

wwPDB X-ray Structure Validation Summary Report (i)

Sep 5, 2023 – 07:11 AM EDT

PDB ID	:	3UNE
Title	:	Mouse constitutive 20S proteasome
Authors	:	Huber, E.; Basler, M.; Schwab, R.; Heinemeyer, W.; Kirk, C.; Groettrup, M.;
		Groll, M.
Deposited on	:	2011-11-15
Resolution	:	3.20 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.35
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1133 (3.20-3.20)
Ramachandran outliers	138981	1234 (3.20-3.20)
Sidechain outliers	138945	1233 (3.20-3.20)
RSRZ outliers	127900	1095 (3.20-3.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	Δ	23/	% •	
1	11	204	2%	•
1	Ο	234	96%	•
1	с	234	95%	
1	q	234	% 94%	6%
2	В	261	% • •	• 5%
<u> </u>				
2	Р	261	92%	• 5%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
2	d	261	5%	. 5%
	u	201	.%	• 5%
2	r	261	89%	6% 5%
9	С	248	2%	
3	U	240	<u> </u>	• •
3	Q	248	92%	• •
2		249	6%	
3	е	248	92%	• •
3	s	248	92%	
4	D	0.41		
4	D	241	94%	• •
4	R	241	95%	
	0	2.11	%	
4	t	241	95%	• •
4	t	241	95%	• •
			.%	
5	E	263	87%	• 10%
5	S	263	87%	• 10%
5	g	263	87%	• 10%
5	u	263	87%	• 10%
			.%	
6	F	255	93%	• •
6	Т	255	270 Q3%	
	-	200	% *	
6	h	255	93%	• •
6	v	255	020/	
	*		2%	••
7	G	246	96%	• •
7	I	246	0.60/	
	0	240	4%	••
7	i	246	97%	••
7	117	246	% •	50/
- 1	W	240	94%	5% •
8	Н	234	91%	• 6%
8	V	234	93%	• 6%
		00.4		
8	j	234	93%	• 6%

Continued from previous page... Chain Length Quality of chain Mol 8 234х 92% • 6% 9 Ι 20595% 5% 9 W 20596% • . 2059 k 96% • 9 205у 96% . . 10 J 20195% ... Х 10 20196% ••• 101 20197% 201. . 10 \mathbf{Z} 94% ••• 11 1 20597% ••• Κ 11 20597% Y ••• 20511 97% ••• 11 205 \mathbf{m} 96% • 21221396% 12L 213• 96% Ζ . 1221399% • 12213n 96% .% . . $\mathbf{3}$ 2191395% ••• 13М 21997% ••• 13219 \mathbf{a} 97% ••• 132190 97% 2% 4205. 1499% .% ••• Ν 2051497% .% • \mathbf{b} 2051498% 205••• 14р 97%

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 97956 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ate	oms		ZeroOcc	AltConf	Trace	
1	Δ	022	Total	С	Ν	0	S	0	0	0
	A	200	1817	1159	311	341	6	0	0	0
1	0	022	Total	С	Ν	0	S	0	0	0
	0	200	1817	1159	311	341	6	0	0	0
1	0	022	Total	С	Ν	0	S	0	0	0
	С	200	1817	1159	311	341	6	0	0	0
1	G	000	Total	С	Ν	0	\mathbf{S}	0	0	0
	q	200	1817	1159	311	341	6	0	0	0

• Molecule 1 is a protein called Proteasome subunit alpha type-2.

• Molecule 2 is a protein called Proteasome subunit alpha type-4.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
9	2 B 24	248	Total	С	Ν	0	\mathbf{S}	0	0	0
	D	240	1950	1232	335	373	10	0	0	0
0	D	248	Total	С	Ν	0	S	0	0	0
	1	240	1950	1232	335	373	10	0	0	0
0	d	249	Total	С	Ν	0	S	0	0	0
	u	240	1950	1232	335	373	10	0	0	0
0	r	248	Total	С	Ν	0	S	0	0	0
		240	1950	1232	335	373	10	U	U	

• Molecule 3 is a protein called Proteasome subunit alpha type-7.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
2 C	020	Total	С	Ν	0	\mathbf{S}	0	0	0	
່ <u>ບ</u>	U	239	1881	1182	332	362	5	0	0	0
2	0	220	Total	С	Ν	0	S	0	0	0
່ <u>ບ</u>	3 Q	239	1881	1182	332	362	5	0	0	0
2	0	220	Total	С	Ν	0	S	0	0	0
3	е	239	1881	1182	332	362	5	0	0	0
2	9	220	Total	С	Ν	0	S	0	0	0
3	5	239	1881	1182	332	362	5		0	U

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	1 D 933	022	Total	С	Ν	0	\mathbf{S}	0	0	0
4	D	233	1778	1116	294	357	11	0	0	0
4	D	022	Total	С	Ν	0	S	0	0	0
4	n	200	1778	1116	294	357	11	0	0	0
4	f	022	Total	С	Ν	0	S	0	0	0
4	1	200	1778	1116	294	357	11	0	0	0
4	+	022	Total	С	Ν	0	S	0	0	0
4	U	200	1778	1116	294	357	11	U		

• Molecule 4 is a protein called Proteasome subunit alpha type-5.

