

Feb 4, 2024 – 02:20 PM EST

PDB ID 7UNV : EMDB ID : EMD-26634 Title : Pseudomonas aeruginosa 70S ribosome initiation complex bound to IF2-GDPCP (structure II-A) Basu, R.S.; Sherman, M.B.; Gagnon, M.G. Authors : 2022-04-11 Deposited on 2.70 Å(reported) Resolution : Based on initial models 3JCJ, 6SPG :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	a	1536	81%	18% •
2	b	246	90%	• 9%
3	С	228	91%	9%
4	d	206	99%	
5	е	166	93%	7%
6	f	139	74% •	24%
7	g	156	5% 97%	
8	h	130	98%	

Mol	Chain	Length	Quality of chain	
9	i	130	95%	• •
10	j	103	6% 96%	•
11	k	129	92%	8%
12	1	123	• 98%	••
13	m	118	96%	•••
14	n	101	97%	••
15	0	89	98%	
16	р	83	98%	•
17	q	88	91%	9%
18	r	76	80%	• 18%
19	s	91	• 90%	• 9%
20	t	91	96%	·
21	u	71	• 87%	13%
22	V	77	74%	18% 6% ·
23	W	24	25% 75%	
24	х	840	70% •	29%
25	А	2891	• 79%	20%
26	В	120	84%	12% ••
27	С	273	100%	
28	D	211	• 99%	·
29	Е	200	98%	•
30	F	179	• 96%	•••
31	G	177	98%	••
32	Н	148	49%	51%
33	Ι	166	57% 69% •	29%

Mol	Chain	Length	Quality of chain
34	J	143	93% • 6%
35	L	142	100%
36	М	122	100%
37	Ν	144	100%
38	О	137	100%
39	Р	129	93% 7%
40	Q	116	99%
41	R	116	97%
42	S	118	99%
43	Т	103	98% .
44	U	110	•
45	V	99	95% 5%
46	W	104	• 98% ••
47	Х	204	93% 7%
48	Y	85	88% • 11%
49	Ζ	78	97%
50	1	63	97% •
51	2	58	98% •
52	3	71	17% • 34%
53	4	60	92% 8%
54	5	51	100%
55	6	44	100%
56	7	64	98% •
57	8	38	100%

Continued from previous page...

2 Entry composition (i)

There are 62 unique types of molecules in this entry. The entry contains 149599 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S Ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	a	1522	Total 32675	C 14581	N 5999	O 10574	Р 1521	0	0

• Molecule 2 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
2	b	224	Total 1751	C 1104	N 320	0 317	S 10	0	0

• Molecule 3 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	208	Total 1656	C 1047	N 313	0 291	${f S}{5}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	d	205	Total 1617	C 998	N 313	O 301	${ m S}{ m 5}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	е	154	Total 1134	C 711	N 210	O 207	S 6	0	0

• Molecule 6 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	f	106	Total 857	C 534	N 159	0 158	S 6	0	0

• Molecule 7 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	g	152	Total 1187	С 743	N 231	O 208	${f S}{5}$	0	0

• Molecule 8 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	h	129	Total 982	C 618	N 173	0 185	S 6	0	0

• Molecule 9 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	i	127	Total 1010	C 625	N 203	0 181	S 1	0	0

• Molecule 10 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	j	99	Total 787	C 493	N 147	0 146	S 1	0	0

• Molecule 11 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	k	119	Total 879	С 545	N 171	0 161	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	1	122	Total 959	C 588	N 198	O 169	${S \atop 4}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	m	114	Total 892	С 544	N 182	0 162	${S \atop 4}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	n	100	Total 800	C 494	N 167	O 136	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	О	88	Total 703	C 434	N 139	0 129	S 1	0	0

• Molecule 16 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	р	81	Total 636	C 397	N 125	0 113	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	q	80	Total 645	C 404	N 124	0 115	${ m S} { m 2}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
18	r	62	Total 480	C 307	N 85	O 88	0	0

• Molecule 19 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	s	83	Total 663	C 422	N 129	O 109	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	t	87	Total 671	C 414	N 138	0 117	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
21	u	62	Total 506	C 316	N 103	O 86	S 1	0	0

• Molecule 22 is a RNA chain called P-site initiator tRNA.

Mol	Chain	Residues		L	AltConf	Trace				
22	V	76	Total 1625	C 725	N 294	O 529	Р 76	S 1	0	0

• Molecule 23 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
23	W	6	Total 131	C 59	N 27	O 39	Р 6	0	0

• Molecule 24 is a protein called Translation initiation factor IF-2.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	х	593	Total 4275	C 2676	N 773	0 810	S 16	0	0

• Molecule 25 is a RNA chain called 23S Ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
25	А	2884	Total 61891	C 27621	N 11346	O 20041	Р 2883	0	0

• Molecule 26 is a RNA chain called 5S Ribosomal RNA.

Mol	Chain	Residues		At	AltConf	Trace			
26	В	117	Total 2495	C 1114	N 448	O 816	Р 117	0	0

• Molecule 27 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
27	С	272	Total 2072	C 1276	N 426	0 364	S 6	0	0

• Molecule 28 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	D	211	Total 1588	C 981	N 304	O 297	S 6	0	0

• Molecule 29 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	Е	200	Total 1521	C 955	N 283	O 280	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		Atoms					Trace
30	F	176	Total 1406	C 899	N 249	0 254	$\frac{S}{4}$	0	0

• Molecule 31 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	G	175	Total 1323	C 834	N 244	0 243	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
32	Н	72	Total 513	C 321	N 92	O 99	S 1	0	0

• Molecule 33 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
33	Ι	118	Total 587	C 349	N 118	O 120	0	0

• Molecule 34 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	J	134	Total 689	C 415	N 134	0 138	${ m S} { m 2}$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	L	142	Total 1130	C 718	N 206	O 202	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	М	122	Total 938	C 587	N 180	0 165	S 6	0	0

• Molecule 37 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	Ν	144	Total 1066	С 654	N 215	0 194	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	Ο	137	Total 1085	C 689	N 211	0 181	${f S}$ 4	0	0

• Molecule 39 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	AltConf	Trace			
39	Р	120	Total 959	C 600	N 192	0 162	${ m S}{ m 5}$	0	0

• Molecule 40 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	Q	115	Total 881	С 544	N 174	0 161	${ m S} { m 2}$	0	0

• Molecule 41 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	R	114	Total 902	C 568	N 171	0 162	S 1	0	0

• Molecule 42 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
42	S	117	Total 933	$\begin{array}{c} \mathrm{C} \\ 591 \end{array}$	N 196	O 146	0	0

• Molecule 43 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	Т	103	Total 822	C 521	N 156	0 143	${S \over 2}$	0	0

• Molecule 44 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	U	110	Total 833	C 515	N 161	0 153	${S \atop 4}$	0	0

• Molecule 45 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	V	94	Total 739	C 472	N 134	0 132	S 1	0	0

• Molecule 46 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	W	103	Total 786	C 494	N 150	0 141	S 1	0	0

• Molecule 47 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	Х	190	Total 1445	C 915	N 262	O 265	${ m S} { m 3}$	0	0

• Molecule 48 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
48	Y	76	Total 575	C 364	N 111	O 100	0	0

• Molecule 49 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	Z	77	Total 630	C 391	N 134	O 103	${ m S} { m 2}$	0	0

• Molecule 50 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
50	1	61	Total 490	C 301	N 96	O 91	${S \over 2}$	0	0

• Molecule 51 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	ms	AltConf	Trace		
51	2	57	Total 445	C 277	N 87	O 79	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 52 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
52	3	47	Total 356	C 222	N 60	O 68	S 6	0	0

• Molecule 53 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
53	4	55	Total 440	С 264	N 93	O 82	S 1	0	0

• Molecule 54 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
54	5	51	Total	С	Ν	0	\mathbf{S}	0	0
04	5	51	426	272	78	75	1	0	0

• Molecule 55 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
55	6	44	Total 365	C 222	N 87	0 54	${S \over 2}$	0	0

• Molecule 56 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms				AltConf	Trace	
56	7	63	Total 506	C 314	N 108	0 81	${f S}\ 3$	0	0

• Molecule 57 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms				AltConf	Trace	
57	8	38	Total 307	C 186	N 69	0 48	$\frac{S}{4}$	0	0

• Molecule 58 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
58	а	121	Total Mg	0
		121	121 121	
58	n	1	Total Mg	0
	Ч	Ŧ	1 1	0
58	t	1	Total Mg	0
		Ĩ	1 1	
58	V	1	Total Mg	0
	•	Ĩ	1 1	
58	W	1	Total Mg	0
		-	1 1	
58	x	1	Total Mg	0
	A	1	1 1	
58	А	455	Total Mg	0
		100	455 455	
58	В	4	Total Mg	0
		-	4 4	
58	С	3	Total Mg	0
			3 3	
58	D	2	Total Mg	0
			2 2	
58	E	1	Total Mg	0
		-	1 1	
58	Р	1	Total Mg	0
	-	-	1 1	
58	Y	1	Total Mg	0
	-	*	1 1	
58	4	1	Total Mg	0
	±	*	1 1	
58	7	1	Total Mg	0
	ľ	±	1 1	0

• Molecule 59 is N-FORMYLMETHIONINE (three-letter code: FME) (formula: $C_6H_{11}NO_3S$).

Mol	Chain	Residues	Atoms				AltConf	
50	17	1	Total	С	Ν	0	\mathbf{S}	0
- 59	V	1	10	6	1	2	1	0

• Molecule 60 is PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER (three-letter code: GCP) (formula: $C_{11}H_{18}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
60		1	Total	С	Ν	Ο	Р	0
00	X	L	32	11	5	13	3	U

• Molecule 61 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
61	3	1	Total Zn 1 1	0
61	8	1	Total Zn 1 1	0

• Molecule 62 is water.

