 1 A 204 LEU 1 A 205 TRP 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 295 TRP 1 B 295 TRP 1 B 295 TRP 1 B 295 TRP 1 B 299 SER 1	Mol	Chain	Res	Type
1 A 22 THR 1 A 51 GLN 1 A 122 PRO 1 A 163 SER 1 A 185 HIS 1 A 204 LEU 1 A 204 LEU 1 A 205 SER 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 295 TRP 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 C 38 CYS 1 C 180 VAL 1 C	1	А	17	ASP
1 A 51 GLN 1 A 122 PRO 1 A 163 SER 1 A 185 HIS 1 A 204 LEU 1 A 208 ARG 1 A 2071 ILE 1 A 271 ILE 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 295 TRP 1 B 295 TRP 1 B 340 ARG 1 C 23 GLU 1 C 38 CYS 1 C 233 GLU 1	1	А	22	THR
1 A 122 PRO 1 A 163 SER 1 A 185 HIS 1 A 204 LEU 1 A 204 LEU 1 A 205 SER 1 A 295 TRP 1 A 295 TRP 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 295 TRP 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 C 238 CYS 1 C 180 VAL 1 C 233 GLU 1 <	1	А	51	GLN
1 A 163 SER 1 A 185 HIS 1 A 204 LEU 1 A 208 ARG 1 A 251 SER 1 A 271 ILE 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 295 TRP 1 B 295 TRP 1 B 295 TRP 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 180 VAL 1 C 233 GLU 1	1	А	122	PRO
1 A 185 HIS 1 A 204 LEU 1 A 208 ARG 1 A 251 SER 1 A 271 ILE 1 A 295 TRP 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 295 TRP 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 233 GLU 1 C 233 GLU 1	1	А	163	SER
1 A 204 LEU 1 A 208 ARG 1 A 251 SER 1 A 271 ILE 1 A 295 TRP 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 180 VAL 1 C 233 GLU 1 C 233 GLU 1	1	А	185	HIS
1 A 208 ARG 1 A 251 SER 1 A 271 ILE 1 A 295 TRP 1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 295 TRP 1 B 295 TRP 1 B 295 TRP 1 B 295 TRP 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 180 VAL 1 C 233 GLU 1 C 238 GLN 1	1	А	204	LEU
1 A 251 SER 1 A 271 ILE 1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 12 ARG 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 295 TRP 1 B 295 TRP 1 B 299 SER 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 233 GLU 1 C 233 GLU 1 C 238 GLN 1 C<	1	А	208	ARG
1 A 271 ILE 1 A 295 TRP 1 B -1 SER 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 267 SER 1 B 295 TRP 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 180 VAL 1 C 233 GLU 1 C 233 GLU 1 C 238 GLN 1 C 255 THR 1 C<	1	А	251	SER
1 A 295 TRP 1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 295 TRP 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 180 VAL 1 C 232 ARG 1 C 233 GLU 1 C 238 GLN 1 C 255 THR 1 C 258 GLN 1 C	1	А	271	ILE
1 A 340 ARG 1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 295 TRP 1 B 295 TRP 1 B 340 ARG 1 B 340 ARG 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 180 VAL 1 C 232 ARG 1 C 233 GLU 1 C 233 GLU 1 C 255 THR 1 C 258 GLN 1 C	1	А	295	TRP
1 B -1 SER 1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 192 SER 1 B 195 SER 1 B 251 SER 1 B 267 SER 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 180 VAL 1 C 232 ARG 1 C 233 GLU 1 C 233 GLU 1 C 238 GLN 1 C 255 THR 1 C 258 GLN 1 C 258 GLN 1 C	1	А	340	ARG
1 B 31 LYS 1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 267 SER 1 B 295 TRP 1 B 299 SER 1 B 340 ARG 1 B 340 ARG 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 180 VAL 1 C 180 VAL 1 C 232 ARG 1 C 233 GLU 1 C 238 GLN 1 C 255 THR 1 C 258 GLN 1 C 295 TRP 1	1	В	-1	SER
1 B 37 LEU 1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 267 SER 1 B 295 TRP 1 B 299 SER 1 B 299 SER 1 B 299 SER 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 180 VAL 1 C 232 ARG 1 C 233 GLU 1 C 233 GLU 1 C 255 THR 1 C 258 GLN 1 C 258 GLN 1 C 295 TRP 1 <	1	В	31	LYS
1 B 192 ARG 1 B 195 SER 1 B 251 SER 1 B 267 SER 1 B 295 TRP 1 B 299 SER 1 B 299 SER 1 B 340 ARG 1 C 22 THR 1 C 38 CYS 1 C 38 CYS 1 C 180 VAL 1 C 180 VAL 1 C 232 ARG 1 C 233 GLU 1 C 233 GLN 1 C 255 THR 1 C 258 GLN 1 C 295 TRP 1 C 295 TRP 1 C 312 ARG 1 D 267 SER 1 <t< td=""><td>1</td><td>В</td><td>37</td><td>LEU</td></t<>	1	В	37	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	192	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	195	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	251	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	267	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	295	TRP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	299	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	340	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	22	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	38	CYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	44	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	73	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	180	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	211	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	232	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	233	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	238	GLN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	255	THR
1 C 267 SER 1 C 295 TRP 1 C 299 SER 1 C 312 ARG 1 D 267 SER 1 D 267 SER 1 D 267 SER 1 D 271 ILE 1 D 295 TRP	1	С	258	GLN
1 C 295 TRP 1 C 299 SER 1 C 312 ARG 1 D 267 SER 1 D 271 ILE 1 D 295 TRP	1	С	267	SER
1 C 299 SER 1 C 312 ARG 1 D 267 SER 1 D 271 ILE 1 D 295 TRP	1	С	295	TRP
1 C 312 ARG 1 D 267 SER 1 D 271 ILE 1 D 295 TRP	1	С	299	SER
1 D 267 SER 1 D 271 ILE 1 D 295 TRP	1	С	312	ARG
1 D 271 ILE 1 D 295 TRP	1	D	267	SER
1 D 295 TRP	1	D	271	ILE
	1	D	295	TRP
1 E 73 GLU	1	Е	73	GLU
1 E 80 VAL	1	Е	80	VAL

