

wwPDB X-ray Structure Validation Summary Report (i)

Jan 4, 2024 - 03:55 pm GMT

PDB ID	:	4V5O
Title	:	CRYSTAL STRUCTURE OF THE EUKARYOTIC 40S RIBOSOMAL SUB-
		UNIT IN COMPLEX WITH INITIATION FACTOR 1.
Authors	:	Rabl, J.; Leibundgut, M.; Ataide, S.F.; Haag, A.; Ban, N.
Deposited on	:	2010-11-26
Resolution	:	3.93 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.93 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	$1036 \ (4.20-3.68)$
Clashscore	141614	1009 (4.18-3.70)
Ramachandran outliers	138981	1057 (4.20-3.68)
Sidechain outliers	138945	1049 (4.20-3.68)
RSRZ outliers	127900	1007 (4.24-3.64)
RNA backbone	3102	1041 (4.84-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain	
1	A1	68	% 	51%	16% •
1	B1	68	26%	59%	13% •
2	A2	208	27%	66%	13%
2	B2	208	8%	67%	13%

Mol	Chain	Length		Quality	v of chain		
3	A3	197	3%		57%		11% ••
3	B3	197	2% 		56%		12% •
4	A4	265	9% 22%	48%		10% •	19%
4	B4	265	23%	48%	1	9% •	19%
5	A5	119	28%	42	%	13%	18%
5	B5	119	29%	41	1%	13%	18%
6	A6	81	31%		59%		9% •
6	B6	81	31%		58%		10% •
7	A7	162	18%	40%	6%	36%	
7	B7	162	15%	43%	6% •	36%	
8	A8	143	22%	32%	10%	35%	
8	B8	143	20%	35%	10%	35%	
9	A9	189	11%	35% 5%	6	48%	
9	B9	189	12%	35% 5	%	48%	
10	AA	1753	15%	55%		25%	5%
10	BA	1753	16%	54%		25%	5%
11	AB	241	23%	5	55%	6%	15%
11	BB	241	23%	5	55%	7%	15%
12	AC	243	28%		54%		12% 6%
12	BC	243	28%		56%		10% 6%
13	AD	181	30%		55%		12% ••
13	BD	181	30%		55%		12% ••
14	AE	296	20%	48%		9% •	22%
14	BE	296	21%	48%		9%	22%
15	AF	101	25%		54%	9%	12%

Mol	Chain	Length		Quality of chain	
15	BF	101	25%	53%	10% 12%
16	AG	200	22%	60%	12% •
16	BG	200	25%	57%	13% ••
17	AH	130	22%	65%	10% ••
17	BH	130	22%	66%	10% ••
18	AI	145	21%	72%	6% •
18	BI	145	25%	68%	6% •
19	AJ	120	28%	52%	7% 12%
19	BJ	120	30%	50%	8% 12%
20	AK	151	21%	54%	17% • 7%
20	BK	151	21%	54%	17% • 7%
21	AL	142	25%	57%	17% •
21	BL	142	18% 27%	57%	15% •
22	AM	155	5% 21%	62%	16% ·
22	BM	155	4% 25%	57%	17% •
23	AN	55	24%	49%	20% • •
23	BN	55	16% 18%	55%	20% • •
24	AO	153	29%	58%	10% •
24	BO	153	28%	59%	11% •
25	AP	149	30%	60%	8% ••
25	BP	149	30%	60%	9% ••
26	AQ	157	29%	59%	10% •
26	BQ	157	26%	61%	12% •
27	AR	343	23%	63%	12% ••
27	BR	343	27%	58%	13% ••

