

Full wwPDB X-ray Structure Validation Report (i)

Oct 5, 2023 – 07:41 PM EDT

PDB I	D :	6UPY
Tit	le :	RNA polymerase II elongation complex with 5-guanidinohydantoin lesion in
		state 2E
Author	rs :	Oh, J.; Wang, D.
Deposited o	n :	2019-10-18
Resolutio	n :	3.40 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1026 (3.48-3.32)
Clashscore	141614	1055 (3.48-3.32)
Ramachandran outliers	138981	1038 (3.48-3.32)
Sidechain outliers	138945	1038 (3.48-3.32)
RSRZ outliers	127900	2173 (3.50-3.30)
RNA backbone	3102	1006 (3.84-2.96)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain	
1	R	9	56%		44%
2	Т	29	38%	45%	• 14%
3	Ν	18	22%	61%	17%
4	А	1733	2% 54%	25%	• 20%

	Chain	Length	puge	Quality of cha	ain	
10101	Chain	Longen	0/	Quality of end		
5	В	1224	% 		28%	• 9%
6	С	318	53%		30% •	16%
7	Е	215	9%		33%	
8	F	155	.% 43%	11% •	45%	
9	Н	146	4% 59%		32%	• 9%
10	Ι	122	69	%	25%	•••
11	J	70	50%		43%	7%
12	K	120	69	%	22%	• 5%
13	L	70	37%	24%	39%	

6UPY

2 Entry composition (i)

There are 16 unique types of molecules in this entry. The entry contains 29013 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA.

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
1	R	9	Total 199	C 88	N 40	O 62	Р 9	0	0	0

• Molecule 2 is a DNA chain called Template strand DNA.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	Т	25	Total 500	C 239	N 78	0 158	Р 25	0	0	0

• Molecule 3 is a DNA chain called Non-template strand DNA.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
3	Ν	15	Total 317	C 148	N 71	O 83	Р 15	0	0	0

• Molecule 4 is a protein called DNA-directed RNA polymerase II subunit RPB1.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace
4	А	1384	Total 10851	C 6845	N 1898	O 2048	S 60	0	0	0

• Molecule 5 is a protein called DNA-directed RNA polymerase II subunit RPB2.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace
5	В	1109	Total 8790	C 5566	N 1538	O 1633	${ m S}{53}$	0	0	0

• Molecule 6 is a protein called DNA-directed RNA polymerase II subunit RPB3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	С	267	Total 2101	C 1320	N 349	0 419	S 13	0	0	0

• Molecule 7 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	Е	213	Total 1740	C 1104	N 307	0 318	S 11	0	0	0

• Molecule 8 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
8	F	86	Total 684	C 437	N 115	0 129	${ m S} { m 3}$	0	0	0

• Molecule 9 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	Н	133	Total 1058	C 667	N 176	0 211	$\frac{S}{4}$	0	0	0

• Molecule 10 is a protein called DNA-directed RNA polymerase II subunit RPB9.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms			ZeroOcc	AltConf	Trace
10	Ι	117	Total 945	C 581	N 172	0 182	S 10	0	0	0

• Molecule 11 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC5.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
11	J	65	Total 532	C 339	N 93	0 94	S 6	0	0	0

• Molecule 12 is a protein called DNA-directed RNA polymerase II subunit RPB11.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
12	K	114	Total 919	C 590	N 156	0 171	${ m S} { m 2}$	0	0	0

• Molecule 13 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC4.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
13	L	43	Total 337	C 208	N 66	O 59	$\frac{S}{4}$	0	0	0

• Molecule 14 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
14	А	2	Total Zn 2 2	0	0
14	В	1	Total Zn 1 1	0	0
14	С	1	Total Zn 1 1	0	0
14	Ι	2	$\begin{array}{cc} \text{Total} & \text{Zn} \\ 2 & 2 \end{array}$	0	0
14	J	1	Total Zn 1 1	0	0
14	L	1	Total Zn 1 1	0	0

• Molecule 15 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
15	А	1	Total Mg 1 1	0	0

• Molecule 16 is DIPHOSPHOMETHYLPHOSPHONIC ACID ADENOSYL ESTER (threeletter code: APC) (formula: C₁₁H₁₈N₅O₁₂P₃) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
16	В	1	Total 31	C 11	N 5	0 12	Р 3	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA

N339 R344 V345 D346 R350 I353 I353 D356	L359 E360 E361 L361 L361 C365 C365 C365 C365 C365 C365 C365 C365	P396 P306 P400 P400 P406 P406 P406 P414 P415 P414 P415 P415 P415 P415 P415
D440 P441 V442 L443 F444 N445 R446 R446 R446 F446 F446 F446 F446 H451	K452 K455 A457 A457 A457 V460 V460 V465 L472 V474 P477 P477 P485 P483 D483 D483	M487 V 491 E500 E500 L501 L503 A506 A506 P508 N517 P508 N517 P508 N517 P508 P525 D525 D526 T523 T527 T527 T527 K533
L534 T535 L536 L536 L536 B544 Q545 M549 M549 M549	6574 6575 8579 8579 8579 8590 11586 11586 11586 11586 11596 11596 1599 1599 1590 1500 1607 1607	6510 0611 1612 0611 1612 1630 1630 1630 1630 1630 1636 1636 1636
1669 1670 1670 1679 1679 1678 1683 1683 1683 1683 1683 1683 1683 168	K695 A699 L701 L701 L701 R711 E715 R711 L719 R711 L732 L732 L733 L733 L733 L732 L733 L732 L732	K744 K744 M746 F755 F755 R746 M760 M761 M761 M761 M761 M761 M761 M761 M761
F799 E801 B802 B803 B803 B803 B805 L808 E812 E812	Ha 16 R821 1825 1835 1835 1837 1837 1837 1837 1837 1837 1837 1837	N855 1855 1855 1855 1855 1855 1856 1861 1873 1873 1873 1873 1873 1873 1873 187
8889 18890 18895 18895 1895 1895 1960 1960 1960 1960 1960	H906 1907 1907 1913 1919 1919 1936 1936 1938 1939 1939 1939 1939 1939 1939 1939	D949 N953 P955 P955 P955 P955 P956 P956 P958 P978 P978 P978 P978 P978 P978 P978 P97
1982 1986 1986 1986 1996 1997 1002 1002 1002	Q1008 Q1011 M1012 T1016 T1016 M1028 M1028 M1036 M1041 M1041 M1041 M1055 M1055	P1060 11061 11062 11062 11065 11065 11065 11065 11065 11065 11072 11072 11072 11072 11073 11073 11073 11073 11081 11081 11081 11081 11081 11081 111811
把 1.4 2.4 2.4 2.4 2.4 2.4 1.0 1.0 1.0 1.1 1.0 1.1 0 1.1 0 1.1 0 1.1 0 1.1 0 1.1 0 1.1 0 1.1 0 1.1 0 1.1 1.1		
R1194 V1212 C1213	D1233 01233 1233 1234 1234 1236 1236 1236 1236 1236 1236 1236 1236	L1277 V1276 E1276 E1276 E1276 P1299 P1299 P1299 P1299 P1299 E1209 V1316 N1312
D1323 P1324 T1325 T1325 H1326 H1326 N1328 N1330 S1331 C1340 T1341	E1342 R1345 R1345 11356 11366 113778 113788 113788 113778 113788 113888 113888 113888 113888 113888 113888 1138888 1138888 1138888 1138888 1138888 1138888 1138888 1138888 11388888 11388888 11388888888 1138888888888	T1 394 C1 395 C1 395 C1 400 C1 400 C1 400 C1 400 C1 419 D1 419 D1 419 D1 419 C1 4120 C1 4120 C1 4120 C1 4120 C1 4120 C1 4120 C1 4120 C1 4120 C1 420 C1 420 C
P1435 11436 11436 11438 11438 11438 F1441 F1441 GLU GLU SER LEU	VAL VAL TYR MET PRO PRO GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	ASP ASP GLU GLU GLU ASP ASP ASP ASP ASP ASP CUU ASP CUU CUU CUU CUU CUU CUU CUU CUU CUU CU
GLY SER ASP ASP ASP ASP ASP OCY GLY CLY THR THR THR	TYR GUY GUY ALA ALA ALA TYR CUU CUU CUU CUU CUU CUU CUU CUU CUU CU	PHE CLY CLY CLY CLY SER SER PRO CLY PRO CLY PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
THR SER PRO FRO FYO FYO FYO FRO FRO SER FRO FRO FRO FRO	PRR PRR PRR PRR PRR PRR PRR PRR PRR PRR	SER SER SER SER SER SER SER SER SER SER
R TYR C SER R THR THR R SER R SER R SER R SER R SER R SER R THR.	RR TYRE SER THE	A A SER A A A SER A A A SER A A A SER A A A A A A A A A A A A A A A A A A A
• Molecule 5: Dl	NA-directed RNA polymerase II	subunit RPB2
Chain B:	61%	28% • 9%

• Molecule 6: DNA-directed RNA polymerase II subunit RPB3

MI84 K64 K185 V97 K186 V97 K187 V97 K186 V97 K191 L100 D1990 Q102 D1990 Q102 M192 C105 E215 T111 F219 Q102 M192 G105 E215 T111 F219 Q102 C233 L124 V234 Q135 V234 Q135 V245 M123 V245 M123 V245 M126 V245 M126 V245 M126 V245 M126 V246 M126 V248 M126 V248 M126 V248 M126 V248 M126 V248 M126 V248 M126 V358 M126 V358 M126 V36

VAL MET THR GLY GLY GLU GLU GLU ASB ASB ASB ASB CLN MET THR CLN GLY CLN TTR ASB TTR ASB TTR

• Molecule 11: DNA-directed RNA polymerases I, II, and III subunit RPABC5

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	168.54Å 223.12Å 193.06Å	Depositor
a, b, c, α , β , γ	90.00° 100.92° 90.00°	Depositor
$\mathbf{Posolution} \left(\overset{\circ}{\mathbf{A}} \right)$	49.22 - 3.40	Depositor
Resolution (A)	49.22 - 3.40	EDS
% Data completeness	99.5 (49.22-3.40)	Depositor
(in resolution range)	99.5 (49.22-3.40)	EDS
R_{merge}	0.45	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.38 (at 3.40 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.13_2998	Depositor
B B.	0.227 , 0.282	Depositor
II, II, <i>free</i>	0.227 , 0.282	DCC
R_{free} test set	1809 reflections (1.89%)	wwPDB-VP
Wilson B-factor $(Å^2)$	89.9	Xtriage
Anisotropy	0.531	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.26 , 61.8	EDS
L-test for $twinning^2$	$ < L >=0.41, < L^2>=0.24$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	29013	wwPDB-VP
Average B, all atoms $(Å^2)$	110.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.07% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: G35, APC, ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond	angles
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	R	0.74	1/223~(0.4%)	0.75	0/345
2	Т	0.55	0/529	1.04	0/809
3	Ν	0.55	0/359	0.82	0/553
4	А	0.25	0/11042	0.45	0/14932
5	В	0.25	0/8961	0.43	0/12090
6	С	0.25	0/2139	0.45	0/2899
7	Ε	0.25	0/1776	0.42	0/2391
8	F	0.24	0/696	0.42	0/943
9	Н	0.25	0/1076	0.46	0/1459
10	Ι	0.26	0/963	0.44	0/1298
11	J	0.25	0/541	0.43	0/727
12	Κ	0.24	0/937	0.41	0/1265
13	L	0.28	0/339	0.61	0/450
All	All	0.27	1/29581~(0.0%)	0.47	0/40161

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
4	А	0	3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	R	1	A	OP3-P	-10.59	1.48	1.61

There are no bond angle outliers.

There are no chirality outliers.