All (133) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	Е	84	VAL
1	Е	107	THR
1	Е	251	SER
1	Е	255	THR
1	Е	267	SER
1	Е	295	TRP
1	F	37	LEU
1	F	38	CYS
1	F	45	MET
1	F	54	TYR
1	F	65	VAL
1	F	114	ILE
1	F	119	LEU
1	F	192	ARG
1	F	195	SER
1	F	295	TRP
1	F	302	MET
1	F	312	ARG
1	F	340	ARG
1	G	-1	SER
1	G	37	LEU
1	G	119	LEU
1	G	267	SER
1	G	295	TRP
1	G	298	ARG
1	G	299	SER
1	G	319	THR
1	G	340	ARG
1	Н	-3	ARG
1	Н	47	MET
1	Н	89	PRO
1	Н	116	PRO
1	Н	122	PRO
1	Н	124	SER
1	Н	205	ASP
1	Н	238	GLN
1	Н	313	LEU
1	H	340	ARG
1	I	11	SER
1	I	37	LEU
1	I	39	HIS
1	Ι	51	GLN

Mol	Chain	Res	Type
1	Ι	76	THR
1	Ι	211	LEU
1	Ι	259	VAL
1	Ι	267	SER
1	Ι	295	TRP
1	Ι	298	ARG
1	Ι	299	SER
1	Ι	312	ARG
1	Ι	340	ARG
1	J	8	GLU
1	J	44	VAL
1	J	51	GLN
1	J	67	THR
1	J	86	VAL
1	J	125	MET
1	J	204	LEU
1	J	223	SER
1	J	251	SER
1	J	267	SER
1	J	271	ILE
1	J	295	TRP
1	J	317	THR
1	J	322	LEU
1	K	-1	SER
1	K	37	LEU
1	K	76	THR
1	K	122	PRO
1	K	135	ARG
1	К	173	SER
1	Κ	174	THR
1	K	192	ARG
1	К	238	GLN
1	K	241	THR
1	K	267	SER
1	К	295	TRP
1	K	298	ARG
1	K	299	SER
1	K	319	THR
1	K	321	THR
1	K	340	ARG
1	L	-3	ARG
1	L	17	ASP

Continued from previous page...