Mol	Chain	Residues	Atoms	AltConf
62	a	46	Total O 46 46	0
62	k	1	Total O 1 1	0
62	V	1	Total O 1 1	0
62	W	1	Total O 1 1	0
62	х	1	Total O 1 1	0
62	А	238	Total O 238 238	0
62	В	1	Total O 1 1	0
62	С	2	Total O 2 2	0
62	Ν	1	Total O 1 1	0
62	4	2	Total O 2 2	0
62	6	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S Ribosomal RNA

• Molecule 2: 30S ribosomal protein S2

Chain b:

9%

90%

MET SER GLN 0GLN 04 0124 1125	K128 R206 ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU SER SER SER SER SER	ALA GLU GLY	
• Molecule 3:	30S ribosomal protein S3		
Chain c:	91%	9%	
MET C2 KB0 KB0 KB6	C200 GLY ARG GLN GLU CLU CLU CLU CLY CLYS PRO PRO ALA ALA ALA ALA ARG ARG		
• Molecule 4:	30S ribosomal protein S4		
Chain d:	99%		
MET A2 K148 K206			
• Molecule 5:	30S ribosomal protein S5		
Chain e:	93%	7%	
MET ALA ASN ASN GLU GLU CYS ARG ASP GLU	C111 E104 LEU		
• Molecule 6:	30S ribosomal protein S6		
Chain f:	74%	• 24%	
M1 K27 V84 185 E106 GLU SER	ARG GLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ALA ASN ALA ASP ASP ASP	ASN SER SER ASP ALA ALA ALA CLU	
• Molecule 7:	30S ribosomal protein S7	ASN SER ASP ASP ASN ALA ASP CLU	
• Molecule 7: Chain g:	30S ribosomal protein S7	ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
 Molecule 7: Chain g: ^{5%} 	Image: Second state Image: Second state 30S ribosomal protein S7 97% Image: Second state	ASN SER SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
 Molecule 7: Molecule 7: Chain g: ^{5%} ^{5%} ^{5%} ⁶ € € € ⁶ € € € ⁶ € € € ⁶ € € € € € 	Image: Second system Image: Second system 30S ribosomal protein S7 Image: Second system	ASN SER SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
 Molecule 7: Molecule 7: Chain g: ^{5%} Wolecule 8: Chain h: 	30S ribosomal protein S7 30S ribosomal protein S7 30S ribosomal protein S7 30S ribosomal protein S8	ASN SEA SEA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	
 Molecule 7: Molecule 7: Chain g: ♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥	Image: Second	ASR SER ASR ASR ASR ASR ASR ASR ASR ASR ASR AS	
 Molecule 7: Molecule 7: Chain g: Molecule 8: Molecule 8: Chain h: Chain h: Molecule 9: 	Image: Second	ASR SER ASR ASR ASR ASR ASR ASR ASR ASR ASR AS	
 Molecule 7: Chain g: Molecule 8: Molecule 8: Chain h: Molecule 9: 	30S ribosomal protein S7 97% 1 <td< td=""><td>ASS SEA ASS ASS ASS ASS ASS ASS ASS ASS</td><td></td></td<>	ASS SEA ASS ASS ASS ASS ASS ASS ASS ASS	

• Molecule 10: 30S ribosomal protein S10

6%		
Chain j:	96%	·
++++ +		
MET GLN GLN GLN GLN G103 L92 L92 C103 G103		

• Molecule 11: 30S ribosomal protein S11

Chain k:	92%	8%
MET LYS LYS PRO ALA ALA ARG PRO PRO V12 V129		
• Molecule 12: 30S ribosor	mal protein S12	
Chain l:	98%	
MET A2 L24 K114 K123		
• Molecule 13: 30S riboson	nal protein S13	
Chain m:	96%	
MET ALA ALA ALA ALA ALA K113		
• Molecule 14: 30S ribosor	nal protein S14	
Chain n:	97%	••
MET A2 K22 K22 W101		
• Molecule 15: 30S ribosor	nal protein S15	
Chain o:	98%	••
MET R88 R89		

• Molecule 16: 30S ribosomal protein S16

Chain p:	98%	·
M1 A81 ASN ALA		
• Molecule 17: 30S 1	ribosomal protein S17	
Chain q:	91%	9%
MET ALA ALA GLN CLN LYS LYS T7 V86 GLU VAL		
• Molecule 18: 30S 1 7%	ribosomal protein S18	
Chain r:	80%	• 18%
MET ALA ALA ARG PHE PHE ARG CYS CYS PHE CYS F13 T14	R1 C C C C C C C C C C C C C C C C C C C	
• Molecule 19: 30S 1	ribosomal protein S19	
Chain s:	90%	• 9%
MET P2 N26 D27 D27 A84 A84 A1A LYS LYS LYS LYS LYS	ARG	
• Molecule 20: 30S i	ribosomal protein S20	
Chain t:	96%	
MET A2 A2 A1 ALA ALA ALA ALA		
• Molecule 21: 30S i	ribosomal protein S21	
Chain u:	87%	13%
MET P2 KK7 E8 B3 ARG CLM ARG CLM ARG CLM ARG CLM ARG CLM ARG CLM ARG CLM ARG CLM ARG CLM ARG ARG CLM ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	LEE RALE	
• Molecule 22: P-sit	e initiator tRNA	
Chain v:	74%	18% 6% •
C G G G G G G G G G G G G G	446 1447 1447 1454 1555 1555 1555 1570 1570 1570 1775 1775	
• Molecule 23: mRN	JA	

WORLDWIDE PROTEIN DATA BANK

• Molecule 28: 50S ribosomal protein L3

Chain D:	99%		
M 1151 1151 1152 1152 6211			
• Molecule 29: 50S ribo	osomal protein L4		
Chain E:	98%		•
M1 874 874 874 812 812 812 800 8200			
• Molecule 30: 50S ribo	osomal protein L5		
Chain F:	96%		
MET ALA R3 R3 R3 R3 R3 R3 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1	Aba		
• Molecule 31: 50S ribe	osomal protein L6		
Chain G:	98%		:
MET S2 P154 R170 K176 LYS			
• Molecule 32: 50S ribe	osomal protein L9		
Chain H:	49%	51%	
M1 A67 A67 A67 A67 C10 C17 C10 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	ASP GLU GLU GLU GLU CI CI SER FLU GLU ALA ALA ALA CLU CLU CLU	ALA ALA ALA ALA GLY FRO GLY GLU CLU GLU CLU CLU CLU CLU CLU ASN ASN ALY ALY CLU	ASN THR GLY GLU PHE
ASP VAL ALA ALA HIS HIS HIS ASP CU THR THR THR THR THR THR THR THR THR THR	TLE VAL ALA GLU		
• Molecule 33: 50S ribo	osomal protein L10		
Chain I:	57% 69%	• 29%	
M1 A2 13 K4 K5 E5 B7 K8 K9 K10 K11 K11 K13 K13 K13	E14 V15 E17 E17 A18 A19 A21 A22 A22 A22 A25 A25 A25 A25 A25 A25 A25	D29 A30 A31 A31 A31 V35 V33 A37 A37 A37 A37 A37 A45 A45	B47 B47 A48 V50 V50 V52 V52 K61 K61 K61 K61 K61 K61 K61 K61 K61 K61
L72 N73 D74 V75 V75 K77 L81 L81 L81 L81 L81 L81 L81 L81 L83 S85	NB6 E87 H88 P89 P89 A91 A91 A93 A93 R94 F96 F96 F96 F96 F99	K101 6102 6103 9104 7105 8105 8106 8110 A110 A111 A111 A111 A112 8113 8113	CII5 CII5 FI17 F117 F118 CII8 ALA ASA ASA ASA ASA ASA ASA ASA ASA ASA

 \bullet Molecule 34: 50S ribosomal protein L11

13% Chain J: 93% 6%
MET ALA ALA LYS LYS ALA ALA ALA ALS ALS ALS ALS ALS ALS AL
\bullet Molecule 35: 50S ribosomal protein L13
Chain L:
\bullet Molecule 36: 50S ribosomal protein L14
Chain M: 100%
There are no outlier residues recorded for this chain.
\bullet Molecule 37: 50S ribosomal protein L15
Chain N: 100%
There are no outlier residues recorded for this chain.
\bullet Molecule 38: 50S ribosomal protein L16
Chain O: 100%
There are no outlier residues recorded for this chain.
\bullet Molecule 39: 50S ribosomal protein L17
Chain P: 93% 7%
M CLY CLY CLY VALE VALE CLU CLU ALA ALA ALA ALA CLU
\bullet Molecule 40: 50S ribosomal protein L18
Chain Q: 99% .
RET F116

• Molecule 41: 50S ribosomal protein L19

Chain R:	97%	•••
MET THR 13 13 13 11 116		
• Molecule 42: 50S ribosomal p	protein L20	
Chain S:	99%	
MET A2 A118		
• Molecule 43: 50S ribosomal p	protein L21	
Chain T:	98%	•
M1 251 A103 A103		
• Molecule 44: 50S ribosomal p	protein L22	
Chain U:	100%	
◆ - 110 - 110		
• Molecule 45: 50S ribosomal p	protein L23	
Chain V:	95%	5%
M F94 ALA SER ALA ALA ALA		
• Molecule 46: 50S ribosomal p	protein L24	
Chain W:	98%	
M144884448844488444488444488444844484448		
• Molecule 47: 50S ribosomal p	protein L25	
Chain X:	93%	7%
MET VAL 13 14 14 14 14 14 14 14 14 14 14 14 14 14		
• Molecule 48: 50S ribosomal p	protein L27	

Chain Y:	88%	• 11%
MET ALA ALA ALA ALA CLY GLY GLY AB5 AB5		
• Molecule 49: 50S ribosomal protein	. L28	
Chain Z:	97%	
• Molecule 50: 50S ribosomal protein	L29	
Chain 1:	97%	•
M1 A61 GLY LYS		
• Molecule 51: 50S ribosomal protein	L30	
Chain 2:	98%	
MET A2 G58 G58		
• Molecule 52: 50S ribosomal protein	L31	
17% Chain 3: 65%	• 34%)
M1 112 V21 122 122 122 122 122 122 122 12	THR GLY GLY ARG TLE ARD ARG ARG CLY ARG CLY ARG CLY ARG ARG ARG ARG ARG THR ALA ALA ALA ALA	
• Molecule 53: 50S ribosomal protein	L32	
Chain 4:	92%	8%
MET A2 GLY SER ASP GLU GLU		
• Molecule 54: 50S ribosomal protein	L33	
Chain 5:	100%	
₩ <mark>1</mark> KB1		
• Molecule 55: 50S ribosomal protein	L34	

Chain 6:

There are no outlier residues recorded for this chain.