All (3)	planarity	outliers	are	listed	below:
-------	----	-----------	----------	-----	--------	--------

Mol	Chain	Res	Type	Group
4	А	1106	ASN	Peptide
4	А	524	VAL	Peptide
4	А	566	ILE	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	R	199	0	98	7	0
2	Т	500	0	287	16	0
3	N	317	0	166	11	0
4	А	10851	0	10916	332	0
5	В	8790	0	8781	259	0
6	С	2101	0	2056	84	0
7	Е	1740	0	1761	54	0
8	F	684	0	692	14	0
9	Н	1058	0	1018	36	0
10	Ι	945	0	890	27	0
11	J	532	0	543	31	0
12	K	919	0	929	24	0
13	L	337	0	352	12	0
14	А	2	0	0	0	0
14	В	1	0	0	0	0
14	С	1	0	0	0	0
14	Ι	2	0	0	0	0
14	J	1	0	0	0	0
14	L	1	0	0	0	0
15	A	1	0	0	0	0
16	В	31	0	14	2	0
All	All	29013	0	28503	779	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

All (779) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

6UPY	
-------------	--

Atom-1	Atom-2	Interatomic	Clash
		distance $(Å)$	overlap (Å)
16:B:1301:APC:O4'	16:B:1301:APC:C1'	1.63	1.25
9:H:108:SER:HB2	9:H:111:LEU:HD13	1.21	1.15
4:A:451:HIS:CE1	4:A:1074:GLU:HG3	1.88	1.07
4:A:443:LEU:HD12	5:B:1146:PHE:CZ	2.01	0.95
9:H:109:LYS:O	9:H:111:LEU:HD12	1.77	0.85
4:A:326:ARG:HG3	4:A:1406:VAL:HG11	1.58	0.84
4:A:269:ILE:HG22	4:A:299:HIS:HB3	1.60	0.82
4:A:848:ILE:HG21	4:A:1370:LEU:HD21	1.62	0.82
6:C:41:ILE:HG23	6:C:172:PRO:HG2	1.64	0.78
5:B:1099:VAL:HG12	5:B:1103:ILE:HD11	1.68	0.76
5:B:900:ALA:HB3	13:L:61:THR:HG23	1.68	0.76
4:A:148:CYS:HB3	4:A:168:GLY:H	1.48	0.75
4:A:535:THR:O	4:A:575:LYS:NZ	2.19	0.75
4:A:859:SER:O	4:A:1422:ARG:NH1	2.20	0.74
4:A:982:THR:N	4:A:985:ASP:OD2	2.20	0.74
9:H:30:SER:HG	9:H:36:CYS:HG	1.36	0.74
6:C:35:ARG:NH1	12:K:41:THR:OG1	2.22	0.73
5:B:996:ARG:NH2	6:C:174:ALA:O	2.22	0.72
2:T:19:G35:H4'	2:T:19:G35:OP1	1.87	0.72
5:B:408:LEU:HD22	5:B:545:ILE:HD12	1.71	0.72
5:B:287:ARG:NH2	5:B:294:ASP:OD2	2.22	0.72
4:A:35:ILE:HD11	4:A:84:ILE:HB	1.69	0.72
6:C:94:LYS:HA	6:C:127:ARG:HH22	1.55	0.72
4:A:1325:THR:OG1	7:E:146:HIS:O	2.06	0.71
5:B:612:GLU:O	5:B:632:ARG:NH2	2.24	0.71
6:C:7:GLN:HB2	6:C:23:SER:HB2	1.73	0.71
11:J:9:SER:OG	11:J:48:ARG:NH2	2.23	0.71
5:B:796:LEU:HB3	5:B:799:PRO:HG3	1.72	0.70
4:A:360:GLU:OE2	4:A:651:LYS:NZ	2.23	0.70
4:A:491:VAL:O	5:B:1150:ARG:NH2	2.23	0.70
5:B:847:ASP:OD2	12:K:6:ARG:NH2	2.25	0.70
5:B:995:ARG:NH1	5:B:997:GLU:OE1	2.20	0.70
4:A:896:ARG:HE	4:A:897:TYR:HE1	1.39	0.70
10:I:80:SER:OG	10:I:103:CYS:SG	2.50	0.70
4:A:852:TYR:HA	4:A:1060:PRO:HB3	1.74	0.70
7:E:46:TYR:HD2	7:E:53:PRO:HB3	1.56	0.70
5:B:552:MET:HG3	5:B:553:PRO:HD3	1.74	0.70
10:I:92:ARG:NH2	10:I:94:ASP:OD1	2.25	0.70
5:B:566:LEU:HD12	5:B:588:GLY:HA2	1.74	0.69
6:C:35:ARG:NH1	12:K:39:ASP:OD1	2.24	0.69
12:K:8:GLU:O	12:K:37:LYS:NZ	2.26	0.69
6:C:39:ALA:HA	6:C:164:ALA:HB3	1.72	0.69

	A L	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:1267:MET:HA	4:A:1271:ILE:HD13	1.75	0.69
5:B:904:ARG:NH2	13:L:68:GLU:OE2	2.25	0.69
4:A:846:GLU:OE2	4:A:1425:SER:OG	2.10	0.69
4:A:523:ILE:HG23	4:A:527:THR:HB	1.75	0.68
5:B:401:PHE:HA	5:B:404:LYS:HG3	1.74	0.68
5:B:62:ILE:HG23	5:B:418:LYS:HG2	1.75	0.68
11:J:10:CYS:SG	11:J:43:ARG:NE	2.66	0.68
6:C:66:ARG:NH1	11:J:3:VAL:O	2.18	0.68
7:E:133:GLU:HB3	7:E:135:PHE:HE1	1.58	0.68
4:A:43:GLU:HG2	4:A:44:THR:HG23	1.76	0.68
5:B:986:GLN:HG3	5:B:1025:HIS:HD2	1.57	0.68
4:A:566:ILE:HB	9:H:96:VAL:HB	1.76	0.67
5:B:999:MET:HG3	5:B:1000:PRO:HD2	1.76	0.67
6:C:69:LEU:O	11:J:6:ARG:NH2	2.26	0.67
4:A:78:PRO:O	5:B:1205:GLN:NE2	2.26	0.67
4:A:76:GLU:OE2	5:B:1159:ARG:NH1	2.27	0.67
4:A:1132:LYS:HG2	4:A:1135:ARG:HH12	1.60	0.67
5:B:604:ARG:HD3	5:B:691:GLU:HG2	1.77	0.67
8:F:116:ASP:HB3	8:F:119:ARG:HB2	1.77	0.66
6:C:54:ASN:ND2	6:C:60:ASP:OD1	2.28	0.66
4:A:636:GLU:OE1	4:A:962:ARG:NH1	2.28	0.66
6:C:233:GLU:OE2	11:J:43:ARG:NH2	2.27	0.66
5:B:185:THR:OG1	5:B:188:ASP:OD1	2.12	0.66
4:A:997:LEU:O	4:A:1011:GLN:NE2	2.29	0.66
6:C:249:ASP:OD2	6:C:253:LYS:NZ	2.28	0.66
5:B:815:ARG:NH2	5:B:1041:GLU:OE2	2.30	0.65
4:A:1025:ARG:HA	4:A:1030:ARG:HH11	1.61	0.65
4:A:356:ASP:HB3	4:A:359:LEU:HB2	1.79	0.65
5:B:169:ARG:HB2	5:B:454:THR:HG23	1.79	0.65
4:A:1165:GLU:OE2	4:A:1194:ARG:NH2	2.30	0.65
12:K:24:ASP:OD2	12:K:74:ARG:NH1	2.29	0.65
5:B:287:ARG:NH1	5:B:324:ILE:O	2.29	0.64
4:A:286:HIS:CE1	4:A:288:ALA:HB3	2.32	0.64
6:C:258:ILE:HG23	12:K:19:LEU:HD11	1.79	0.64
4:A:1340:GLY:HA2	7:E:183:PRO:HD2	1.77	0.64
4:A:711:ARG:NH2	10:I:87:GLN:OE1	2.30	0.64
4:A:886:ILE:HD11	4:A:943:LEU:HB2	1.80	0.64
5:B:260:GLY:O	5:B:267:ARG:NH1	2.28	0.64
5:B:766:ARG:HG2	5:B:1022:THR:HG22	1.80	0.64
4:A:91:PHE:HB2	4:A:297:GLN:HE22	1.62	0.64
4:A:208:LEU:HD23	4:A:235:ILE:HD11	1.80	0.64

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:A:668:ASP:O	4:A:741:ASN:ND2	2.30	0.64
4:A:846:GLU:HA	4:A:1066:VAL:HG22	1.79	0.64
5:B:620:ARG:HD2	10:I:68:LEU:HD11	1.80	0.64
6:C:54:ASN:OD1	6:C:56:THR:OG1	2.15	0.64
4:A:9:ALA:O	5:B:1193:GLN:NE2	2.29	0.64
7:E:107:THR:HA	7:E:131:THR:HB	1.80	0.64
4:A:472:LEU:HG	5:B:835:GLN:NE2	2.12	0.64
9:H:22:LYS:NZ	9:H:45:GLU:OE1	2.25	0.63
4:A:451:HIS:CE1	4:A:1074:GLU:CG	2.76	0.63
5:B:325:GLN:NE2	10:I:12:ASN:OD1	2.32	0.63
4:A:944:ARG:NH2	4:A:1296:GLY:O	2.28	0.63
2:T:10:DT:O2	3:N:10:DG:N2	2.32	0.63
4:A:407:ARG:HH11	4:A:413:ILE:HD11	1.62	0.63
5:B:193:LYS:HB3	5:B:787:VAL:HG11	1.79	0.63
7:E:135:PHE:HB3	7:E:140:LEU:HD11	1.80	0.63
4:A:879:GLU:OE1	4:A:962:ARG:NH2	2.29	0.63
7:E:28:TYR:HE1	7:E:78:LEU:HD13	1.62	0.63
9:H:29:ALA:HA	9:H:37:LYS:HA	1.81	0.62
2:T:14:DG:H1	3:N:5:DC:H42	1.47	0.62
12:K:100:ALA:O	12:K:104:ASN:ND2	2.32	0.62
4:A:69:THR:O	5:B:1174:LYS:NZ	2.31	0.62
6:C:88:CYS:HB3	6:C:92:CYS:HB3	1.82	0.62
5:B:28:GLU:OE2	5:B:807:ARG:NH2	2.24	0.62
11:J:7:CYS:HA	11:J:49:MET:HE3	1.82	0.62
4:A:313:GLN:HG3	4:A:314:ALA:H	1.65	0.62
5:B:365:THR:HG23	5:B:367:LEU:H	1.64	0.62
7:E:20:LYS:NZ	7:E:34:GLU:O	2.31	0.61
4:A:806:ARG:NH2	5:B:727:LYS:O	2.32	0.61
7:E:132:ILE:HD12	7:E:132:ILE:O	1.99	0.61
4:A:17:VAL:HG13	4:A:1419:ASP:HB3	1.81	0.61
4:A:443:LEU:HD12	5:B:1146:PHE:CE2	2.35	0.61
4:A:670:ILE:HD12	5:B:1067:ARG:HE	1.65	0.61
11:J:17:LYS:HB3	11:J:39:LEU:HD13	1.82	0.61
4:A:761:MET:HG3	5:B:1021:MET:HG2	1.83	0.61
9:H:89:LEU:HD13	9:H:91:ASP:O	2.01	0.60
4:A:898:ARG:O	4:A:1029:ARG:NH1	2.34	0.60
5:B:22:SER:O	5:B:654:ARG:NH1	2.32	0.60
5:B:1053:GLU:OE2	5:B:1067:ARG:NH1	2.35	0.60
4:A:33:ALA:HB1	4:A:56:PRO:HG2	1.82	0.60
5:B:828:ALA:O	5:B:834:ASN:ND2	2.33	0.60
4:A:18:GLN:HG2	5:B:1215:ARG:HB2	1.83	0.60