4V	50
----	----

Mol	Chain	Length		Quality of chain		
28	AS	144	3%	51%	6%	13%
28	BS	144	31% 26%	53%	6%	• 13%
29	AT	155	26%	57%		14% ••
29	BT	155	27%	57%		12% ••
30	AU	126	30%	56%		11% ••
30	BU	126	24%	64%		10% ••
31	AV	130	29%	57%		6% • 7%
31	BV	130	2%	56%		7% • 7%
32	AW	260	27%	58%		14% •
32	BW	260	28%	57%		13% •
33	AX	80	29%	48%	9%	15%
33	BX	80	30%	49%	6%	15%
34	AY	293	14% 23%	50%	5%•	20%
34	BY	293	9%	50%	5%•	20%
35	AZ	97	23%	61%		16%
35	BZ	97	2%	57%		16%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
36	MG	AA	1870	-	-	-	Х
36	MG	AA	1882	-	-	-	Х
36	MG	AA	1883	-	-	-	Х
36	MG	BA	1838	-	-	-	Х
36	MG	BA	1842	-	-	-	Х
36	MG	BA	1855	-	-	-	Х
36	MG	BA	1872	-	-	-	Х
36	MG	BA	1873	-	-	-	Х
36	MG	BA	1875	-	-	-	Х
36	MG	BA	1883	-	-	-	Х

2 Entry composition (i)

There are 38 unique types of molecules in this entry. The entry contains 157632 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called RIBOSOMAL PROTEIN S28E CONTAINING PROTEIN.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	A1	67	Total 519	C 312	N 105	O 98	${S \atop 4}$	0	0	0
1	B1	67	Total 519	C 312	N 105	0 98	$\frac{S}{4}$	0	0	0

• Molecule 2 is a protein called 40S RIBOSOMAL PROTEIN S8.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
0	1.2	A2 207	Total	С	Ν	0	S	0	0	0
	AZ		1693	1057	336	296	4	0	0	0
0	Do	B2 207	Total	С	Ν	0	S	0	0	0
			1693	1057	336	296	4		U	U

• Molecule 3 is a protein called RPS7E.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
3	3 A3 196	106	Total	С	Ν	0	S	0	0	0
0		1629	1048	286	294	1	0	0	0	
2	D 2	106	Total	С	Ν	0	S	0	0	0
0	D0	190	1629	1048	286	294	1		U	

• Molecule 4 is a protein called 40S RIBOSOMAL PROTEIN S3A.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
4	Δ.4	215	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	Λ4	210	1724	1090	314	316	4	0	0	0
4	P/	215	Total	С	Ν	0	S	0	0	0
4	D4	210	1724	1090	314	316	4	0	0	0

• Molecule 5 is a protein called RIBOSOMAL PROTEIN S26E CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
Б	Δ.5	08	Total	С	Ν	0	S	0	0	0
0	AJ	90	797	485	170	136	6	0	0	0
Б	R5	08	Total	С	Ν	0	S	0	0	0
0	D0	90	797	485	170	136	6	0	0	0

• Molecule 6 is a protein called RPS27E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	16	80	Total	С	Ν	0	S	0	0	0
0	A0	80	632	398	110	116	8	0	0	0
6	De	80	Total	С	Ν	0	S	0	0	0
0	D0	80	632	398	110	116	8	0	0	0

There are 28 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
B6	54	CYS	-	expression tag	UNP Q22CK0
B6	55	GLU	-	expression tag	UNP Q22CK0
B6	56	LYS	-	expression tag	UNP Q22CK0
B6	57	CYS	-	expression tag	UNP Q22CK0
B6	58	SER	-	expression tag	UNP Q22CK0
B6	59	ALA	-	expression tag	UNP Q22CK0
B6	60	ILE	-	expression tag	UNP Q22CK0
B6	61	LEU	-	expression tag	UNP Q22CK0
B6	62	CYS	-	expression tag	UNP Q22CK0
B6	63	LYS	-	expression tag	UNP Q22CK0
B6	64	PRO	-	expression tag	UNP Q22CK0
B6	65	THR	-	expression tag	UNP Q22CK0
B6	66	GLY	-	expression tag	UNP Q22CK0
B6	67	GLY	-	expression tag	UNP Q22CK0
B6	68	LYS	-	expression tag	UNP Q22CK0
B6	69	VAL	-	expression tag	UNP Q22CK0
B6	70	GLN	-	expression tag	UNP Q22CK0
B6	71	ILE	-	expression tag	UNP Q22CK0
B6	72	GLN	-	expression tag	UNP Q22CK0
B6	73	ALA	-	expression tag	UNP Q22CK0
B6	74	GLY	-	expression tag	UNP Q22CK0
B6	75	CYS	-	expression tag	UNP Q22CK0
B6	76	ALA	-	expression tag	UNP Q22CK0
B6	77	PHE	-	expression tag	UNP Q22CK0
B6	78	LYS	-	expression tag	UNP Q22CK0
B6	79	ILE	-	expression tag	UNP Q22CK0
B6	80	LYS	-	expression tag	UNP Q22CK0

