

wwPDB EM Validation Summary Report (i)

Nov 23, 2022 – 01:32 PM EST

PDB ID	:	7UMS
EMDB ID	:	EMD-26608
Title	:	Structure of the $VP5^*/VP8^*$ assembly from the human rotavirus strain CDC-9
		in complex with antibody 41 - Upright conformation
Authors	:	Jenni, S.; Zongli, L.; Wang, Y.; Bessey, T.; Salgado, E.N.; Schmidt, A.G.;
		Greenberg, H.B.; Jiang, B.; Harrison, S.C.
Deposited on	:	2022-04-07
Resolution	:	3.50 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\mathop{\mathrm{EM}}\limits_{(\#\mathrm{Entries})}$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	Т	230	98%	
1	U	230	98%	·
1	V	230	11% 89%	
2	1	529	93%	• 6%
2	2	529	93%	• 6%
2	3	529	91%	8%
3	4	236	94%	•••
3	6	236	95%	• •
4	5	217	18%	•

Mol	Chain	Length	Quality of chain	
4	7	217	99%	 .
5	А	397	100%	
5	В	397	100%	
5	С	397	99%	
5	D	397	100%	
5	Ε	397	100%	
5	F	397	100%	
5	G	397	99%	
5	Н	397	100%	
5	Ι	397	100%	
5	J	397	100%	
5	К	397	100%	
5	L	397	100%	
5	М	397	100%	
5	Ν	397	100%	
5	Ο	397	100%	
5	Р	397	99%	 .
5	Q	397	100%	
5	R	397	99%	 .
6	a	326	83% 1	7%
6	b	326	84% . 1	15%
6	с	326	79% 209	%
6	d	326	83% • 1	5%
6	е	326	80% 205	%
6	f	326	83% • 1	5%

Continued from previous page...

Mol	Chain	Length	Quality of chain		
6	g	326	83%	•	15%
6	h	326	82%	•	17%
6	i	326	83%	•	15%
6	j	326	83%	•	16%
6	k	326	84%	•	15%
6	1	326	83%	·	15%
6	m	326	83%	•	16%
6	n	326	83%	•	15%
6	О	326	83%	•	15%
6	р	326	83%	·	16%
6	q	326	82%	•	17%
6	r	326	83%	•	16%
7	S	3	67%	33%	

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 236285 atoms, of which 116945 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms	AltConf	Trace
1	Т	227	Total C H N O S 3553 1151 1726 309 364 3	0	0
1	U	227	Total C H N O S 3553 1151 1726 309 364 3	0	0
1	V	25	Total C H N O 401 130 197 31 43	0	0

• Molecule 1 is a protein called Outer capsid protein VP8^{*}.

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Т	28	GLY	GLU	conflict	UNP X4YMN0
Т	51	ASP	GLY	conflict	UNP X4YMN0
U	28	GLY	GLU	conflict	UNP X4YMN0
U	51	ASP	GLY	conflict	UNP X4YMN0
V	28	GLY	GLU	conflict	UNP X4YMN0
V	51	ASP	GLY	conflict	UNP X4YMN0

• Molecule 2 is a protein called Outer capsid protein VP5*.

Mol	Chain	Residues	Atoms					AltConf	Trace	
2	1	400	Total	С	Η	Ν	0	S	0	0
	L	499	7914	2514	3951	664	768	17	0	0
0	0 0	400	Total	С	Η	Ν	0	S	0	0
	499	7914	2514	3951	664	768	17	0	0	
2 3	496	Total	С	Η	Ν	0	S	0	0	
	5	480	7719	2455	3853	649	745	17	U	U

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	250	ASP	ASN	conflict	UNP X4YMN0
1	331	PHE	SER	conflict	UNP X4YMN0
1	364	ILE	MET	conflict	UNP X4YMN0

Chain	Residue	Modelled	Actual	Comment	Reference
1	378	ARG	LYS	conflict	UNP X4YMN0
1	385	HIS	ASP	conflict	UNP X4YMN0
1	388	LEU	ILE	conflict	UNP X4YMN0
1	499	ASN	ASP	conflict	UNP X4YMN0
1	605	ASN	SER	conflict	UNP X4YMN0
2	250	ASP	ASN	conflict	UNP X4YMN0
2	331	PHE	SER	conflict	UNP X4YMN0
2	364	ILE	MET	conflict	UNP X4YMN0
2	378	ARG	LYS	conflict	UNP X4YMN0
2	385	HIS	ASP	conflict	UNP X4YMN0
2	388	LEU	ILE	conflict	UNP X4YMN0
2	499	ASN	ASP	conflict	UNP X4YMN0
2	605	ASN	SER	$\operatorname{conflict}$	UNP X4YMN0
3	250	ASP	ASN	conflict	UNP X4YMN0
3	331	PHE	SER	$\operatorname{conflict}$	UNP X4YMN0
3	364	ILE	MET	$\operatorname{conflict}$	UNP X4YMN0
3	378	ARG	LYS	conflict	UNP X4YMN0
3	385	HIS	ASP	conflict	UNP X4YMN0
3	388	LEU	ILE	conflict	UNP X4YMN0
3	499	ASN	ASP	conflict	UNP X4YMN0
3	605	ASN	SER	conflict	UNP X4YMN0

• Molecule 3 is a protein called Fab 41 heavy chain.

Mol	Chain	Residues	Atoms					AltConf	Trace
3 4	230	Total	С	Η	Ν	0	S	0	0
		3396	1094	1667	289	339	7	0	0
3 6	230	Total	С	Н	Ν	0	S	0	0
	U	230	3396	1094	1667	289	339	7	0

• Molecule 4 is a protein called Fab 41 light chain.