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:535:THR:HG21	4:A:617:VAL:HG23	1.82	0.60
4:A:1002:GLY:O	4:A:1008:GLN:NE2	2.33	0.60
5:B:232:SER:O	5:B:261:ARG:NH2	2.33	0.60
5:B:620:ARG:HH11	10:I:68:LEU:HD21	1.66	0.60
6:C:47:ASP:OD2	13:L:70:ARG:NH1	2.34	0.60
7:E:24:LYS:NZ	7:E:32:GLN:OE1	2.35	0.60
5:B:393:LYS:HD3	10:I:89:GLN:HE22	1.67	0.60
4:A:1121:GLU:HB3	4:A:1124:HIS:HB2	1.84	0.60
4:A:901:LEU:HA	4:A:907:THR:HG23	1.83	0.60
4:A:81:PHE:CE2	4:A:240:PRO:HB2	2.37	0.59
4:A:50:ILE:HG12	4:A:52:GLY:H	1.66	0.59
4:A:715:GLU:OE2	4:A:774:ARG:NH1	2.31	0.59
5:B:102:VAL:HG22	5:B:112:LEU:HB2	1.83	0.59
12:K:106:GLU:O	12:K:110:ASN:ND2	2.29	0.59
4:A:890:ASP:OD1	4:A:940:ARG:NH1	2.36	0.59
4:A:5:GLN:O	5:B:1159:ARG:NH2	2.36	0.59
4:A:123:ARG:HA	4:A:126:LEU:HD12	1.85	0.59
4:A:738:LYS:NZ	6:C:194:GLU:O	2.35	0.59
5:B:373:ARG:HD3	5:B:566:LEU:HD22	1.84	0.59
5:B:483:LEU:HD21	5:B:491:THR:HG23	1.85	0.59
6:C:93:ASP:OD1	6:C:122:SER:OG	2.20	0.59
9:H:146:ARG:HD2	9:H:146:ARG:H	1.68	0.59
10:I:17:ARG:N	10:I:26:LEU:O	2.33	0.59
4:A:527:THR:HG23	4:A:653:VAL:HB	1.84	0.59
4:A:913:LEU:HD22	4:A:915:SER:H	1.68	0.59
5:B:574:SER:HA	5:B:591:ARG:HH21	1.68	0.59
6:C:165:LYS:O	12:K:6:ARG:NH1	2.35	0.59
8:F:85:MET:HG3	8:F:89:GLU:HG3	1.85	0.59
5:B:54:PHE:HA	5:B:58:THR:HB	1.84	0.58
5:B:971:THR:HB	6:C:61:GLU:OE1	2.03	0.58
5:B:486:TYR:HE2	5:B:778:MET:HG2	1.68	0.58
6:C:36:VAL:HG23	6:C:40:GLU:HB2	1.85	0.58
1:R:9:G:OP1	5:B:979:LYS:NZ	2.34	0.58
4:A:414:ASP:OD2	4:A:416:ARG:NH2	2.35	0.58
5:B:837:ASP:OD1	5:B:1020:ARG:NH2	2.36	0.58
4:A:24:PRO:HB3	4:A:238:CYS:HB3	1.85	0.58
5:B:555:ILE:HD11	5:B:582:VAL:HG11	1.85	0.58
4:A:881:GLN:HA	4:A:961:ARG:HH22	1.68	0.58
4:A:1012:ARG:O	4:A:1016:THR:OG1	2.20	0.58
4:A:1329:THR:HG22	4:A:1331:SER:H	1.68	0.58
6:C:40:GLU:HA	6:C:163:ILE:HG23	1.86	0.58

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:34:LYS:HB2	4:A:36:ARG:HH22	1.69	0.57
4:A:116:ASP:HB2	4:A:164:ARG:HH12	1.68	0.57
6:C:107:SER:OG	6:C:111:THR:OG1	2.21	0.57
5:B:213:ILE:O	5:B:215:GLN:NE2	2.38	0.57
4:A:575:LYS:HB3	4:A:612:ILE:HD11	1.85	0.57
11:J:13:VAL:O	11:J:17:LYS:NZ	2.37	0.57
4:A:1342:GLU:HG2	7:E:212:ARG:HH11	1.69	0.57
7:E:78:LEU:HD12	7:E:107:THR:HG21	1.86	0.57
5:B:986:GLN:HG3	5:B:1025:HIS:CD2	2.39	0.57
9:H:108:SER:CB	9:H:111:LEU:HD13	2.14	0.57
4:A:182:VAL:HG12	4:A:201:VAL:HA	1.87	0.57
6:C:135:GLN:NE2	6:C:235:VAL:O	2.37	0.57
7:E:143:ASN:ND2	7:E:145:THR:OG1	2.38	0.57
5:B:604:ARG:NH2	5:B:613:VAL:O	2.28	0.57
7:E:55:ARG:N	7:E:84:ASP:OD2	2.38	0.57
4:A:1438:THR:HG23	8:F:92:ARG:HD2	1.87	0.57
4:A:170:THR:HB	4:A:185:TRP:HD1	1.70	0.56
4:A:758:ILE:O	4:A:762:SER:OG	2.23	0.56
4:A:40:THR:HA	4:A:53:LEU:HD23	1.87	0.56
5:B:760:ASP:OD1	5:B:760:ASP:N	2.38	0.56
5:B:788:ARG:NH1	5:B:790:ASP:OD1	2.38	0.56
6:C:249:ASP:OD1	12:K:102:LYS:NZ	2.33	0.56
4:A:1118:VAL:HG22	4:A:1327:ILE:HD11	1.87	0.56
4:A:329:LEU:HA	4:A:335:ARG:H	1.70	0.56
8:F:94:LEU:HD21	8:F:125:LEU:HD13	1.87	0.56
4:A:525:GLN:O	5:B:1015:HIS:NE2	2.39	0.56
6:C:246:ARG:O	6:C:250:THR:OG1	2.22	0.56
6:C:69:LEU:HB3	11:J:6:ARG:HD2	1.88	0.56
13:L:32:ALA:HB3	13:L:55:ILE:HD13	1.87	0.56
4:A:537:ARG:NH2	9:H:41:ASP:OD2	2.39	0.56
5:B:117:ALA:HA	5:B:122:LEU:HB2	1.87	0.56
5:B:394:ASP:OD2	10:I:91:ARG:NH2	2.36	0.56
9:H:12:VAL:HG12	9:H:53:ASP:H	1.70	0.56
4:A:903:ASN:O	4:A:907:THR:OG1	2.19	0.56
4:A:1021:LEU:HD11	4:A:1025:ARG:HH11	1.71	0.56
4:A:848:ILE:HG22	4:A:1064:VAL:HG23	1.88	0.55
5:B:326:ASP:OD1	5:B:329:THR:OG1	2.20	0.55
5:B:651:LEU:HD21	5:B:741:CYS:HB3	1.87	0.55
1:R:9:G:OP1	5:B:987:LYS:NZ	2.23	0.55
4:A:875:ALA:HB2	4:A:1366:ARG:HD2	1.86	0.55
4:A:913:LEU:CD2	4:A:915:SER:H	2.20	0.55

	h i o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:B:750:GLY:O	5:B:754:SER:OG	2.22	0.55
11:J:48:ARG:O	11:J:52:THR:OG1	2.24	0.55
4:A:861:GLY:O	7:E:174:GLN:NE2	2.38	0.55
4:A:353:ILE:HD13	4:A:487:MET:HG3	1.88	0.55
4:A:457:ALA:HB3	4:A:506:ALA:HA	1.86	0.55
7:E:48:ASP:OD2	7:E:52:ARG:N	2.39	0.55
4:A:359:LEU:HD21	4:A:363:GLN:HB2	1.89	0.55
4:A:1397:LEU:HB2	4:A:1426:GLU:HG3	1.88	0.55
5:B:242:SER:HB2	5:B:362:PRO:HD2	1.88	0.55
6:C:163:ILE:HG22	6:C:165:LYS:H	1.71	0.55
5:B:1008:PRO:HB3	5:B:1087:PHE:HE1	1.72	0.55
4:A:302:THR:OG1	4:A:306:ASN:OD1	2.24	0.54
5:B:1023:VAL:O	5:B:1027:ILE:HG13	2.08	0.54
4:A:344:ARG:HB2	5:B:1118:PRO:HD2	1.88	0.54
4:A:1364:ASN:OD1	4:A:1366:ARG:NH1	2.39	0.54
7:E:56:LYS:NZ	7:E:85:GLU:OE2	2.40	0.54
4:A:336:ILE:HD11	5:B:1203:LEU:HD13	1.89	0.54
4:A:709:THR:HG22	4:A:711:ARG:H	1.73	0.54
5:B:857:ARG:NH1	5:B:945:GLU:OE2	2.40	0.54
6:C:166:GLU:HB2	12:K:10:PHE:HZ	1.72	0.54
9:H:40:LEU:HD13	9:H:123:MET:HB2	1.90	0.54
10:I:60:GLN:NE2	10:I:107:SER:OG	2.38	0.54
2:T:26:DG:H5"	5:B:482:VAL:HG11	1.90	0.54
4:A:287:HIS:O	4:A:287:HIS:ND1	2.41	0.54
5:B:824:ILE:HG22	5:B:1008:PRO:HA	1.89	0.54
6:C:186:LEU:HD13	6:C:188:HIS:CG	2.43	0.54
9:H:94:ASP:OD1	9:H:94:ASP:N	2.36	0.54
5:B:380:TYR:OH	5:B:623:GLU:OE2	2.18	0.54
4:A:129:LYS:HA	4:A:134:ARG:HH11	1.73	0.54
4:A:30:ILE:HG13	5:B:1170:THR:HG21	1.90	0.54
4:A:740:LEU:H	4:A:740:LEU:HD23	1.72	0.54
4:A:800:VAL:HG13	4:A:812:GLU:HB3	1.90	0.54
5:B:776:GLN:HB3	5:B:1096:ARG:HG2	1.90	0.53
7:E:181:ALA:HA	7:E:186:LEU:HD21	1.90	0.53
13:L:29:TYR:HE2	13:L:58:LYS:HE3	1.72	0.53
12:K:21:ILE:HD12	12:K:33:ILE:HG12	1.90	0.53
4:A:949:ASP:OD1	4:A:949:ASP:N	2.40	0.53
5:B:176:SER:OG	5:B:177:LYS:N	2.41	0.53
5:B:978:ASP:OD2	5:B:1094:ARG:NH2	2.42	0.53
7:E:88:VAL:HG21	7:E:116:ILE:HG23	1.91	0.53
9:H:58:THR:HB	9:H:143:LEU:HB2	1.89	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:R:9:G:O6	2:T:20:DC:N4	2.42	0.53
4:A:37:PHE:HB2	4:A:52:GLY:HA3	1.91	0.53
5:B:694:ASP:OD2	5:B:695:ALA:N	2.41	0.53
11:J:6:ARG:HG2	11:J:13:VAL:HG12	1.89	0.53
2:T:9:DC:H2"	2:T:10:DT:H5"	1.90	0.53
4:A:1107:VAL:HG22	4:A:1383:SER:HB3	1.90	0.53
5:B:998:ASP:OD1	6:C:35:ARG:NH2	2.42	0.53
7:E:106:GLN:O	7:E:131:THR:N	2.31	0.53
4:A:1297:GLU:OE1	4:A:1297:GLU:N	2.41	0.53
4:A:781:ASP:OD2	10:I:91:ARG:NH1	2.41	0.52
5:B:486:TYR:CE2	5:B:778:MET:HG2	2.45	0.52
5:B:843:GLN:HB2	5:B:993:THR:HB	1.91	0.52
10:I:34:TYR:CE2	10:I:36:GLU:HB3	2.43	0.52
5:B:862:GLN:HG2	5:B:963:PHE:HD1	1.74	0.52
7:E:116:ILE:HG22	7:E:117:THR:H	1.74	0.52
4:A:381:THR:HG22	4:A:384:ASN:CG	2.30	0.52
4:A:986:ILE:HD11	4:A:1032:LEU:HD21	1.91	0.52
4:A:424:ILE:HD12	4:A:424:ILE:O	2.09	0.52
4:A:635:ARG:HH12	4:A:877:HIS:CD2	2.28	0.52
4:A:683:ILE:HG21	4:A:801:GLU:HG3	1.91	0.52
5:B:1082:MET:HA	6:C:189:THR:HA	1.92	0.52
6:C:177:GLU:HB2	6:C:231:ASN:HB3	1.90	0.52
9:H:132:LEU:O	9:H:133:ASN:ND2	2.42	0.52
4:A:314:ALA:O	4:A:319:GLY:N	2.42	0.52
4:A:1215:ARG:O	4:A:1219:THR:OG1	2.28	0.52
5:B:1174:LYS:HB2	5:B:1179:GLN:HG3	1.92	0.52
4:A:888:GLY:O	4:A:940:ARG:NH2	2.43	0.52
4:A:1161:THR:OG1	4:A:1239:ARG:NH2	2.43	0.52
5:B:805:THR:OG1	5:B:1041:GLU:OE1	2.26	0.52
1:R:5:A:O2'	5:B:481:GLN:OE1	2.24	0.52
1:R:9:G:O2'	4:A:446:ARG:NH2	2.43	0.52
4:A:19:PHE:HE1	4:A:1396:ALA:HB3	1.74	0.52
4:A:148:CYS:HB3	4:A:168:GLY:N	2.21	0.52
4:A:848:ILE:HB	4:A:1065:GLY:HA3	1.90	0.52
4:A:973:ILE:O	9:H:136:LYS:NZ	2.37	0.52
5:B:941:LEU:HD13	5:B:942:ARG:N	2.25	0.52
10:I:8:ARG:HD2	10:I:9:ASP:N	2.25	0.52
4:A:453:MET:SD	4:A:453:MET:N	2.82	0.52
4:A:526:ASP:HB2	5:B:835:GLN:OE1	2.09	0.52
4:A:1441:PHE:CZ	8:F:89:GLU:HA	2.45	0.52
5:B:566:LEU:CD1	5:B:588:GLY:HA2	2.40	0.52