 \bullet Molecule 56: 50S ribosomal protein L35

Chain 7:

98%

100%

 \bullet Molecule 57: 50S ribosomal protein L36

Chain 8: 100%

There are no outlier residues recorded for this chain.

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	73337	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	31	Depositor
Minimum defocus (nm)	200	Depositor
Maximum defocus (nm)	2100	Depositor
Magnification	105000	Depositor
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	1.999	Depositor
Minimum map value	-0.674	Depositor
Average map value	-0.002	Depositor
Map value standard deviation	0.065	Depositor
Recommended contour level	0.14	Depositor
Map size (Å)	435.2, 435.2, 435.2	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	$0.85, 0.85, \overline{0.85}$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMU, 1MG, 6MZ, 4SU, 5MC, 2MA, 4OC, 2MG, FME, GCP, MA6, 7MG, ZN, OMC, MG, 5MU, OMG, PSU, UR3

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	a	0.29	0/36354	0.79	11/56707~(0.0%)	
2	b	0.27	0/1779	0.58	0/2392	
3	с	0.26	0/1685	0.54	0/2270	
4	d	0.27	0/1636	0.56	0/2189	
5	е	0.27	0/1148	0.57	0/1544	
6	f	0.27	0/871	0.60	0/1172	
7	g	0.25	0/1204	0.57	0/1609	
8	h	0.26	0/993	0.52	0/1332	
9	i	0.25	0/1022	0.60	0/1365	
10	j	0.27	0/797	0.57	0/1076	
11	k	0.26	0/895	0.53	0/1209	
12	1	0.27	0/973	0.64	1/1303~(0.1%)	
13	m	0.25	0/901	0.63	0/1209	
14	n	0.25	0/812	0.62	0/1082	
15	0	0.26	0/710	0.53	0/947	
16	р	0.26	0/647	0.56	0/870	
17	q	0.25	0/653	0.59	0/881	
18	r	0.26	0/488	0.53	0/660	
19	\mathbf{S}	0.23	0/678	0.52	0/912	
20	t	0.25	0/678	0.48	0/904	
21	u	0.26	0/513	0.53	0/680	
22	v	0.51	3/1725~(0.2%)	1.12	12/2689~(0.4%)	
23	W	0.27	0/147	0.69	0/227	
24	Х	0.26	0/4325	0.54	1/5861~(0.0%)	
25	А	0.39	0/68977	0.81	21/107590~(0.0%)	
26	В	0.28	0/2789	0.79	2/4345~(0.0%)	
27	С	0.28	0/2108	0.59	0/2831	
28	D	0.29	0/1611	0.58	0/2167	
29	Е	0.27	$0/1\overline{541}$	0.51	0/2075	
30	F	0.26	0/1427	0.60	0/1917	
31	G	0.26	$0/1\overline{341}$	0.55	1/1805~(0.1%)	

Mal	Chain Bond lengths		Bond angles			
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
32	Н	0.24	0/516	0.50	0/696	
33	Ι	0.23	0/586	0.45	0/813	
34	J	0.25	0/688	0.45	0/953	
35	L	0.27	0/1156	0.50	0/1559	
36	М	0.27	0/947	0.58	0/1268	
37	Ν	0.27	0/1078	0.59	0/1436	
38	0	0.27	0/1105	0.56	0/1476	
39	Р	0.26	0/975	0.56	0/1304	
40	Q	0.25	0/888	0.56	0/1183	
41	R	0.30	0/911	0.53	0/1218	
42	S	0.27	0/943	0.55	0/1253	
43	Т	0.27	0/835	0.54	0/1117	
44	U	0.25	0/837	0.52	0/1114	
45	V	0.26	0/749	0.50	0/1002	
46	W	0.25	0/794	0.57	0/1062	
47	Х	0.26	0/1468	0.51	0/1987	
48	Y	0.30	0/583	0.57	0/774	
49	Ζ	0.29	0/641	0.58	0/854	
50	1	0.22	0/491	0.45	0/654	
51	2	0.25	0/449	0.52	0/602	
52	3	0.23	0/364	0.48	0/494	
53	4	0.25	0/446	0.55	0/594	
54	5	0.26	0/433	0.52	0/576	
55	6	0.26	0/368	0.66	0/482	
56	7	0.24	0/511	0.57	0/668	
57	8	0.25	0/308	0.62	0/404	
All	All	0.33	3/160498~(0.0%)	0.75	49/239363~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
28	D	0	1
43	Т	0	1
All	All	0	2

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	V	76	A	N7-C5	-11.91	1.32	1.39

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
22	V	76	А	C5-C4	-8.39	1.32	1.38
22	V	76	А	C5-C6	-8.06	1.33	1.41

All (49) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	$Z = Observed(^{o})$		$Ideal(^{o})$
22	V	76	A	N1-C2-N3	-18.51	120.04	129.30
22	V	76	A	C2-N3-C4	18.36	119.78	110.60
22	V	76	А	O4'-C1'-N9	15.29	120.44	108.20
25	А	1094	С	OP1-P-O3'	-10.98	81.05	105.20
25	А	1094	С	OP2-P-O3'	-9.74	83.77	105.20
22	v	76	A	N3-C4-C5	-9.67	120.03	126.80
22	V	76	A	N7-C8-N9	-9.09	109.25	113.80
22	v	76	A	C5-N7-C8	7.99	107.89	103.90
25	А	536	U	C2-N1-C1'	7.89	127.16	117.70
12	1	24	LEU	CA-CB-CG	7.64	132.87	115.30
1	a	203	U	C2-N1-C1'	7.58	126.79	117.70
25	А	1300	U	C2-N1-C1'	7.49	126.69	117.70
22	v	76	A	N9-C4-C5	7.47	108.79	105.80
25	А	2117	U	C2-N1-C1'	7.36	126.53	117.70
25	А	536	U	N1-C2-O2	7.29	127.90	122.80
25	А	1095	U	OP1-P-OP2	7.29	130.53	119.60
22	v	75	С	OP1-P-O3'	7.28	121.21	105.20
31	G	154	PRO	C-N-CA	7.22	139.74	121.70
1	a	203	U	N1-C2-O2	6.93	127.65	122.80
22	V	76	A	C4-C5-C6	6.89	120.45	117.00
1	a	203	U	N3-C2-O2	-6.81	117.43	122.20
22	V	75	С	OP2-P-O3'	-6.70	90.47	105.20
25	А	2117	U	N1-C2-O2	6.67	127.47	122.80
25	А	536	U	N3-C2-O2	-6.65	117.55	122.20
25	А	359	U	N1-C2-O2	6.29	127.20	122.80
1	a	1018	G	C5-C6-O6	6.17	132.30	128.60
25	А	2117	U	N3-C2-O2	-6.15	117.89	122.20
25	А	359	U	C2-N1-C1'	6.11	125.03	117.70
25	А	359	U	N3-C2-O2	-6.09	117.94	122.20
22	v	69	С	C2-N1-C1'	5.54	124.89	118.80
1	a	1018	G	N1-C6-O6	-5.53	116.58	119.90
25	А	1300	U	N1-C2-O2	5.51	126.66	122.80
1	a	180	С	C6-N1-C2	-5.35	118.16	120.30
25	А	659	G	C4-N9-C1'	5.27	133.36	126.50
25	А	836	U	C2-N1-C1'	5.23	123.98	117.70
25	А	1301	С	C2-N1-C1'	5.21	124.53	118.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	V	46	G	N3-C2-N2	-5.19	116.27	119.90
24	X	741	LEU	CA-CB-CG	5.19	127.23	115.30
1	a	322	C	P-O3'-C3'	5.12	125.84	119.70
1	a	179	C	N1-C2-O2	5.11	121.96	118.90
25	А	1300	U	N3-C2-O2	-5.10	118.63	122.20
25	А	348	U	C2-N1-C1'	5.10	123.82	117.70
26	В	37	С	N1-C2-O2	5.08	121.95	118.90
26	В	37	С	C2-N1-C1'	5.08	124.39	118.80
25	А	1382	А	O4'-C1'-N9	5.07	112.26	108.20
25	А	536	U	C6-N1-C1'	-5.07	114.11	121.20
1	a	1286	С	N3-C2-O2	-5.03	118.38	121.90
1	a	180	С	N3-C2-O2	-5.01	118.39	121.90
1	a	806	G	P-O3'-C3'	5.01	125.71	119.70