Mol	Chain	Residues	Atoms						AltConf	Trace
4	5	217	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
4	5	211	3202	1019	1562	276	339	6	0	0
4	7	217	Total	С	Η	Ν	Ο	S	0	0
4	1	211	3202	1019	1562	276	339	6	0	0

• Molecule 5 is a protein called Intermediate capsid protein VP6.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
F	Δ	207	Total	С	Η	Ν	0	S	0	0
0	A	397	6295	2012	3127	552	589	15	0	0
F	р	207	Total	С	Η	Ν	0	S	0	0
0	Б	397	6295	2012	3127	552	589	15	0	0
F	C	207	Total	С	Η	Ν	0	S	0	0
0	U	397	6295	2012	3127	552	589	15	0	0
F	D	207	Total	С	Η	Ν	0	S	0	0
5	D	397	6295	2012	3127	552	589	15	0	0
F	Б	207	Total	С	Η	Ν	0	S	0	0
5	E.	397	6295	2012	3127	552	589	15	0	0
F	Б	207	Total	С	Η	Ν	0	S	0	0
0	Г	397	6296	2012	3128	552	589	15	0	0
F	C	207	Total	С	Η	Ν	0	S	0	0
5	G	397	6295	2012	3127	552	589	15	0	0
F	тт	207	Total	С	Н	Ν	0	S	0	0
5	п	397	6295	2012	3127	552	589	15	0	0
F	т	207	Total	С	Η	Ν	0	S	0	0
5	1	397	6295	2012	3127	552	589	15	0	0
Б.	т	207	Total	С	Η	Ν	0	S	0	0
5	J	397	6296	2012	3128	552	589	15	0	0
F	IZ.	207	Total	С	Η	Ν	Ο	S	0	0
5	n	397	6295	2012	3127	552	589	15	0	0
F	т	207	Total	С	Η	Ν	0	S	0	0
0	L	397	6295	2012	3127	552	589	15	0	0
۲.	м	207	Total	С	Н	Ν	0	S	0	0
0	111	591	6296	2012	3128	552	589	15	0	0
5	N	207	Total	С	Η	Ν	0	S	0	0
0	IN	397	6295	2012	3127	552	589	15	0	0
Б.	0	207	Total	С	Η	Ν	0	S	0	0
0	0	397	6295	2012	3127	552	589	15	0	0
F	р	207	Total	С	Η	Ν	0	S	0	0
	Г	397	6295	2012	3127	552	589	15		U
F	0	207	Total	С	Η	Ν	Ο	S	0	0
	V	397	6295	2012	3127	552	589	15		U
F	D	207	Total	С	Η	Ν	Ο	S	0	0
	n	397	6295	2012	3127	552	589	15		U

There are 18 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	281	VAL	ILE	conflict	UNP A0A223GHC7
В	281	VAL	ILE	conflict	UNP A0A223GHC7
С	281	VAL	ILE	conflict	UNP A0A223GHC7
D	281	VAL	ILE	conflict	UNP A0A223GHC7

Chain	Residue	Modelled	Actual	Comment	Reference
Е	281	VAL	ILE	conflict	UNP A0A223GHC7
F	281	VAL	ILE	conflict	UNP A0A223GHC7
G	281	VAL	ILE	conflict	UNP A0A223GHC7
Н	281	VAL	ILE	conflict	UNP A0A223GHC7
Ι	281	VAL	ILE	conflict	UNP A0A223GHC7
J	281	VAL	ILE	conflict	UNP A0A223GHC7
K	281	VAL	ILE	conflict	UNP A0A223GHC7
L	281	VAL	ILE	conflict	UNP A0A223GHC7
M	281	VAL	ILE	conflict	UNP A0A223GHC7
N	281	VAL	ILE	conflict	UNP A0A223GHC7
0	281	VAL	ILE	conflict	UNP A0A223GHC7
P	281	VAL	ILE	conflict	UNP A0A223GHC7
Q	281	VAL	ILE	conflict	UNP A0A223GHC7
R	281	VAL	ILE	conflict	UNP A0A223GHC7

• Molecule 6 is a protein called Outer capsid glycoprotein VP7.

Mol	Chain	Residues			AltConf	Trace				
6		971	Total	С	Н	Ν	0	S	0	0
0	a	271	4279	1374	2111	351	426	17	0	0
6	h	276	Total	С	Η	Ν	0	S	0	0
0	D	270	4357	1400	2148	358	434	17	0	0
6	C	260	Total	С	Η	Ν	Ο	S	0	0
0	C	200	4096	1314	2023	333	409	17	0	0
6	d	276	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
0	u	210	4357	1400	2148	358	434	17	0	0
6	0	261	Total	\mathbf{C}	Η	Ν	0	\mathbf{S}	0	0
0	С	201	4103	1316	2026	334	410	17	0	0
6	f	276	Total	\mathbf{C}	Η	Ν	0	\mathbf{S}	0	0
0	L	210	4357	1400	2148	358	434	17	0	0
6	ď	276	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
0	5	210	4357	1400	2148	358	434	17	0	0
6	h	971	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
0	11	211	4279	1374	2111	351	426	17	0	0
6	i	276	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
0	I	210	4357	1400	2148	358	434	17	0	0
6	i	974	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0
0	J	214	4326	1391	2134	354	430	17	0	0
6	k	276	Total	\mathbf{C}	Н	Ν	Ο	S	0	0
	n.	210	4357	1400	2148	358	434	17	0	U
6	1	276	Total	\mathbf{C}	Н	Ν	Ο	S	0	0
	1	210	4357	1400	2148	358	434	17		U

Mol	Chain	Residues			Atom	S			AltConf	Trace
6	m	275	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	111	215	4340	1395	2140	356	432	17	0	0
6	n	276	Total	С	Η	Ν	0	S	0	0
0	11	270	4357	1400	2148	358	434	17	0	0
6	0	276	Total	С	Η	Ν	0	S	0	0
0	0	270	4357	1400	2148	358	434	17	0	0
6	n	275	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	р	210	4340	1395	2140	356	432	17	0	0
6	a	271	Total	С	Η	Ν	0	\mathbf{S}	0	0
0	Ч	211	4279	1374	2111	351	426	17	0	0
6	r	275	Total	С	Η	Ν	0	S	0	0
0		215	4340	1395	2140	356	432	17	0	U

There are 36 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
a	108	ILE	THR	conflict	UNP B1NP55
a	147	SER	ASN	conflict	UNP B1NP55
b	108	ILE	THR	conflict	UNP B1NP55
b	147	SER	ASN	conflict	UNP B1NP55
с	108	ILE	THR	conflict	UNP B1NP55
с	147	SER	ASN	conflict	UNP B1NP55
d	108	ILE	THR	conflict	UNP B1NP55
d	147	SER	ASN	conflict	UNP B1NP55
e	108	ILE	THR	conflict	UNP B1NP55
е	147	SER	ASN	conflict	UNP B1NP55
f	108	ILE	THR	conflict	UNP B1NP55
f	147	SER	ASN	conflict	UNP B1NP55
g	108	ILE	THR	conflict	UNP B1NP55
g	147	SER	ASN	conflict	UNP B1NP55
h	108	ILE	THR	conflict	UNP B1NP55
h	147	SER	ASN	conflict	UNP B1NP55
i	108	ILE	THR	conflict	UNP B1NP55
i	147	SER	ASN	conflict	UNP B1NP55
j	108	ILE	THR	conflict	UNP B1NP55
j	147	SER	ASN	conflict	UNP B1NP55
k	108	ILE	THR	conflict	UNP B1NP55
k	147	SER	ASN	conflict	UNP B1NP55
l	108	ILE	THR	conflict	UNP B1NP55
1	147	SER	ASN	conflict	UNP B1NP55
m	108	ILE	THR	conflict	UNP B1NP55
m	147	SER	ASN	conflict	UNP B1NP55
n	108	ILE	THR	conflict	UNP B1NP55