• Molecule 5 is a protein called Proteasome subunit alpha type-1.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
E E	r D	020	Total	С	Ν	0	S	0	0	0
0	E	230	1872	1171	336	354	11	0	0	0
5	c	028	Total	С	Ν	0	S	0	0	0
5	b b	230	1872	1171	336	354	11	0	0	0
5	C.	028	Total	С	Ν	0	S	0	0	0
5	g	230	1872	1171	336	354	11	0	0	0
5	11	028	Total	С	Ν	0	S	0	0	0
0	u	230	1872	1171	336	354	11	U	U	U

• Molecule 6 is a protein called Proteasome subunit alpha type-3.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
6	6 F	244	Total	С	Ν	0	\mathbf{S}	0	0	0
0	Г	244	1903	1206	325	361	11	0	0	0
6	т	244	Total	С	Ν	0	S	0	0	0
0	1	244	1903	1206	325	361	11	0	0	0
6	h	244	Total	С	Ν	0	S	0	0	0
0	11	244	1903	1206	325	361	11	0	0	0
6		244	Total	С	Ν	0	S	0	0	0
0	v	244	1903	1206	325	361	11	U		

• Molecule 7 is a protein called Proteasome subunit alpha type-6.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
7	C	244	Total	С	Ν	0	S	0	0	0
(G	244	1895	1202	316	364	13	0	0	0
7	T	244	Total	С	Ν	0	S	0	0	0
1	U	244	1895	1202	316	364	13	0	0	0
7	;	244	Total	С	Ν	0	S	0	0	0
(1	244	1895	1202	316	364	13	0	0	

Continued from previous page...

Mol	Chain	Residues		Atoms					AltConf	Trace
7	W	244	Total 1895	C 1202	N 316	0 364	S 13	0	0	0

• Molecule 8 is a protein called Proteasome subunit beta type-7.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
8	Ц	220	Total	С	Ν	Ο	S	0	0	0
0	11	220	1656	1044	282	318	12	0	0	0
0	V	220	Total	С	Ν	0	S	0	0	0
0	v	220	1656	1044	282	318	12	0	0	0
0	;	220	Total	С	Ν	0	S	0	0	0
0	J	220	1656	1044	282	318	12	0	0	0
0		220	Total	С	Ν	0	S	0	0	0
0	X	220	1656	1044	282	318	12	U	U	0

• Molecule 9 is a protein called Proteasome subunit beta type-3.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
0	т	204	Total	С	Ν	0	S	0	0	0
9	1	204	1592	1013	265	295	19	0	0	0
0	W/	204	Total	С	Ν	0	S	0	0	0
9	vv	204	1592	1013	265	295	19	0	0	0
0	1-	204	Total	С	Ν	0	S	0	0	0
9	K	204	1592	1013	265	295	19	0	0	0
0		204	Total	С	Ν	0	S	0	0	0
9	У	204	1592	1013	265	295	19	0	U	U

• Molecule 10 is a protein called Proteasome subunit beta type-2.

Mol	Chain	Residues		Atoms					AltConf	Trace
10	т	106	Total	С	Ν	0	\mathbf{S}	0	0	0
10	1	190	1570	1006	267	288	9	0	0	0
10	v	106	Total	С	Ν	0	S	0	0	0
10	Λ	190	1570	1006	267	288	9	0	0	0
10	1	106	Total	С	Ν	0	S	0	0	0
10	1	190	1570	1006	267	288	9	0	0	0
10	7	106	Total	С	Ν	0	S	0	0	0
10		190	1570	1006	267	288	9	0	0	

• Molecule 11 is a protein called Proteasome subunit beta type-5.

Mol	Chain	Residues		Atoms					AltConf	Trace
11	V	201	Total	С	Ν	0	S	0	0	0
	n	201	1557	983	271	294	9	0	0	0
11	V	201	Total	С	Ν	0	S	0	0	0
	1	201	1557	983	271	294	9	0	0	0
11	m	201	Total	С	Ν	0	S	0	0	0
	111	201	1557	983	271	294	9	0	0	0
11	1	201	Total	С	Ν	0	S	0	0	0
	L	201	1557	983	271	294	9	0	0	0

• Molecule 12 is a protein called Proteasome subunit beta type-1.

Mol	Chain	Residues		Atoms					AltConf	Trace
19	т	012	Total	С	Ν	0	S	0	0	0
12		210	1654	1047	284	313	10	0	0	0
19	7	012	Total	С	Ν	0	S	0	0	0
12		210	1654	1047	284	313	10	0	0	0
19	n	919	Total	С	Ν	0	S	0	0	0
12	11	213	1654	1047	284	313	10	0	0	0
19	0	012	Total	С	Ν	0	S	0	0	0
12		210	1654	1047	284	313	10	0	0	0

• Molecule 13 is a protein called Proteasome subunit beta type-4.