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:860:LEU:HA	4:A:1422:ARG:HH12	1.74	0.51
5:B:862:GLN:O	5:B:914:LYS:NZ	2.39	0.51
5:B:1080:LYS:NZ	6:C:181:ASP:O	2.39	0.51
7:E:185:ALA:HA	7:E:190:LEU:HD23	1.92	0.51
6:C:2:SER:OG	6:C:3:GLU:N	2.41	0.51
7:E:112:TYR:CD2	7:E:116:ILE:HD11	2.45	0.51
4:A:346:ASP:HB3	5:B:1108:ARG:H	1.76	0.51
4:A:1076:ALA:HA	4:A:1079:MET:HG3	1.92	0.51
4:A:596:THR:HB	4:A:598:LEU:H	1.74	0.51
4:A:1276:VAL:HG21	4:A:1316:VAL:HG22	1.92	0.51
4:A:17:VAL:HG12	4:A:1421:CYS:SG	2.50	0.51
5:B:208:SER:OG	5:B:210:LYS:NZ	2.31	0.51
7:E:178:ILE:HG22	7:E:214:CYS:HA	1.91	0.51
4:A:946:VAL:HA	7:E:201:LYS:HE3	1.91	0.51
5:B:96:TYR:HB2	5:B:129:PHE:HB2	1.92	0.51
5:B:643:ASP:OD2	5:B:654:ARG:NH2	2.41	0.51
6:C:84:ARG:CZ	12:K:11:LEU:HD11	2.41	0.51
4:A:308:ILE:HG22	4:A:309:ALA:H	1.75	0.51
4:A:451:HIS:NE2	4:A:1074:GLU:HG3	2.22	0.51
6:C:93:ASP:O	6:C:127:ARG:NH2	2.43	0.51
4:A:243:PRO:HB2	4:A:245:PRO:HD2	1.93	0.51
4:A:503:GLN:OE1	8:F:90:ARG:NH2	2.44	0.51
4:A:765:VAL:HG13	4:A:800:VAL:HB	1.92	0.51
4:A:1166:ASP:HA	4:A:1169:ILE:HD13	1.93	0.51
4:A:43:GLU:OE1	4:A:43:GLU:N	2.42	0.51
5:B:963:PHE:HZ	5:B:965:LYS:HE3	1.74	0.51
5:B:1002:THR:HG23	5:B:1004:GLU:H	1.76	0.51
4:A:1118:VAL:HB	4:A:1306:LEU:HB2	1.93	0.50
5:B:863:GLU:OE2	5:B:874:PHE:N	2.43	0.50
6:C:86:CYS:SG	6:C:87:PHE:N	2.84	0.50
6:C:114:TYR:CG	6:C:140:ASN:HB3	2.46	0.50
4:A:778:GLY:HA3	5:B:516:ASN:HB2	1.92	0.50
5:B:115:GLN:HG2	5:B:193:LYS:HB2	1.92	0.50
5:B:437:GLU:HG2	5:B:438:GLU:HG3	1.93	0.50
5:B:705:MET:HE3	5:B:742:GLU:HG3	1.93	0.50
5:B:1178:ASN:O	5:B:1178:ASN:ND2	2.44	0.50
9:H:95:TYR:HB3	9:H:144:ILE:HB	1.93	0.50
13:L:36:SER:OG	13:L:48:CYS:SG	2.58	0.50
5:B:1135:ARG:NH2	5:B:1136:ASP:OD1	2.30	0.50
9:H:76:THR:OG1	9:H:77:ARG:N	2.43	0.50
4:A:1214:GLU:O	4:A:1218:GLN:OE1	2.30	0.50

	At 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:B:851:PHE:HB3	5:B:1094:ARG:HD2	1.93	0.50
7:E:112:TYR:CG	7:E:116:ILE:HD11	2.47	0.50
8:F:147:SER:HB3	8:F:150:GLU:HG2	1.92	0.50
5:B:840:ILE:HG12	5:B:992:ILE:HG22	1.94	0.50
10:I:34:TYR:HE2	10:I:36:GLU:HB3	1.77	0.50
4:A:452:LYS:HG3	4:A:453:MET:SD	2.52	0.50
4:A:549:MET:HG2	4:A:652:VAL:HG13	1.93	0.50
5:B:1152:MET:O	5:B:1157:ALA:HB2	2.12	0.50
11:J:57:ILE:HA	11:J:60:PHE:HD2	1.77	0.50
4:A:445:ASN:OD1	4:A:446:ARG:N	2.45	0.50
4:A:1121:GLU:HG3	4:A:1122:PRO:HD2	1.92	0.50
4:A:600:PRO:HA	9:H:25:ARG:NH1	2.26	0.50
11:J:37:SER:OG	11:J:47:ARG:NH2	2.32	0.50
4:A:306:ASN:O	4:A:306:ASN:ND2	2.45	0.50
9:H:123:MET:HE3	9:H:142:LEU:HD11	1.92	0.50
11:J:45:CYS:O	11:J:48:ARG:NE	2.44	0.50
5:B:1056:SER:HB3	5:B:1066:SER:HB2	1.93	0.49
6:C:104:PHE:HD2	6:C:106:GLU:HG3	1.77	0.49
5:B:957:ASN:OD1	5:B:961:LEU:N	2.44	0.49
5:B:995:ARG:HH21	12:K:9:LEU:HD13	1.76	0.49
4:A:4:GLN:HE22	5:B:1159:ARG:H	1.60	0.49
4:A:1295:THR:HB	4:A:1297:GLU:OE1	2.12	0.49
7:E:67:GLU:OE1	7:E:67:GLU:N	2.36	0.49
4:A:365:GLY:HA3	4:A:469:ARG:HB2	1.95	0.49
4:A:408:ASP:OD1	4:A:430:TRP:NE1	2.33	0.49
4:A:531:ILE:O	4:A:535:THR:OG1	2.25	0.49
5:B:293:PRO:HG2	5:B:296:GLU:HB2	1.93	0.49
4:A:359:LEU:CD2	4:A:363:GLN:HB2	2.43	0.49
5:B:281:PRO:HD2	5:B:284:ILE:HD12	1.94	0.49
5:B:546:SER:OG	5:B:631:GLY:N	2.45	0.49
5:B:999:MET:HG2	5:B:1007:VAL:HG22	1.95	0.49
5:B:1016:ALA:HA	5:B:1020:ARG:HH21	1.78	0.49
5:B:1103:ILE:O	5:B:1122:ARG:NH1	2.45	0.49
4:A:304:MET:SD	5:B:1210:MET:HG3	2.52	0.49
4:A:353:ILE:HG22	4:A:468:PHE:HB2	1.94	0.49
4:A:661:GLY:HA3	5:B:1081:LEU:HD22	1.95	0.49
5:B:188:ASP:O	5:B:192:LEU:HG	2.12	0.49
5:B:123:THR:OG1	5:B:458:LYS:NZ	2.31	0.49
5:B:904:ARG:NH1	13:L:66:GLN:O	2.44	0.49
11:J:3:VAL:HG11	11:J:18:TRP:HB2	1.93	0.49
3:N:14:DG:O6	3:N:15:DA:N6	2.46	0.49

	A	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:N:7:DA:H5"	4:A:139:TRP:CH2	2.47	0.49
5:B:247:GLY:O	5:B:418:LYS:NZ	2.39	0.49
5:B:890:TYR:CZ	5:B:910:VAL:HG21	2.48	0.48
6:C:2:SER:OG	12:K:104:ASN:OD1	2.31	0.48
11:J:41:LEU:HD11	11:J:50:ILE:HD12	1.94	0.48
4:A:21:LEU:HD21	4:A:95:PHE:CZ	2.48	0.48
4:A:585:GLY:N	4:A:609:ASP:OD1	2.44	0.48
5:B:225:VAL:H	5:B:396:ASP:HB2	1.76	0.48
4:A:113:LEU:HD13	4:A:115:LEU:O	2.13	0.48
5:B:405:ARG:HH11	5:B:632:ARG:HG2	1.78	0.48
6:C:32:SER:O	6:C:36:VAL:HG12	2.14	0.48
4:A:350:ARG:NE	4:A:486:GLU:OE2	2.44	0.48
4:A:1276:VAL:HB	4:A:1279:ILE:HG12	1.95	0.48
9:H:102:TYR:CZ	9:H:115:TYR:HB3	2.47	0.48
4:A:361:LEU:HA	4:A:471:ASN:HD22	1.79	0.48
4:A:517:ASN:OD1	4:A:1364:ASN:ND2	2.45	0.48
4:A:701:LEU:HD21	10:I:114:GLN:HB2	1.96	0.48
4:A:808:LEU:O	5:B:728:ARG:NH1	2.47	0.48
5:B:216:GLU:OE1	5:B:500:THR:OG1	2.21	0.48
4:A:406:ILE:HB	4:A:431:LYS:HB2	1.95	0.48
4:A:534:LEU:O	4:A:574:GLY:HA3	2.13	0.48
4:A:630:ILE:HD12	4:A:630:ILE:H	1.79	0.48
6:C:31:ASN:O	6:C:35:ARG:HG3	2.14	0.48
6:C:69:LEU:HB2	11:J:5:VAL:HG21	1.96	0.48
7:E:46:TYR:CD2	7:E:53:PRO:HB3	2.43	0.48
5:B:114:PRO:HG3	5:B:181:LEU:HD11	1.96	0.48
5:B:911:ILE:HG22	5:B:912:ILE:HG13	1.95	0.48
3:N:2:DC:H4'	3:N:3:DA:OP1	2.14	0.48
4:A:353:ILE:HD12	4:A:470:LEU:HD21	1.95	0.48
5:B:861:ASP:OD1	5:B:914:LYS:NZ	2.36	0.48
6:C:101:LEU:HD23	6:C:155:LEU:HD11	1.96	0.48
6:C:174:ALA:HB3	6:C:233:GLU:HG2	1.96	0.48
4:A:128:ILE:HG23	4:A:134:ARG:HB3	1.96	0.47
5:B:346:GLU:HA	5:B:349:ILE:HD12	1.95	0.47
5:B:484:ASN:OD1	5:B:490:SER:OG	2.30	0.47
7:E:169:ARG:HH11	7:E:169:ARG:HB2	1.79	0.47
4:A:1323:ASP:CG	4:A:1325:THR:HG22	2.34	0.47
5:B:842:ASN:OD1	5:B:845:SER:N	2.37	0.47
6:C:57:VAL:HG21	11:J:60:PHE:CB	2.45	0.47
4:A:1422:ARG:HD3	5:B:1220:ARG:HH21	1.78	0.47
5:B:205:ILE:HG21	5:B:462:ALA:HB2	1.95	0.47