Chain	Residue	Modelled	Actual	Comment	Reference
B6	81	ASN	-	expression tag	UNP Q22CK0

• Molecule 7 is a protein called PLECTIN/S10 DOMAIN CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	Δ7	104	Total	С	Ν	0	S	0	0	0
1		104	859	560	142	155	2	0	0	0
7	P7	104	Total	С	Ν	0	S	0	0	0
1	Dí	104	859	560	142	155	2	0	0	0

• Molecule 8 is a protein called RPS25E.

Mol	Chain	Residues		At	AltConf	Trace				
8	A8	93	Total 725	C 460	N 135	O 128	${ m S} { m 2}$	0	0	0
8	B8	93	Total 725	C 460	N 135	O 128	S 2	0	0	0

• Molecule 9 is a protein called RPS31E.

Mol	Chain	Residues		Atoms					AltConf	Trace
0	4.0	08	Total	С	Ν	Ο	S	0	0	0
9	A9	90	742	479	139	119	5	0	0	0
0	P0	08	Total	С	Ν	0	S	0	0	0
9	D9	90	742	479	139	119	5	0	0	0

• Molecule 10 is a RNA chain called 18S RRNA.

Mol	Chain	Residues		1	Atoms			ZeroOcc	AltConf	Trace
10	AA	1745	Total 37231	C 16654	N 6651	O 12181	Р 1745	0	0	0
10	BA	1745	Total 37231	C 16654	N 6651	0 12181	Р 1745	0	0	0

• Molecule 11 is a protein called RPS0E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
11	٨P	204	Total	С	Ν	0	\mathbf{S}	0	0	0
	AD	204	1642	1039	288	304	11	0	0	0
11	PP	204	Total	С	Ν	0	S	0	0	0
	DD	204	1642	1039	288	304	11	0	0	0

- 4V5O
- Molecule 12 is a protein called KH DOMAIN CONTAINING PROTEIN.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
10		220	Total	С	Ν	0	S	0	0	0
12	AU	229	1820	1173	320	319	8	0	0	0
19	BC	220	Total	С	Ν	0	S	0	0	0
12	DU	229	1820	1173	320	319	8	0	0	0

• Molecule 13 is a protein called RIBOSOMAL PROTEIN S4 CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
13		170	Total	С	Ν	Ο	\mathbf{S}	0	0	0
10	AD	119	1475	931	286	252	6	0	0	0
12	ЪD	170	Total	С	Ν	Ο	\mathbf{S}	0	0	0
10		119	1475	931	286	252	6		U	U

• Molecule 14 is a protein called RIBOSOMAL PROTEIN S5 CONTAINING PROTEIN.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
14	ΔE	230	Total	С	Ν	Ο	\mathbf{S}	0	0	0
14	AĽ	230	1827	1176	323	325	3	0	0	0
14	BE	230	Total	С	Ν	Ο	\mathbf{S}	0	0	0
14	DĽ	230	1827	1176	323	325	3	0	0	0

• Molecule 15 is a protein called EIF1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
15		80	Total	С	Ν	0	S	0	0	0
1.5	Ar	89	736	465	131	137	3	0	0	0
15	BE	80	Total	С	Ν	0	S	0	0	0
10	DF	09	736	465	131	137	3		0	0

• Molecule 16 is a protein called RIBOSOMAL PROTEIN S7 CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
16		102	Total	С	Ν	0	S	0	0	0
10	AG	192	1520	961	281	270	8	0	0	0
16	BC	102	Total	С	Ν	0	\mathbf{S}	0	0	0
10	DG	192	1520	961	281	270	8	0	U	0