Mol	Chain	Residues		Atoms					AltConf	Trace
12	М	216	Total	С	Ν	0	\mathbf{S}	0	0	0
10	111	210	1685	1063	291	319	12	0	0	0
12	0	216	Total	С	Ν	0	S	0	0	0
10	a	210	1685	1063	291	319	12	0	0	0
12	0	216	Total	С	Ν	0	S	0	0	0
10	0	210	1685	1063	291	319	12	0	0	0
12	2	216	Total	С	Ν	0	S	0	0	0
10	3	210	1685	1063	291	319	12	0		

• Molecule 14 is a protein called Proteasome subunit beta type-6.

Mol	Chain	Residues		Atoms					AltConf	Trace
14	N	202	Total	С	Ν	0	\mathbf{S}	0	0	0
14	IN	202	1519	952	259	296	12	0	0	0
14	h	202	Total	С	Ν	0	S	0	0	0
14	D	202	1519	952	259	296	12	0	0	0
14	n	202	Total	С	Ν	0	S	0	0	0
14	р	202	1519	952	259	296	12		U	U

Continued from previous page...

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
14	4	202	Total 1519	C 952	N 259	O 296	S 12	0	0	0

• Molecule 15 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	А	12	Total O 12 12	0	0
15	В	11	Total O 11 11	0	0
15	С	7	Total O 7 7	0	0
15	D	5	Total O 5 5	0	0
15	Е	8	Total O 8 8	0	0
15	F	11	Total O 11 11	0	0
15	G	11	Total O 11 11	0	0
15	Н	17	Total O 17 17	0	0
15	Ι	12	Total O 12 12	0	0
15	J	13	Total O 13 13	0	0
15	К	11	Total O 11 11	0	0
15	L	18	Total O 18 18	0	0
15	М	15	Total O 15 15	0	0
15	Ν	13	Total O 13 13	0	0
15	О	18	Total O 18 18	0	0
15	Р	24	Total O 24 24	0	0
15	Q	12	Total O 12 12	0	0
15	R	12	Total O 12 12	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	S	19	Total O 19 19	0	0
15	Т	13	Total O 13 13	0	0
15	U	21	TotalO2121	0	0
15	V	19	Total O 19 19	0	0
15	W	21	TotalO2121	0	0
15	Х	8	Total O 8 8	0	0
15	Y	8	Total O 8 8	0	0
15	Z	16	Total O 16 16	0	0
15	a	16	Total O 16 16	0	0
15	b	20	TotalO2020	0	0
15	с	15	Total O 15 15	0	0
15	d	9	Total O 9 9	0	0
15	е	3	Total O 3 3	0	0
15	f	3	Total O 3 3	0	0
15	g	7	Total O 7 7	0	0
15	h	7	Total O 7 7	0	0
15	i	10	Total O 10 10	0	0
15	j	13	Total O 13 13	0	0
15	k	11	Total O 11 11	0	0
15	l	8	Total O 8 8	0	0
15	m	11	Total O 11 11	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	n	13	Total O 13 13	0	0
15	0	11	Total O 11 11	0	0
15	р	6	Total O 6 6	0	0
15	q	3	Total O 3 3	0	0
15	r	10	Total O 10 10	0	0
15	S	7	Total O 7 7	0	0
15	t	6	Total O 6 6	0	0
15	u	7	Total O 7 7	0	0
15	v	11	Total O 11 11	0	0
15	W	10	Total O 10 10	0	0
15	х	6	Total O 6 6	0	0
15	У	10	Total O 10 10	0	0
15	Z	6	Total O 6 6	0	0
15	1	12	Total O 12 12	0	0
15	2	17	Total O 17 17	0	0
15	3	10	Total O 10 10	0	0
15	4	7	$\begin{array}{c c} Total & O \\ 7 & 7 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Proteasome subunit alpha type-2

• Molecule 2: Proteasome subunit alpha type-4

• Molecule 4: Proteasome subunit alpha type-5

Chain D:	94%	• •
MET PHE LEU THE ARG SER ARG CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	1241 1241 1241	
• Molecule 4: Protease	ome subunit alpha type-5	
Chain R:	95%	
MET PHE LEU LEU THR GLU GLU K203 K203 K203 K203	724 4224 1240 1241	
• Molecule 4: Protease	ome subunit alpha type-5	
Chain f:	95%	
MET HHE LEU LEU THR GLU GLU E126 E126		
• Molecule 4: Protease	ome subunit alpha type-5	
Chain t:	95%	
MET PHE LEU LEU LEU THE ARG SER CLU TYR K203 CK209 K203		
• Molecule 5: Protease	ome subunit alpha type-1	
Chain E:	87%	• 10%
MET PHE ARG ARG W13 W13 L38 L38 L38 L38 L187 R101 R101	ASPACE N209 P240 ASC ASC ASC ASC ASC ASC ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLU HIS
• Molecule 5: Protease	ome subunit alpha type-1	
Chain S:	87%	• 10%
MET ARG ARG 174 174 174 174 174 174 174 173 175 133 133	M176 1187 1187 1206 1206 1206 1206 1206 1206 1206 1206 1208	PRO PRO ALA ALA ALA ALA ALA ALU PRO PRO CLU HIS
• Molecule 5: Protease	ome subunit alpha type-1	
Chain g:	87%	• 10%