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:B:816:GLU:N	5:B:816:GLU:OE1	2.47	0.47
5:B:1007:VAL:HG22	5:B:1008:PRO:HD2	1.96	0.47
7:E:28:TYR:CE1	7:E:78:LEU:HD13	2.46	0.47
2:T:9:DC:H1'	2:T:10:DT:O4'	2.13	0.47
4:A:976:THR:OG1	4:A:977:LYS:NZ	2.47	0.47
6:C:169:LYS:NZ	13:L:69:ALA:O	2.44	0.47
6:C:60:ASP:HB2	13:L:67:PHE:CZ	2.49	0.47
5:B:1020:ARG:NH1	16:B:1301:APC:O2'	2.47	0.47
9:H:38:LEU:HD11	9:H:123:MET:HE2	1.96	0.47
4:A:457:ALA:O	4:A:507:VAL:HG23	2.15	0.47
4:A:837:ILE:O	4:A:841:LEU:HG	2.15	0.47
4:A:881:GLN:NE2	4:A:958:VAL:O	2.36	0.47
5:B:610:ASN:HB3	5:B:613:VAL:HG23	1.95	0.47
5:B:800:GLN:OE1	11:J:52:THR:OG1	2.24	0.47
6:C:46:ILE:HA	6:C:159:ALA:HA	1.96	0.47
8:F:111:LEU:HD12	8:F:111:LEU:O	2.14	0.47
4:A:169:ASN:ND2	4:A:170:THR:HG23	2.30	0.47
4:A:858:ASN:OD1	4:A:861:GLY:N	2.45	0.47
5:B:195:CYS:SG	5:B:783:THR:OG1	2.60	0.47
5:B:243:ALA:HB2	5:B:251:ILE:HA	1.97	0.47
5:B:390:LEU:HD13	5:B:392:ARG:NH2	2.30	0.47
4:A:353:ILE:HG21	4:A:487:MET:HG3	1.97	0.47
4:A:780:VAL:N	5:B:699:GLU:OE2	2.38	0.47
5:B:179:CYS:O	5:B:182:SER:OG	2.33	0.47
5:B:629:ASP:O	5:B:632:ARG:NH1	2.46	0.47
6:C:8:VAL:O	12:K:108:GLU:HG3	2.15	0.47
4:A:381:THR:HG23	4:A:383:TYR:H	1.79	0.47
4:A:821:ARG:O	4:A:825:ILE:HG12	2.14	0.47
4:A:1068:ALA:O	4:A:1072:ILE:HG12	2.15	0.47
5:B:356:LEU:HA	5:B:360:PHE:HB3	1.96	0.47
9:H:41:ASP:HB3	9:H:121:LEU:HD22	1.96	0.47
5:B:1112:GLN:HG3	5:B:1119:VAL:HA	1.96	0.46
11:J:31:ASP:OD1	11:J:34:THR:OG1	2.28	0.46
4:A:28:ARG:HH21	4:A:238:CYS:HB2	1.81	0.46
5:B:619:ILE:HD12	10:I:65:ASP:HB2	1.97	0.46
5:B:975:GLN:O	5:B:990:ILE:HD12	2.15	0.46
9:H:101:ALA:HB2	9:H:116:TYR:CE2	2.51	0.46
4:A:443:LEU:HD11	5:B:1138:MET:HE1	1.97	0.46
6:C:148:ARG:NH1	11:J:64:ASN:HA	2.30	0.46
4:A:28:ARG:NE	4:A:85:ASP:OD1	2.47	0.46
6:C:244:VAL:O	6:C:248:ILE:HG13	2.15	0.46

	A L	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:A:900:ASP:O	4:A:907:THR:OG1	2.32	0.46
5:B:890:TYR:OH	5:B:936:ASP:OD2	2.29	0.46
5:B:229:ALA:O	5:B:261:ARG:NH2	2.46	0.46
6:C:14:SER:N	6:C:17:ASN:O	2.49	0.46
6:C:16:ASP:OD1	6:C:16:ASP:N	2.46	0.46
6:C:41:ILE:HD12	6:C:246:ARG:HB3	1.96	0.46
7:E:43:LYS:HG2	7:E:47:CYS:SG	2.56	0.46
4:A:746:MET:SD	5:B:1015:HIS:ND1	2.89	0.46
5:B:360:PHE:CE2	5:B:361:LEU:HD13	2.51	0.46
4:A:1062:GLU:HG3	8:F:88:TYR:OH	2.15	0.46
5:B:658:ILE:HA	5:B:661:LEU:HD12	1.98	0.46
5:B:287:ARG:NH1	5:B:321:GLY:O	2.48	0.46
6:C:98:VAL:HG22	6:C:158:VAL:HG22	1.98	0.46
4:A:816:HIS:CG	5:B:764:SER:HG	2.34	0.46
4:A:901:LEU:O	4:A:920:LEU:HD23	2.16	0.46
5:B:309:GLN:NE2	10:I:52:ILE:HG21	2.30	0.46
11:J:14:VAL:HB	11:J:50:ILE:HD11	1.97	0.46
2:T:19:G35:HN3	2:T:20:DC:H5	1.61	0.45
4:A:174:ILE:HD11	4:A:181:LEU:HD13	1.98	0.45
4:A:453:MET:HB3	4:A:477:PRO:HB2	1.98	0.45
4:A:1323:ASP:OD1	4:A:1325:THR:HG22	2.16	0.45
5:B:487:THR:HG21	5:B:819:ALA:HB2	1.98	0.45
5:B:834:ASN:O	5:B:1013:ASN:HB2	2.16	0.45
6:C:183:TRP:HB2	6:C:185:LYS:HG3	1.98	0.45
8:F:116:ASP:O	8:F:120:ILE:HG12	2.16	0.45
11:J:1:MET:HB2	11:J:60:PHE:HE2	1.81	0.45
4:A:287:HIS:O	4:A:287:HIS:CG	2.69	0.45
4:A:440:ASP:O	4:A:460:VAL:HG23	2.16	0.45
4:A:537:ARG:NH1	4:A:602:ASP:OD1	2.47	0.45
4:A:741:ASN:OD1	4:A:744:LYS:N	2.38	0.45
4:A:853:ASP:O	4:A:855:THR:N	2.44	0.45
5:B:387:LEU:HD23	5:B:387:LEU:HA	1.84	0.45
5:B:554:ILE:HD12	5:B:609:ILE:HD11	1.99	0.45
6:C:41:ILE:CD1	6:C:246:ARG:HB3	2.47	0.45
8:F:82:THR:HG22	8:F:84:TYR:H	1.80	0.45
11:J:57:ILE:HA	11:J:60:PHE:CD2	2.51	0.45
2:T:13:DC:H2"	2:T:14:DG:C8	2.52	0.45
4:A:446:ARG:HB2	4:A:487:MET:SD	2.57	0.45
12:K:49:GLU:OE2	12:K:97:LYS:NZ	2.38	0.45
3:N:12:DG:H2"	3:N:13:DA:C8	2.51	0.45
4:A:168:GLY:O	4:A:169:ASN:HB3	2.16	0.45

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:B:365:THR:OG1	5:B:367:LEU:HG	2.17	0.45
8:F:76:LYS:HG2	8:F:79:ARG:HH21	1.82	0.45
12:K:91:CYS:O	12:K:95:ILE:HG13	2.17	0.45
5:B:100:PRO:O	5:B:180:TYR:OH	2.19	0.45
5:B:879:ARG:HA	5:B:885:MET:SD	2.56	0.45
4:A:181:LEU:HD12	4:A:181:LEU:O	2.16	0.45
4:A:408:ASP:OD1	4:A:408:ASP:N	2.47	0.45
4:A:452:LYS:HB2	5:B:1141:HIS:CE1	2.52	0.45
5:B:992:ILE:HG12	5:B:994:TYR:CE2	2.50	0.45
11:J:2:ILE:HG12	11:J:3:VAL:H	1.82	0.45
12:K:12:LEU:HD12	12:K:12:LEU:H	1.81	0.45
4:A:699:ALA:HB1	10:I:114:GLN:HG2	1.97	0.45
4:A:1325:THR:HA	7:E:147:HIS:HA	1.99	0.45
4:A:1436:ILE:HD13	5:B:1139:ILE:HG23	1.99	0.45
9:H:115:TYR:CE2	9:H:124:ARG:HG3	2.52	0.45
4:A:38:PRO:HB3	4:A:270:LEU:HD13	1.99	0.45
5:B:104:GLU:HB2	5:B:107:GLY:HA3	1.99	0.45
5:B:227:LYS:N	5:B:395:GLN:OE1	2.49	0.45
5:B:637:LEU:HD23	5:B:742:GLU:HA	1.99	0.45
1:R:9:G:H5"	4:A:483:ASP:OD1	2.16	0.45
4:A:1093:LYS:HE2	4:A:1093:LYS:HB3	1.78	0.45
5:B:1142:GLY:HA3	8:F:88:TYR:HE2	1.82	0.45
6:C:57:VAL:HG21	11:J:60:PHE:CG	2.52	0.45
6:C:105:GLY:HA3	6:C:148:ARG:O	2.17	0.45
4:A:399:HIS:CD2	4:A:400:PRO:HA	2.52	0.45
4:A:368:LYS:O	4:A:372:LYS:N	2.45	0.44
4:A:767:GLN:HB2	4:A:799:PHE:HD1	1.82	0.44
4:A:1109:LYS:H	4:A:1109:LYS:HG2	1.49	0.44
4:A:465:TYR:HB3	5:B:976:ILE:HG21	2.00	0.44
4:A:742:ASN:OD1	4:A:742:ASN:N	2.50	0.44
5:B:269:ILE:HD11	5:B:386:LEU:HD21	1.99	0.44
5:B:405:ARG:NH1	5:B:632:ARG:HG2	2.32	0.44
5:B:487:THR:OG1	5:B:777:ALA:O	2.34	0.44
5:B:790:ASP:O	5:B:858:SER:OG	2.25	0.44
5:B:878:GLN:HB2	5:B:881:ASN:HB2	1.99	0.44
4:A:806:ARG:NH1	5:B:725:PRO:O	2.46	0.44
5:B:1160:VAL:HG11	5:B:1169:MET:SD	2.57	0.44
12:K:56:VAL:HA	12:K:77:THR:HG22	1.97	0.44
2:T:15:DC:H2"	2:T:16:DT:O5'	2.16	0.44
4:A:600:PRO:HA	9:H:25:ARG:HH12	1.81	0.44
4:A:899:VAL:HG22	4:A:1029:ARG:HD2	1.99	0.44