	<i>J</i> 1	1 5			
Chain	Residue	Modelled	Actual	Comment	Reference
n	147	SER	ASN	conflict	UNP B1NP55
0	108	ILE	THR	conflict	UNP B1NP55
0	147	SER	ASN	conflict	UNP B1NP55
р	108	ILE	THR	conflict	UNP B1NP55
р	147	SER	ASN	conflict	UNP B1NP55
q	108	ILE	THR	conflict	UNP B1NP55
q	147	SER	ASN	conflict	UNP B1NP55
r	108	ILE	THR	conflict	UNP B1NP55
r	147	SER	ASN	conflict	UNP B1NP55

• Molecule 7 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
7	S	3	Total 76	C 22	Н 37	N 2	O 15	0	0

• Molecule 8 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues		At	oms			AltConf
0		1	Total	С	Η	Ν	0	0
0	a	1	27	8	13	1	5	0
0	1_	1	Total	С	Η	Ν	0	0
8	a	1	56	16	28	2	10	0
0	h	1	Total	С	Η	Ν	0	0
0	D	1	56	16	28	2	10	0
0		1	Total	С	Η	Ν	0	0
0	С	1	56	16	28	2	10	0
0		1	Total	С	Η	Ν	0	0
0	С	1	56	16	28	2	10	0
0	4	1	Total	С	Η	Ν	0	0
0	a	1	56	16	28	2	10	0
0	4	1	Total	С	Η	Ν	0	0
0	a	1	56	16	28	2	10	0
0		1	Total	С	Η	Ν	0	0
0	е	1	56	16	28	2	10	0
0		1	Total	С	Η	Ν	0	0
0	е	1	56	16	28	2	10	0
0	t	1	Total	С	Η	Ν	0	0
0	1	1	56	16	28	2	10	0
0	r	1	Total	С	Η	Ν	0	0
0	1	1	56	16	28	2	10	0
0	~	1	Total	С	Η	Ν	0	0
0	g	1	56	16	28	2	10	0
0	C.	1	Total	С	Η	Ν	0	0
0	g	1	56	16	28	2	10	0
0	h	1	Total	С	Η	Ν	0	0
0	11	1	56	16	28	2	10	0
8	h	1	Total	С	Η	Ν	0	0
0	11	1	56	16	28	2	10	0
8	i	1	Total	С	Η	Ν	Ο	0
0	1	1	56	16	28	2	10	0
8	;	1	Total	С	Η	Ν	0	0
0	1	1	56	16	28	2	10	0
8	i	1	Total	С	Η	Ν	0	0
0	J	1	56	16	28	2	10	0
8	i	1	Total	С	Η	Ν	Ō	0
	J	1	56	16	28	2	10	0
8	k	1	Total	C	Η	Ν	Ō	0
	n	1	56	16	28	2	10	0
8	k	1	Total	С	Η	Ν	0	0
	n	1	56	16	28	2	10	0
8	1	1	Total	С	Η	Ν	0	0
0	1	1	56	16	28	2	10	U

Mol	Chain	Residues	_	At	oms			AltConf
0	1	1	Total	С	Η	Ν	0	0
0	1	L	56	16	28	2	10	0
0	200	1	Total	С	Η	Ν	0	0
0	111	L	56	16	28	2	10	0
0	m	1	Total	С	Η	Ν	0	0
0	111	L	56	16	28	2	10	0
8	n	1	Total	С	Η	Ν	0	0
0	11	T	56	16	28	2	10	0
8	n	1	Total	С	Η	Ν	0	0
0	11	T	56	16	28	2	10	0
8	0	1	Total	С	Η	Ν	0	0
0	0	T	56	16	28	2	10	0
8	0	1	Total	С	Η	Ν	0	0
0	0	T	56	16	28	2	10	0
8	n	1	Total	С	Η	Ν	Ο	0
0	р	T	56	16	28	2	10	0
8	n	1	Total	С	Η	Ν	Ο	0
0	р	T	56	16	28	2	10	0
8	a	1	Total	С	Η	Ν	Ο	0
0	Ч	T	56	16	28	2	10	0
8	a	1	Total	С	Η	Ν	0	0
0	Ч	T	56	16	28	2	10	0
8	r	1	Total	\mathbf{C}	Η	Ν	Ο	0
0	1	T	56	16	28	2	10	0
8	r	1	Total	С	Η	Ν	0	0
0			56	16	28	2	10	U

Continued from previous page...

• Molecule 9 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	AltConf
9	a	4	Total Ca 4 4	0
9	b	4	Total Ca 4 4	0
9	с	4	Total Ca 4 4	0
9	d	4	Total Ca 4 4	0
9	е	4	Total Ca 4 4	0
9	f	4	Total Ca 4 4	0

Mol	Chain	Residues	Atoms	AltConf
9	g	4	Total Ca 4 4	0
9	h	4	Total Ca 4 4	0
9	i	4	Total Ca 4 4	0
9	j	4	Total Ca 4 4	0
9	k	4	Total Ca 4 4	0
9	1	4	Total Ca 4 4	0
9	m	4	Total Ca 4 4	0
9	n	4	Total Ca 4 4	0
9	О	4	Total Ca 4 4	0
9	р	4	Total Ca 4 4	0
9	q	4	Total Ca 4 4	0
9	r	4	Total Ca 4 4	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Outer capsid protein VP8*