Mol	Chain	Res	Type
1	L	52	TYR
1	L	63	GLU
1	L	255	THR
1	L	267	SER
1	L	292	THR
1	L	295	TRP
1	L	340	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (11) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	С	96	HIS
1	С	276	HIS
1	D	276	HIS
1	F	258	GLN
1	Н	276	HIS
1	Ι	160	HIS
1	Ι	265	HIS
1	J	5	GLN
1	J	265	HIS
1	L	265	HIS
1	L	276	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 41 ligands modelled in this entry, 24 are monoatomic - leaving 17 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Bos Link Bond lengths				B	ond ang	les
	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	W46	F	503	-	19,19,19	4.35	12 (63%)	18,25,25	2.67	7 (38%)
4	CIT	Ι	503	-	12,12,12	1.35	1 (8%)	17,17,17	1.15	1 (5%)
3	W46	D	503	-	19,19,19	4.13	12 (63%)	18,25,25	2.25	7 (38%)
4	CIT	K	401	-	12,12,12	1.14	1 (8%)	17,17,17	1.54	2 (11%)
3	W46	L	504	-	19,19,19	4.05	11 (57%)	18,25,25	2.25	8 (44%)
3	W46	С	503	-	19,19,19	4.52	12 (63%)	18,25,25	2.61	8 (44%)
3	W46	Κ	404	-	19,19,19	4.59	12 (63%)	18,25,25	2.80	6 (33%)
3	W46	Е	503	-	19,19,19	4.36	14 (73%)	18,25,25	2.83	7 (38%)
4	CIT	В	503	-	12,12,12	1.19	1 (8%)	17,17,17	1.63	2 (11%)
4	CIT	L	503	-	12,12,12	1.13	1 (8%)	17,17,17	1.40	2 (11%)
3	W46	J	503	-	19,19,19	4.51	12 (63%)	18,25,25	2.83	7 (38%)
3	W46	А	503	-	19,19,19	4.31	11 (57%)	18,25,25	2.32	4 (22%)
4	CIT	Н	503	-	12,12,12	1.19	1 (8%)	17,17,17	1.46	2 (11%)
3	W46	Н	504	-	19,19,19	4.35	12 (63%)	18,25,25	1.81	4 (22%)
3	W46	Ι	504	-	19,19,19	4.21	10 (52%)	18,25,25	2.32	4 (22%)
5	IPA	В	505	-	3,3,3	0.86	0	3,3,3	0.33	0
3	W46	В	504	-	19,19,19	4.15	10 (52%)	18,25,25	2.57	5 (27%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	W46	F	503	-	-	1/9/20/20	0/2/2/2
4	CIT	Ι	503	-	-	8/16/16/16	-
3	W46	D	503	-	-	0/9/20/20	0/2/2/2
4	CIT	Κ	401	-	-	8/16/16/16	-
3	W46	L	504	-	-	3/9/20/20	0/2/2/2
3	W46	С	503	-	-	0/9/20/20	0/2/2/2
3	W46	K	404	-	-	0/9/20/20	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	W46	Е	503	-	-	0/9/20/20	0/2/2/2
4	CIT	В	503	-	-	7/16/16/16	-
4	CIT	L	503	-	-	0/16/16/16	-
3	W46	J	503	-	-	0/9/20/20	0/2/2/2
3	W46	А	503	-	-	1/9/20/20	0/2/2/2
4	CIT	Н	503	-	-	10/16/16/16	-
3	W46	Н	504	-	-	0/9/20/20	0/2/2/2
3	W46	Ι	504	-	-	0/9/20/20	0/2/2/2
3	W46	В	504	-	-	0/9/20/20	0/2/2/2

All (133) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	С	503	W46	C16-C17	13.64	1.57	1.33
3	J	503	W46	C16-C17	13.57	1.57	1.33
3	Κ	404	W46	C16-C17	13.35	1.57	1.33
3	F	503	W46	C16-C17	12.78	1.56	1.33
3	Н	504	W46	C16-C17	12.72	1.56	1.33
3	А	503	W46	C16-C17	12.72	1.56	1.33
3	D	503	W46	C16-C17	12.69	1.56	1.33
3	Ι	504	W46	C16-C17	12.51	1.55	1.33
3	В	504	W46	C16-C17	12.42	1.55	1.33
3	L	504	W46	C16-C17	12.33	1.55	1.33
3	Е	503	W46	C16-C17	12.33	1.55	1.33
3	Κ	404	W46	C02-N01	6.72	1.51	1.33
3	В	504	W46	C02-N01	6.60	1.51	1.33
3	J	503	W46	C02-N01	6.24	1.50	1.33
3	Е	503	W46	C05-C04	6.22	1.52	1.34
3	D	503	W46	C02-N01	6.17	1.49	1.33
3	F	503	W46	C02-N01	6.15	1.49	1.33
3	Ι	504	W46	C02-N01	6.14	1.49	1.33
3	J	503	W46	C05-C04	6.09	1.52	1.34
3	F	503	W46	C05-C04	6.08	1.52	1.34
3	Е	503	W46	C02-N01	5.88	1.49	1.33
3	Н	504	W46	C02-N01	5.86	1.49	1.33
3	С	503	W46	C05-C04	5.83	1.51	1.34
3	С	503	W46	C02-N01	5.82	1.48	1.33
3	Κ	404	W46	C05-C04	5.74	1.51	1.34
3	Н	504	W46	C05-C04	5.66	1.50	1.34
3	L	504	W46	C02-N01	5.64	1.48	1.33
3	А	503	W46	C05-C04	5.63	1.50	1.34
3	В	504	W46	C05-C04	5.60	1.50	1.34

