

Full wwPDB X-ray Structure Validation Report (i)

Nov 28, 2023 – 02:21 AM EST

PDB ID : 8UZI

Title : Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella

aerogenes (betaine bound)

Authors: Seattle Structural Genomics Center for Infectious Disease; Seattle Structural

Genomics Center for Infectious Disease (SSGCID)

Deposited on : 2023-11-15

Resolution : 2.05 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity: 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : 2.36

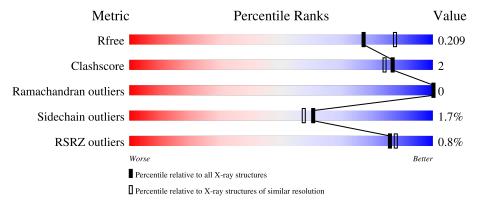
buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 2.05 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

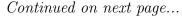
Metric	Whole archive	Similar resolution
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	1692 (2.04-2.04)
Clashscore	141614	1773 (2.04-2.04)
Ramachandran outliers	138981	1752 (2.04-2.04)
Sidechain outliers	138945	1752 (2.04-2.04)
RSRZ outliers	127900	1672 (2.04-2.04)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	499	92%	6% •
1	В	499	93%	
1	С	499	91%	6% •
1	D	499	92%	5% •

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 15478 atoms, of which 0 are hydrogens and 0 are deuteriums.

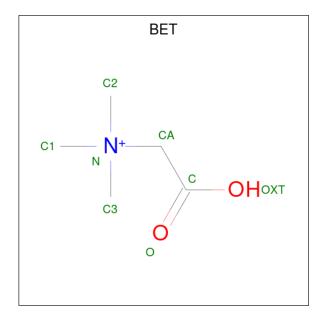

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Betaine aldehyde dehydrogenase.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Λ	488	Total	С	N	О	S	0	7	0
1	A	400	3723	2352	643	711	17	0	(U
1	В	488	Total	С	N	О	S	0	7	0
1	Б	400	3724	2352	644	711	17	U	'	U
1	С	488	Total	С	N	О	S	0	6	0
1		400	3709	2343	639	710	17	0	0	U
1	D	487	Total	С	N	О	S	0	6	0
1	ש	407	3694	2334	634	709	17	U	U	U

There are 44 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	-8	MET	-	expression tag	UNP A0A447LC14
A	-7	ALA	-	expression tag	UNP A0A447LC14
A	-6	HIS	-	expression tag	UNP A0A447LC14
A	-5	HIS	-	expression tag	UNP A0A447LC14
A	-4	HIS	-	expression tag	UNP A0A447LC14
A	-3	HIS	-	expression tag	UNP A0A447LC14
A	-2	HIS	-	expression tag	UNP A0A447LC14
A	-1	HIS	-	expression tag	UNP A0A447LC14
A	0	HIS	-	expression tag	UNP A0A447LC14
A	62	ALA	VAL	engineered mutation	UNP A0A447LC14
A	485	PRO	GLN	engineered mutation	UNP A0A447LC14
В	-8	MET	ı	expression tag	UNP A0A447LC14
В	-7	ALA	-	expression tag	UNP A0A447LC14
В	-6	HIS	ı	expression tag	UNP A0A447LC14
В	-5	HIS	-	expression tag	UNP A0A447LC14
В	-4	HIS	-	expression tag	UNP A0A447LC14
В	-3	HIS	-	expression tag	UNP A0A447LC14
В	-2	HIS	-	expression tag	UNP A0A447LC14
В	-1	HIS	- expression tag		UNP A0A447LC14
В	0	HIS	-	expression tag	UNP A0A447LC14
В	62	ALA	VAL	engineered mutation	UNP A0A447LC14