• Molecule 2: Ou	ter capsid protein V	'P5*				
Chain 2:		93%		• 6%	I	
A247 V487 T488 D492 S535 T536 T536 D538	A574 SER SER ASN VAL ASN ASN ARG SER ASC ALEU LLEU ALA ALA ALA ALA	SER ASN TRP ASN VAL SER ASN	VAL SER ASN VAL THR ASN SER LEU LEU	R619 F632 D722 L775		
• Molecule 2: Ou	ter capsid protein V	'P5*				
Chain 3:		91%		8%		
ALA GLN VAL ASP GLU ASP ILE ILE ILE LYS SER SER SER SER	L260 F417 A574 SER ASN VAL SER ILE SER ASN ASN	LEU SER ALA ILE SER ASN TRP TRP	VAL SER ASN ASP VAL SER SER VAL VAL THR	ASN SER LEU N605 R619 K676	2 Ā	
• Molecule 3: Fab	o 41 heavy chain				-	
Chain 4:		94%		• •	I	
610 617 617 643 643 643 643 644 644	Ab / 158 N85 6126 A127 3128 1128 1129 1129 K130	S133 V134 P139 P139 S140 S141 K142	8145 6146 A150 C153 C153	V163	G175 V176 H177 T178 F179 F178 F179 F180	V182 L183 Q184 S185 S186
(1187 1.188 8200 \$201 1.202 (203 (203 (203 (203) (200)	N210 V211 N212 N217 V220 D221 D221 K231 H1S	HIS HIS HIS HIS				
• Molecule 3: Fab	o 41 heavy chain					
Chain 6:	_	95%		• •		
E2 G10 G15 A57 A57 A57 A57 A57 A57 A57 A57 A57 A5	F113 G126 A127 S128 S128 S133 S140 S141 S141 S141 S143	A150	P162	H177 H177 F178 F179 A181 A181	190 L191 S192 S193 P198	S201 L202 G203 T208
N212 N217 N217 P226 K227 K231 K231 H1S	HIS HIS HIS HIS HIS					
• Molecule 4: Fak	o 41 light chain					
Chain 5:		98%		·		
112 226 226 043 4110 7110 7110 7110 7110	V121 V122 F123 F124 P125 P125 S127 S127 A132 A132 M134	K135 A136 T137 L138 P147	A153 W154 K155 A156 A156 S158 S158 P160 P160	K162 A163 S171 S174 M175	L186 T187 K192 S193	Y197 S198 C199 Q200 V201
T202 ♦ T207 ♦ V208 ♦ E209 ♦ K210 ♦ T211 ♦ V212 Å A213 ♦						

• Molecule 4: Fab 41 light chain

Chain 7: 99%	
N2 643 6117 6113 6117 6117 7110 8120 7119 8123 6117 7123 8133 8133 8133 8135 7137 8135 8165 7137 8156 7157 8185 8185 8185 8185 7167 7197 7197 7197	V208
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain A: 100%	
H 145 145 N 145 N	
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain B: 100%	
₩ 1997 114 114 14 14 14 14 14 14 14 14 14 14 1	
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain C: 99%	
M 114 114 860 7	
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain D: 100%	
There are no outlier residues recorded for this chain.	
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain E: 100%	
There are no outlier residues recorded for this chain.	
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain F: 100%	
There are no outlier residues recorded for this chain.	
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain G: 99%	

• Molecule 5: Intermediate capsid protein VP6

Chain H:

100%

M1 N72 K397

• Molecule 5: Intermediate capsid protein VP6

Chain I:

100%

100%

• Molecule 5: Intermediate capsid protein VP6

Chain J:

There are no outlier residues recorded for this chain.

 \bullet Molecule 5: Intermediate capsid protein VP6

Chain K:

There are no outlier residues recorded for this chain.

 \bullet Molecule 5: Intermediate capsid protein VP6

Chain L:

100%

100%

There are no outlier residues recorded for this chain.

• Molecule 5: Intermediate capsid protein VP6

Chain M:

100%

M1 Q268 K397

 \bullet Molecule 5: Intermediate capsid protein VP6

Chain N:

100%

• Molecule 5: Intermediate capsid protein VP6

Chain O: 100%	
There are no outlier residues recorded for this chain.	
• Molecule 5: Intermediate capsid protein VP6	
Chain P: 99% ·	
M144 R144 K339 K397	
\bullet Molecule 5: Intermediate capsid protein VP6	
Chain Q: 100%	
• Molecule 5: Intermediate capsid protein VP6	
Chain R: 99% .	
M 147 1305 1305 1305	
• Molecule 6: Outer capsid glycoprotein VP7	
Chain a: 83% 17%	
MET THR TLE GLU GLU TTR TTR TTR TTR TTR TTR TTR TTR TTR TT	N56 L239 V326
• Molecule 6: Outer capsid glycoprotein VP7	
Chain b: 84% • 15%	
MET TYR TYR TYR TYR TYR TYR THR TYR TYR TYR TYR TYR TYR TYR TYR TYR TY	C82 C82 C135
<mark> </mark>	
• Molecule 6: Outer capsid glycoprotein VP7	
Chain c: 79% • 20%	
MET MET CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	C82 N238 L239

3314 ARG SER LEU ASN ALA ALA ALA ALA TYR TYR TYR VAL

• Molecule 6: Outer capsid glycoprotein VP7

Chain d:	83%	• 15%	
MET 1718 6117 1116 1116 1118 1118 1118 1118	TLE PHE FLEU TLE TLE SER SER TLEU TLE TTR TTR TTR TTR TTR TTR TTR TTR TTR TT	LEU THR LYS ALA ALA ALA CS CS CS CS CS CS CS CS CS CS CS CS CS	L239
R315 V326			
• Molecule 6:	Outer capsid glycoprotein VP7		
Chain e:	80%	20%	
MET TYR GLY ILE GLU GLU TYR THR THR THR LLEU	TLE TLE LEU TLE SER TLEU SER TLEU TLEU LEU TTR TTR TTR TTR TTR TTR TTR TTR TTR TT	LEU THR LYS LYS ASN GS4 CS4 CS4 CS4 CS4 CS3 S314	ARG SER
LEU ASN SER ALA ALA PHE TYR TYR ARG VAL			
• Molecule 6:	Outer capsid glycoprotein VP7		
Chain f:	83%	• 15%	
MET TYR GLY CLY CLU CLU THR THR THR TLE	TLE PHE LEU LEU TLE SER SER TLE SER ASN TTE TTE TTE TTE TTE TTE TTE TTE TTE TT	LLEU LTHR LTAR ALA 061 064 0632 C32 C165	L239
C249 V326			
• Molecule 6:	Outer capsid glycoprotein VP7		
Chain g:	83%	• 15%	
MET TYR GLY GLU GLU TYR THR THR THR LEU	TLE PHE ILU TLE SER SER TLE SER TLE TLE TTE TTE TTE TTE TTE TTE TTE TTE	LEU THR LYS ALA 4LA 4LA 177 775	<mark>C135</mark>
N238 L239 V326			
• Molecule 6:	Outer capsid glycoprotein VP7		
Chain h:	82%	• 17%	