• Molecule 17 is a protein called RIBOSOMAL PROTEIN S8 CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
17	۸Ц	120	Total	С	Ν	0	S	0	0	0
11	AII	129	1040	671	184	180	5	0	0	0
17	рц	120	Total	С	Ν	0	S	0	0	0
11	DII	129	1040	671	184	180	5	0	0	0

• Molecule 18 is a protein called RPS16E, 40S RIBOSOMAL PROTEIN RPS16E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	ΔT	1/12	Total	С	Ν	0	\mathbf{S}	0	0	0
10	AI	140	1135	715	217	198	5	0	0	0
19	ЪI	1/12	Total	С	Ν	0	S	0	0	0
10	DI	140	1135	715	217	198	5	0	0	0

• Molecule 19 is a protein called RIBOSOMAL PROTEIN S10 CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	AJ	105	Total 833	C 525	N 150	0 152	S 6	0	0	0
19	BJ	105	Total 833	C 525	N 150	0 152	0 S 6	0	0	0

• Molecule 20 is a protein called RPS14E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	ΔK	140	Total	С	Ν	0	S	0	0	0
20	АК	140	1063	654	206	197	6	0	0	0
20	BK	140	Total	С	Ν	0	S	0	0	0
20	DI	140	1063	654	206	197	6	0	0	0

• Molecule 21 is a protein called 40S RIBOSOMAL PROTEIN S12.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
91	ΔT	1.41	Total	С	Ν	0	S	0	0	0
	AL	141	1097	691	221	180	5	0	0	0
91	DI	1.4.1	Total	С	Ν	0	S	0	0	0
		141	1097	691	221	180	5	0	0	0

• Molecule 22 is a protein called RPS18E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
22	AM	154	Total 1239	C 780	N 237	O 216	S 6	0	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
22	BM	154	Total 1239	C 780	N 237	0 216	${ m S}{ m 6}$	0	0	0

• Molecule 23 is a protein called RPS29E.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
23	ΛN	53	Total	С	Ν	Ο	S	0	0	0
23	AN		447	278	91	72	6	0	0	0
<u></u>	BN	52	Total	С	Ν	0	S	0	0	0
20	DN	55	447	278	91	72	6		U	U

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BN	54	TYR	-	expression tag	UNP Q22MB0
BN	55	ARG	-	expression tag	UNP Q22MB0

• Molecule 24 is a protein called RPS13E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
24	AO	150	Total 1214	C 782	N 228	O 200	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0	0
24	BO	150	Total 1214	C 782	N 228	O 200	$\frac{S}{4}$	0	0	0

• Molecule 25 is a protein called RPS24E.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
25	ΔD	148	Total	С	Ν	Ο	0	0	0
2.0	ЛІ	140	1197	763	221	213	0	0	0
25	PD	1/19	Total	С	Ν	Ο	0	0	0
	DF	140	1197	763	221	213		U	U

• Molecule 26 is a protein called RIBOSOMAL PROTEIN S17 CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
26		157	Total	С	Ν	0	S	0	0	0
20	AQ	157	1275	818	235	217	5	0	0	0
26	BO	157	Total	С	Ν	0	S	0	0	0
20	ЪQ	157	1275	818	235	217	5	0	0	0

• Molecule 27 is a protein called RACK1.

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf	Trace
97	٨P	338	Total	С	Ν	Ο	\mathbf{S}	0	0	0
21	АЦ	000	2682	1711	462	501	8	0	0	0
97	BD	220	Total	С	Ν	0	S	0	0	0
21	DR		2682	1711	462	501	8	0	0	0

• Molecule 28 is a protein called RPS15E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	٨S	195	Total	С	Ν	0	S	0	0	0
20	AS	120	985	632	173	176	4	0	0	0
10	DC	195	Total	С	Ν	0	S	0	0	0
20	DS	120	985	632	173	176	4	0	0	0

• Molecule 29 is a protein called RPS19E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
29	AT	150	Total 1211	C 769	N 227	0 213	${S \over 2}$	0	0	0
29	BT	150	Total 1211	C 769	N 227	0 213	${ m S}$ 2	0	0	0