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
28	D	151	THR	Peptide
43	Т	51	LEU	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	b	222/246~(90%)	205~(92%)	16 (7%)	1 (0%)	29	54
3	с	206/228~(90%)	194 (94%)	12 (6%)	0	100	100
4	d	203/206~(98%)	175 (86%)	28 (14%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	е	152/166~(92%)	139 (91%)	13 (9%)	0	100	100
6	f	104/139~(75%)	92~(88%)	10 (10%)	2(2%)	8	20
7	g	150/156~(96%)	140~(93%)	9~(6%)	1 (1%)	22	46
8	h	127/130~(98%)	116 (91%)	10 (8%)	1 (1%)	19	43
9	i	125/130~(96%)	113 (90%)	11 (9%)	1 (1%)	19	43
10	j	97/103~(94%)	90~(93%)	7 (7%)	0	100	100
11	k	117/129~(91%)	112 (96%)	5 (4%)	0	100	100
12	1	120/123~(98%)	112 (93%)	8 (7%)	0	100	100
13	m	112/118~(95%)	99~(88%)	12 (11%)	1 (1%)	17	40
14	n	98/101~(97%)	87 (89%)	11 (11%)	0	100	100
15	О	86/89~(97%)	83 (96%)	3 (4%)	0	100	100
16	р	79/83~(95%)	77 (98%)	2 (2%)	0	100	100
17	q	78/88~(89%)	78 (100%)	0	0	100	100
18	r	60/76~(79%)	54 (90%)	5 (8%)	1 (2%)	9	23
19	s	81/91~(89%)	72 (89%)	9 (11%)	0	100	100
20	t	85/91~(93%)	84 (99%)	1 (1%)	0	100	100
21	u	60/71~(84%)	58 (97%)	2(3%)	0	100	100
24	х	591/840~(70%)	544 (92%)	43 (7%)	4 (1%)	22	46
27	С	270/273~(99%)	255 (94%)	15 (6%)	0	100	100
28	D	209/211~(99%)	183 (88%)	24 (12%)	2 (1%)	15	37
29	Е	198/200~(99%)	190 (96%)	6 (3%)	2 (1%)	15	37
30	F	174/179~(97%)	151 (87%)	20 (12%)	3 (2%)	9	23
31	G	173/177~(98%)	160 (92%)	13 (8%)	0	100	100
32	Н	70/148~(47%)	65~(93%)	5 (7%)	0	100	100
33	Ι	116/166~(70%)	97 (84%)	16 (14%)	3 (3%)	5	13
34	J	132/143~(92%)	110 (83%)	21 (16%)	1 (1%)	19	43
35	L	140/142~(99%)	136 (97%)	4 (3%)	0	100	100
36	М	120/122~(98%)	118 (98%)	2 (2%)	0	100	100
37	Ν	142/144~(99%)	126 (89%)	16 (11%)	0	100	100
38	О	135/137~(98%)	132 (98%)	3 (2%)	0	100	100
39	Р	118/129~(92%)	110 (93%)	8 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
40	Q	113/116~(97%)	102 (90%)	11 (10%)	0	100	100
41	R	112/116~(97%)	106 (95%)	6 (5%)	0	100	100
42	S	115/118~(98%)	111 (96%)	4 (4%)	0	100	100
43	Т	101/103~(98%)	99~(98%)	1 (1%)	1 (1%)	15	37
44	U	108/110~(98%)	107 (99%)	1 (1%)	0	100	100
45	V	92/99~(93%)	90~(98%)	2 (2%)	0	100	100
46	W	101/104~(97%)	93~(92%)	7 (7%)	1 (1%)	15	37
47	Х	188/204~(92%)	180 (96%)	8 (4%)	0	100	100
48	Y	74/85~(87%)	71 (96%)	2(3%)	1 (1%)	11	28
49	Z	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
50	1	59/63~(94%)	59 (100%)	0	0	100	100
51	2	55/58~(95%)	55 (100%)	0	0	100	100
52	3	45/71~(63%)	41 (91%)	3(7%)	1 (2%)	6	17
53	4	53/60~(88%)	51 (96%)	2(4%)	0	100	100
54	5	49/51~(96%)	47 (96%)	2 (4%)	0	100	100
55	6	42/44~(96%)	39~(93%)	3 (7%)	0	100	100
56	7	61/64~(95%)	60 (98%)	1 (2%)	0	100	100
57	8	36/38~(95%)	34 (94%)	2 (6%)	0	100	100
All	All	6429/7157~(90%)	5976 (93%)	426 (7%)	27 (0%)	38	60

All (27) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	f	84	VAL
7	g	152	SER
8	h	55	VAL
13	m	117	ARG
24	Х	635	GLU
28	D	152	PRO
29	Е	122	ASP
30	F	74	ILE
43	Т	52	PRO
52	3	12	ILE
6	f	85	ILE
24	Х	486	ALA
30	F	37	ASN

Mol	Chain	Res	Type
30	F	114	PHE
33	Ι	52	VAL
24	Х	554	TYR
34	J	71	THR
46	W	14	ALA
48	Y	69	PHE
33	Ι	106	PHE
9	i	28	ILE
18	r	18	VAL
33	Ι	108	ILE
24	Х	371	GLU
28	D	210	ARG
2	b	89	MET
29	Е	127	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
2	b	184/202~(91%)	183 (100%)	1 (0%)	88	96
3	с	170/187~(91%)	169 (99%)	1 (1%)	86	95
4	d	171/174~(98%)	170~(99%)	1 (1%)	86	95
5	е	113/124~(91%)	113 (100%)	0	100	100
6	f	88/119~(74%)	87~(99%)	1 (1%)	73	90
7	g	118/122~(97%)	118 (100%)	0	100	100
8	h	108/109~(99%)	108 (100%)	0	100	100
9	i	104/106~(98%)	102~(98%)	2(2%)	57	82
10	j	87/92~(95%)	87~(100%)	0	100	100
11	k	90/98~(92%)	90 (100%)	0	100	100
12	1	106/107~(99%)	105~(99%)	1 (1%)	78	92
13	m	95/99~(96%)	94 (99%)	1 (1%)	73	90
14	n	80/82~(98%)	78~(98%)	2(2%)	47	76

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
15	О	74/75~(99%)	73~(99%)	1 (1%)	67	86
16	р	64/65~(98%)	64 (100%)	0	100	100
17	q	73/79~(92%)	73 (100%)	0	100	100
18	r	48/64~(75%)	48 (100%)	0	100	100
19	s	72/78~(92%)	71 (99%)	1 (1%)	67	86
20	t	69/70~(99%)	69 (100%)	0	100	100
21	u	51/60~(85%)	51 (100%)	0	100	100
24	х	417/668~(62%)	415 (100%)	2 (0%)	88	96
27	С	212/213~(100%)	212 (100%)	0	100	100
28	D	162/162~(100%)	162 (100%)	0	100	100
29	Е	157/158~(99%)	155 (99%)	2 (1%)	69	87
30	F	149/153~(97%)	148 (99%)	1 (1%)	84	94
31	G	138/141~(98%)	138 (100%)	0	100	100
32	Н	44/107 (41%)	44 (100%)	0	100	100
33	Ι	2/122~(2%)	2 (100%)	0	100	100
34	J	13/110 (12%)	13 (100%)	0	100	100
35	L	119/119 (100%)	119 (100%)	0	100	100
36	М	102/102~(100%)	102 (100%)	0	100	100
37	Ν	106/106~(100%)	106 (100%)	0	100	100
38	О	110/110 (100%)	110 (100%)	0	100	100
39	Р	99/104~(95%)	99 (100%)	0	100	100
40	Q	86/87~(99%)	86 (100%)	0	100	100
41	R	96/98~(98%)	95~(99%)	1 (1%)	76	91
42	S	86/88~(98%)	86 (100%)	0	100	100
43	Т	86/86~(100%)	86 (100%)	0	100	100
44	U	87/87~(100%)	87 (100%)	0	100	100
45	V	79/82~(96%)	79 (100%)	0	100	100
46	W	84/88~(96%)	84 (100%)	0	100	100
47	Х	154/164~(94%)	154 (100%)	0	100	100
48	Y	56/61~(92%)	56 (100%)	0	100	100
49	Ζ	66/67~(98%)	65~(98%)	1 (2%)	65	86

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
50	1	54/55~(98%)	54 (100%)	0	100	100
51	2	48/49~(98%)	48 (100%)	0	100	100
52	3	41/61~(67%)	41 (100%)	0	100	100
53	4	48/52~(92%)	48 (100%)	0	100	100
54	5	47/47~(100%)	47 (100%)	0	100	100
55	6	37/37~(100%)	37~(100%)	0	100	100
56	7	54/55~(98%)	54 (100%)	0	100	100
57	8	34/34~(100%)	34 (100%)	0	100	100
All	All	5038/5785~(87%)	5019 (100%)	19 (0%)	91	97

All (19) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	b	208	ARG
3	с	86	LYS
4	d	148	LYS
6	f	27	LYS
9	i	12	ARG
9	i	41	ARG
12	l	114	ARG
13	m	117	ARG
14	n	22	LYS
14	n	23	LYS
15	0	88	ARG
19	s	28	ARG
24	Х	487	LYS
24	Х	742	ARG
29	Е	73	ARG
29	Е	74	SER
30	F	9	ARG
41	R	37	ASP
49	Ζ	2	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (42) such sidechains are listed below:

Mol	Chain	Res	Type
3	с	139	GLN
4	d	41	HIS

Mol	Chain	Res	Type
4	d	152	GLN
5	е	20	ASN
6	f	58	HIS
6	f	63	ASN
7	g	28	ASN
8	h	4	GLN
10	j	58	ASN
11	k	24	HIS
11	k	28	ASN
11	k	85	ASN
11	k	118	HIS
12	1	46	ASN
12	1	59	ASN
12	1	73	ASN
14	n	45	GLN
15	0	37	ASN
20	t	13	GLN
24	Х	298	GLN
24	Х	399	HIS
24	Х	457	ASN
24	Х	668	GLN
27	С	22	GLN
27	С	61	HIS
27	С	261	ASN
28	D	126	ASN
30	F	37	ASN
30	F	127	ASN
35	L	23	GLN
36	М	56	GLN
39	Р	16	HIS
40	Q	39	GLN
41	R	3	ASN
41	R	39	GLN
45	V	28	GLN
45	V	90	GLN
47	Х	25	ASN
48	Y	29	GLN
48	Y	40	GLN
50	1	31	GLN
55	6	29	GLN

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	a	1517/1536~(98%)	268~(17%)	0
22	V	75/77~(97%)	16 (21%)	0
23	W	5/24~(20%)	0	0
25	А	2878/2891~(99%)	548 (19%)	47 (1%)
26	В	116/120~(96%)	14 (12%)	2(1%)
All	All	4591/4648 (98%)	846 (18%)	49 (1%)

All (846) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	a	4	С
1	a	6	G
1	a	7	А
1	a	9	G
1	a	30	U
1	a	31	G
1	a	32	А
1	a	39	G
1	a	47	С
1	a	48	С
1	a	50	A
1	a	51	А
1	a	54	С
1	a	60	А
1	a	61	G
1	a	71	U
1	a	72	G
1	a	77	G
1	a	82	U
1	a	83	G
1	a	88	U
1	a	91	А
1	a	95	А
1	a	116	G
1	a	121	G
1	a	123	A
1	a	124	А
1	a	125	U
1	a	138	G
1	a	140	G
1	a	151	С
1	a	157	С
1	a	177	G