V326

• Molecule 6: Outer capsid glycoprotein VP7

Chain i:	83% •	15%
MET TYR GLY ILE GLU TYR	THR THR TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE	1.11K L1.1K ALLA Q51 Q51 C82 C82 C82 C135 L239 L239 R247
V326		
• Molecu	le 6: Outer capsid glycoprotein VP7	
Chain j:	83% •	16%
MET TYR GLY ILE GLU TYR THR	THR THR LEU LEU LEU LEU LEU LEU LEU LEU ASN ASN TYR ASN ASN TYR ASN ASN TYR ASN ASN TYR ASN ASN TYR ASN ASN TYR ASN ASN THR ASN THR ASN THR ASN THR ASN ASN THR ASN THR ASN ASN THR ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	L THK L VS ALA ALA ASN V5 V5 V5 L23 V326 V326
• Molecu	le 6: Outer capsid glycoprotein VP7	
Chain k:	84%	• 15%
MET TYR GLY ILE GLU TYR	THR THR TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE	LIN LIN ALA ALA ET 4 C82 C82 L239 L239 V326
• Molecu	le 6: Outer capsid glycoprotein VP7	
Chain l:	83% .	15%
MET TYR GLY ILE GLU TYR THR	THR THR LEU LEU LEU LEU LEU LEU LEU LEU LEU LEU	LINK LYS ALA 451 451 652 696 696 7165 7165 7165 7165
C249 R315 V326		
• Molecu	le 6: Outer capsid glycoprotein VP7	
Chain m:	83%	• 16%
MET TYR GLY ILE GLU TYR THR	THR THR TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE	LINN LINS ALA ALA ALA ALA CB2 CB2 CB2 CB2 CB2 CB2 L239 L239

• Molecule 6: Outer capsid glycop	protein VP7	
Chain n:	83% .	15%
MET TYR TYR TYR TULE TULE THR THR THR THR THR THR THR THR THR THR	VAL THR ARG TILE ARG ASP TYR ASP TYR TYR TILE TILE TILE TILE TILE TILE TILE TILE	ALA ALA 451 451 651 652 1235 1239 1239 1239 1239 1239 1239 1239
• Molecule 6: Outer capsid glycop	protein VP7	
Chain o:	83% •	15%
MET TYR CLY CLY CLY CLY CLY CLY CLY CLU THR THR THR THR THR THR THR THR THR THR	VAL THR ARG ARG ARG ARC ASP ARC PHE TTR TTR ARC PHE TLEU TLEU TLEU TLEU TLEU TLEU TLEU TLE	ALA 4651 4651 465 165 1239 1239 7249 7249
828 875 8		
• Molecule 6: Outer capsid glycop	protein VP7	
Chain p:	83% .	16%
MET TYR TYR GLY GLU GLU TYR THR THR THR THR THR THR THR THR THR TH	VAL THR ARG ART ARF TTR ARF TTR TTR TTR TTR TTR TTR TTR TTR TTR T	ALA GLN N52 N69 S70 S70 E73 E73 E73
LT7 C82 C82 C135 C135 C135 C135 C135 C135 C135 C135		
• Molecule 6: Outer capsid glycop	protein VP7	
Chain q:	82% •	17%
MET TYR GLY GLY GLY GLU THR THR THR THR THR THR THR THR THR THR	VAL THR ARG MET MET MET ASP ASP ASP TYR TYR THE TLEU TLEU TLEU ALA ALA ALA ALA ALA TLEU TLEU TLEU TLEU TLEU TLEU	ALA ALA ALA ALA ALA ALA ALA ALA ALA CLA C
L 239 C 249 V 326		
• Molecule 6: Outer capsid glycop	protein VP7	
Chain r:	83% •	16%
MET TYR GLY GLU CLU CLU TYR THR THR THR THR THR THR THR THR THR TH	VAL THR ARG ARG ARC ARC ARC TTR TTR TTR TTR TLEU TLEU VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	ALA ALA GLN 05LN 052 022 022 134 135 1239
<mark>8</mark> 35		

• Molecule 7: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

67%

Chain S:

NAG1 NAG2 BMA3 33%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	422920	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI POLARA 300	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60.0	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	0.153	Depositor
Minimum map value	0.000	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.01	Depositor
Map size (Å)	393.91998, 393.91998, 393.91998	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.231, 1.231, 1.231	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, BMA, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	Т	0.30	0/1876	0.54	0/2565
1	U	0.30	0/1876	0.54	0/2565
1	V	0.32	0/206	0.55	0/279
2	1	0.31	0/4035	0.53	1/5459~(0.0%)
2	2	0.31	0/4035	0.52	0/5459
2	3	0.33	0/3938	0.55	0/5327
3	4	0.33	0/1777	0.65	0/2425
3	6	0.34	0/1777	0.66	0/2425
4	5	0.36	1/1681~(0.1%)	0.66	1/2295~(0.0%)
4	7	0.35	1/1681~(0.1%)	0.66	0/2295
5	А	0.34	0/3238	0.54	0/4404
5	В	0.35	0/3238	0.54	0/4404
5	С	0.34	0/3238	0.55	0/4404
5	D	0.34	0/3238	0.52	0/4404
5	Е	0.33	0/3238	0.53	0/4404
5	F	0.34	0/3238	0.52	0/4404
5	G	0.34	0/3238	0.56	0/4404
5	Н	0.33	0/3238	0.53	0/4404
5	Ι	0.33	0/3238	0.55	0/4404
5	J	0.33	0/3238	0.53	0/4404
5	K	0.33	0/3238	0.53	0/4404
5	L	0.34	0/3238	0.53	0/4404
5	М	0.33	0/3238	0.53	0/4404
5	Ν	0.34	0/3238	0.55	0/4404
5	0	0.32	0/3238	0.53	0/4404
5	Р	0.32	0/3238	0.53	0/4404
5	Q	0.34	0/3238	0.54	0/4404
5	R	0.33	0/3238	0.54	0/4404
6	a	0.35	0/2213	0.50	0/3013
6	b	0.42	2/2255~(0.1%)	0.54	0/3070
6	с	0.35	1/2115~(0.0%)	0.52	0/2882
6	d	0.37	1/2255~(0.0%)	0.53	0/3070