• Molecule 30 is a protein called RIBOSOMAL PROTEIN L7AE CONTAINING PROTEIN.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
30	ATT	194	Total	С	Ν	0	S	0	0	0
30	AU	124	952	599	166	182	5	0	0	0
30	BI	194	Total	С	Ν	0	S	0	0	0
00	DU	124	952	599	166	182	5			U

• Molecule 31 is a protein called RPS17E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
21	ΔV	191	Total	С	Ν	0	S	0	0	0
	AV	121	979	619	182	176	2	0	0	0
21	BV	191	Total	С	Ν	0	S	0	0	0
	DV	121	979	619	182	176	2	0	0	0

• Molecule 32 is a protein called 40S RIBOSOMAL PROTEIN S4.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
32	AW	259	Total 2079	C 1322	N 383	O 370	$\frac{S}{4}$	0	0	0

Continued from previous page...

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
32	BW	259	Total 2079	C 1322	N 383	O 370	$\frac{S}{4}$	0	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BW	1	MET	-	expression tag	UNP P0C233
BW	70	GLN	GLY	conflict	UNP P0C233
BW	236	SER	LEU	conflict	UNP P0C233
BW	237	TRP	TYR	conflict	UNP P0C233

• Molecule 33 is a protein called RPS30E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
22	ΔV	68	Total	С	Ν	Ο	S	0	0	0
55	ЛЛ	00	554	350	113	90	1	0	0	0
22	PV	68	Total	С	Ν	Ο	S	0	0	0
55	DA	00	554	350	113	90	1	0	0	0

• Molecule 34 is a protein called RPS6E.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace		
34	۸V	225	Total	С	Ν	0	\mathbf{S}	0	0	0	
04	AI	235	1868	1184	347	326	11	0	0		
24	ΡV	225	Total	С	Ν	0	S	0	0	0	
04	DI	235	1868	1184	347	326	11	0	0	0	

• Molecule 35 is a protein called RPS21E.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
35	AZ	97	Total 747	C 458	N 139	0 146	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0	0
35	ΒZ	97	Total 747	$\begin{array}{c} \mathrm{C} \\ 458 \end{array}$	N 139	O 146	${}^{\mathrm{S}}_{4}$	0	0	0

• Molecule 36 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
36	A4	1	Total Mg 1 1	0	0
36	AA	90	TotalMg9090	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
36	AL	1	Total Mg 1 1	0	0
36	Β4	1	Total Mg 1 1	0	0
36	ВА	89	Total Mg 89 89	0	0
36	BD	1	Total Mg 1 1	0	0
36	BW	1	Total Mg 1 1	0	0

• Molecule 37 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
37	A5	1	Total Zn 1 1	0	0
37	A6	1	Total Zn 1 1	0	0
37	A9	1	Total Zn 1 1	0	0
37	AN	1	Total Zn 1 1	0	0
37	B5	1	Total Zn 1 1	0	0
37	B6	1	Total Zn 1 1	0	0
37	B9	1	Total Zn 1 1	0	0
37	BN	1	Total Zn 1 1	0	0

• Molecule 38 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
38	A2	2	Total O 2 2	0	0
38	A4	2	Total O 2 2	0	0
38	A5	1	Total O 1 1	0	0
38	АА	516	Total O 516 516	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
38	AC	1	Total O 1 1	0	0
38	AD	4	Total O 4 4	0	0
38	AE	3	Total O 3 3	0	0
38	AL	3	Total O 3 3	0	0
38	AM	4	Total O 4 4	0	0
38	AO	1	Total O 1 1	0	0
38	AP	1	Total O 1 1	0	0
38	AQ	2	Total O 2 2	0	0
38	AT	4	Total O 4 4	0	0
38	AW	4	Total O 4 4	0	0
38	AY	4	Total O 4 4	0	0
38	B2	2	Total O 2 2	0	0
38	B4	2	Total O 2 2	0	0
38	B5	1	Total O 1 1	0	0
38	ВА	512	Total O 512 512	0	0
38	BC	2	Total O 2 2	0	0
38	BD	2	Total O 2 2	0	0
38	BE	5	Total O 5 5	0	0
38	BK	1	Total O 1 1	0	0
38	BL	2	Total O 2 2	0	0
38	BM	6	Total O 6 6	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
38	ВО	1	Total O 1 1	0	0
38	BP	1	Total O 1 1	0	0
38	BQ	1	Total O 1 1	0	0
38	BT	6	Total O 6 6	0	0
38	BW	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
38	BY	3	Total O 3 3	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RIBOSOMAL PROTEIN S28E CONTAINING PROTEIN