Mol	Chain	Res	Type
1	a	182	G
1	a	184	G
1	a	191	А
1	a	192	G
1	a	202	U
1	a	204	С
1	a	206	G
1	a	217	А
1	a	239	U
1	a	241	G
1	a	245	G
1	a	260	G
1	a	261	С
1	a	283	А
1	a	287	G
1	a	315	А
1	a	322	С
1	a	323	А
1	a	334	U
1	a	338	А
1	a	341	G
1	a	345	G
1	a	346	С
1	a	348	G
1	a	361	U
1	a	363	G
1	a	366	С
1	a	376	А
1	a	378	G
1	a	386	С
1	a	391	A
1	a	400	G
1	a	406	A
1	a	407	G
1	а	408	А
1	a	409	A
1	a	418	G
1	a	423	U
1	a	433	U
1	a	443	G
1	a	446	A
1	a	447	G

Mol	Chain	Res	Type
1	a	455	А
1	a	457	U
1	a	460	А
1	a	461	U
1	a	462	А
1	a	475	G
1	a	478	G
1	a	490	А
1	a	491	U
1	a	492	А
1	a	503	А
1	a	505	С
1	a	507	U
1	a	509	G
1	a	511	G
1	a	512	С
1	a	513	С
1	a	521	7MG
1	a	526	А
1	a	527	А
1	a	534	G
1	a	539	С
1	a	541	А
1	a	553	А
1	a	556	U
1	a	558	С
1	a	562	G
1	a	566	А
1	a	567	A
1	a	570	С
1	a	571	G
1	a	573	G
1	a	582	G
1	a	584	U
1	a	585	С
1	a	627	G
1	a	647	A
1	a	659	A
1	a	680	U
1	a	681	A
1	a	682	G
1	a	687	G

Mol	Chain	Res	Type
1	a	688	А
1	a	689	А
1	a	696	А
1	a	710	А
1	a	712	А
1	a	716	G
1	a	718	G
1	a	725	G
1	a	749	А
1	a	754	G
1	a	756	U
1	a	757	G
1	a	758	С
1	a	771	A
1	a	781	А
1	a	787	U
1	a	788	А
1	a	806	G
1	a	807	U
1	а	809	А
1	a	811	С
1	a	815	G
1	а	822	А
1	a	861	G
1	а	866	А
1	a	870	С
1	a	884	G
1	a	894	А
1	a	896	G
1	a	908	А
1	a	920	G
1	a	921	G
1	a	928	С
1	a	952	А
1	a	954	U
1	a	955	U
1	a	962	А
1	a	963	А
1	a	964	C
1	a	965	G
1	a	969	A
1	a	970	G

Mol	Chain	Res	Type
1	a	971	А
1	a	975	U
1	a	977	А
1	a	987	G
1	a	988	А
1	a	990	А
1	a	997	G
1	a	998	А
1	a	1003	U
1	a	1004	С
1	a	1009	G
1	a	1015	U
1	a	1016	U
1	a	1018	G
1	a	1020	G
1	a	1021	С
1	a	1023	U
1	a	1025	С
1	a	1026	G
1	a	1031	С
1	a	1039	С
1	a	1044	G
1	a	1059	U
1	a	1073	G
1	a	1077	U
1	a	1078	G
1	a	1079	U
1	a	1088	G
1	a	1089	U
1	a	1095	А
1	a	1102	G
1	a	1118	G
1	a	1119	U
1	a	1124	A
1	a	1130	U
1	a	1132	G
1	a	1133	G
1	a	1152	С
1	a	1153	U
1	a	1162	С
1	a	1175	G
1	a	1178	G

Mol	Chain	Res	Type
1	a	1190	А
1	a	1191	А
1	a	1196	U
1	a	1201	2MG
1	a	1206	U
1	a	1207	А
1	a	1213	А
1	a	1214	G
1	a	1218	U
1	a	1219	A
1	a	1221	А
1	a	1222	С
1	a	1230	А
1	a	1232	A
1	a	1234	U
1	a	1235	G
1	a	1242	A
1	a	1248	G
1	a	1251	U
1	a	1252	G
1	a	1264	G
1	a	1266	U
1	a	1273	А
1	a	1274	A
1	a	1279	А
1	a	1280	U
1	a	1281	А
1	a	1293	А
1	a	1294	G
1	a	1295	U
1	a	1296	С
1	a	1299	G
1	a	1314	С
1	a	1316	С
1	a	1332	G
1	a	1340	A
1	a	1341	G
1	a	1342	U
1	a	1347	G
1	a	1357	A
1	a	1358	U
1	a	1373	G

Mol	Chain	Res	Type
1	a	1375	U
1	a	1388	А
1	a	1391	С
1	a	1392	А
1	a	1400	U
1	a	1413	G
1	a	1420	G
1	a	1422	U
1	a	1426	G
1	a	1435	А
1	a	1440	А
1	a	1446	А
1	a	1448	G
1	a	1469	G
1	a	1487	А
1	a	1491	G
1	a	1493	А
1	a	1497	А
1	a	1500	U
1	a	1501	А
1	a	1502	G
1	a	1511	G
1	a	1514	С
1	a	1523	G
1	a	1524	G
22	V	6	G
22	V	8	4SU
22	V	16	С
22	V	17	С
22	V	18	G
22	V	21	А
22	V	46	G
22	V	47	U
22	V	48	С
22	V	61	С
22	V	69	С
22	V	70	G
$\overline{22}$	V	71	С
22	V	72	A
22	V	75	С
22	V	76	А
25	А	2	G

Mol	Chain	Res	Type
25	А	15	G
25	А	28	А
25	А	34	U
25	А	35	G
25	А	44	А
25	А	46	G
25	А	50	U
25	А	58	G
25	А	70	G
25	А	71	A
25	А	74	А
25	А	75	G
25	А	79	С
25	A	82	G
25	А	83	G
25	А	84	А
25	А	85	G
25	А	92	А
25	А	95	А
25	А	96	G
25	А	97	А
25	А	100	U
25	А	102	G
25	А	110	G
25	А	114	U
25	А	115	С
25	А	118	А
25	А	119	А
25	А	120	U
25	A	124	G
25	A	125	G
25	A	131	A
25	A	142	С
25	A	160	A
25	A	163	С
25	A	166	U
25	A	181	A
25	A	196	A
25	A	199	A
25	A	205	G
25	A	206	U
25	A	215	G

Mol	Chain	Res	Type
25	А	216	А
25	А	220	G
25	А	221	А
25	А	222	А
25	А	224	U
25	А	230	G
25	А	233	A
25	А	240	U
25	А	242	G
25	А	243	U
25	А	244	А
25	А	248	G
25	А	249	С
25	A	250	G
25	А	252	G
25	А	255	А
25	А	261	G
25	А	265	А
25	А	266	G
25	А	271	U
25	А	273	А
25	А	289	G
25	А	293	А
25	А	294	А
25	А	296	G
25	А	305	А
25	А	315	U
25	А	316	A
25	А	318	U
25	А	319	G
$\overline{25}$	A	322	U
25	A	323	G
25	A	324	A
25	A	337	С
25	A	348	U
25	A	349	U
25	А	356	А
25	A	358	A
25	A	359	U
25	A	376	С
25	A	377	G
25	A	380	A

Mol	Chain	Res	Type
25	А	387	G
25	А	396	U
25	А	397	G
25	А	400	G
25	А	403	А
25	А	435	С
25	А	445	А
25	А	447	С
25	А	456	G
25	А	461	А
25	А	464	G
25	А	471	А
25	А	472	G
25	А	482	G
25	А	485	G
25	А	487	G
25	А	495	U
25	А	496	А
25	А	499	А
25	А	519	А
25	А	520	А
25	А	521	G
25	А	522	С
25	А	523	А
25	А	536	U
25	А	537	U
25	А	538	G
25	А	544	U
25	А	553	А
25	А	558	U
25	А	563	U
25	А	565	А
25	A	576	A
25	A	582	А
25	А	583	U
25	A	593	A
25	А	594	G
25	A	599	A
25	А	601	С
25	A	603	U
25	A	604	A
25	А	605	U

Mol	Chain	Res	Type
25	А	608	G
25	А	622	А
25	А	627	А
25	А	635	U
25	А	636	A
25	А	637	G
25	А	644	U
25	А	645	А
25	А	647	U
25	А	649	G
25	А	659	G
25	А	660	A
25	А	667	А
25	А	675	A
25	А	676	U
25	А	687	G
25	А	720	A
25	А	728	С
25	А	730	С
25	А	737	U
25	А	738	G
25	А	743	G
25	А	747	G
25	А	754	A
25	А	755	C
25	А	765	G
25	А	766	G
25	А	772	A
25	А	774	G
25	А	775	G
25	A	779	A
25	А	793	U
25	A	795	G
25	A	802	С
25	А	820	G
25	A	835	A
25	A	836	U
25	A	841	C
25	A	848	G
25	A	855	A
25	A	866	U
25	А	870	G

Mol	Chain	Res	Type
25	А	871	G
25	А	875	А
25	А	876	U
25	А	877	С
25	А	878	С
25	А	880	G
25	А	884	U
25	А	886	C
25	А	889	А
25	А	899	А
25	А	903	С
25	А	904	C
25	А	908	U
25	А	911	С
25	А	921	С
25	А	922	G
25	А	931	А
25	А	935	A
25	А	936	С
25	А	949	A
25	А	951	С
25	А	952	G
25	А	964	А
25	А	972	C
25	А	973	А
25	А	986	А
25	А	993	G
25	А	995	С
25	А	999	A
25	А	1002	U
25	А	1003	U
25	А	1007	G
25	А	1012	G
25	A	1016	U
25	A	1017	A
25	A	1023	U
25	A	1030	A
25	A	1037	G
25	A	1041	G
25	A	1043	U
25	A	1044	A
25	А	1047	A