	At 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
5:B:912:ILE:HB	5:B:939:THR:HB	1.99	0.44
9:H:135:LEU:HD23	9:H:136:LYS:N	2.32	0.44
4:A:668:ASP:OD1	6:C:192:TRP:NE1	2.50	0.44
4:A:741:ASN:O	4:A:745:GLN:HG3	2.18	0.44
5:B:1106:ARG:NH2	5:B:1111:MET:SD	2.91	0.44
11:J:57:ILE:O	11:J:61:LEU:HG	2.18	0.44
4:A:500:GLU:OE2	4:A:1438:THR:HG21	2.18	0.44
4:A:834:THR:HG21	4:A:1077:THR:HA	2.00	0.44
5:B:403:LYS:NZ	5:B:696:GLU:OE2	2.44	0.44
5:B:817:LEU:HD12	5:B:817:LEU:HA	1.80	0.44
7:E:31:THR:OG1	7:E:33:GLU:HG3	2.18	0.44
4:A:339:ASN:O	5:B:1117:GLN:NE2	2.47	0.44
4:A:374:LEU:C	4:A:436:ILE:HD13	2.38	0.44
4:A:971:PHE:CE1	4:A:1041:ALA:HA	2.53	0.44
4:A:1118:VAL:HA	4:A:1327:ILE:HG13	1.98	0.44
5:B:400:HIS:HB3	5:B:403:LYS:HG2	1.99	0.44
7:E:29:PHE:O	7:E:30:ILE:HD12	2.18	0.44
7:E:136:ASN:OD1	7:E:137:GLU:N	2.51	0.44
3:N:3:DA:H2"	3:N:4:DG:H8	1.83	0.44
4:A:471:ASN:O	4:A:474:VAL:HG12	2.17	0.44
4:A:843:LYS:HA	4:A:843:LYS:HD2	1.79	0.44
4:A:1217:LYS:HD2	4:A:1228:TRP:CZ3	2.53	0.44
5:B:30:SER:O	5:B:34:ILE:HG13	2.18	0.44
5:B:54:PHE:O	5:B:59:LEU:N	2.51	0.44
4:A:55:ASP:HA	4:A:58:LEU:CB	2.48	0.44
4:A:70:CYS:HA	5:B:1174:LYS:HD3	1.99	0.44
5:B:391:ASP:HB3	10:I:92:ARG:HG2	2.00	0.44
7:E:72:PHE:HB2	7:E:75:MET:HB3	2.00	0.44
8:F:83:PRO:HA	8:F:146:TRP:CZ3	2.53	0.44
10:I:13:MET:HG3	10:I:15:TYR:CE1	2.53	0.44
10:I:111:THR:HG22	10:I:113:ASP:H	1.82	0.44
4:A:134:ARG:NH2	4:A:221:SER:O	2.49	0.43
5:B:215:GLN:OE1	5:B:499:ASN:HB3	2.16	0.43
5:B:969:ARG:NH1	6:C:61:GLU:HG2	2.32	0.43
4:A:95:PHE:O	4:A:99:ILE:N	2.43	0.43
4:A:866:PHE:CZ	7:E:211:TYR:HB2	2.53	0.43
4:A:1345:ARG:HG3	4:A:1376:THR:HG21	2.00	0.43
7:E:78:LEU:HA	7:E:107:THR:HB	2.01	0.43
10:I:17:ARG:NE	10:I:28:GLU:OE1	2.51	0.43
3:N:2:DC:H2"	3:N:3:DA:O5'	2.19	0.43
4:A:836:TYR:OH	4:A:1403:GLU:OE2	2.17	0.43

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:1212:VAL:O	4:A:1216:ILE:HG13	2.18	0.43
5:B:680:THR:O	5:B:683:SER:OG	2.22	0.43
5:B:705:MET:CE	5:B:742:GLU:HG3	2.49	0.43
7:E:59:SER:HB3	7:E:81:GLU:HA	2.00	0.43
4:A:442:VAL:HG12	4:A:491:VAL:HG22	2.00	0.43
5:B:122:LEU:HD22	5:B:958:GLN:HG3	1.99	0.43
6:C:104:PHE:CD2	6:C:106:GLU:HG3	2.53	0.43
7:E:37:LEU:CD1	7:E:42:PHE:HB2	2.48	0.43
7:E:43:LYS:HE2	7:E:43:LYS:HB3	1.78	0.43
9:H:26:ILE:HD11	9:H:49:VAL:HG11	2.00	0.43
4:A:83:HIS:HA	4:A:240:PRO:HA	2.01	0.43
4:A:114:LEU:HB2	4:A:115:LEU:HD22	2.01	0.43
4:A:360:GLU:HB2	4:A:363:GLN:HG3	1.99	0.43
4:A:506:ALA:HB1	4:A:508:PRO:HD2	2.00	0.43
4:A:587:HIS:CE1	4:A:608:ILE:HD12	2.54	0.43
4:A:896:ARG:HB3	4:A:897:TYR:HD1	1.83	0.43
5:B:842:ASN:O	5:B:846:ILE:HG12	2.18	0.43
6:C:219:PHE:CD2	9:H:45:GLU:HG2	2.53	0.43
7:E:133:GLU:HB3	7:E:135:PHE:CE1	2.46	0.43
3:N:13:DA:H2"	3:N:14:DG:C8	2.53	0.43
4:A:276:LEU:HD23	4:A:280:GLU:HG3	1.99	0.43
4:A:533:LYS:HE2	4:A:533:LYS:HB3	1.82	0.43
4:A:842:VAL:HG11	5:B:1136:ASP:OD2	2.19	0.43
4:A:857:ARG:HB3	4:A:861:GLY:HA2	2.00	0.43
4:A:1392:SER:HB2	4:A:1394:THR:HG23	2.00	0.43
5:B:797:TYR:O	11:J:1:MET:N	2.51	0.43
5:B:806:THR:HG22	5:B:808:ALA:H	1.84	0.43
5:B:1039:GLY:O	11:J:32:GLU:HB2	2.18	0.43
5:B:1164:GLY:HA3	5:B:1190:ASP:OD1	2.18	0.43
6:C:52:GLU:N	6:C:154:LYS:O	2.52	0.43
6:C:169:LYS:NZ	13:L:70:ARG:HG2	2.34	0.43
12:K:55:LYS:HB2	12:K:81:TYR:CE1	2.54	0.43
4:A:361:LEU:HD12	4:A:471:ASN:HD22	1.83	0.43
4:A:675:THR:O	4:A:679:ILE:HG12	2.18	0.43
4:A:1021:LEU:HD11	4:A:1025:ARG:HD2	2.00	0.43
6:C:10:ILE:HG12	6:C:20:PHE:HB3	2.01	0.43
6:C:104:PHE:CD1	6:C:152:GLU:HB3	2.54	0.43
7:E:15:ALA:HA	7:E:140:LEU:O	2.18	0.43
4:A:387:ARG:O	4:A:391:LEU:HG	2.19	0.43
4:A:596:THR:HG22	4:A:597:LEU:H	1.84	0.43
5:B:600:LEU:HD23	5:B:600:LEU:HA	1.89	0.43

	A A	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:C:57:VAL:HG21	11:J:60:PHE:HB3	1.99	0.43
5:B:345:LYS:HD2	5:B:348:ARG:NH2	2.32	0.43
5:B:1094:ARG:NH1	5:B:1098:MET:SD	2.86	0.43
7:E:65:THR:O	7:E:69:ILE:HG23	2.19	0.43
7:E:99:HIS:O	7:E:103:LYS:N	2.51	0.43
4:A:23:SER:OG	4:A:25:GLU:OE1	2.25	0.43
4:A:242:PRO:HB2	4:A:246:VAL:HG21	2.01	0.43
4:A:1132:LYS:HA	4:A:1135:ARG:NH1	2.34	0.43
4:A:1318:THR:HG22	7:E:142:VAL:HG22	2.01	0.43
5:B:1072:MET:HB2	5:B:1081:LEU:HD12	2.00	0.43
4:A:1051:ALA:O	4:A:1055:ARG:HG3	2.18	0.42
4:A:1327:ILE:O	7:E:147:HIS:NE2	2.48	0.42
5:B:1004:GLU:OE2	5:B:1064:TYR:OH	2.35	0.42
4:A:137:ALA:O	4:A:141:LEU:HG	2.19	0.42
5:B:980:PHE:CE2	5:B:1094:ARG:HG3	2.54	0.42
6:C:244:VAL:HG11	12:K:105:PHE:CZ	2.54	0.42
4:A:71:GLN:NE2	5:B:1176:ASN:HB3	2.34	0.42
4:A:265:LYS:HG3	4:A:303:TYR:HB2	2.01	0.42
4:A:372:LYS:HA	4:A:435:HIS:CE1	2.54	0.42
4:A:1120:LEU:O	4:A:1323:ASP:HB2	2.18	0.42
5:B:176:SER:O	5:B:182:SER:OG	2.22	0.42
6:C:102:GLN:HA	6:C:153:LEU:O	2.18	0.42
6:C:234:SER:HB2	6:C:243:VAL:HG21	2.01	0.42
5:B:744:HIS:CE1	5:B:746:SER:HG	2.37	0.42
5:B:976:ILE:HD11	5:B:991:GLY:O	2.19	0.42
4:A:90:VAL:HG11	4:A:296:LEU:HD23	2.02	0.42
4:A:731:ARG:HG2	4:A:755:PHE:CE1	2.55	0.42
4:A:1003:LYS:HE3	4:A:1003:LYS:HB2	1.89	0.42
4:A:1163:ILE:HG22	4:A:1166:ASP:H	1.85	0.42
5:B:364:ILE:HD13	5:B:585:VAL:HG13	2.01	0.42
5:B:551:PRO:O	5:B:555:ILE:HG12	2.19	0.42
5:B:1054:GLY:HA2	5:B:1057:LYS:HD2	2.01	0.42
3:N:3:DA:H3'	4:A:1110:ASN:HD21	1.84	0.42
4:A:113:LEU:HD12	4:A:113:LEU:O	2.20	0.42
4:A:129:LYS:HA	4:A:134:ARG:NH1	2.35	0.42
4:A:760:GLN:HA	4:A:765:VAL:HA	2.00	0.42
4:A:873:MET:HG3	4:A:957:PRO:HG3	2.01	0.42
5:B:418:LYS:HE2	5:B:418:LYS:HB3	1.89	0.42
5:B:1001:PHE:HE1	6:C:178:PHE:HB3	1.85	0.42
6:C:51:VAL:HG13	6:C:155:LEU:HB3	2.02	0.42
9:H:40:LEU:HD22	9:H:123:MET:HE3	2.01	0.42