Mal	Chain	B	ond lengths	В	ond angles
INIOI		RMSZ	# Z > 5	RMSZ	# Z > 5
6	е	0.32	0/2119	0.50	0/2887
6	f	0.40	3/2255~(0.1%)	0.55	1/3070~(0.0%)
6	g	0.34	1/2255~(0.0%)	0.53	0/3070
6	h	0.38	2/2213~(0.1%)	0.54	1/3013~(0.0%)
6	i	0.41	2/2255~(0.1%)	0.53	0/3070
6	j	0.34	0/2238	0.52	0/3047
6	k	0.35	1/2255~(0.0%)	0.52	0/3070
6	1	0.39	3/2255~(0.1%)	0.57	1/3070~(0.0%)
6	m	0.37	1/2246~(0.0%)	0.52	0/3058
6	n	0.37	2/2255~(0.1%)	0.52	1/3070~(0.0%)
6	0	0.41	3/2255~(0.1%)	0.57	2/3070~(0.1%)
6	р	0.41	2/2246~(0.1%)	0.56	0/3058
6	q	0.38	2/2213~(0.1%)	0.54	1/3013~(0.0%)
6	r	0.37	2/2246~(0.1%)	0.53	0/3058
All	All	0.35	30/121310~(0.0%)	0.54	9/165025~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Т	0	1
1	U	0	1
2	1	0	3
2	2	0	1
3	4	0	4
3	6	0	3
4	5	0	1
5	А	0	1
5	С	0	1
5	Р	0	1
5	Q	0	1
6	a	0	1
6	b	0	1
6	с	0	1
6	d	0	2
6	е	0	1
6	f	0	1
6	g	0	2
6	h	0	1
6	i	0	2

Mol	Chain	#Chirality outliers	#Planarity outliers
6	j	0	1
6	k	0	1
6	l	0	2
6	m	0	2
6	n	0	1
6	0	0	2
6	р	0	2
6	q	0	2
6	r	0	2
All	All	0	45

The worst 5 of 30 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
6	b	82	CYS	CB-SG	-8.95	1.67	1.82
6	i	82	CYS	CB-SG	-8.57	1.67	1.82
6	р	82	CYS	CB-SG	-8.22	1.68	1.82
6	b	135	CYS	CB-SG	-7.23	1.70	1.82
6	р	135	CYS	CB-SG	-6.93	1.70	1.82

The worst 5 of 9 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	1	165	CYS	CA-CB-SG	10.78	133.40	114.00
6	0	165	CYS	CA-CB-SG	10.64	133.15	114.00
6	f	165	CYS	CA-CB-SG	10.57	133.02	114.00
6	q	165	CYS	CA-CB-SG	10.03	132.05	114.00
6	h	165	CYS	CA-CB-SG	9.84	131.72	114.00

There are no chirality outliers.

5 of 45 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	1	480	GLN	Peptide
2	1	481	THR	Peptide
2	1	482	PRO	Peptide
1	Т	33	VAL	Peptide
1	U	36	ASN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	Т	225/230~(98%)	202 (90%)	23 (10%)	0	100	100
1	U	225/230~(98%)	200 (89%)	25 (11%)	0	100	100
1	V	23/230~(10%)	23 (100%)	0	0	100	100
2	1	495/529~(94%)	444 (90%)	50 (10%)	1 (0%)	47	81
2	2	495/529~(94%)	452 (91%)	40 (8%)	3 (1%)	25	64
2	3	482/529~(91%)	438 (91%)	44 (9%)	0	100	100
3	4	228/236~(97%)	204 (90%)	20 (9%)	4 (2%)	8	41
3	6	228/236~(97%)	204 (90%)	22 (10%)	2(1%)	17	56
4	5	215/217~(99%)	196 (91%)	18 (8%)	1 (0%)	29	68
4	7	215/217~(99%)	193 (90%)	21 (10%)	1 (0%)	29	68
5	А	395/397~(100%)	370 (94%)	25~(6%)	0	100	100
5	В	395/397~(100%)	365~(92%)	29 (7%)	1 (0%)	41	75
5	С	395/397~(100%)	373 (94%)	21 (5%)	1 (0%)	41	75
5	D	395/397~(100%)	374~(95%)	21~(5%)	0	100	100
5	Е	395/397~(100%)	364 (92%)	31 (8%)	0	100	100
5	F	395/397~(100%)	366~(93%)	29~(7%)	0	100	100
5	G	395/397~(100%)	372 (94%)	22 (6%)	1 (0%)	41	75
5	Н	395/397~(100%)	374 (95%)	21 (5%)	0	100	100
5	Ι	395/397~(100%)	372 (94%)	23 (6%)	0	100	100
5	J	$\overline{395/397}~(100\%)$	372 (94%)	23 (6%)	0	100	100
5	K	395/397~(100%)	369(93%)	26 (7%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	L	395/397~(100%)	376~(95%)	19~(5%)	0	100	100
5	М	395/397~(100%)	367~(93%)	28~(7%)	0	100	100
5	Ν	395/397~(100%)	369~(93%)	26~(7%)	0	100	100
5	Ο	395/397~(100%)	372~(94%)	23~(6%)	0	100	100
5	Р	395/397~(100%)	366~(93%)	29~(7%)	0	100	100
5	Q	395/397~(100%)	372~(94%)	23~(6%)	0	100	100
5	R	395/397~(100%)	364~(92%)	31~(8%)	0	100	100
6	a	269/326~(82%)	254 (94%)	15~(6%)	0	100	100
6	b	274/326~(84%)	248 (90%)	26 (10%)	0	100	100
6	с	258/326~(79%)	239~(93%)	19~(7%)	0	100	100
6	d	274/326~(84%)	254~(93%)	19~(7%)	1 (0%)	34	72
6	е	259/326~(79%)	243~(94%)	16~(6%)	0	100	100
6	f	274/326~(84%)	253~(92%)	21 (8%)	0	100	100
6	g	274/326~(84%)	257~(94%)	17~(6%)	0	100	100
6	h	269/326~(82%)	255~(95%)	14~(5%)	0	100	100
6	i	274/326~(84%)	250~(91%)	24 (9%)	0	100	100
6	j	272/326~(83%)	253~(93%)	19~(7%)	0	100	100
6	k	274/326~(84%)	256~(93%)	18 (7%)	0	100	100
6	1	274/326~(84%)	255~(93%)	19~(7%)	0	100	100
6	m	273/326~(84%)	256~(94%)	17~(6%)	0	100	100
6	n	274/326~(84%)	250~(91%)	24 (9%)	0	100	100
6	О	274/326~(84%)	252~(92%)	22 (8%)	0	100	100
6	р	273/326~(84%)	249 (91%)	24 (9%)	0	100	100
6	q	269/326~(82%)	248 (92%)	21 (8%)	0	100	100
6	r	273/326~(84%)	241 (88%)	32 (12%)	0	100	100
All	All	$14822/16\overline{197}\ (92\overline{\%})$	13726 (93%)	1080 (7%)	16 (0%)	54	84

5 of 16 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	4	181	ALA
3	6	181	ALA
4	7	157	ASP

Continued from previous page...