Continuea from previous page								
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)	
3	А	503	W46	C07-C08	5.51	1.61	1.51	
3	А	503	W46	C18-C04	5.37	1.60	1.49	
3	Ι	504	W46	C05-C04	5.37	1.50	1.34	
3	А	503	W46	C16-N06	5.26	1.47	1.36	
3	Н	504	W46	C07-C08	5.26	1.60	1.51	
3	J	503	W46	C16-N06	5.19	1.47	1.36	
3	Κ	404	W46	C16-N06	5.19	1.47	1.36	
3	Е	503	W46	C16-N06	5.13	1.47	1.36	
3	С	503	W46	C16-N06	5.11	1.47	1.36	
3	С	503	W46	C07-C08	5.08	1.60	1.51	
3	Н	504	W46	C16-N06	5.07	1.47	1.36	
3	А	503	W46	C02-N01	5.04	1.46	1.33	
3	K	404	W46	C07-C08	4.98	1.60	1.51	
3	L	504	W46	C05-C04	4.96	1.48	1.34	
3	F	503	W46	C07-C08	4.92	1.60	1.51	
3	Е	503	W46	C07-C08	4.89	1.60	1.51	
3	K	404	W46	C18-C04	4.82	1.59	1.49	
3	L	504	W46	C16-N06	4.77	1.46	1.36	
3	Ι	504	W46	C07-C08	4.70	1.59	1.51	
3	В	504	W46	C07-C08	4.62	1.59	1.51	
3	Ι	504	W46	C18-C04	4.60	1.59	1.49	
3	F	503	W46	C16-N06	4.59	1.46	1.36	
3	Ι	504	W46	C16-N06	4.58	1.46	1.36	
3	D	503	W46	C07-C08	4.57	1.59	1.51	
3	С	503	W46	C18-C04	4.57	1.58	1.49	
3	D	503	W46	C05-C04	4.55	1.47	1.34	
3	F	503	W46	C18-C04	4.45	1.58	1.49	
3	J	503	W46	C18-C04	4.42	1.58	1.49	
3	L	504	W46	C07-C08	4.33	1.59	1.51	
3	В	504	W46	C16-N06	4.29	1.45	1.36	
3	J	503	W46	C07-C08	4.22	1.59	1.51	
3	Е	503	W46	C14-C11	-4.19	1.29	1.38	
3	D	503	W46	C16-N06	4.11	1.45	1.36	
3	K	404	W46	C14-C11	-3.98	1.30	1.38	
3	D	503	W46	C15-C08	3.90	1.47	1.38	
3	Н	504	W46	C18-C04	3.87	1.57	1.49	
3	D	503	W46	C18-C04	3.80	1.57	1.49	
3	Н	504	W46	C14-C11	-3.76	1.30	1.38	
3	Е	503	W46	C18-C04	3.75	1.57	1.49	
3	В	504	W46	C14-C11	-3.67	1.30	1.38	
3	F	503	W46	C15-C08	3.64	1.46	1.38	
3	J	503	W46	C15-C08	3.57	1.46	1.38	

Conti	nued fron	ı previ	ous page	•••			A
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	В	504	W46	C18-C04	3.55	1.56	1.49
3	С	503	W46	C14-C11	-3.54	1.31	1.38
3	Κ	404	W46	C02-C04	3.51	1.56	1.48
3	K	404	W46	C15-C08	3.47	1.46	1.38
3	L	504	W46	C14-C11	-3.46	1.31	1.38
3	А	503	W46	C14-C11	-3.42	1.31	1.38
3	Ι	504	W46	C18-C17	3.41	1.57	1.48
3	J	503	W46	C14-C11	-3.37	1.31	1.38
3	L	504	W46	C18-C04	3.36	1.56	1.49
3	Н	504	W46	C18-C17	3.22	1.57	1.48
3	Н	504	W46	C15-C08	3.21	1.45	1.38
3	Ι	504	W46	C14-C11	-3.11	1.32	1.38
4	Ι	503	CIT	C3-C6	3.08	1.56	1.53
3	С	503	W46	C15-C08	3.02	1.45	1.38
3	С	503	W46	C18-C17	3.01	1.56	1.48
3	J	503	W46	C18-C17	2.98	1.56	1.48
3	Е	503	W46	C07-N06	2.97	1.53	1.47
3	L	504	W46	O03-C02	-2.93	1.17	1.24
3	L	504	W46	C15-C08	2.90	1.45	1.38
3	F	503	W46	C14-C11	-2.84	1.32	1.38
3	D	503	W46	O03-C02	-2.84	1.17	1.24
3	Е	503	W46	C15-C08	2.82	1.44	1.38
3	F	503	W46	O03-C02	-2.74	1.18	1.24
3	J	503	W46	C09-C08	-2.74	1.32	1.38
3	В	504	W46	C02-C04	2.73	1.54	1.48
3	D	503	W46	C18-C17	2.72	1.56	1.48
3	K	404	W46	C09-C08	-2.71	1.33	1.38
3	А	503	W46	O03-C02	-2.66	1.18	1.24
3	А	503	W46	C18-C17	2.66	1.55	1.48
3	Е	503	W46	C02-C04	2.65	1.54	1.48
3	J	503	W46	C10-C11	2.64	1.44	1.38
3	Е	503	W46	C09-C08	-2.63	1.33	1.38
3	Н	504	W46	O03-C02	-2.63	1.18	1.24
3	В	504	W46	C18-C17	2.61	1.55	1.48
3	С	503	W46	C15-C14	-2.59	1.34	1.38
3	С	503	W46	C05-N06	2.59	1.42	1.37
3	K	404	W46	C18-C17	2.58	1.55	1.48
3	L	504	W46	C18-C17	2.57	1.55	1.48
3	F	503	W46	C02-C04	2.55	1.54	1.48
3	Ι	504	W46	C15-C08	2.54	1.44	1.38
3	F	503	W46	C09-C08	-2.52	1.33	1.38
3	L	504	W46	C09-C08	-2.50	1.33	1.38