	AL O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:579:SER:HB2	4:A:611:GLN:HA	2.01	0.42
4:A:803:SER:H	4:A:806:ARG:HB2	1.84	0.42
4:A:886:ILE:HD13	4:A:886:ILE:HA	1.92	0.42
10:I:8:ARG:H	10:I:8:ARG:HG3	1.72	0.42
4:A:646:PHE:O	4:A:650:GLN:HG3	2.20	0.42
4:A:979:SER:OG	4:A:980:ASP:N	2.53	0.42
4:A:1032:LEU:O	4:A:1036:ARG:HD3	2.20	0.42
4:A:1425:SER:O	4:A:1429:ILE:HG12	2.20	0.42
4:A:18:GLN:HB3	4:A:1418:LEU:HG	2.01	0.42
4:A:1278:ASN:HB2	4:A:1312:ASN:HB2	2.01	0.42
5:B:199:MET:SD	5:B:199:MET:N	2.83	0.42
5:B:771:SER:O	5:B:775:LYS:HE3	2.20	0.42
5:B:970:THR:HG22	5:B:971:THR:O	2.20	0.42
5:B:1108:ARG:CZ	5:B:1108:ARG:HB3	2.50	0.42
6:C:51:VAL:HA	6:C:155:LEU:HB3	2.02	0.42
12:K:39:ASP:OD1	12:K:41:THR:OG1	2.34	0.42
4:A:1212:VAL:HG13	4:A:1273:LEU:HD11	2.02	0.41
4:A:1384:VAL:HA	4:A:1389:PHE:CD2	2.55	0.41
5:B:861:ASP:OD1	5:B:862:GLN:N	2.53	0.41
6:C:97:VAL:HG21	6:C:129:ILE:HG22	2.02	0.41
4:A:344:ARG:CZ	5:B:1129:ARG:HG3	2.50	0.41
4:A:592:ASP:OD2	4:A:592:ASP:N	2.49	0.41
4:A:690:VAL:HG22	4:A:718:VAL:HG13	2.01	0.41
4:A:880:LYS:HA	4:A:955:PRO:HA	2.02	0.41
4:A:915:SER:O	4:A:919:ILE:HB	2.20	0.41
4:A:1279:ILE:HD12	4:A:1308:THR:HG21	2.02	0.41
4:A:1356:ILE:HG21	4:A:1363:VAL:HG23	2.02	0.41
5:B:44:VAL:HG11	5:B:495:LEU:HD13	2.03	0.41
5:B:118:ARG:NH1	5:B:194:GLU:OE1	2.52	0.41
5:B:290:GLY:HA2	5:B:327:ARG:HD2	2.03	0.41
5:B:971:THR:HB	6:C:61:GLU:CD	2.40	0.41
7:E:77:SER:OG	7:E:106:GLN:HB3	2.20	0.41
7:E:185:ALA:HB1	7:E:190:LEU:HB2	2.03	0.41
9:H:92:ASP:O	9:H:146:ARG:NH1	2.53	0.41
9:H:105:GLU:OE1	9:H:115:TYR:OH	2.30	0.41
2:T:22:DT:OP1	5:B:1129:ARG:HB2	2.20	0.41
4:A:28:ARG:NH2	4:A:238:CYS:HB2	2.36	0.41
4:A:202:LEU:HD13	4:A:202:LEU:HA	1.91	0.41
4:A:1116:LEU:HD12	4:A:1328:TYR:O	2.20	0.41
5:B:640:VAL:HG22	5:B:651:LEU:HD23	2.03	0.41
2:T:16:DT:H2'	2:T:17:DG:C8	2.55	0.41

	A L	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:388:LEU:HD23	4:A:388:LEU:HA	1.92	0.41
5:B:845:SER:HB2	11:J:8:PHE:HB3	2.02	0.41
7:E:151:PRO:HD2	7:E:153:HIS:HE1	1.86	0.41
13:L:49:LYS:HE2	13:L:49:LYS:HB2	1.91	0.41
2:T:12:DT:H2"	2:T:13:DC:C5	2.55	0.41
2:T:17:DG:H5'	2:T:18:DA:OP2	2.21	0.41
5:B:493:SER:OG	5:B:497:ARG:NH2	2.49	0.41
6:C:124:LEU:HD23	6:C:124:LEU:HA	1.93	0.41
10:I:5:ARG:NH2	10:I:36:GLU:OE2	2.53	0.41
1:R:4:G:H2'	1:R:5:A:C8	2.56	0.41
4:A:117:GLU:HB2	4:A:123:ARG:HD3	2.02	0.41
4:A:130:ASP:O	4:A:134:ARG:HG2	2.20	0.41
4:A:956:LEU:HD13	4:A:1021:LEU:HD22	2.02	0.41
4:A:1094:VAL:HA	4:A:1113:THR:HG21	2.03	0.41
4:A:1111:MET:HE2	4:A:1111:MET:HB3	1.96	0.41
5:B:31:TRP:CE3	5:B:34:ILE:HD12	2.55	0.41
6:C:77:ILE:HG13	6:C:161:LYS:HE3	2.02	0.41
6:C:259:LEU:HD12	6:C:259:LEU:HA	1.88	0.41
9:H:30:SER:HB2	9:H:33:GLN:HB3	2.02	0.41
9:H:93:TYR:HB2	9:H:143:LEU:HD12	2.02	0.41
4:A:58:LEU:HD23	4:A:58:LEU:HA	1.83	0.41
4:A:88:LYS:HE3	4:A:88:LYS:HB2	1.76	0.41
4:A:830:LYS:O	4:A:834:THR:OG1	2.25	0.41
5:B:1072:MET:HG3	5:B:1085:ILE:HB	2.03	0.41
7:E:178:ILE:HG12	7:E:182:ASP:OD2	2.20	0.41
10:I:15:TYR:CD1	10:I:30:ARG:HG3	2.55	0.41
10:I:32:CYS:SG	10:I:33:SER:N	2.90	0.41
4:A:396:PRO:HB3	4:A:403:LYS:HG2	2.03	0.41
4:A:663:SER:O	4:A:742:ASN:ND2	2.49	0.41
4:A:932:GLU:O	4:A:936:LEU:HG	2.20	0.41
5:B:217:ARG:NH1	5:B:407:ASP:OD1	2.54	0.41
5:B:864:LYS:HG2	5:B:872:GLU:OE1	2.21	0.41
7:E:52:ARG:O	7:E:54:GLN:NE2	2.52	0.41
7:E:90:VAL:O	7:E:94:LYS:HG3	2.20	0.41
2:T:25:DC:OP1	5:B:857:ARG:NH2	2.53	0.41
4:A:939:ASP:O	4:A:943:LEU:HG	2.21	0.41
4:A:1291:VAL:HG22	4:A:1292:PRO:HD2	2.02	0.41
5:B:826:ALA:HB2	5:B:1087:PHE:CE1	2.56	0.41
6:C:73:GLN:OE1	6:C:75:MET:N	2.52	0.41
9:H:17:PRO:O	9:H:19:ARG:N	2.53	0.41
4:A:203:SER:O	4:A:207:ILE:HG13	2.21	0.41

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:A:457:ALA:HB2	4:A:501:LEU:HB3	2.02	0.41
4:A:544:ASP:OD1	4:A:545:GLN:N	2.54	0.41
4:A:1134:ILE:O	4:A:1138:ILE:HG12	2.21	0.41
4:A:1214:GLU:HA	4:A:1217:LYS:HD3	2.02	0.41
4:A:1434:ALA:O	4:A:1436:ILE:N	2.54	0.41
5:B:115:GLN:O	5:B:119:LEU:HG	2.21	0.41
5:B:393:LYS:HD2	5:B:393:LYS:HA	1.92	0.41
5:B:702:LEU:HD21	5:B:735:ALA:HB1	2.03	0.41
4:A:30:ILE:HD12	4:A:30:ILE:HA	1.91	0.40
4:A:42:ASP:HB3	4:A:48:ALA:HB3	2.03	0.40
5:B:69:LEU:HD23	5:B:69:LEU:HA	1.93	0.40
5:B:234:ILE:HD12	5:B:257:LYS:HB2	2.02	0.40
5:B:830:TYR:CZ	5:B:1000:PRO:HD3	2.55	0.40
5:B:841:MET:HG2	5:B:846:ILE:HD11	2.02	0.40
5:B:890:TYR:CE2	5:B:910:VAL:HG21	2.56	0.40
5:B:1202:LEU:O	5:B:1206:GLU:HG3	2.21	0.40
6:C:239:PRO:O	6:C:243:VAL:HG23	2.21	0.40
7:E:135:PHE:HD2	7:E:140:LEU:HD21	1.86	0.40
13:L:34:CYS:SG	13:L:51:CYS:HB3	2.61	0.40
4:A:262:LEU:HD12	4:A:262:LEU:HA	1.91	0.40
4:A:709:THR:HG23	10:I:94:ASP:HA	2.03	0.40
12:K:49:GLU:HG3	12:K:94:ILE:HG13	2.03	0.40
4:A:1428:VAL:HG22	5:B:1147:LEU:HD11	2.04	0.40
5:B:578:THR:HG23	5:B:622:LYS:C	2.41	0.40
2:T:12:DT:O2	3:N:8:DG:N2	2.55	0.40
4:A:21:LEU:HD23	4:A:21:LEU:HA	1.78	0.40
4:A:359:LEU:HD23	4:A:360:GLU:N	2.36	0.40
4:A:451:HIS:NE2	4:A:1074:GLU:CG	2.84	0.40
4:A:527:THR:O	4:A:531:ILE:HB	2.21	0.40
4:A:607:ILE:HG12	4:A:612:ILE:HG22	2.02	0.40
5:B:788:ARG:O	5:B:967:ARG:NH1	2.54	0.40
5:B:797:TYR:HB3	5:B:798:TYR:CD1	2.56	0.40
6:C:137:LYS:HE3	6:C:137:LYS:HB3	1.87	0.40
4:A:21:LEU:HD21	4:A:95:PHE:HZ	1.83	0.40
4:A:99:ILE:HD11	4:A:234:MET:HB3	2.03	0.40
4:A:449:SER:HB3	5:B:1137:CYS:SG	2.60	0.40
4:A:900:ASP:N	4:A:906:HIS:O	2.50	0.40
5:B:369:GLY:HA2	5:B:371:GLU:OE1	2.22	0.40
5:B:1099:VAL:O	5:B:1103:ILE:HG12	2.22	0.40
9:H:26:ILE:HD12	9:H:26:ILE:HA	1.93	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
4	А	1368/1733~(79%)	1298 (95%)	69~(5%)	1 (0%)	51	82
5	В	1089/1224~(89%)	1043 (96%)	46 (4%)	0	100	100
6	С	265/318~(83%)	259~(98%)	6 (2%)	0	100	100
7	Ε	211/215~(98%)	204 (97%)	7 (3%)	0	100	100
8	F	84/155~(54%)	82 (98%)	2(2%)	0	100	100
9	Н	129/146~(88%)	123~(95%)	6~(5%)	0	100	100
10	Ι	115/122~(94%)	110 (96%)	5 (4%)	0	100	100
11	J	63/70~(90%)	63 (100%)	0	0	100	100
12	Κ	112/120~(93%)	108 (96%)	4 (4%)	0	100	100
13	L	41/70~(59%)	36~(88%)	5 (12%)	0	100	100
All	All	3477/4173 (83%)	3326 (96%)	150 (4%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	А	286	HIS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
4	А	1200/1520~(79%)	1144 (95%)	56~(5%)	26 57		
5	В	955/1061 (90%)	925~(97%)	30 (3%)	40 68		

Mol	Chain	Analysed Rotameric Outliers		Perce	ntiles	
6	С	235/274~(86%)	231~(98%)	4 (2%)	60	80
7	Е	194/197~(98%)	182 (94%)	12 (6%)	18	48
8	F	73/137~(53%)	71 (97%)	2(3%)	44	70
9	Н	115/128~(90%)	113 (98%)	2(2%)	60	80
10	Ι	109/116~(94%)	102 (94%)	7~(6%)	17	47
11	J	60/65~(92%)	60 (100%)	0	100	100
12	Κ	99/102~(97%)	94~(95%)	5 (5%)	24	54
13	L	37/57~(65%)	35~(95%)	2(5%)	22	52
All	All	3077/3657~(84%)	2957~(96%)	120 (4%)	32	61

All (120) residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
4	А	18	GLN
4	А	22	PHE
4	А	23	SER
4	А	28	ARG
4	А	34	LYS
4	А	47	ARG
4	А	49	LYS
4	А	58	LEU
4	А	67	CYS
4	А	81	PHE
4	А	112	LYS
4	А	148	CYS
4	А	151	ASP
4	А	164	ARG
4	А	167	CYS
4	А	175	ARG
4	А	180	LYS
4	А	236	LEU
4	А	286	HIS
4	А	307	ASP
4	А	326	ARG
4	А	332	LYS
4	А	356	ASP
4	А	383	TYR
4	A	453	MET
4	А	481	ASP