Mol	Chain	Res	Type
2	1	632	PHE
3	4	180	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	Т	208/211~(99%)	207~(100%)	1 (0%)	88	94
1	U	208/211~(99%)	208~(100%)	0	100	100
1	V	23/211~(11%)	23~(100%)	0	100	100
2	1	448/477~(94%)	446 (100%)	2 (0%)	91	96
2	2	448/477~(94%)	447~(100%)	1 (0%)	93	98
2	3	436/477~(91%)	434 (100%)	2 (0%)	88	94
3	4	193/199~(97%)	192~(100%)	1 (0%)	88	94
3	6	193/199~(97%)	192~(100%)	1 (0%)	88	94
4	5	187/187~(100%)	187~(100%)	0	100	100
4	7	187/187~(100%)	187~(100%)	0	100	100
5	А	348/348~(100%)	348~(100%)	0	100	100
5	В	348/348~(100%)	348 (100%)	0	100	100
5	С	348/348~(100%)	348~(100%)	0	100	100
5	D	348/348~(100%)	348 (100%)	0	100	100
5	Ε	348/348~(100%)	348 (100%)	0	100	100
5	F	348/348~(100%)	348 (100%)	0	100	100
5	G	348/348~(100%)	347 (100%)	1 (0%)	92	97
5	Н	348/348~(100%)	347~(100%)	1 (0%)	92	97
5	Ι	348/348~(100%)	347 (100%)	1 (0%)	92	97
5	J	348/348~(100%)	348 (100%)	0	100	100
5	Κ	348/348~(100%)	348 (100%)	0	100	100
5	L	348/348 (100%)	348 (100%)	0	100	100

Continued from previous page	Continued	from	previous	page
------------------------------	-----------	------	----------	------

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	М	348/348~(100%)	348 (100%)	0	100	100
5	Ν	348/348~(100%)	348 (100%)	0	100	100
5	Ο	348/348~(100%)	348 (100%)	0	100	100
5	Р	348/348~(100%)	346 (99%)	2(1%)	86	94
5	Q	348/348~(100%)	348 (100%)	0	100	100
5	R	348/348~(100%)	346 (99%)	2(1%)	86	94
6	a	250/300~(83%)	250~(100%)	0	100	100
6	b	254/300~(85%)	254 (100%)	0	100	100
6	с	241/300~(80%)	240 (100%)	1 (0%)	91	96
6	d	254/300~(85%)	253 (100%)	1 (0%)	91	96
6	е	241/300~(80%)	241 (100%)	0	100	100
6	f	254/300~(85%)	254 (100%)	0	100	100
6	g	254/300~(85%)	253~(100%)	1 (0%)	91	96
6	h	250/300~(83%)	249 (100%)	1 (0%)	91	96
6	i	254/300~(85%)	253 (100%)	1 (0%)	91	96
6	j	252/300~(84%)	251 (100%)	1 (0%)	91	96
6	k	254/300~(85%)	254 (100%)	0	100	100
6	1	254/300~(85%)	253 (100%)	1 (0%)	91	96
6	m	253/300~(84%)	252 (100%)	1 (0%)	91	96
6	n	254/300~(85%)	253 (100%)	1 (0%)	91	96
6	0	254/300~(85%)	254 (100%)	0	100	100
6	р	253/300~(84%)	252 (100%)	1 (0%)	91	96
6	q	250/300~(83%)	250 (100%)	0	100	100
6	r	253/300~(84%)	253 (100%)	0	100	100
All	All	13324/14500~(92%)	13299 (100%)	25 (0%)	93	98

5 of 25 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
5	R	305	ASN
6	g	238	ASN
6	р	238	ASN
6	d	315	ARG
6	h	238	ASN

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 10 such side chains are listed below:

Mol	Chain	Res	Type
6	k	51	GLN
6	n	51	GLN
6	р	257	ASN
5	Н	72	ASN
5	Н	317	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

3 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
7	NAG	S	1	7,6	14,14,15	0.58	0	17,19,21	1.11	1 (5%)
7	NAG	S	2	7	14,14,15	0.25	0	17,19,21	0.37	0
7	BMA	S	3	7	11,11,12	0.66	0	15,15,17	0.71	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	S	1	7,6	-	2/6/23/26	0/1/1/1

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	NAG	S	2	7	-	3/6/23/26	0/1/1/1
7	BMA	S	3	7	-	0/2/19/22	0/1/1/1

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	S	1	NAG	C1-O5-C5	3.62	117.09	112.19

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	S	1	NAG	C4-C5-C6-O6
7	S	1	NAG	O5-C5-C6-O6
7	S	2	NAG	O5-C5-C6-O6
7	S	2	NAG	C4-C5-C6-O6
7	S	2	NAG	C1-C2-N2-C7

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 107 ligands modelled in this entry, 72 are monoatomic - leaving 35 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	ond leng	ths	B	ond ang	les
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
8	NAG	a	401	6	14,14,15	0.24	0	17,19,21	0.53	0
8	NAG	r	504	6	14,14,15	0.35	0	17,19,21	0.43	0
8	NAG	n	402	6	14,14,15	0.20	0	17,19,21	0.37	0
8	NAG	m	402	6	14,14,15	0.24	0	17,19,21	0.40	0
8	NAG	r	503	6	14,14,15	0.27	0	17,19,21	0.38	0
8	NAG	h	402	6	14,14,15	0.22	0	17,19,21	0.39	0
8	NAG	f	504	6	14,14,15	0.51	0	17,19,21	0.51	0
8	NAG	q	402	6	14,14,15	0.31	0	17,19,21	0.39	0
8	NAG	m	401	6	14,14,15	0.22	0	17,19,21	0.39	0
8	NAG	i	503	6	14,14,15	0.20	0	17,19,21	0.32	0