 α ntia d fa

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
3	F	503	W46	C18-C17	2.44	1.55	1.48
3	Ι	504	W46	C02-C04	2.44	1.53	1.48
3	J	503	W46	O03-C02	-2.43	1.18	1.24
3	Е	503	W46	O03-C02	-2.42	1.18	1.24
4	Κ	401	CIT	C3-C6	2.40	1.55	1.53
3	В	504	W46	C15-C14	-2.40	1.34	1.38
3	Е	503	W46	C18-C17	2.39	1.55	1.48
4	В	503	CIT	C3-C6	2.38	1.55	1.53
3	Н	504	W46	C09-C08	-2.38	1.33	1.38
3	С	503	W46	O03-C02	-2.35	1.18	1.24
3	А	503	W46	C15-C08	2.30	1.43	1.38
4	L	503	CIT	C3-C6	2.28	1.55	1.53
4	Н	503	CIT	C3-C6	2.24	1.55	1.53
3	D	503	W46	C14-C11	-2.24	1.34	1.38
3	Н	504	W46	C15-C14	-2.23	1.34	1.38
3	А	503	W46	C09-C08	-2.19	1.34	1.38
3	Κ	404	W46	C15-C14	-2.16	1.34	1.38
3	D	503	W46	C09-C08	-2.09	1.34	1.38
3	D	503	W46	C10-C11	2.07	1.43	1.38
3	Ē	503	W46	C05-N06	2.03	1.40	1.37

All (76) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	J	503	W46	C08-C07-N06	-8.65	95.40	112.41
3	K	404	W46	O13-C12-C11	-6.79	87.03	112.03
3	В	504	W46	C08-C07-N06	-6.56	99.51	112.41
3	Е	503	W46	C08-C07-N06	-6.40	99.83	112.41
3	А	503	W46	O13-C12-C11	-6.34	88.68	112.03
3	Е	503	W46	O13-C12-C11	-6.27	88.95	112.03
3	F	503	W46	C08-C07-N06	-6.09	100.44	112.41
3	K	404	W46	C08-C07-N06	-5.92	100.78	112.41
3	Ι	504	W46	C08-C07-N06	-5.87	100.88	112.41
3	С	503	W46	C08-C07-N06	-5.77	101.07	112.41
3	С	503	W46	O13-C12-C11	-5.09	93.27	112.03
3	L	504	W46	C08-C07-N06	-5.07	102.44	112.41
3	L	504	W46	O13-C12-C11	-4.99	93.67	112.03
3	А	503	W46	C08-C07-N06	-4.91	102.76	112.41
3	С	503	W46	C14-C11-C10	4.81	125.72	118.17
3	F	503	W46	O13-C12-C11	-4.77	94.46	112.03
3	В	504	W46	C09-C10-C11	-4.66	114.61	121.03
4	В	503	CIT	O5-C6-C3	-4.53	115.84	122.25