Mol	Chain	Res	Type
4	А	517	ASN
4	А	590	ARG
4	А	629	LEU
4	А	635	ARG
4	А	688	LYS
4	А	695	LYS
4	А	732	LEU
4	А	740	LEU
4	А	742	ASN
4	А	764	CYS
4	А	816	HIS
4	А	833	GLU
4	А	836	TYR
4	A	843	LYS
4	A	852	TYR
4	A	853	ASP
4	A	924	LYS
4	А	953	ASN
4	А	968	GLN
4	А	971	PHE
4	А	995	GLU
4	А	1074	GLU
4	А	1174	PHE
4	А	1233	ASP
4	А	1342	GLU
4	А	1345	ARG
4	А	1366	ARG
4	А	1378	GLN
4	А	1400	CYS
4	А	1420	ASP
5	В	46	GLN
5	В	106	ASP
5	В	110	HIS
5	В	188	ASP
5	В	199	MET
5	В	215	GLN
5	В	241	ARG
5	В	325	GLN
5	В	370	PHE
5	В	384	ARG
5	В	413	LEU
5	В	417	PHE

7.5.1			The pagem
Mol	Chain	Res	Type
5	В	437	GLU
5	В	466	TRP
5	В	468	GLU
5	В	552	MET
5	В	591	ARG
5	В	629	ASP
5	В	696	GLU
5	В	762	ASN
5	В	766	ARG
5	В	788	ARG
5	В	874	PHE
5	В	963	PHE
5	В	1072	MET
5	В	1092	TYR
5	В	1129	ARG
5	В	1163	CYS
5	В	1180	PHE
5	В	1211	ASN
6	С	61	GLU
6	С	178	PHE
6	С	191	TYR
6	С	215	GLU
7	Е	25	ASP
7	Е	29	PHE
7	Е	33	GLU
7	Е	61	GLN
7	Е	85	GLU
7	Е	91	LYS
7	Е	96	PHE
7	Е	106	GLN
7	Е	110	PHE
7	Е	182	ASP
7	Е	187	TYR
7	Е	192	ARG
8	F	90	ARG
8	F	92	ARG
9	Н	33	GLN
9	Н	145	ARG
10	Ι	4	PHE
10	Ι	8	ARG
10	Ι	33	SER
10	Ι	46	HIS
	1	I	1

Contrata jioni prettous page						
Mol	Chain	\mathbf{Res}	Type			
10	Ι	51	ASN			
10	Ι	78	CYS			
10	Ι	89	GLN			
12	Κ	10	PHE			
12	Κ	49	GLU			
12	Κ	74	ARG			
12	Κ	81	TYR			
12	Κ	114	LEU			
13	L	31	CYS			
13	L	53	HIS			

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such sidechains are listed below:

Mol	Chain	Res	Type
4	А	171	GLN
4	А	515	GLN
4	А	587	HIS
4	А	877	HIS
4	А	1004	ASN
5	В	309	GLN
5	В	590	HIS
5	В	1015	HIS
5	В	1025	HIS
7	Е	174	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	R	8/9~(88%)	0	0

There are no RNA backbone outliers to report.

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type Chain	Type	Chain	Dog	Link	B	ond leng	gths	B	ond ang	les
	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2		
2	G35	Т	19	2	18,23,24	4.73	14 (77%)	20,33,36	2.07	4 (20%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	G35	Т	19	2	-	3/10/41/42	0/2/2/2

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Т	19	G35	C2-N3	9.37	1.49	1.33
2	Т	19	G35	O4'-C4'	7.89	1.62	1.45
2	Т	19	G35	C5-N7	6.58	1.46	1.37
2	Т	19	G35	C3'-C4'	-6.45	1.35	1.53
2	Т	19	G35	C8-N9	6.13	1.46	1.37
2	Т	19	G35	O4'-C1'	-5.46	1.30	1.42
2	Т	19	G35	C8-N7	4.70	1.47	1.38
2	Т	19	G35	C2-N12	4.19	1.49	1.32
2	Т	19	G35	O3'-C3'	3.79	1.51	1.43
2	Т	19	G35	C4-N3	3.45	1.48	1.44
2	Т	19	G35	O8-C8	-2.82	1.17	1.23
2	Т	19	G35	C1'-N9	2.80	1.49	1.45
2	Т	19	G35	O5-C5	-2.66	1.18	1.23
2	Т	19	G35	C2-N11	-2.37	1.25	1.34

All (14) bond length outliers are listed below:

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	Т	19	G35	O4'-C1'-N9	6.07	115.85	108.65
2	Т	19	G35	C5-C4-N9	4.05	107.65	102.28
2	Т	19	G35	C4'-O4'-C1'	-3.74	100.40	109.45
2	Т	19	G35	O4'-C1'-C2'	-3.15	100.30	106.25

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
2	Т	19	G35	C3'-C4'-C5'-O5'
2	Т	19	G35	C4'-C5'-O5'-P
2	Т	19	G35	O4'-C4'-C5'-O5'

All (3) torsion outliers are listed below:

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	Т	19	G35	2	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 9 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol T	Tuno	Chain	Res	Link	Bond lengths			Bond angles		
	Type				Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
16	APC	В	1301	-	27,33,33	<mark>5.05</mark>	11 (40%)	31,52,52	2.30	6 (19%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
16	APC	В	1301	-	-	6/15/38/38	0/3/3/3

All (11) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
16	В	1301	APC	O4'-C1'	16.29	1.63	1.41
16	В	1301	APC	C2'-C1'	-14.74	1.31	1.53
16	В	1301	APC	PB-O3B	8.26	1.67	1.58
16	В	1301	APC	O4'-C4'	-6.45	1.30	1.45
16	В	1301	APC	PA-O5'	4.72	1.64	1.57
16	В	1301	APC	O2'-C2'	4.60	1.53	1.43
16	В	1301	APC	PB-O2B	-3.43	1.48	1.56
16	В	1301	APC	C6-N6	2.94	1.44	1.34
16	В	1301	APC	O3'-C3'	-2.59	1.36	1.43
16	В	1301	APC	C2-N3	2.46	1.36	1.32
16	В	1301	APC	C5-C4	-2.35	1.34	1.40

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
16	В	1301	APC	C5-C6-N6	8.19	132.80	120.35
16	В	1301	APC	N3-C2-N1	-5.54	120.02	128.68
16	В	1301	APC	N6-C6-N1	-5.44	107.28	118.57
16	В	1301	APC	PB-O3B-PG	-3.21	121.32	132.62
16	В	1301	APC	C3'-C2'-C1'	2.92	105.38	100.98
16	В	1301	APC	C1'-N9-C4	-2.16	122.84	126.64

There are no chirality outliers.

Mol	Chain	\mathbf{Res}	Type	Atoms
16	В	1301	APC	PB-C3A-PA-O1A
16	В	1301	APC	PB-C3A-PA-O2A
16	В	1301	APC	PB-C3A-PA-O5'
16	В	1301	APC	O4'-C4'-C5'-O5'
16	В	1301	APC	C3'-C4'-C5'-O5'
16	В	1301	APC	C5'-O5'-PA-O2A

All (6) torsion outliers are listed below:

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
16	В	1301	APC	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ > 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	R	9/9~(100%)	-0.59	0 100 100	89, 97, 145, 188	0
2	Т	24/29~(82%)	-0.44	0 100 100	86, 171, 219, 235	0
3	Ν	15/18~(83%)	0.03	0 100 100	183, 203, 251, 254	0
4	А	1384/1733~(79%)	0.01	34 (2%) 57 55	51, 104, 184, 265	0
5	В	1109/1224 (90%)	-0.08	11 (0%) 82 81	32, 85, 153, 231	0
6	С	267/318~(83%)	-0.24	0 100 100	56, 92, 138, 180	0
7	Е	213/215~(99%)	0.14	19 (8%) 9 11	85, 140, 236, 292	0
8	F	86/155~(55%)	-0.25	1 (1%) 79 77	66, 107, 149, 209	0
9	Н	133/146~(91%)	0.16	6 (4%) 33 33	82, 125, 183, 224	0
10	Ι	117/122~(95%)	-0.29	0 100 100	73,106,144,167	0
11	J	65/70~(92%)	-0.33	0 100 100	42, 73, 127, 145	0
12	K	114/120~(95%)	-0.18	0 100 100	62, 93, 131, 180	0
13	L	43/70~(61%)	0.51	3 (6%) 16 18	58, 146, 220, 268	0
All	All	3579/4229 (84%)	-0.05	74 (2%) 63 62	32, 100, 186, 292	0

All (74) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ	
4	А	69	THR	7.2	
7	Е	93	MET	5.7	
7	Е	110	PHE	5.6	
4	А	258	GLY	5.0	
4	А	66	LYS	5.0	
4	А	44	THR	4.9	
7	Е	83	CYS	4.9	
4	А	1256	GLU	4.8	
4	А	161	LEU	4.7	

6UP	Y

Mol	Chain	Res	Type	RSRZ	
5	В	869	SER	4.5	
9	Н	86	ASP	4.2	
5	В	106	ASP	3.8	
7	Е	47	CYS	3.8	
4	А	162	VAL	3.8	
4	А	45	GLN	3.7	
7	Е	123	LEU	3.6	
4	А	149	GLU	3.5	
4	А	144	THR	3.5	
4	А	141	LEU	3.4	
7	Е	126	SER	3.4	
7	Е	82	PHE	3.4	
4	А	163	SER	3.3	
4	А	145	LYS	3.2	
7	Е	125	PRO	3.2	
4	А	111	GLY	3.2	
4	А	285	PRO	3.1	
5	В	70	ILE	3.1	
9	Н	51	ALA	2.9	
4	А	165	GLY	2.8	
4	А	168	GLY	2.8	
7	Е	96	PHE	2.8	
4	А	18	GLN	2.8	
4	А	65	LEU	2.8	
4	А	173	THR	2.8	
7	Е	127	ILE	2.7	
4	А	105	CYS	2.7	
5	В	712	PRO	2.7	
13	L	36	SER	2.7	
7	Е	98	ILE	2.7	
4	А	286	HIS	2.7	
4	А	103	CYS	2.6	
7	Е	57	MET	2.6	
5	В	69	LEU	2.6	
7	Е	49	SER	2.6	
4	A	113	LEU	2.5	
5	В	933	SER	2.5	
9	Н	84	ALA	2.5	
7	E	91	LYS	2.5	
7	Е	100	ILE	2.5	
13	L	29	TYR	2.4	
5	В	92	PHE	2.4	

Mol	Chain	Res	Type	RSRZ
4	А	114	LEU	2.4
7	Е	81	GLU	2.4
4	А	200	ARG	2.4
5	В	429	PHE	2.3
8	F	133	VAL	2.3
4	А	311	GLN	2.3
4	А	169	ASN	2.3
9	Н	32	THR	2.3
4	А	146	MET	2.3
7	Е	121	MET	2.2
5	В	831 SE		2.2
4	А	176	LYS	2.2
4	А	150	THR	2.2
5	В	90	ILE	2.2
7	Е	16	PHE	2.1
5	В	134	LYS	2.1
13	L	41	SER	2.1
7	Е	118	PRO	2.1
4	А	181	LEU	2.1
4	А	87	ALA	2.1
9	Н	112	ILE	2.1
4	А	84	ILE	2.0
9	Н	139	ASN	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	G35	Т	19	22/23	0.84	0.29	138,155,172,184	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
14	ZN	А	1801	1/1	0.66	0.12	393,393,393,393	0
16	APC	В	1301	31/31	0.83	0.29	131,160,243,251	0
14	ZN	L	101	1/1	0.89	0.06	231,231,231,231	0
14	ZN	А	1802	1/1	0.92	0.08	102,102,102,102	0
14	ZN	В	1302	1/1	0.94	0.10	209,209,209,209	0
14	ZN	С	401	1/1	0.97	0.10	131,131,131,131	0
14	ZN	Ι	201	1/1	0.98	0.14	110,110,110,110	0
14	ZN	J	101	1/1	0.98	0.22	79,79,79,79	0
15	MG	А	1803	1/1	0.99	0.14	39,39,39,39	0
14	ZN	Ι	202	1/1	0.99	0.10	80,80,80,80	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