• Molecule 2: 40S RIBOSOMAL PROTEIN S8

U742	U743 A744	G745	A746	G747 11748	G749	U750	U751 C752	C753	A754	G755 C756	C757	A758	G759	G760 11761	U762	U763	U / 64 A 765	G766	C767	C769	G770	A771	N//2 U773	A774	C775	0777	0778 4779	G780	C781	U783	G784	A786	A787	A789		G792	A794	A795	0797 A797	G798	6799 A800	<mark>C801</mark> U802
A803	A804 C805	U806	C807	11811	U812	U813	A814	U820	C821	U822	A826	U827	U828	0829	G831	U832	A833 A834	U835	G836	A83/ U838	U839	A840	A041 U842	A843	G844 C845	G846	A847 C848	A849	G850		C854	G856	(1857 CoEo	A859		A862	U864	A865	U866 U867	U868	A869 A870	U871 A872
G873	U874 C875	A876	G877	A8/8 (5879	G880	U881 2000	6882 A883	A884	A885	U886 11887	C888	U889	U890	6891 (1892)	A893	U894	0895 11896	A897	U898	4900 A900	A901	G902	A904	C905	U906 A907	A908	C909	A911	A912	G914	C915	A919	G920	0321 A922	U923		C927	C928	A929 A930	A931	6932 A933	<mark>U934</mark> G935
U936	1937 11938	0939	C940	A941 11942	U943	A944	A945 U946	C947	A948	A949 COED	00	6954	A955	A956 4957	G958		G962 G963	G964	G965	A966 U967	C968	A969	A971	G972	A973	G975	A976 11977	C978	A979 C980	A981	U982 A083	C984	C985 7086	0087 U987	C988	6989 1000	A991	G992	0993 C994	U995	0996 A997	U1000
A1001	01002 41003	A1004	A1005	C1006 111007	A1008	U1009	A1010 C1011	C1012	G1013	A1014 C1015	U1016	C1017	G1018	61019 61020	A1021	U1022	G1025	C1026	U1027	G1029	A1030	A1031	01032 A1033	A1034	A1035	G1037	U1038	C1040	A1041 C1042	U1043	C1044	G1046	C1047	C1049	C1050	61051	A1053	U1054	G1055 A1056	G1057	A1058 A1059	A1060 U1061
C1062	A1063 A1064	A1065	G1066	111 069	U1070	U1071	G1072 G1073	G1074	U1075	01076	U1078	G1079	G1080	G1081		A1085	G1 086 111 087	A1088	U1089	G1090 G1091	U1092	A1093	G1095	C1096	A1097	G1099	U1100	U1102	G1103	A1106	C1 107 111 108	U1109	A1110	A1112 A1112	G1113	G1114	A1115 A1116	U1117	01118 G1119		G1122 G1123	A1124 A1125
C1126	41130	C1131	A1132	C1133 C1134	A1135	G1136	A1137 A1138	G1 139	U1 140	G1141 C1142	41142 A1143	A1144	C1145	C1 146 111 147	G1148	C1 149	G1150 G1151	C1152	U1153	01154 A1155	A1156	U1157 114 150	U1 159	G1160	A1161 C1163	U1163	C1164 A1165	A1166	<mark>C1167</mark> 41168	<mark>C1169</mark>	G1170 G1171	G1172	G1173 A117A	A1175	A1176		C1179	A1180	A1 183	G1184	C1185 G1186	<mark>C1187</mark> A1188
A1189	31190 11191	01192	A1193	11194	41197	A1198	1199	31201	A1202	11203 11204	31205	A1206	31207 1000	41208 31209		J1212	41213 41214	31215	A1216	51217 C1218	J1219	01220	1222	11223	31224 11225	11226	51227 41228	11229	J1230	11232	J1233	31237	01238 1730	31240 31240	J1241	51242	J1244	31245	0.1246 0.1247	11248	51249 31250	01261 01252