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
3	Ι	504	W46	O13-C12-C11	-4.52	95.38	112.03
3	Κ	404	W46	C15-C14-C11	-4.44	114.92	121.03
3	D	503	W46	C14-C11-C10	4.28	124.90	118.17
3	Κ	404	W46	C14-C11-C10	4.18	124.73	118.17
3	J	503	W46	O13-C12-C11	-4.13	96.82	112.03
3	F	503	W46	C14-C11-C10	4.11	124.62	118.17
3	Ι	504	W46	C14-C11-C10	4.02	124.49	118.17
3	Н	504	W46	O13-C12-C11	-3.93	97.56	112.03
3	В	504	W46	C14-C11-C10	3.89	124.28	118.17
4	L	503	CIT	O5-C6-C3	-3.87	116.78	122.25
3	Н	504	W46	C08-C07-N06	-3.82	104.91	112.41
4	Κ	401	CIT	O5-C6-C3	-3.81	116.86	122.25
3	F	503	W46	C15-C14-C11	-3.78	115.83	121.03
3	F	503	W46	C04-C02-N01	3.74	124.30	117.67
3	В	504	W46	O13-C12-C11	-3.70	98.40	112.03
3	Е	503	W46	C07-N06-C05	3.68	124.15	120.34
4	В	503	CIT	O6-C6-C3	3.68	119.44	113.05
3	D	503	W46	C08-C07-N06	-3.68	105.18	112.41
3	Ι	504	W46	C09-C10-C11	-3.67	115.97	121.03
3	J	503	W46	C15-C14-C11	-3.67	115.98	121.03
3	D	503	W46	O03-C02-C04	-3.66	114.00	120.90
3	Ε	503	W46	C15-C14-C11	-3.65	116.01	121.03
3	А	503	W46	C14-C11-C10	3.44	123.58	118.17
3	А	503	W46	C09-C10-C11	-3.43	116.30	121.03
3	L	504	W46	C14-C11-C10	3.40	123.51	118.17
4	Н	503	CIT	O5-C6-C3	-3.29	117.59	122.25
3	Ε	503	W46	C14-C11-C10	3.25	123.28	118.17
3	D	503	W46	C15-C14-C11	-3.22	116.60	121.03
3	D	503	W46	C04-C02-N01	3.21	123.37	117.67
3	С	503	W46	C09-C10-C11	-3.17	116.66	121.03
3	Н	504	W46	C14-C11-C10	3.13	123.08	118.17
3	С	503	W46	C15-C14-C11	-3.07	116.80	121.03
4	Κ	401	CIT	O6-C6-C3	2.80	117.91	113.05
3	J	503	W46	O03-C02-C04	-2.71	115.80	120.90
3	Н	504	W46	C15-C14-C11	-2.70	117.32	121.03
3	В	504	W46	C07-N06-C05	2.67	123.10	120.34
4	Н	503	CIT	O6-C6-C3	2.67	117.68	113.05
3	Ε	503	W46	C16-N06-C05	-2.63	111.86	118.19
3	J	503	W46	C14-C11-C10	2.63	122.30	118.17
4	L	503	CIT	O6-C6-C3	2.59	117.55	113.05
3	D	503	W46	O13-C12-C11	-2.56	102.62	112.03
3	J	503	W46	C10-C09-C08	-2.52	117.56	121.03

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	F	503	W46	C07-N06-C05	2.48	122.91	120.34
3	J	503	W46	C04-C02-N01	2.39	121.91	117.67
3	С	503	W46	C12-C11-C14	-2.35	112.95	120.88
3	С	503	W46	C07-C08-C15	-2.28	116.49	120.77
3	L	504	W46	O03-C02-C04	-2.27	116.61	120.90
3	F	503	W46	O03-C02-C04	-2.24	116.68	120.90
3	Κ	404	W46	C07-N06-C16	2.16	124.50	120.27
3	L	504	W46	C09-C10-C11	-2.15	118.07	121.03
3	L	504	W46	C15-C14-C11	-2.14	118.08	121.03
3	Κ	404	W46	C14-C15-C08	2.13	123.95	121.03
3	L	504	W46	C07-N06-C16	2.10	124.38	120.27
3	L	504	W46	C04-C02-N01	2.09	121.38	117.67
3	D	503	W46	C09-C10-C11	-2.07	118.18	121.03
4	Ι	503	CIT	O6-C6-C3	2.05	116.61	113.05
3	С	503	W46	C07-C08-C09	2.04	124.61	120.77
3	Е	503	W46	C14-C15-C08	2.01	123.80	121.03

There are no chirality outliers.