• Molecule 7: Proteasome subunit alpha type-6

Chain U:	96%	•••
MET S2 T52 K59 M131	T166 L179 K186 W189 W189 W209 K226 ASP	
• Molecule	e 7: Proteasome subunit alpha type-6	
Chain i:	97%	•••
MET S 2 R 3 T 5 2 D 86 D 86	1166 1170 1170 1170 1170 1202 1208 1208 1208 1208 1221 1221 122	
• Molecule	e 7: Proteasome subunit alpha type-6	
Chain w:	94%	5%•
MET 82 83 V56 L60	D86 M131 M131 1166 K182 K186 K186 K186 K186 K189 K211 F212 ASP	
• Molecule	e 8: Proteasome subunit beta type-7	
Chain H:	91%	• 6%
T1 V6 N40 K180	P188 K194 C1199 C200 C200 C200 C200 C200 C200 C200 C2	
• Molecule	e 8: Proteasome subunit beta type-7	
Chain V:	93%	• 6%
T1 N40 K180 P188	E-20 CLUU CLLU CLLU CLUU CLUU CLUU CLUU CLU	
• Molecule	e 8: Proteasome subunit beta type-7	
Chain j:	93%	• 6%
T1 N40 P188 L199	220 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
• Molecule	e 8: Proteasome subunit beta type-7	
Chain x:	92%	• 6%
T1 K9 L58 K180	P188 L199 C2000 TLE LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	

R L D W I D E PDB TEIN DATA BANK

• Molecule 9: Proteasome subunit beta type-3

Chain I:	95%	5%
MET 81 81 81 81 630 930 946 847 847 847 847 847 8116 7116	0144 P155 D204	
• Molecule 9: Proteason	me subunit beta type-3	
Chain W:	96%	•
MET 81 81 81 81 81 83 645 645 6160 013 8113 8113 8115 8115 8115 8115 8115 81		
• Molecule 9: Proteason	me subunit beta type-3	
Chain k:	96%	·
MET 81 81 81 81 81 81 81 81 81 81 81 81 81	100 100 100 100 100 100 100 100 100 100	
• Molecule 9: Proteason	me subunit beta type-3	
Chain y:	96%	·
MET S1 G30 M33 M33 M33 M33 M33 M33 M33 M35 M14 P155	1171 D204	
• Molecule 10: Protease	ome subunit beta type-2	
Chain J:	95%	• •
M1 08 08 08 08 08 14 14 14 14 14 113 19 10 113 113	A SER SER	
• Molecule 10: Protease	ome subunit beta type-2	
Chain X:	96%	• •
M1 N24 L143 L143 L143 L143 L143 F196 F196 F196 F196 F196 F196 F195 F196 F195 F195 F195 F195 F195 F195 F195 F195		
• Molecule 10: Protease	ome subunit beta type-2	
Chain l:	97%	
M1 08 08 08 08 08 08 780 780 780 780 88R 88R		

• Molecule 10: Proteasome subunit beta type-2

Chain z: 94% · ·

• Molecule 11: Proteasome subunit beta type-5

Chain K: 97% ···

• Molecule 11: Proteasome subunit beta type-5

Chain Y: 97% ···

96%

97%

• Molecule 11: Proteasome subunit beta type-5

Chain m:

. .

• Molecule 11: Proteasome subunit beta type-5

Chain 1:

• Molecule 12: Proteasome subunit beta type-1

Chain L: 96%

• Molecule 12: Proteasome subunit beta type-1

Chain Z: 99%

• Molecule 12: Proteasome subunit beta type-1 Chain n: 96% • Molecule 12: Proteasome subunit beta type-1 Chain 2: 96% • Molecule 13: Proteasome subunit beta type-4 Chain M: 97% CLI GLI • Molecule 13: Proteasome subunit beta type-4 Chain a: 97% GLU GLU • Molecule 13: Proteasome subunit beta type-4 Chain o: 97% GLN GLU • Molecule 13: Proteasome subunit beta type-4 Chain 3: 95% • Molecule 14: Proteasome subunit beta type-6 Chain N: 97%