1253	1254 1255	1256	1257	1258 1259	1260	1261	1262 1263	1264	1265	1266	1269	1270	1271	1272	1274	1275 1275	1276	1278	1279	1280	1286	1287	1289	1290	1291 (1293	1294 (1296	1297 1 1298	1299	1300	1302	1303 1304	1305		1310	1312	1313	1314 1315	1316	1317 1318	1319 1320
321 G	322	324 C	325 U	326 U 327 A	328 G	329 U	331 331	332 G	333 U	334 G	336 336	337 U	338	339 A A	341 U	342 U	343 344	345 C	346 U	347 348	349 U		353		356 U 357 U	358	359 A	361 G	362 A		366 G	368	369 A	371 C	372 072	3/3 2/4	375 U	376 277 277 277 277 277 277 277 277 277 2	37.6 C	379 A	381 C	382 U 383 A
84 G1	85 86 C1	Th	90 61	91 92	93 U1	94 G1	97 A1	98 A1	99 A1	00	02 A1	03 C1	04 04	05 06 01	07 U1	08 01 01	10 01 01	A1	13 C1	14 01 15 01	16 C1	17 10	19 G1 G1	20	21 22 21 21	23 A1	24 C1 25	26 A1	27 U1. 28	29	30 31 31	32 A1	33 A1	35 A1	36 A1		40 C1	41 A1	42 A1 42 43	44 G1	45 G1 G1 45	47 A1 48 G1
U13	013		G13	C13 A13	A13	U13	C13	A13	G13	G14 1112	014 C14	U14	G14	014 G14	A14	U14	G14 C14		C14	014 014	G14	A14	G14 G14	U14	G14 C14	U14	C14 C14	G14	C14 C14	G14	C14	C14	G14 717	614 614	C14	114	014 A14	C14	A14 A14	U14	614 A14	C14 U14
G1449	G1450	C1453	A1454	A1455 A1456	A1457	A1458	G1459 U1460	A1461	U1462	U1463 111464	01404 C1465	C1466	U1467	G1468 111469	C1470	C1471	01472 61473	G1474	G1475	A1476 A1477		U1480	A1461 C1482	G1483	G1484 C1485	U1486	A1487 A1488	U1489	C1490	U1492	A1493	01495 U1495	A1496	01498 01498	A1499	C1500	A1502	G1503	01504 C1505	G1506	01507 G1508	U1509 U1510
A1511	G1512 C1513	G1514	A1515	01516 A1517	G1518	U1519	01520 C1521	<mark>U1522</mark>	U1523	C1 506	41520 A1527	A1528	U1529	01530 G1531	U1532	G1533	G1534 A1535	U1536	C1537	01538 01539	G1540	A1541	A1542 C1543	G1544	A1545 C1546	G1547	A1548 A1549	01550	U1551 111552	C1553	U1554 A1666	G1556	U1557 A1660	A1 559	G1560	01561 71 E60	C1563		01566 111567	C1568	A1569 U1570	C1571 A1572
G1573	C1574 III 575	U1576	G1577	C15/8 G1579	U1580	U1581	G1582 A1583	U1584	U1585	A1586 111587	01.307 G1588	U1589	C1590	C1591	G1594	C1595	C1596 G1597		U1600	01601 01602	A1603	C1604	G1606	A1607	C1608 C1609	G1610	C1611 C1612	C1613	G1614	G1617	C1618 111619	01620	G1621	A1623	G1624	01625	A1627	C1628	G1629 A1630		C1636 U1637	A1643
C1644	C1645	U1647	C1648	01649 61650	G1651	A1652	01654 U1654	G1655	C1656	G1657 A1658	A1030 C1659	A1660	G1661	C1662 41663	A1664	U1665	G1666 111667	U1668	G1669	G1671 G1671	G1672	A1673	A1675		U1678 A1679	A1680	A 1685	C1686	C1687 C1688	U1689	r1607	A1693	U1694	01033 U1696	G1697	G1698	A1700	C1701	A1702 A1703	C1704	A1705 A1706	G1707 A1708
																								W O	D R		W D ATA		E													

Chain AH: 22%

.