Mol	Chain	Res	Type
25	А	1051	U
25	А	1060	А
25	А	1063	А
25	А	1074	А
25	А	1075	А
25	А	1078	А
25	А	1080	А
25	А	1091	U
25	А	1099	С
25	А	1100	G
25	А	1102	G
25	А	1112	G
25	А	1117	А
25	А	1119	А
25	А	1120	U
25	А	1122	U
25	А	1124	А
25	А	1125	С
25	А	1129	G
25	А	1133	А
25	А	1148	G
25	А	1162	G
25	А	1169	А
25	А	1170	С
25	А	1193	G
25	А	1199	G
25	А	1211	А
25	А	1214	А
25	А	1225	G
25	А	1234	А
25	А	1237	G
25	А	1238	С
25	A	1240	A
25	А	1243	G
25	A	1249	А
25	A	1253	G
25	A	1255	A
25	A	1258	G
25	A	1259	А
25	A	1261	A
25	А	1263	U
25	А	1276	С

Mol	Chain	Res	Type
25	А	1287	А
25	А	1288	А
25	А	1307	С
25	А	1308	А
25	А	1316	U
25	А	1334	G
25	А	1339	U
25	А	1347	G
25	А	1352	А
25	А	1354	А
25	А	1355	А
25	А	1366	U
25	А	1370	А
25	А	1372	А
25	А	1373	С
25	А	1382	А
25	А	1403	G
25	А	1404	С
25	А	1406	А
25	А	1407	U
25	А	1408	G
25	А	1414	А
25	А	1415	С
25	А	1420	А
25	А	1421	А
25	А	1439	G
25	А	1447	U
25	А	1448	С
25	А	1449	С
25	А	1454	U
25	A	1469	G
25	A	1475	U
25	A	1477	А
25	A	1480	U
25	А	1497	G
25	A	1498	G
25	А	1502	А
25	A	1509	A
25	A	1511	G
25	А	1512	A
25	A	1537	U
25	А	1556	А

Mol	Chain	Res	Type
25	А	1558	G
25	А	1559	А
25	А	1560	А
25	А	1568	U
25	А	1573	U
25	А	1574	U
25	А	1575	С
25	А	1576	А
25	А	1593	А
25	А	1597	С
25	А	1628	С
25	А	1629	С
25	А	1634	С
25	А	1637	U
25	А	1638	U
25	А	1639	G
25	А	1641	G
25	А	1643	G
25	А	1650	G
25	А	1654	А
25	А	1657	G
25	А	1664	G
25	А	1673	С
25	А	1685	G
25	А	1686	G
25	А	1690	А
25	А	1705	G
25	А	1712	G
25	А	1716	U
25	А	1717	U
25	А	1720	U
25	А	1721	С
25	A	1725	A
25	A	1735	U
25	A	1736	G
25	A	1742	A
25	A	1745	U
25	A	1750	G
25	A	1751	G
25	A	1760	А
25	A	$17\overline{63}$	G
25	А	1771	А

Mol	Chain	Res	Type
25	А	1773	А
25	А	1787	С
25	А	1788	А
25	А	1789	А
25	А	1795	А
25	А	1797	А
25	А	1798	G
25	А	1803	С
25	А	1816	А
25	А	1829	G
25	А	1835	А
25	А	1837	G
25	А	1841	А
25	А	1851	U
25	А	1853	А
25	А	1865	G
25	А	1890	G
25	А	1892	С
25	А	1893	G
25	А	1894	G
25	А	1897	G
25	А	1900	А
25	А	1906	А
25	А	1909	G
25	А	1916	G
25	А	1917	G
25	А	1918	U
25	А	1923	А
25	А	1942	U
25	А	1954	С
25	A	1957	A
25	А	1958	U
25	A	1959	G
25	A	1974	G
25	А	1978	U
25	A	1980	U
25	A	1984	С
25	A	2008	A
25	A	2010	С
25	A	2020	A
25	A	2023	С
25	А	2030	U

Mol	Chain	Res	Type
25	А	2042	С
25	А	2043	G
25	А	2047	А
25	А	2048	G
25	А	2049	А
25	А	2055	U
25	А	2056	7MG
25	А	2058	A
25	А	2067	G
25	А	2094	С
25	А	2096	U
25	А	2097	G
25	А	2098	U
25	А	2099	G
25	А	2100	U
25	А	2101	A
25	А	2103	G
25	А	2105	U
25	А	2106	А
25	А	2110	G
25	А	2112	G
25	А	2114	G
25	А	2115	G
25	А	2116	С
25	А	2117	U
25	А	2118	U
25	А	2119	U
25	А	2120	G
25	А	2121	А
25	A	2122	А
25	A	2127	G
25	A	2129	А
25	A	2132	С
25	A	2133	С
25	A	2135	G
25	A	2140	С
25	A	2143	G
25	A	2145	A
25	A	2146	G
25	А	2147	С
25	A	2148	С
25	А	2150	U

Mol	Chain	Res	Type
25	А	2151	С
25	А	2158	А
25	А	2160	А
25	А	2161	С
25	А	2171	А
25	А	2174	С
25	А	2175	U
25	А	2177	G
25	А	2185	А
25	А	2187	C
25	А	2191	G
25	А	2194	С
25	А	2199	A
25	А	2200	U
25	А	2201	С
25	А	2212	A
25	А	2225	G
25	А	2226	G
25	А	2229	G
25	А	2238	OMG
25	А	2239	G
25	А	2265	А
25	А	2270	U
25	А	2274	А
25	А	2275	А
25	А	2292	U
25	А	2294	G
25	А	2296	A
25	А	2297	A
25	А	2306	С
25	А	2309	A
25	А	2312	A
25	А	2313	U
25	А	2314	A
25	А	2323	A
25	А	2330	U
25	А	2332	G
25	А	2334	С
25	А	2337	С
25	А	2348	С
25	А	2358	G
25	А	2359	U

Mol	Chain	Res	Type
25	А	2361	С
25	А	2366	G
25	А	2370	G
25	А	2372	С
25	А	2389	U
25	А	2393	U
25	А	2398	А
25	А	2407	С
25	А	2409	С
25	А	2410	U
25	А	2412	А
25	А	2414	С
25	А	2416	G
25	А	2417	А
25	А	2422	А
25	А	2428	U
25	А	2434	G
25	А	2435	А
25	А	2446	А
25	А	2462	С
25	А	2467	С
25	А	2474	G
25	А	2478	U
25	А	2485	OMC
25	А	2489	G
25	А	2491	U
25	А	2492	G
25	А	2493	U
25	А	2505	А
25	А	2506	U
25	А	2516	G
25	А	2534	А
25	A	2537	G
25	A	2553	A
25	А	2554	G
25	A	2560	С
25	А	2565	G
25	A	2569	G
25	A	2572	U
25	A	2586	G
25	A	2589	A
25	А	2596	U

Mol	Chain	Res	Type
25	А	2600	U
25	А	2602	U
25	А	2616	U
25	А	2617	U
25	А	2640	U
25	А	2641	А
25	А	2650	G
25	А	2672	G
25	А	2676	U
25	А	2677	U
25	А	2689	G
25	А	2692	А
25	А	2701	G
25	А	2705	G
25	А	2713	U
25	А	2720	А
25	А	2735	А
25	А	2744	А
25	А	2752	А
25	А	2763	А
25	А	2765	А
25	А	2766	U
25	А	2783	С
25	А	2784	U
25	А	2785	U
25	А	2786	G
25	А	2787	А
25	А	2794	U
25	А	2795	G
25	А	2807	А
25	А	2808	А
25	А	2812	U
25	A	$2\overline{820}$	U
25	A	2836	U
25	A	2846	G
25	A	2852	U
25	A	2854	G
25	A	2860	A
25	A	2867	С
25	A	2871	U
25	A	2873	G
25	А	2889	C

Mol	Chain	Res	Type
25	А	2890	А
26	В	9	G
26	В	24	G
26	В	35	U
26	В	37	С
26	В	41	С
26	В	52	А
26	В	53	A
26	В	67	U
26	В	73	А
26	В	89	U
26	В	90	С
26	В	91	С
26	В	109	А
26	В	117	G

All (49) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
25	А	27	G
25	А	81	G
25	А	83	G
25	А	87	С
25	А	114	U
25	А	243	U
25	А	265	А
25	А	314	А
25	А	434	А
25	А	444	А
25	А	470	А
25	А	687	G
25	А	774	G
25	А	792	А
25	А	840	U
25	А	920	С
25	А	963	А
25	А	1016	U
25	A	1042	C
25	A	1098	U
25	А	1099	C
25	A	1169	A
25	А	1233	A

Mol	Chain	Res	Type
25	А	1340	А
25	А	1407	U
25	А	1448	С
25	А	1497	G
25	А	1574	U
25	А	1627	А
25	А	1642	А
25	А	1672	G
25	А	1741	А
25	А	1834	А
25	А	1891	G
25	А	1917	G
25	А	2029	А
25	А	2149	А
25	А	2228	А
25	А	2273	G
25	А	2274	А
25	А	2392	G
25	А	2461	U
25	А	2536	G
25	A	2743	U
25	А	2783	С
25	A	2793	С
25	А	2851	G
26	В	51	G
26	В	66	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

26 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain	Turne	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dec	Tiple	Bo	ond leng	\mathbf{ths}	B	ond ang	gles
	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2										
25	2MA	А	2490	58,25	17,25,26	0.95	1 (5%)	17,37,40	1.01	2 (11%)									
1	UR3	a	1492	1	19,22,23	0.97	1 (5%)	26,32,35	1.47	1 (3%)									