• •

• Molecule 14: Proteasome subunit beta type-6

• Molecule 14: Proteasome subunit beta type-6

Chain p:	97%

• Molecule 14: Proteasome subunit beta type-6

Chain 4:	99%
11 1198 7200 PR0 PR0 PR0	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	170.97Å 201.30Å 226.01Å	Depositor
a, b, c, α , β , γ	90.00° 108.07° 90.00°	Depositor
Bosolution(A)	15.00 - 3.20	Depositor
Resolution (A)	49.90 - 3.20	EDS
% Data completeness	98.1 (15.00-3.20)	Depositor
(in resolution range)	98.0 (49.90-3.20)	EDS
R_{merge}	0.08	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.77 (at 3.19 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.6.0119	Depositor
B B.	0.220 , 0.246	Depositor
II, II, <i>free</i>	0.221 , 0.245	DCC
R_{free} test set	11753 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	84.9	Xtriage
Anisotropy	0.316	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.28 , 47.8	EDS
L-test for $twinning^2$	$ < L >=0.47, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	97956	wwPDB-VP
Average B, all atoms $(Å^2)$	98.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 15.82% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.38	1/1856~(0.1%)	0.45	0/2512	
1	0	0.38	1/1856~(0.1%)	0.46	0/2512	
1	с	0.38	0/1856	0.46	0/2512	
1	q	0.39	1/1856~(0.1%)	0.45	0/2512	
2	В	0.37	0/1980	0.45	0/2667	
2	Р	0.36	0/1980	0.45	0/2667	
2	d	0.37	1/1980~(0.1%)	0.45	0/2667	
2	r	0.37	1/1980~(0.1%)	0.45	0/2667	
3	С	0.33	0/1908	0.45	0/2576	
3	Q	0.33	0/1908	0.45	0/2576	
3	е	0.33	1/1908~(0.1%)	0.46	0/2576	
3	s	0.33	0/1908	0.44	0/2576	
4	D 0.35		0/1805	0.44	0/2437	
4	R	0.36 0/1805		0.44	0/2437	
4	f	0.35	0/1805	0.44	0/2437	
4	t	0.35	0/1805	0.44	0/2437	
5	Е	0.37	1/1907~(0.1%)	0.45	0/2578	
5	S	0.37	0/1907	0.46	0/2578	
5	g	0.37	0/1907	0.46	0/2578	
5	u	0.37	0/1907	0.46	0/2578	
6	F	0.38	1/1938~(0.1%)	0.43	0/2608	
6	Т	0.38	0/1938	0.44	0/2608	
6	h	0.38	0/1938	0.44	0/2608	
6	V	0.38	0/1938	0.43	0/2608	
7	G	0.37	2/1929~(0.1%)	0.44	0/2607	
7	U	0.37	1/1929~(0.1%)	0.44	0/2607	
7	i	0.37	0/1929	0.44	0/2607	
7	W	0.37	1/1929~(0.1%)	0.45	0/2607	
8	Н	0.31	0/1683	0.44	0/2276	
8	V	0.31	0/1683	0.45	0/2276	
8	j	0.31	0/1683	0.44	0/2276	
8	Х	0.31	0/1683	0.45	0/2276	
9	Ι	0.34	0/1621	0.46	0/2185	
9	W	0.33	1/1621~(0.1%)	0.45	0/2185	

Mol Chain		Bo	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
9	k	0.34	0.34 0/1621		0/2185	
9	у	0.34	0/1621	0.45	0/2185	
10	J	0.33	0/1602	0.45	0/2167	
10	Х	0.33	0/1602	0.45	0/2167	
10	l	0.33	0/1602	0.45	0/2167	
10	Z	0.33	0/1602	0.46	0/2167	
11	1	0.41	0/1588	0.44	0/2145	
11	Κ	0.41	0/1588	0.44	0/2145	
11	Y	0.41	0/1588	0.44	0/2145	
11	m	0.41	0/1588	0.44	0/2145	
12	2	0.32	0/1685	0.44	0/2271	
12	L	0.32	0/1685	0.44	0/2271	
12	Ζ	0.32	0/1685	0.44	0/2271	
12	n	0.32	0/1685	0.43	0/2271	
13	3	0.40	2/1718~(0.1%)	0.45	0/2325	
13	М	0.40	1/1718~(0.1%)	0.46	0/2325	
13	a	0.40	0/1718	0.45	0/2325	
13	0	0.40	0/1718	0.45	0/2325	
14	4	0.35	0/1546	0.42	0/2094	
14	Ν	0.35	1/1546~(0.1%)	0.43	0/2094	
14	b	0.35	0/1546	0.42	0/2094	
14	р	0.35	0/1546	0.43	0/2094	
All	All	0.36	17/99064~(0.0%)	0.45	0/133792	

The worst 5 of 17 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	138	TRP	CD2-CE2	5.09	1.47	1.41
13	3	91	TRP	CD2-CE2	5.04	1.47	1.41
6	F	161	TRP	CD2-CE2	5.04	1.47	1.41
13	М	209	TRP	CD2-CE2	5.03	1.47	1.41
9	W	153	TRP	CD2-CE2	5.02	1.47	1.41