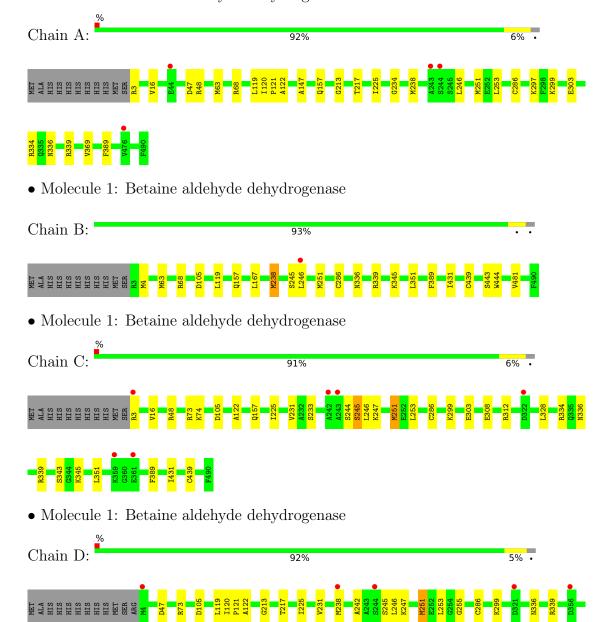
Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
В	485	PRO	GLN	engineered mutation	UNP A0A447LC14
С	-8	MET	-	expression tag	UNP A0A447LC14
С	-7	ALA	-	expression tag	UNP A0A447LC14
С	-6	HIS	-	expression tag	UNP A0A447LC14
С	-5	HIS	-	expression tag	UNP A0A447LC14
С	-4	HIS	-	expression tag	UNP A0A447LC14
С	-3	HIS	-	expression tag	UNP A0A447LC14
С	-2	HIS	-	expression tag	UNP A0A447LC14
С	-1	HIS	-	expression tag	UNP A0A447LC14
С	0	HIS	-	expression tag	UNP A0A447LC14
С	62	ALA	VAL	engineered mutation	UNP A0A447LC14
С	485	PRO	GLN	engineered mutation	UNP A0A447LC14
D	-8	MET	-	expression tag	UNP A0A447LC14
D	-7	ALA	-	expression tag	UNP A0A447LC14
D	-6	HIS	-	expression tag	UNP A0A447LC14
D	-5	HIS	-	expression tag	UNP A0A447LC14
D	-4	HIS	=	expression tag	UNP A0A447LC14
D	-3	HIS	-	expression tag	UNP A0A447LC14
D	-2	HIS	-	expression tag	UNP A0A447LC14
D	-1	HIS	=	expression tag	UNP A0A447LC14
D	0	HIS	=	expression tag	UNP A0A447LC14
D	62	ALA	VAL	engineered mutation	UNP A0A447LC14
D	485	PRO	GLN	engineered mutation	UNP A0A447LC14

• Molecule 2 is TRIMETHYL GLYCINE (three-letter code: BET) (formula: $C_5H_{12}NO_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	1	Total C N O 8 5 1 2	0	0
2	В	1	Total C N O 8 5 1 2	0	0
2	С	1	Total C N O 8 5 1 2	0	0
2	D	1	Total C N O 8 5 1 2	0	0

• Molecule 3 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	159	Total O 159 159	0	0
3	В	158	Total O 158 158	0	0
3	С	154	Total O 154 154	0	0
3	D	125	Total O 125 125	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Betaine aldehyde dehydrogenase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	83.84Å 101.11Å 123.58Å	Depositor
a, b, c, α , β , γ	90.00° 95.82° 90.00°	Depositor
Resolution (Å)	47.25 - 2.05	Depositor
rtesolution (A)	47.25 - 2.05	EDS
% Data completeness	99.8 (47.25-2.05)	Depositor
(in resolution range)	99.8 (47.25-2.05)	EDS
R_{merge}	0.26	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.88 (at 2.05Å)	Xtriage
Refinement program	PHENIX 1.20.1_4487	Depositor
P. P.	0.164 , 0.204	Depositor
R, R_{free}	0.171 , 0.209	DCC
R_{free} test set	6424 reflections (5.01%)	wwPDB-VP
Wilson B-factor (Å ²)	27.6	Xtriage
Anisotropy	0.483	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.33 , 41.2	EDS
L-test for twinning ²	$ < L > = 0.49, < L^2> = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	15478	wwPDB-VP
Average B, all atoms (Å ²)	34.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.90% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BET