Mal	Tune	Chain	Dec	Tink	Bo	ond leng	ths	B	Bond angles		
WIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
25	UR3	А	1902	25	19,22,23	1.02	1 (5%)	$26,\!32,\!35$	1.46	2 (7%)	
1	4OC	a	1396	1	20,23,24	0.73	0	26,32,35	0.98	2 (7%)	
25	6MZ	А	2017	25	18,25,26	1.13	2 (11%)	16,36,39	4.51	4 (25%)	
22	4SU	V	8	22	18,21,22	1.85	4 (22%)	26,30,33	1.84	5 (19%)	
22	5MU	v	54	22	19,22,23	1.42	<mark>5 (26%)</mark>	28,32,35	2.07	5 (17%)	
25	2MG	А	1822	25	18,26,27	0.92	1 (5%)	16,38,41	1.10	2 (12%)	
25	1MG	А	735	25	18,26,27	0.68	0	19,39,42	1.04	2 (10%)	
1	2MG	a	1201	1	18,26,27	0.93	1 (5%)	16,38,41	1.11	2 (12%)	
25	5MC	А	1949	25	18,22,23	0.91	2 (11%)	26,32,35	1.09	2 (7%)	
25	6MZ	А	1608	25	18,25,26	1.17	2 (11%)	16,36,39	4.29	4 (25%)	
1	5MC	a	961	1	18,22,23	0.94	2 (11%)	26,32,35	1.11	2 (7%)	
1	2MG	a	960	1	18,26,27	0.88	1 (5%)	16,38,41	1.22	2 (12%)	
25	OMU	А	2539	25	19,22,23	1.24	3 (15%)	26,31,34	1.75	5 (19%)	
1	MA6	a	1513	1	19,26,27	0.90	1 (5%)	18,38,41	1.89	6 (33%)	
1	7MG	a	521	1	22,26,27	1.31	3 (13%)	29,39,42	2.56	7 (24%)	
25	OMC	А	2485	58,25	19,22,23	0.83	0	26,31,34	0.89	1 (3%)	
1	2MG	a	1510	1	18,26,27	0.91	1 (5%)	16,38,41	1.19	2 (12%)	
25	7MG	А	2056	58,25	22,26,27	1.32	3 (13%)	29,39,42	2.53	7 (24%)	
1	MA6	a	1512	1	19,26,27	0.92	1 (5%)	18,38,41	1.85	6 (33%)	
25	2MG	А	2432	58,25	18,26,27	0.95	1 (5%)	16,38,41	1.17	2 (12%)	
25	5MU	А	1926	25	19,22,23	1.40	5 (26%)	28,32,35	2.14	6 (21%)	
25	OMG	А	2238	25	18,26,27	0.96	1 (5%)	19,38,41	1.03	2 (10%)	
22	5MC	V	32	22	18,22,23	0.96	2 (11%)	26,32,35	1.28	3 (11%)	
22	PSU	V	55	22	18,21,22	1.35	2 (11%)	22,30,33	1.89	3 (13%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
25	2MA	А	2490	58,25	-	2/3/25/26	0/3/3/3
1	UR3	a	1492	1	-	0/7/25/26	0/2/2/2
25	UR3	А	1902	25	-	0/7/25/26	0/2/2/2
1	4OC	a	1396	1	-	2/9/29/30	0/2/2/2
25	6MZ	А	2017	25	-	2/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
22	4SU	v	8	22	-	1/7/25/26	0/2/2/2
22	5MU	V	54	22	-	0/7/25/26	0/2/2/2
25	2MG	А	1822	25	-	0/5/27/28	0/3/3/3
25	1MG	А	735	25	-	0/3/25/26	0/3/3/3
1	2MG	a	1201	1	-	3/5/27/28	0/3/3/3
25	5MC	А	1949	25	-	0/7/25/26	0/2/2/2
25	6MZ	А	1608	25	-	0/5/27/28	0/3/3/3
1	5MC	a	961	1	-	0/7/25/26	0/2/2/2
1	2MG	a	960	1	-	0/5/27/28	0/3/3/3
25	OMU	А	2539	25	-	0/9/27/28	0/2/2/2
1	MA6	a	1513	1	-	3/7/29/30	0/3/3/3
1	7MG	a	521	1	-	2/7/37/38	0/3/3/3
25	OMC	А	2485	58,25	-	1/9/27/28	0/2/2/2
1	2MG	a	1510	1	-	0/5/27/28	0/3/3/3
25	7MG	А	2056	58,25	-	2/7/37/38	0/3/3/3
1	MA6	a	1512	1	-	1/7/29/30	0/3/3/3
25	2MG	А	2432	58,25	-	0/5/27/28	0/3/3/3
25	5MU	А	1926	25	-	0/7/25/26	0/2/2/2
25	OMG	А	2238	25	-	2/5/27/28	0/3/3/3
22	5MC	v	32	22	-	1/7/25/26	0/2/2/2
22	PSU	V	55	22	-	0/7/25/26	0/2/2/2

All (46) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
22	V	8	4SU	C4-S4	-4.48	1.59	1.68
22	V	8	4SU	C4-N3	-3.62	1.33	1.37
25	А	2056	7MG	C4-N9	-3.37	1.33	1.37
25	А	1608	6MZ	C6-N6	3.31	1.40	1.35
25	А	2017	6MZ	C6-N6	3.23	1.40	1.35
22	V	55	PSU	C6-C5	3.21	1.39	1.35
22	V	8	4SU	C5-C4	-3.02	1.38	1.42
1	a	521	7MG	C4-N9	-2.96	1.34	1.37
25	А	1926	5MU	C4-N3	-2.92	1.33	1.38
1	a	521	7MG	C5-C4	2.88	1.47	1.38
25	А	2238	OMG	C6-N1	-2.80	1.33	1.37
25	А	2432	2MG	C6-N1	-2.79	1.33	1.37
25	А	1822	2MG	C6-N1	-2.75	1.33	1.37
25	А	2539	OMU	C4-N3	-2.74	1.33	1.38
25	A	2056	7MG	C5-C4	2.73	1.47	1.38
25	А	2056	7MG	C6-N1	-2.71	1.33	1.38

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	V	54	5MU	C6-C5	2.68	1.39	1.34
22	V	55	PSU	C4-N3	-2.64	1.33	1.38
22	V	54	5MU	C4-N3	-2.62	1.34	1.38
1	a	1201	2MG	C6-N1	-2.61	1.34	1.37
1	a	961	5MC	C6-C5	2.61	1.38	1.34
22	V	8	4SU	C2-N3	-2.59	1.33	1.38
25	А	1926	5MU	C6-C5	2.56	1.38	1.34
22	V	32	5MC	C6-C5	2.56	1.38	1.34
1	a	1510	2MG	C6-N1	-2.54	1.34	1.37
1	a	521	7MG	C6-N1	-2.53	1.34	1.38
25	А	1949	5MC	C6-C5	2.53	1.38	1.34
25	А	2539	OMU	C2-N3	-2.52	1.33	1.38
25	А	1926	5MU	C6-N1	-2.51	1.33	1.38
1	a	960	2MG	C6-N1	-2.47	1.34	1.37
25	А	1949	5MC	C6-N1	-2.44	1.33	1.38
22	V	32	5MC	C6-N1	-2.43	1.33	1.38
22	V	54	5MU	C2-N1	2.43	1.42	1.38
25	А	1926	5MU	C2-N3	-2.38	1.33	1.38
1	a	961	5MC	C6-N1	-2.38	1.34	1.38
1	a	1512	MA6	C5-C4	2.33	1.47	1.40
1	a	1513	MA6	C5-C4	2.31	1.47	1.40
22	V	54	5MU	C4-C5	2.31	1.48	1.44
22	V	54	5MU	C6-N1	-2.27	1.34	1.38
25	А	1608	6MZ	C5-C4	2.23	1.46	1.40
25	А	2539	OMU	C5-C4	-2.19	1.38	1.43
25	А	1902	UR3	C2-N1	2.19	1.41	1.38
25	А	2017	6MZ	C5-C4	2.17	1.46	1.40
25	А	1926	5MU	C4-C5	2.07	1.48	1.44
1	a	1492	UR3	C2-N1	2.01	1.41	1.38
25	А	2490	2MA	C2-N3	2.01	1.35	1.31

Continued from previous page...

All (87) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
25	А	2017	6MZ	C9-N6-C6	-16.16	108.95	122.87
25	А	1608	6MZ	C9-N6-C6	-15.46	109.56	122.87
1	a	521	7MG	N9-C4-N3	9.12	139.12	125.47
25	А	2056	7MG	N9-C4-N3	8.84	138.70	125.47
25	А	2017	6MZ	C2-N1-C6	6.20	121.91	116.59
1	a	1492	UR3	C4-N3-C2	-6.00	118.91	124.56
22	V	55	PSU	N1-C2-N3	5.96	121.89	115.13
25	А	1608	6MZ	C2-N1-C6	5.81	121.58	116.59

$\alpha \cdot \cdot \cdot \cdot$	C	•	
Continued	trom	nremons	naae
Continucu	JION	pretious	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
25	А	1902	UR3	C4-N3-C2	-5.59	119.30	124.56
25	А	2056	7MG	N9-C8-N7	-5.58	95.40	103.38
1	a	521	7MG	C5-C4-N3	-5.55	117.55	128.13
25	А	1926	5MU	C4-N3-C2	-5.45	120.29	127.35
22	V	8	4SU	C5-C4-N3	5.39	119.69	114.69
25	А	2056	7MG	C5-C4-N3	-5.27	118.08	128.13
25	А	1926	5MU	N3-C2-N1	5.20	121.80	114.89
1	a	521	7MG	N9-C8-N7	-5.20	95.94	103.38
22	V	54	5MU	C4-N3-C2	-5.15	120.69	127.35
22	V	54	5MU	N3-C2-N1	4.92	121.42	114.89
22	V	8	4SU	C4-N3-C2	-4.64	122.83	127.34
25	А	2539	OMU	C4-N3-C2	-4.62	120.48	126.58
25	А	1926	5MU	C5-C4-N3	4.59	119.23	115.31
22	v	54	5MU	C5-C4-N3	4.44	119.10	115.31
1	a	521	7MG	C2-N3-C4	4.28	119.93	112.30
25	А	2539	OMU	N3-C2-N1	4.22	120.49	114.89
25	А	1926	5MU	C5-C6-N1	-4.16	119.06	123.34
25	А	2056	7MG	C2-N3-C4	4.15	119.69	112.30
1	a	1512	MA6	N1-C6-N6	4.14	121.42	117.06
22	V	55	PSU	C4-N3-C2	-3.94	120.67	126.34
22	V	54	5MU	O4-C4-C5	-3.91	120.37	124.90
25	А	1926	5MU	O4-C4-C5	-3.84	120.45	124.90
25	А	2539	OMU	C5-C4-N3	3.80	120.53	114.84
1	a	1513	MA6	C10-N6-C6	-3.59	108.64	119.51
22	V	54	5MU	C5-C6-N1	-3.50	119.74	123.34
1	а	1512	MA6	C10-N6-C6	-3.46	109.03	119.51
22	V	55	PSU	O2-C2-N1	-3.39	119.06	122.79
22	V	32	5MC	C5-C6-N1	-3.38	119.86	123.34
1	a	1513	MA6	N3-C2-N1	-3.37	123.41	128.68
1	a	961	5MC	C5-C6-N1	-3.35	119.90	123.34
25	А	1949	5MC	C5-C6-N1	-3.34	119.90	123.34
25	А	2017	6MZ	N3-C2-N1	-3.31	123.50	128.68
22	v	8	4SU	C5-C4-S4	-3.29	120.23	124.47
1	a	1513	MA6	C9-N6-C6	-3.25	109.67	119.51
25	А	1608	6MZ	N3-C2-N1	-3.22	123.64	128.68
1	a	1512	MA6	N3-C2-N1	-3.18	123.71	128.68
25	A	2539	OMU	O4-C4-C5	-3.11	119.68	125.16
22	V	8	4SU	N3-C2-N1	3.04	118.93	114.89
25	A	2017	6MZ	C4-C5-N7	-3.04	106.23	109.40
1	a	1513	MA6	N1-C6-N6	3.01	120.22	117.06
1	a	1513	MA6	C4-C5-N7	-2.96	106.32	$109.\overline{40}$
22	V	32	5MC	C5-C4-N3	-2.86	118.59	121.67