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	Percentiles	
1	А	231/234~(99%)	213~(92%)	14 (6%)	4 (2%)	9	42	
1	Ο	231/234~(99%)	217 (94%)	11 (5%)	3~(1%)	12	47	
1	с	231/234~(99%)	213 (92%)	14 (6%)	4 (2%)	9	42	
1	q	231/234~(99%)	213 (92%)	12 (5%)	6 (3%)	5	31	
2	В	246/261~(94%)	240 (98%)	5 (2%)	1 (0%)	34	69	
2	Р	246/261~(94%)	240 (98%)	5 (2%)	1 (0%)	34	69	
2	d	246/261~(94%)	240 (98%)	5 (2%)	1 (0%)	34	69	
2	r	246/261~(94%)	239 (97%)	6 (2%)	1 (0%)	34	69	
3	С	237/248~(96%)	226 (95%)	10 (4%)	1 (0%)	34	69	
3	Q	237/248~(96%)	229 (97%)	7 (3%)	1 (0%)	34	69	
3	е	237/248~(96%)	227 (96%)	8 (3%)	2 (1%)	19	58	
3	S	237/248~(96%)	230 (97%)	6 (2%)	1 (0%)	34	69	
4	D	231/241~(96%)	219 (95%)	12 (5%)	0	100	100	
4	R	231/241~(96%)	219 (95%)	12 (5%)	0	100	100	
4	f	231/241~(96%)	218 (94%)	13 (6%)	0	100	100	
4	t	231/241~(96%)	217 (94%)	14 (6%)	0	100	100	
5	Ε	236/263~(90%)	228 (97%)	7 (3%)	1 (0%)	34	69	
5	S	236/263~(90%)	228 (97%)	8 (3%)	0	100	100	
5	g	236/263~(90%)	227~(96%)	8 (3%)	1 (0%)	34	69	
5	u	236/263~(90%)	224 (95%)	11 (5%)	1 (0%)	34	69	
6	F	242/255~(95%)	229 (95%)	11 (4%)	2(1%)	19	58	
6	Т	242/255~(95%)	228 (94%)	12 (5%)	2 (1%)	19	58	
6	h	242/255~(95%)	230 (95%)	10 (4%)	2 (1%)	19	58	
6	v	242/255~(95%)	229 (95%)	12 (5%)	1 (0%)	34	69	
7	G	$\overline{242/246}\ (98\%)$	232 (96%)	10 (4%)	0	100	100	

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
7	U	242/246~(98%)	232 (96%)	10 (4%)	0	100	100
7	i	242/246~(98%)	230~(95%)	11 (4%)	1 (0%)	34	69
7	w	242/246~(98%)	232~(96%)	9 (4%)	1 (0%)	34	69
8	Н	218/234~(93%)	204 (94%)	13 (6%)	1 (0%)	29	67
8	V	218/234~(93%)	208 (95%)	9 (4%)	1 (0%)	29	67
8	j	218/234~(93%)	208 (95%)	9 (4%)	1 (0%)	29	67
8	х	218/234~(93%)	204 (94%)	13 (6%)	1 (0%)	29	67
9	Ι	202/205~(98%)	187 (93%)	8 (4%)	7 (4%)	3	24
9	W	202/205~(98%)	189 (94%)	9 (4%)	4 (2%)	7	38
9	k	202/205~(98%)	187 (93%)	12 (6%)	3 (2%)	10	44
9	У	202/205~(98%)	186 (92%)	13 (6%)	3 (2%)	10	44
10	J	194/201~(96%)	186 (96%)	7 (4%)	1 (0%)	29	67
10	Х	194/201~(96%)	185 (95%)	8 (4%)	1 (0%)	29	67
10	1	194/201~(96%)	182 (94%)	11 (6%)	1 (0%)	29	67
10	Z	194/201~(96%)	185 (95%)	8 (4%)	1 (0%)	29	67
11	1	199/205~(97%)	188 (94%)	11 (6%)	0	100	100
11	K	199/205~(97%)	188 (94%)	11 (6%)	0	100	100
11	Y	199/205~(97%)	190 (96%)	9 (4%)	0	100	100
11	m	199/205~(97%)	190 (96%)	9 (4%)	0	100	100
12	2	211/213~(99%)	202 (96%)	8 (4%)	1 (0%)	29	67
12	L	211/213~(99%)	202 (96%)	8 (4%)	1 (0%)	29	67
12	Z	211/213~(99%)	203 (96%)	7 (3%)	1 (0%)	29	67
12	n	211/213~(99%)	201 (95%)	9 (4%)	1 (0%)	29	67
13	3	214/219~(98%)	203 (95%)	11 (5%)	0	100	100
13	М	214/219~(98%)	204 (95%)	10 (5%)	0	100	100
13	a	214/219~(98%)	204 (95%)	10 (5%)	0	100	100
13	0	214/219~(98%)	202 (94%)	12 (6%)	0	100	100
14	4	$\overline{200/205}~(98\%)$	187 (94%)	13 (6%)	0	100	100
14	N	200/205~(98%)	192 (96%)	8 (4%)	0	100	100
14	b	200/205~(98%)	191 (96%)	9 (4%)	0	100	100
14	р	200/205~(98%)	188 (94%)	11 (6%)	1 (0%)	29	67

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	12412/12920~(96%)	11795 (95%)	549 (4%)	68~(0%)	29 67

5 of 68 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	201	GLN
9	Ι	116	PHE
10	J	24	ASN
1	0	201	GLN
10	Х	24	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	189/191~(99%)	185~(98%)	4 (2%)	53 79
1	Ο	189/191~(99%)	183~(97%)	6 (3%)	39 71
1	с	189/191~(99%)	181 (96%)	8 (4%)	30 65
1	q	189/191~(99%)	182~(96%)	7 (4%)	34 68
2	В	208/221~(94%)	200~(96%)	8 (4%)	33 67
2	Р	208/221~(94%)	201~(97%)	7 (3%)	37 70
2	d	208/221~(94%)	202~(97%)	6 (3%)	42 74
2	r	208/221~(94%)	195~(94%)	13 (6%)	18 52
3	С	202/211~(96%)	192~(95%)	10 (5%)	24 60
3	Q	202/211~(96%)	193~(96%)	9 (4%)	27 63
3	е	202/211~(96%)	194 (96%)	8 (4%)	31 66
3	s	202/211~(96%)	193~(96%)	9 (4%)	27 63
4	D	195/203~(96%)	189~(97%)	6 (3%)	40 72
4	R	195/203~(96%)	192 (98%)	3 (2%)	65 85
4	f	195/203~(96%)	192 (98%)	3 (2%)	65 85
4	t	195/203~(96%)	191 (98%)	4 (2%)	53 79