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Mol Chain		lengths	Bond angles	
IVIOI	Moi Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.40	0/3813	0.62	0/5171
1	В	0.41	0/3813	0.61	0/5170
1	С	0.40	0/3798	0.60	0/5152
1	D	0.38	0/3783	0.59	0/5134
All	All	0.40	0/15207	0.60	0/20627

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	3723	0	3706	18	0
1	В	3724	0	3712	16	0
1	С	3709	0	3689	21	0
1	D	3694	0	3665	20	0
2	A	8	0	11	2	0
2	В	8	0	11	2	0
2	С	8	0	11	3	0
2	D	8	0	11	1	0
3	A	159	0	0	1	0

Continued on next page...

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	В	158	0	0	1	0
3	С	154	0	0	1	0
3	D	125	0	0	0	0
All	All	15478	0	14816	61	0

The all-atom clash score is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clash score for this structure is 2.

All (61) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$egin{aligned} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$	Clash overlap (Å)
1:C:157:GLN:OE1	2:C:501:BET:H21	2.03	0.58
1:A:234:GLY:HA3	1:A:251:MET:HE3	1.87	0.57
1:D:286:CYS:HB2	2:D:501:BET:O	2.04	0.57
1:C:328:LEU:HD12	1:C:334:ARG:HA	1.87	0.56
1:C:16:VAL:HG21	1:C:48:ARG:NH2	2.20	0.56
1:A:253:LEU:HD12	1:C:246:LEU:HD22	1.88	0.56
1:C:16:VAL:HG21	1:C:48:ARG:HH22	1.73	0.54
1:C:231:VAL:HG23	3:C:721:HOH:O	2.07	0.54
1:C:308:GLU:OE2	1:C:312:ARG:NH2	2.41	0.53
1:B:431:ILE:HD12	1:B:439:CYS:HB3	1.91	0.53
1:A:119:LEU:HD21	1:D:122:ALA:HB2	1.90	0.52
1:C:336:ASN:OD1	1:C:339:ARG:NH2	2.42	0.52
1:A:147:ALA:HB3	1:A:225:ILE:HD13	1.90	0.52
1:A:122:ALA:HB2	1:D:119:LEU:HD21	1.91	0.52
1:C:251:MET:HE3	1:C:253:LEU:HD11	1.93	0.51
1:D:120:ILE:HB	1:D:121:PRO:HD3	1.93	0.51
1:D:336:ASN:OD1	1:D:339:ARG:NH2	2.45	0.50
3:A:746:HOH:O	1:D:73[B]:ARG:HG2	2.12	0.50
1:B:246:LEU:HD11	1:D:251:MET:CE	2.42	0.49
1:A:234:GLY:CA	1:A:251:MET:HE3	2.43	0.48
1:B:119:LEU:HD21	1:C:122:ALA:HB2	1.95	0.47
1:B:336:ASN:OD1	1:B:339:ARG:NH2	2.33	0.47
1:C:286:CYS:N	2:C:501:BET:OXT	2.47	0.47
1:A:122:ALA:HB2	1:D:119:LEU:CD2	2.45	0.46
1:A:213:GLY:O	1:A:217:THR:HG23	2.16	0.46
1:C:225:ILE:HG12	1:C:247:LYS:HD3	1.97	0.46
1:A:246:LEU:HD11	1:C:251:MET:CE	2.46	0.46
1:B:157:GLN:OE1	2:B:501:BET:H21	2.16	0.45
1:A:63:MET:O	1:A:68:ARG:NH1	2.50	0.45
1:B:63:MET:O	1:B:68:ARG:NH1	2.50	0.45

Continued on next page...

Continued from previous page...