All (38) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	L	504	W46	N01-C02-C04-C05
3	L	504	W46	O03-C02-C04-C05
4	В	503	CIT	C1-C2-C3-O7
4	В	503	CIT	C1-C2-C3-C4
4	В	503	CIT	O7-C3-C6-O5
4	В	503	CIT	O7-C3-C6-O6
4	В	503	CIT	C4-C3-C6-O5
4	В	503	CIT	C4-C3-C6-O6
4	Н	503	CIT	C1-C2-C3-O7
4	Н	503	CIT	O7-C3-C6-O5
4	Н	503	CIT	O7-C3-C6-O6
4	Н	503	CIT	C4-C3-C6-O5
4	Н	503	CIT	C4-C3-C6-O6
4	Ι	503	CIT	O7-C3-C6-O5
4	Ι	503	CIT	O7-C3-C6-O6
4	Ι	503	CIT	C4-C3-C6-O5
4	Ι	503	CIT	C4-C3-C6-O6
4	K	401	CIT	C2-C3-C4-C5
4	K	401	CIT	C6-C3-C4-C5
4	В	503	CIT	C1-C2-C3-C6
4	Н	503	CIT	C1-C2-C3-C4

8UAR

Mol	Chain	Res	Type	Atoms
4	Н	503	CIT	C1-C2-C3-C6
4	Κ	401	CIT	O7-C3-C4-C5
4	Н	503	CIT	C6-C3-C4-C5
4	Κ	401	CIT	C2-C3-C6-O5
4	Κ	401	CIT	C2-C3-C6-O6
4	Κ	401	CIT	C4-C3-C6-O5
4	Κ	401	CIT	C4-C3-C6-O6
4	Н	503	CIT	O7-C3-C4-C5
4	Ι	503	CIT	C1-C2-C3-O7
4	Κ	401	CIT	O7-C3-C6-O6
4	Н	503	CIT	C2-C3-C4-C5
4	Ι	503	CIT	C2-C3-C6-O6
4	Ι	503	CIT	C3-C4-C5-O3
4	Ι	503	CIT	C3-C4-C5-O4
3	А	503	W46	C10-C11-C12-O13
3	F	503	W46	C10-C11-C12-O13
3	L	504	W46	C14-C11-C12-O13

Continued from previous page...

There are no ring outliers.

9 monomers are involved in 15 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	Ι	503	CIT	1	0
4	K	401	CIT	1	0
3	L	504	W46	4	0
3	Ε	503	W46	1	0
4	В	503	CIT	2	0
4	L	503	CIT	3	0
3	J	503	W46	1	0
3	А	503	W46	1	0
3	В	504	W46	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier.

The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	352/365~(96%)	-0.55	3 (0%) 84 63	13, 26, 59, 96	0
1	В	349/365~(95%)	-0.51	0 100 100	13, 26, 55, 80	0
1	С	349/365~(95%)	-0.38	4 (1%) 80 56	16, 33, 69, 123	0
1	D	351/365~(96%)	-0.47	4 (1%) 80 56	15, 30, 60, 101	0
1	Ε	349/365~(95%)	-0.38	8 (2%) 60 31	16, 35, 65, 106	0
1	F	348/365~(95%)	-0.31	2 (0%) 89 72	24, 39, 73, 109	0
1	G	350/365~(95%)	-0.49	2 (0%) 89 72	12, 26, 53, 92	0
1	Н	350/365~(95%)	-0.44	8 (2%) 60 31	13, 30, 67, 110	0
1	Ι	349/365~(95%)	-0.25	5 (1%) 75 49	22, 43, 77, 116	0
1	J	349/365~(95%)	-0.13	7 (2%) 65 36	22, 48, 91, 150	0
1	Κ	349/365~(95%)	-0.25	6 (1%) 70 41	19, 40, 76, 108	0
1	L	349/365~(95%)	-0.20	9 (2%) 56 27	21, 46, 78, 123	0
All	All	4194/4380 (95%)	-0.36	58 (1%) 75 49	12, 35, 73, 150	0

All (58) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	-5	VAL	9.2
1	J	52	TYR	6.0
1	С	52	TYR	5.4
1	J	54	TYR	5.1
1	D	-4	PRO	5.1
1	L	50	ALA	4.4
1	L	53	ALA	4.1
1	L	51	GLN	3.8
1	Е	50	ALA	3.8
1	G	-4	PRO	3.7
1	Н	-4	PRO	3.6