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	B	ond ang	les
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
8	NAG	k	401	6	14,14,15	0.29	0	17,19,21	0.65	1 (5%)
8	NAG	q	401	6	14,14,15	0.20	0	17,19,21	0.42	0
8	NAG	0	503	6	14,14,15	0.39	0	17,19,21	0.55	0
8	NAG	С	503	6	14,14,15	0.18	0	17,19,21	0.47	0
8	NAG	d	402	6	14,14,15	0.49	0	17,19,21	0.49	0
8	NAG	i	504	6	14,14,15	0.26	0	17,19,21	0.37	0
8	NAG	h	401	6	14,14,15	0.23	0	17,19,21	0.43	0
8	NAG	b	402	6	14,14,15	0.26	0	17,19,21	0.40	0
8	NAG	f	503	6	14,14,15	0.26	0	17,19,21	0.44	0
8	NAG	g	401	6	14,14,15	0.29	0	17,19,21	1.48	2 (11%)
8	NAG	е	401	6	14,14,15	0.22	0	17,19,21	0.48	0
8	NAG	b	401	6	14,14,15	0.36	0	17,19,21	0.40	0
8	NAG	1	504	6	14,14,15	0.36	0	17,19,21	0.37	0
8	NAG	n	401	6	14,14,15	0.35	0	17,19,21	0.51	0
8	NAG	k	402	6	14,14,15	0.40	0	17,19,21	0.56	0
8	NAG	d	401	6	14,14,15	0.23	0	17,19,21	0.39	0
8	NAG	р	401	6	14,14,15	0.58	1 (7%)	17,19,21	0.49	0
8	NAG	g	402	6	14,14,15	0.29	0	17,19,21	0.37	0
8	NAG	j	402	6	14,14,15	0.41	0	17,19,21	0.41	0
8	NAG	е	402	6	14,14,15	0.34	0	17,19,21	0.37	0
8	NAG	1	503	6	14,14,15	0.28	0	17,19,21	0.45	0
8	NAG	0	504	6	14,14,15	0.39	0	17,19,21	0.59	0
8	NAG	с	504	6	14,14,15	0.30	0	17,19,21	0.35	0
8	NAG	р	402	6	14,14,15	0.32	0	17,19,21	0.41	0
8	NAG	j	401	6	14,14,15	0.28	0	17,19,21	0.50	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	a	401	6	-	0/6/23/26	0/1/1/1
8	NAG	r	504	6	-	2/6/23/26	0/1/1/1
8	NAG	n	402	6	-	0/6/23/26	0/1/1/1
8	NAG	m	402	6	-	1/6/23/26	0/1/1/1
8	NAG	r	503	6	-	2/6/23/26	0/1/1/1
8	NAG	h	402	6	-	2/6/23/26	0/1/1/1
8	NAG	f	504	6	-	2/6/23/26	0/1/1/1
8	NAG	q	402	6	-	0/6/23/26	0/1/1/1
8	NAG	m	401	6	-	2/6/23/26	0/1/1/1

			is puye				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	i	503	6	-	1/6/23/26	0/1/1/1
8	NAG	k	401	6	-	2/6/23/26	0/1/1/1
8	NAG	q	401	6	-	2/6/23/26	0/1/1/1
8	NAG	0	503	6	-	3/6/23/26	0/1/1/1
8	NAG	с	503	6	-	2/6/23/26	0/1/1/1
8	NAG	d	402	6	-	0/6/23/26	0/1/1/1
8	NAG	i	504	6	-	1/6/23/26	0/1/1/1
8	NAG	h	401	6	-	2/6/23/26	0/1/1/1
8	NAG	b	402	6	-	0/6/23/26	0/1/1/1
8	NAG	f	503	6	-	2/6/23/26	0/1/1/1
8	NAG	g	401	6	-	5/6/23/26	0/1/1/1
8	NAG	е	401	6	-	2/6/23/26	0/1/1/1
8	NAG	b	401	6	-	3/6/23/26	0/1/1/1
8	NAG	1	504	6	-	0/6/23/26	0/1/1/1
8	NAG	n	401	6	-	2/6/23/26	0/1/1/1
8	NAG	k	402	6	-	0/6/23/26	0/1/1/1
8	NAG	d	401	6	-	2/6/23/26	0/1/1/1
8	NAG	р	401	6	-	4/6/23/26	0/1/1/1
8	NAG	g	402	6	-	2/6/23/26	0/1/1/1
8	NAG	j	402	6	-	2/6/23/26	0/1/1/1
8	NAG	е	402	6	-	2/6/23/26	0/1/1/1
8	NAG	1	503	6	-	2/6/23/26	0/1/1/1
8	NAG	0	504	6	-	2/6/23/26	0/1/1/1
8	NAG	с	504	6	-	1/6/23/26	0/1/1/1
8	NAG	р	402	6	-	2/6/23/26	0/1/1/1
8	NAG	j	401	6	-	2/6/23/26	0/1/1/1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
8	р	401	NAG	C1-C2	2.03	1.55	1.52

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	g	401	NAG	C2-N2-C7	4.65	129.52	122.90
8	g	401	NAG	C1-C2-N2	3.00	115.61	110.49
8	k	401	NAG	C1-O5-C5	2.22	115.20	112.19

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
8	b	401	NAG	C1-C2-N2-C7
8	j	401	NAG	C4-C5-C6-O6
8	е	401	NAG	O5-C5-C6-O6
8	m	401	NAG	O5-C5-C6-O6
8	h	402	NAG	O5-C5-C6-O6

5 of 59 torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26608. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 160

Y Index: 160

Z Index: 160 $\,$

6.2.2 Raw map

X Index: 160

Y Index: 160

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

Y Index: 96

6.3.2 Raw map

X Index: 111

Y Index: 96

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.01. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{26608}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1360 nm^3 ; this corresponds to an approximate mass of 1229 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.286 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.286 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.50	-	-
Author-provided FSC curve	3.30	3.80	3.37
Unmasked-calculated*	3.29	3.76	3.36

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26608 and PDB model 7UMS. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.01 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.01).

9.4 Atom inclusion (i)

At the recommended contour level, 91% of all backbone atoms, 91% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.01) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9127	0.4930
1	0.8623	0.4540
2	0.8639	0.4520
3	0.8923	0.4830
4	0.6794	0.1990
5	0.6727	0.1990
6	0.6924	0.2080
7	0.6906	0.2010
А	0.9349	0.5300
В	0.9465	0.5270
С	0.9407	0.5250
D	0.9365	0.5330
E	0.9430	0.5310
F	0.9452	0.5360
G	0.9346	0.5260
Н	0.9394	0.5270
Ι	0.9391	0.5300
J	0.9355	0.5280
K	0.9391	0.5280
L	0.9320	0.5230
M	0.9343	0.5230
N	0.9346	0.5250
0	0.9372	0.5240
P	0.9433	0.5260
Q	0.9365	0.5240
R	0.9401	0.5240
<u> </u>	0.7692	0.4220
	0.8626	0.3750
	0.8704	0.3810
V	0.8894	0.4790
<u>a</u>	0.9390	0.5200
b	0.9332	0.5100
<u> </u>	0.9377	0.5160
d	0.9400	0.5170
е	0.9388	0.5180

Continued from	previous	page
----------------	----------	------

Chain	Atom inclusion	Q-score
f	0.9368	0.5120
g	0.9277	0.5090
h	0.9352	0.5120
i	0.9382	0.5160
j	0.9354	0.5130
k	0.9332	0.5070
1	0.9318	0.5170
m	0.9361	0.5190
n	0.9468	0.5160
0	0.9327	0.5120
р	0.9293	0.5100
q	0.9403	0.5090
r	0.9329	0.5050