Continued from preod		Interatomic	Clash
Atom-1	Atom-2	${ m distance} \; ({ m \AA})$	overlap (Å)
1:B:246:LEU:HD11	1:D:251:MET:HE2	1.98	0.45
1:D:213:GLY:O	1:D:217:THR:HG23	2.17	0.45
1:A:246:LEU:HD11	1:C:251:MET:HE1	1.97	0.44
1:C:231:VAL:HA	1:C:253:LEU:HD13	1.97	0.44
1:D:225:ILE:HG12	1:D:247:LYS:HD3	1.99	0.44
1:A:157:GLN:OE1	2:A:501:BET:H21	2.18	0.44
1:D:231:VAL:HA	1:D:253:LEU:HD13	1.98	0.44
1:B:345:LYS:HE2	1:B:351:LEU:HD22	2.00	0.44
1:C:345:LYS:HE2	1:C:351:LEU:HD22	1.99	0.43
1:D:299:LYS:HE3	1:D:397[B]:SER:HB3	2.00	0.43
1:B:251:MET:HE2	1:D:246:LEU:HD11	2.00	0.43
1:A:299:LYS:HE2	1:A:303:GLU:OE2	2.19	0.42
1:A:334:ARG:HG3	1:A:369:VAL:CG2	2.49	0.42
1:A:336:ASN:OD1	1:A:339:ARG:NH2	2.49	0.42
1:B:286:CYS:HB2	2:B:501:BET:OXT	2.20	0.42
1:B:251:MET:CE	1:D:246:LEU:HD11	2.50	0.42
1:A:286:CYS:HB2	2:A:501:BET:OXT	2.20	0.41
1:D:255:GLY:HA2	1:D:413:TYR:CD1	2.55	0.41
1:B:238:MET:HB3	1:D:242:ALA:HB1	2.01	0.41
1:C:244:SER:OG	1:C:245:SER:N	2.53	0.41
1:C:286:CYS:HB2	2:C:501:BET:OXT	2.21	0.41
1:D:251:MET:HE3	1:D:253:LEU:HD11	2.02	0.41
1:B:443[A]:SER:OG	1:B:444:TRP:N	2.53	0.41
1:C:299:LYS:HE2	1:C:303:GLU:OE2	2.21	0.41
1:C:431:ILE:HD12	1:C:439:CYS:HB3	2.02	0.40
3:B:742:HOH:O	1:C:73[B]:ARG:HG2	2.21	0.40
1:B:431:ILE:HD13	1:B:431:ILE:HA	1.98	0.40
1:A:16:VAL:HG21	1:A:48:ARG:HH22	1.87	0.40
1:A:120:ILE:HB	1:A:121:PRO:HD3	2.03	0.40
1:B:246:LEU:HD22	1:D:253:LEU:HD12	2.02	0.40
1:B:481:VAL:HG22	1:D:441:ILE:HD12	2.03	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the r	number of	residues for	which	the	backbone	conformation	was
analysed, and the total number of	residues.						

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	493/499 (99%)	482 (98%)	11 (2%)	0	100	100
1	В	493/499 (99%)	482 (98%)	11 (2%)	0	100	100
1	\mathbf{C}	492/499 (99%)	481 (98%)	11 (2%)	0	100	100
1	D	491/499 (98%)	481 (98%)	10 (2%)	0	100	100
All	All	1969/1996 (99%)	1926 (98%)	43 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	388/394 (98%)	383 (99%)	5 (1%)	69 67
1	В	388/394 (98%)	382 (98%)	6 (2%)	65 62
1	С	386/394 (98%)	378 (98%)	8 (2%)	53 48
1	D	384/394 (98%)	376 (98%)	8 (2%)	53 48
All	All	1546/1576 (98%)	1519 (98%)	27 (2%)	60 57

All (27) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	3	ARG
1	A	47	ASP
1	A	238	MET
1	A	297	LYS
1	A	389	PHE
1	В	4	MET
1	В	105	ASP
1	В	167	LEU
1	В	238	MET
1	В	245	SER