α \cdot \cdot \cdot	C		
Continued	trom	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	V	32	5MC	O2-C2-N3	-2.83	117.73	122.33
25	А	1926	5MU	O2-C2-N1	-2.78	119.09	122.79
1	a	1512	MA6	C9-N6-C6	-2.75	111.20	119.51
1	a	521	7MG	C5-C6-N1	2.66	115.68	110.99
1	a	1513	MA6	C10-N6-C9	-2.65	107.57	116.12
1	a	1512	MA6	C4-C5-N7	-2.64	106.65	109.40
25	А	2056	7MG	C5-C6-N1	2.62	115.61	110.99
25	А	1608	6MZ	C4-C5-N7	-2.62	106.67	109.40
25	А	2432	2MG	C5-C6-N1	2.51	118.39	113.95
25	А	1902	UR3	C1'-N1-C2	2.48	121.18	116.99
25	А	1949	5MC	C5-C4-N3	-2.47	119.00	121.67
1	a	961	5MC	C5-C4-N3	-2.46	119.02	121.67
25	А	2490	2MA	C5-C6-N1	2.46	118.27	114.02
1	a	1510	2MG	C5-C6-N1	2.44	118.25	113.95
22	V	8	4SU	C1'-N1-C2	2.42	121.95	117.57
25	А	2056	7MG	C5-C4-N9	-2.41	103.21	106.35
1	a	1510	2MG	C8-N7-C5	2.41	107.58	102.99
25	А	735	1MG	C8-N7-C5	2.40	107.55	102.99
1	a	1396	4OC	C6-C5-C4	2.39	119.89	116.96
25	А	2490	2MA	C8-N7-C5	2.36	107.50	102.99
1	a	960	2MG	C5-C6-N1	2.34	118.08	113.95
1	a	960	2MG	C8-N7-C5	2.33	107.42	102.99
1	a	521	7MG	C5-C4-N9	-2.32	103.33	106.35
25	А	1822	2MG	C5-C6-N1	2.32	118.04	113.95
25	А	1822	2MG	C8-N7-C5	2.31	107.40	102.99
25	А	735	1MG	C5-C6-N1	2.31	117.37	113.90
25	А	2432	2MG	C8-N7-C5	2.30	107.38	102.99
1	a	1201	2MG	C5-C6-N1	2.30	118.02	113.95
25	А	2485	OMC	O2-C2-N3	-2.28	118.63	122.33
25	А	2238	OMG	C5-C6-N1	2.24	117.90	113.95
1	a	1201	2MG	C8-N7-C5	2.22	107.23	102.99
25	А	2238	OMG	C8-N7-C5	2.22	107.21	102.99
1	a	1396	4OC	O2-C2-N3	-2.21	118.73	122.33
1	a	1512	MA6	C10-N6-C9	-2.20	109.02	116.12
25	A	2539	OMU	O2-C2-N1	-2.10	120.00	122.79
1	a	521	7MG	O6-C6-C5	-2.07	122.46	127.54
25	А	2056	7MG	O6-C6-C5	-2.04	122.54	127.54

There are no chirality outliers.

All (22) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	a	1201	2MG	O4'-C4'-C5'-O5'
1	a	1201	2MG	C3'-C4'-C5'-O5'
25	А	2017	6MZ	O4'-C4'-C5'-O5'
25	А	2238	OMG	O4'-C4'-C5'-O5'
1	а	521	7MG	C3'-C4'-C5'-O5'
1	a	1396	4OC	O4'-C4'-C5'-O5'
1	а	1513	MA6	O4'-C4'-C5'-O5'
25	А	2056	7MG	O4'-C4'-C5'-O5'
25	А	2056	7MG	C3'-C4'-C5'-O5'
25	А	2238	OMG	C3'-C4'-C5'-O5'
1	a	521	7MG	O4'-C4'-C5'-O5'
25	А	2017	6MZ	C3'-C4'-C5'-O5'
1	a	1396	4OC	C3'-C4'-C5'-O5'
1	а	1513	MA6	C3'-C4'-C5'-O5'
25	А	2485	OMC	O4'-C4'-C5'-O5'
1	а	1512	MA6	C5-C6-N6-C9
1	а	1513	MA6	C5-C6-N6-C9
1	a	1201	2MG	C4'-C5'-O5'-P
22	V	8	4SU	O4'-C4'-C5'-O5'
25	А	2490	2MA	C4'-C5'-O5'-P
25	А	2490	2MA	O4'-C4'-C5'-O5'
22	V	32	5MC	C2'-C1'-N1-C2

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 599 ligands modelled in this entry, 597 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

	Turne	Chain	Dec	Tink	Bo	ond leng	\mathbf{ths}	Bond angles		
WIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
59	FME	V	102	22	8,9,10	0.43	0	7,9,11	1.31	0
60	GCP	х	902	58	27,34,34	1.42	5 (18%)	$34,\!54,\!54$	1.91	8 (23%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
59	FME	V	102	22	-	1/7/9/11	-
60	GCP	Х	902	58	-	1/15/38/38	0/3/3/3

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
60	Х	902	GCP	C5-C6	3.99	1.48	1.41
60	Х	902	GCP	PG-O3G	2.67	1.61	1.54
60	Х	902	GCP	PG-O2G	2.58	1.60	1.54
60	Х	902	GCP	C5-C4	2.35	1.47	1.40
60	Х	902	GCP	PB-O3A	2.02	1.60	1.58

All (8) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
60	Х	902	GCP	C2-N3-C4	4.78	120.82	115.36
60	Х	902	GCP	C4-C5-C6	-4.03	116.95	120.80
60	Х	902	GCP	C2-N1-C6	4.03	122.33	115.93
60	Х	902	GCP	C5-C6-N1	-3.87	118.13	123.43
60	Х	902	GCP	N3-C2-N1	-3.29	122.83	127.22
60	х	902	GCP	PB-O3A-PA	-3.09	122.76	132.56
60	X	902	GCP	C4-C5-N7	-2.66	106.62	109.40
60	Х	902	GCP	C3'-C2'-C1'	2.29	104.42	100.98

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
59	V	102	FME	CB-CG-SD-CE
60	Х	902	GCP	PB-C3B-PG-O1G

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26634. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

Z Index: 211

6.3.2 Raw map

X Index: 270

Y Index: 270

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.14. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{26634}msk_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1392 nm^3 ; this corresponds to an approximate mass of 1258 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.70	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.16	4.20	3.22

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.16 differs from the reported value 2.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26634 and PDB model 7UNV. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.14 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.14).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

Map-model fit summary (i) 9.5

The table lists the average atom inclusion at the recommended contour level (0.14) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9500	0.5540
1	0.9250	0.5560
2	0.9610	0.5990
3	0.5810	0.3460
4	0.9410	0.5940
5	0.9010	0.5720
6	0.9710	0.6220
7	0.9780	0.6260
8	0.9420	0.6070
А	0.9820	0.5920
В	0.9920	0.5470
C	0.9640	0.6130
D	0.9480	0.5980
Ε	0.9510	0.5880
F	0.8220	0.4250
G	0.8970	0.5390
Н	0.8080	0.4670
Ι	0.2610	0.3650
J	0.7740	0.3840
L	0.9640	0.6020
М	0.9470	0.6060
Ν	0.9600	0.5970
Ο	0.9520	0.6130
Р	0.9710	0.6060
Q	0.9210	0.5310
R	0.9420	0.5960
S	0.9730	0.6120
Т	0.9470	0.5850
U	0.9470	0.5970
V	0.9440	0.5810
W	0.8820	0.5380
Х	0.9250	0.5570
Y	0.9590	0.6120
Z	0.9550	0.5980
a	0.9850	0.5300

1.0

0.0 <0.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
b	0.8080	0.4340
С	0.8580	0.4940
d	0.8960	0.5280
e	0.9170	0.5460
f	0.8440	0.4070
g	0.7830	0.3990
h	0.9120	0.5380
i	0.8530	0.4210
j	0.7850	0.4350
k	0.8450	0.4570
1	0.9300	0.5780
m	0.8130	0.3890
n	0.8630	0.4420
0	0.9210	0.5200
р	0.9450	0.5580
q	0.9250	0.5380
r	0.8010	0.4440
s	0.7800	0.3840
t	0.9240	0.5330
u	0.7860	0.4480
V	0.9410	0.4170
W	0.9770	0.5630
X	0.8900	0.5250