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	Ε	204/224~(91%)	198 (97%)	6 (3%)	42	74
5	S	204/224~(91%)	194 (95%)	10 (5%)	25	61
5	g	204/224 (91%)	196 (96%)	8 (4%)	32	67
5	u	204/224~(91%)	196 (96%)	8 (4%)	32	67
6	F	200/211~(95%)	195 (98%)	5 (2%)	47	77
6	Т	200/211~(95%)	194 (97%)	6 (3%)	41	73
6	h	200/211~(95%)	194 (97%)	6 (3%)	41	73
6	V	200/211~(95%)	194 (97%)	6 (3%)	41	73
7	G	207/210~(99%)	200 (97%)	7 (3%)	37	70
7	U	207/210~(99%)	199 (96%)	8 (4%)	32	67
7	i	207/210~(99%)	202 (98%)	5 (2%)	49	77
7	W	207/210~(99%)	196 (95%)	11 (5%)	22	58
8	Н	181/195~(93%)	176 (97%)	5 (3%)	43	74
8	V	181/195~(93%)	179 (99%)	2 (1%)	73	88
8	j	181/195~(93%)	180 (99%)	1 (1%)	86	94
8	х	181/195~(93%)	177 (98%)	4 (2%)	52	79
9	Ι	174/175~(99%)	171 (98%)	3 (2%)	60	83
9	W	174/175~(99%)	171 (98%)	3 (2%)	60	83
9	k	174/175~(99%)	170 (98%)	4 (2%)	50	78
9	У	174/175~(99%)	170 (98%)	4 (2%)	50	78
10	J	166/171~(97%)	161 (97%)	5 (3%)	41	73
10	Х	166/171~(97%)	163 (98%)	3 (2%)	59	82
10	1	166/171~(97%)	165 (99%)	1 (1%)	86	94
10	Z	166/171~(97%)	159 (96%)	7 (4%)	30	65
11	1	157/161~(98%)	155 (99%)	2 (1%)	69	87
11	K	157/161~(98%)	154 (98%)	3 (2%)	57	81
11	Y	157/161~(98%)	154 (98%)	3 (2%)	57	81
11	m	157/161~(98%)	153 (98%)	4 (2%)	47	77
12	2	178/178 (100%)	171 (96%)	7 (4%)	32	67
12	L	178/178 (100%)	171 (96%)	7 (4%)	32	67
12	Z	178/178~(100%)	176 (99%)	2 (1%)	73	88

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
12	n	178/178~(100%)	171 (96%)	7 (4%)	32	67
13	3	178/180~(99%)	173~(97%)	5(3%)	43	74
13	М	178/180~(99%)	175~(98%)	3(2%)	60	83
13	a	178/180~(99%)	175~(98%)	3 (2%)	60	83
13	0	178/180~(99%)	174 (98%)	4 (2%)	52	79
14	4	159/162~(98%)	159 (100%)	0	100	100
14	Ν	159/162~(98%)	157~(99%)	2 (1%)	69	87
14	b	159/162~(98%)	158 (99%)	1 (1%)	86	94
14	р	159/162~(98%)	156 (98%)	3 (2%)	57	81
All	All	10392/10772~(96%)	10097 (97%)	295 (3%)	43	74

Continued from previous page...

5 of 295 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	s	107	ILE
12	2	148	LEU
4	t	209	LYS
7	W	166	THR
4	R	209	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 119 such sidechains are listed below:

Mol	Chain	Res	Type
12	Ζ	146	GLN
10	Z	8	GLN
7	i	127	GLN
9	у	144	GLN
13	3	69	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSI	RZ>	>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	233/234~(99%)	-0.01	3 (1%)	77	65	68, 101, 151, 178	0
1	Ο	233/234~(99%)	-0.12	4 (1%)	70	57	56, 79, 133, 166	0
1	с	233/234~(99%)	-0.02	2 (0%)	84	75	75, 107, 157, 181	0
1	q	233/234~(99%)	-0.05	3 (1%)	77	65	80, 107, 155, 173	0
2	В	248/261~(95%)	-0.11	2 (0%)	86	78	65, 95, 143, 169	0
2	Р	248/261~(95%)	-0.21	3 (1%)	79	67	51, 78, 117, 157	0
2	d	248/261~(95%)	0.14	14 (5%)	24	13	65, 110, 164, 202	0
2	r	248/261~(95%)	-0.07	2(0%)	86	78	78, 110, 148, 167	0
3	С	239/248~(96%)	0.17	6 (2%)	57	43	73, 109, 169, 202	0
3	Q	239/248~(96%)	0.08	4 (1%)	70	57	61, 98, 156, 197	0
3	е	239/248~(96%)	0.39	16~(6%)	17	10	80, 125, 178, 204	0
3	s	239/248~(96%)	0.23	11 (4%)	32	20	91, 125, 174, 196	0
4	D	233/241~(96%)	-0.16	0 100	1	00	59, 96, 130, 154	0
4	R	233/241~(96%)	-0.14	4 (1%)	70	57	67, 101, 139, 176	0
4	f	233/241~(96%)	-0.03	3 (1%)	77	65	77, 124, 155, 185	0
4	t	233/241~(96%)	-0.01	1 (0%)	92	89	71, 120, 157, 190	0
5	Е	238/263~(90%)	-0.14	2 (0%)	86	78	57, 93, 148, 178	0
5	S	238/263~(90%)	0.04	4 (1%)	70	57	66, 98, 154, 184	0
5	g	238/263~(90%)	0.09	1 (0%)	92	89	81, 117, 163, 192	0
5	u	238/263~(90%)	0.04	3 (1%)	77	65	66, 108, 162, 182	0
6	F	244/255~(95%)	0.03	3 (1%)	79	67	63, 97, 146, 162	0
6	Т	$2\overline{44/255}~(95\%)$	-0.04	5 (2%)	65	51	58, 89, 143, 168	0
6	h	244/255~(95%)	0.13	3 (1%)	79	67	87, 121, 165, 179	0
6	V	$244/25\overline{5}$ (95%)	-0.02	1 (0%)	92	89	81, 109, 149, 169	0

Continued from previous page...

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q < 0.9
7	G	244/246~(99%)	0.02	4 (1%) 72 59	66, 101, 149, 170	0
7	U	244/246~(99%)	-0.20	1 (0%) 92 89	57, 81, 114, 144	0
7	i	244/246~(99%)	0.16	9 (3%) 41 26	81, 121, 159, 180	0
7	W	244/246~(99%)	-0.01	2 (0%) 86 78	78, 107, 150, 169	0
8	Н	220/234~(94%)	-0.09	1 (0%) 91 86	62, 81, 130, 169	0
8	V	220/234~(94%)	-0.23	0 100 100	49, 65, 103, 153	0
8	j	220/234~(94%)	-0.11	1 (0%) 91 86	71, 87, 125, 151	0
8	х	220/234~(94%)	-0.09	1 (0%) 91 86	69, 93, 142, 175	0
9	Ι	204/205~(99%)	-0.18	0 100 100	64, 79, 118, 146	0
9	W	204/205~(99%)	-0.30	0 100 100	52, 66, 96, 129	0
9	k	204/205~(99%)	-0.21	0 100 100	69, 84, 120, 141	0
9	У	204/205~(99%)	-0.11	1 (0%) 91 86	75, 100, 146, 156	0
10	J	196/201~(97%)	-0.23	0 100 100	58, 75, 104, 124	0
10	Х	196/201~(97%)	-0.33	0 100 100	53, 70, 99, 132	0
10	1	196/201~(97%)	-0.19	1 (0%) 91 86	66, 92, 122, 146	0
10	Z	196/201~(97%)	-0.26	0 100 100	70, 95, 130, 158	0
11	1	201/205~(98%)	-0.16	1 (0%) 91 86	60, 86, 119, 147	0
11	K	201/205~(98%)	-0.31	0 100 100	53, 70, 102, 123	0
11	Y	201/205~(98%)	-0.22	0 100 100	59, 77, 106, 137	0
11	m	201/205~(98%)	-0.23	0 100 100	69, 95, 130, 159	0
12	2	213/213~(100%)	-0.18	0 100 100	66, 84, 110, 157	0
12	L	213/213~(100%)	-0.23	1 (0%) 91 86	53, 68, 98, 146	0
12	Z	213/213~(100%)	-0.12	0 100 100	56, 84, 125, 172	0
12	n	213/213~(100%)	-0.05	1 (0%) 91 86	75, 102, 138, 166	0
13	3	216/219~(98%)	-0.14	3 (1%) 75 63	65, 82, 112, 153	0
13	М	216/219~(98%)	-0.22	0 100 100	54, 70, 99, 119	0
13	a	216/219~(98%)	-0.20	0 100 100	53, 75, 106, 129	0
13	0	216/219~(98%)	-0.15	0 100 100	64, 91, 122, 132	0
14	4	$\overline{202/205}~(98\%)$	-0.03	4 (1%) 65 51	61, 86, 125, 159	0
14	N	202/205~(98%)	-0.12	3 (1%) 73 61	47, 74, 112, 157	0
14	b	202/205~(98%)	-0.11	3 (1%) 73 61	55, 69, 113, 160	0

α \cdot 1	C		
Continued	trom	previous	<i>paae</i>
0010000000	J. 00	proceed as	P ~ 9 0

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
14	р	202/205~(98%)	0.01	3 (1%) 73 61	68, 89, 139, 164	0
All	All	12524/12920~(96%)	-0.08	140 (1%) 80 69	47, 93, 150, 204	0

The worst 5 of 140 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	0	233	ALA	10.0
1	А	233	ALA	8.8
6	F	1	SER	6.9
14	b	201	THR	6.6
2	d	247	ALA	6.6

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