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
1	В	389	PHE
1	C C	3	ARG
1	С	74	LYS
1	С	105	ASP
1	С	233	SER
1	С	245	SER
1	С	251	MET
1	С	343	SER
1	С	389	PHE
1	D	47	ASP
1	D	105	ASP
1	D	238	MET
1	D	245	SER
1	D	251	MET
1	D	389	PHE
1	D	397[A]	SER
1	D	397[B]	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

4 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Tuno	Chain	Res	Res Link Bond lengths			Bond angles			
IVIOI	Type	Chain	nes	Lilik	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	BET	В	501	-	7,7,7	1.14	1 (14%)	10,10,10	1.54	2 (20%)
2	BET	A	501	-	7,7,7	1.10	0	10,10,10	1.67	2 (20%)
2	BET	D	501	-	7,7,7	1.13	1 (14%)	10,10,10	1.40	1 (10%)
2	BET	С	501	-	7,7,7	1.33	2 (28%)	10,10,10	1.64	1 (10%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	BET	В	501	-	-	5/5/5/5	-
2	BET	A	501	-	-	5/5/5/5	-
2	BET	D	501	-	-	5/5/5/5	-
2	BET	С	501	-	-	4/5/5/5	-

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\text{\AA})$	$Ideal(\AA)$
2	С	501	BET	CA-C	2.55	1.56	1.52
2	D	501	BET	CA-C	2.49	1.56	1.52
2	С	501	BET	OXT-C	-2.08	1.23	1.30
2	В	501	BET	CA-C	2.08	1.55	1.52

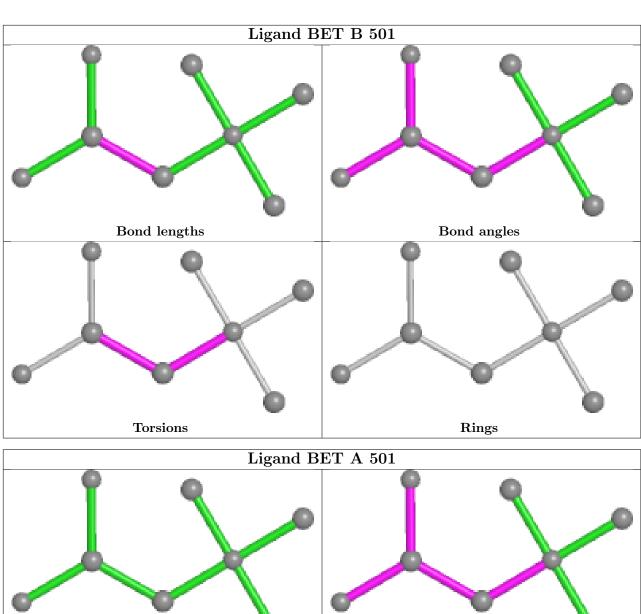
All (6) bond angle outliers are listed below:

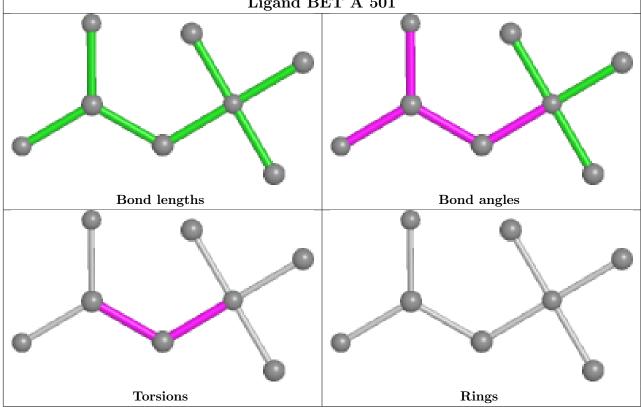
Mol	Chain	Res	Type	Atoms	Z	$Observed(^o)$	$Ideal(^{o})$
2	С	501	BET	C-CA-N	4.74	122.85	116.34
2	A	501	BET	C-CA-N	4.48	122.49	116.34
2	В	501	BET	C-CA-N	4.10	121.98	116.34
2	D	501	BET	C-CA-N	3.51	121.17	116.34
2	A	501	BET	OXT-C-O	2.15	128.66	123.30
2	В	501	BET	OXT-C-O	2.03	128.36	123.30

There are no chirality outliers.