8UAR

Mol	Chain	Res	Type	RSRZ
1	L	52	TYR	3.6
1	L	-3	ARG	3.4
1	Е	54	TYR	3.3
1	D	-3	ARG	3.2
1	Е	48	PRO	3.2
1	Н	51	GLN	3.2
1	С	54	TYR	3.2
1	J	55	GLY	3.1
1	L	54	TYR	3.1
1	Ι	52	TYR	3.0
1	Н	52	TYR	2.9
1	K	52	TYR	2.9
1	G	211	LEU	2.9
1	Е	49	ALA	2.8
1	Н	50	ALA	2.8
1	Ε	51	GLN	2.8
1	Κ	-3	ARG	2.8
1	Κ	50	ALA	2.7
1	Ε	52	TYR	2.7
1	Н	53	ALA	2.7
1	С	51	GLN	2.6
1	Ι	53	ALA	2.5
1	L	49	ALA	2.5
1	Ε	53	ALA	2.5
1	L	48	PRO	2.4
1	Н	48	PRO	2.4
1	D	54	TYR	2.4
1	J	53	ALA	2.4
1	А	51	GLN	2.4
1	Н	54	TYR	2.3
1	K	54	TYR	2.3
1	F	53	ALA	2.2
1	J	48	PRO	2.2
1	L	79	GLY	2.2
1	Ι	316	HIS	2.2
1	Ι	54	TYR	2.2
1	J	25	PRO	2.2
1	Н	49	ALA	2.2
1	E	-3	ARG	2.1
1	Ι	-3	ARG	2.1
1	A	52	TYR	2.1
1	J	69	ALA	2.1

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	Κ	69	ALA	2.1
1	F	54	TYR	2.1
1	А	54	TYR	2.0
1	С	338	ARG	2.0
1	Κ	79	GLY	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
4	CIT	Ι	503	13/13	0.85	0.29	$63,\!79,\!88,\!88$	0
4	CIT	K	401	13/13	0.85	0.25	63,89,98,101	0
4	CIT	L	503	13/13	0.86	0.31	80,93,105,108	0
4	CIT	В	503	13/13	0.89	0.22	67,72,77,81	0
3	W46	J	503	18/18	0.92	0.21	44,61,75,75	0
3	W46	С	503	18/18	0.92	0.24	36,46,71,87	0
4	CIT	Н	503	13/13	0.92	0.27	70,78,88,101	0
3	W46	K	404	18/18	0.94	0.21	39,47,51,56	0
3	W46	L	504	18/18	0.94	0.18	44,50,60,61	0
3	W46	D	503	18/18	0.94	0.20	32,38,60,83	0
3	W46	Е	503	18/18	0.94	0.19	$35,\!43,\!50,\!52$	0
3	W46	F	503	18/18	0.94	0.20	37,45,54,55	0
3	W46	Ι	504	18/18	0.94	0.20	$56,\!61,\!72,\!78$	0
3	W46	В	504	18/18	0.94	0.21	33,38,56,77	0
5	IPA	В	505	4/4	0.94	0.18	$25,\!26,\!28,\!29$	0
3	W46	А	503	18/18	0.95	0.21	36,44,53,68	0
3	W46	Н	504	18/18	0.95	0.26	42,54,73,88	0
2	ZN	J	502	1/1	0.97	0.06	95,95,95,95	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
2	ZN	L	502	1/1	0.98	0.08	73,73,73,73	0
2	ZN	Ι	502	1/1	0.98	0.07	57,57,57,57	0
2	ZN	А	502	1/1	0.98	0.06	61,61,61,61	0
2	ZN	D	501	1/1	0.99	0.08	31,31,31,31	0
2	ZN	D	502	1/1	0.99	0.07	44,44,44,44	0
2	ZN	Е	501	1/1	0.99	0.08	40,40,40,40	0
2	ZN	Е	502	1/1	0.99	0.07	49,49,49,49	0
2	ZN	F	501	1/1	0.99	0.09	50, 50, 50, 50	0
2	ZN	F	502	1/1	0.99	0.07	48,48,48,48	0
2	ZN	Н	501	1/1	0.99	0.08	23,23,23,23	0
2	ZN	Н	502	1/1	0.99	0.07	$52,\!52,\!52,\!52$	0
2	ZN	Ι	501	1/1	0.99	0.07	38,38,38,38	0
2	ZN	А	501	1/1	0.99	0.09	30,30,30,30	0
2	ZN	В	502	1/1	0.99	0.07	$39,\!39,\!39,\!39$	0
2	ZN	K	402	1/1	0.99	0.07	35,35,35,35	0
2	ZN	K	403	1/1	0.99	0.05	$53,\!53,\!53,\!53$	0
2	ZN	L	501	1/1	0.99	0.08	42,42,42,42	0
2	ZN	С	501	1/1	0.99	0.09	41,41,41,41	0
2	ZN	С	502	1/1	0.99	0.07	$56,\!56,\!56,\!56$	0
2	ZN	В	501	1/1	1.00	0.10	28,28,28,28	0
2	ZN	J	501	1/1	1.00	0.08	34,34,34,34	0
2	ZN	G	501	1/1	1.00	0.09	28,28,28,28	0
2	ZN	G	502	1/1	1.00	0.07	30,30,30,30	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