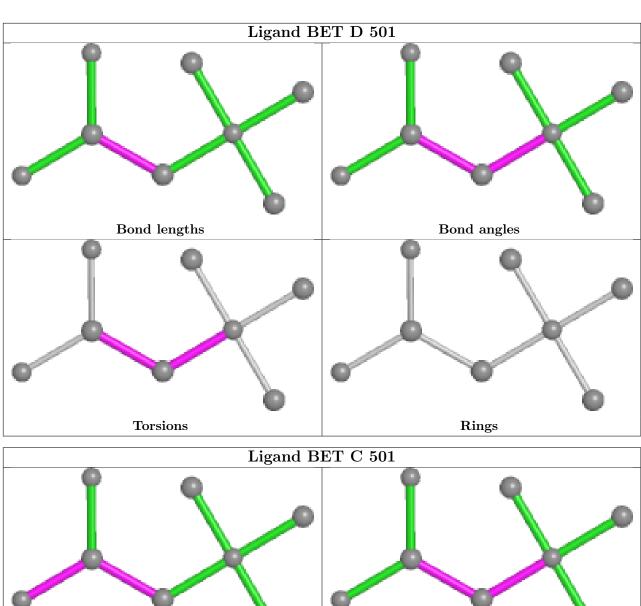
All (19) torsion outliers are listed below:

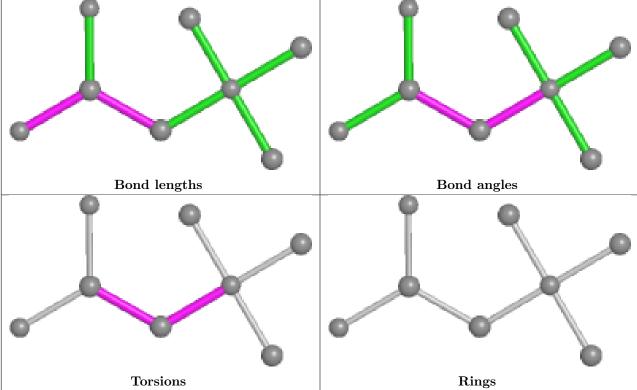
Mol	Chain	Res	Type	Atoms
2	A	501	BET	O-C-CA-N
2	A	501	BET	OXT-C-CA-N
2	В	501	BET	O-C-CA-N
2	В	501	BET	OXT-C-CA-N
2	D	501	BET	C-CA-N-C1
2	D	501	BET	C-CA-N-C2
2	D	501	BET	C-CA-N-C3
2	D	501	BET	O-C-CA-N
2	A	501	BET	C-CA-N-C1
2	A	501	BET	C-CA-N-C3
2	D	501	BET	OXT-C-CA-N
2	В	501	BET	C-CA-N-C1
2	A	501	BET	C-CA-N-C2
2	В	501	BET	C-CA-N-C3
2	С	501	BET	OXT-C-CA-N
2	С	501	BET	C-CA-N-C1
2	С	501	BET	C-CA-N-C3
2	С	501	BET	O-C-CA-N
2	В	501	BET	C-CA-N-C2


There are no ring outliers.


4 monomers are involved in 8 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	501	BET	2	0
2	A	501	BET	2	0
2	D	501	BET	1	0
2	С	501	BET	3	0


The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.



5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	$\# \mathrm{RSRZ}{>}2$	$OWAB(A^2)$	Q<0.9
1	A	488/499 (97%)	-0.26	4 (0%) 86 88	16, 28, 56, 109	0
1	В	488/499 (97%)	-0.37	1 (0%) 95 95	18, 30, 54, 99	0
1	С	488/499 (97%)	-0.17	6 (1%) 79 81	17, 32, 56, 105	0
1	D	487/499 (97%)	-0.21	5 (1%) 82 84	17, 36, 64, 102	0
All	All	1951/1996 (97%)	-0.25	16 (0%) 86 88	16, 31, 57, 109	0

All (16) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	С	243	ALA	3.9
1	С	361	GLU	2.8
1	D	244	SER	2.8
1	D	356	ASP	2.4
1	A	44	GLU	2.4
1	A	243	ALA	2.4
1	С	3	ARG	2.2
1	D	238	MET	2.2
1	С	322	ASP	2.2
1	С	242	ALA	2.1
1	D	4	MET	2.1
1	A	476	VAL	2.1
1	С	359	LYS	2.1
1	В	246	LEU	2.1
1	A	244	SER	2.0
1	D	321	ASP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

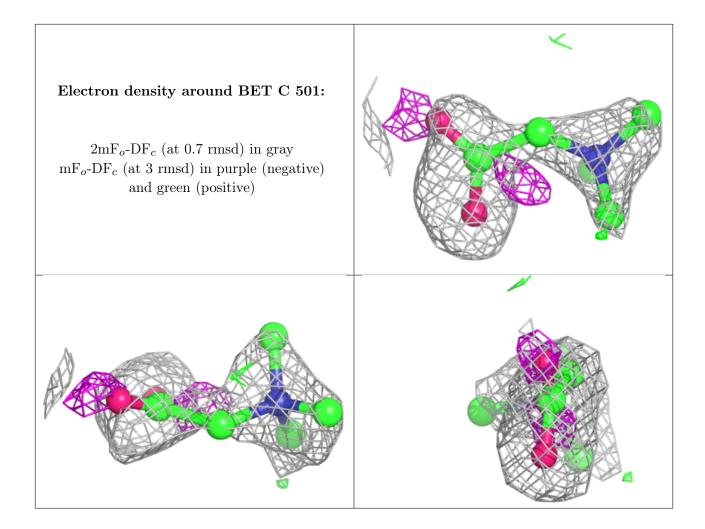
There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

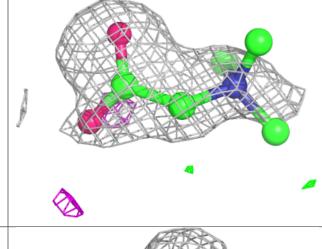
There are no monosaccharides in this entry.

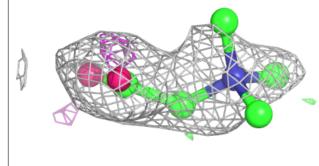
6.4 Ligands (i)

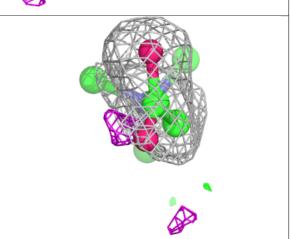
In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.


Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
2	BET	A	501	8/8	0.81	0.21	32,54,59,70	0
2	BET	С	501	8/8	0.86	0.24	34,50,55,61	0
2	BET	D	501	8/8	0.86	0.23	42,60,63,68	0
2	BET	В	501	8/8	0.88	0.29	39,49,54,56	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

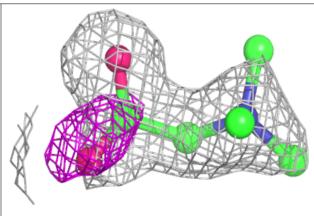


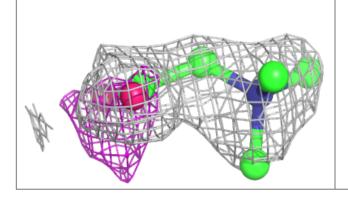


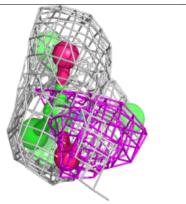


Electron density around BET D 501:

 $2 {\rm mF}_o\text{-}{\rm DF}_c$ (at 0.7 rmsd) in gray ${\rm mF}_o\text{-}{\rm DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)







Electron density around BET B 501:

 $2 \mathrm{mF}_o\text{-DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

6.5 Other polymers (i)

There are no such residues in this entry.