10%

65%

 Image: Second second

• Molecule 34: RPS6E

 \bullet Molecule 35: RPS21E

16%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	320.52Å 362.21Å 412.11Å	Dopositor
a, b, c, α , β , γ	90.00° 109.61° 90.00°	Depositor
Bosolution(A)	25.00 - 3.93	Depositor
Resolution (A)	97.05 - 3.93	EDS
% Data completeness	85.1 (25.00-3.93)	Depositor
(in resolution range)	85.1 (97.05-3.93)	EDS
R_{merge}	0.15	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.24 (at 3.89 \text{\AA})$	Xtriage
Refinement program	CNS 1.3	Depositor
B B.	0.206 , 0.243	Depositor
II, II free	0.211 , 0.244	DCC
R_{free} test set	7292 reflections (2.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	126.5	Xtriage
Anisotropy	0.335	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.23, 99.7	EDS
L-test for $twinning^2$	$ < L >=0.47, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.89	EDS
Total number of atoms	157632	wwPDB-VP
Average B, all atoms $(Å^2)$	148.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.78% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles					
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5				
1	A1	0.38	0/518	0.74	0/688				
1	B1	0.37	0/518	0.73	0/688				
2	A2	0.38	0/1717	0.70	1/2288~(0.0%)				
2	B2	0.39	0/1717	0.71	1/2288~(0.0%)				
3	A3	0.41	0/1656	0.70	0/2223				
3	B3	0.42	0/1656	0.71	0/2223				
4	A4	0.40	0/1748	0.71	1/2340~(0.0%)				
4	B4	0.40	0/1748	0.71	1/2340~(0.0%)				
5	A5	0.42	0/807	0.77	0/1077				
5	B5	0.43	0/807	0.77	0/1077				
6	A6	0.46	0/640	0.71	0/855				
6	B6	0.48	0/640	0.71	0/855				
7	A7	0.40	0/879	0.73	0/1183				
7	B7	0.43	0/879	0.73	0/1183				
8	A8	0.38	0/732	0.66	0/974				
8	B8	0.37	0/732	0.65	0/974				
9	A9	0.39	0/605	0.69	0/799				
9	B9	0.39	0/605	0.69	0/799				
10	AA	0.59	6/41668~(0.0%)	0.86	69/64931~(0.1%)				
10	BA	0.58	6/41668~(0.0%)	0.86	70/64931~(0.1%)				
11	AB	0.41	0/1676	0.66	0/2273				
11	BB	0.40	0/1676	0.66	0/2273				
12	AC	0.43	0/1855	0.71	0/2490				
12	BC	0.42	0/1855	0.71	0/2490				
13	AD	0.43	0/1498	0.69	0/1998				
13	BD	0.41	0/1498	0.68	0/1998				
14	AE	0.47	0/1873	0.75	$\overline{1/2533}~(0.0\%)$				
14	BE	0.46	0/1873	0.74	$\overline{1/2533}~(0.0\%)$				
15	AF	0.43	0/751	0.68	0/1010				
15	BF	0.44	0/751	0.68	0/1010				
16	AG	0.45	0/1546	0.71	0/2079				
16	BG	0.45	0/1546	0.71	0/2079				

Mol Chain		B	ond lengths	Bond angles						
IVIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5					
17	AH	0.48	0/1058	0.83	0/1421					
17	BH	0.49	0/1058	0.85	1/1421~(0.1%)					
18	AI	0.42	0/1151	0.68	0/1540					
18	BI	0.41	0/1151	0.68	0/1540					
19	AJ	0.38	0/842	0.77	0/1133					
19	BJ	0.39	0/842	0.77	0/1133					
20	AK	0.42	0/1078	0.73	0/1452					
20	BK	0.41	0/1078	0.73	0/1452					
21	AL	0.41	0/1114	0.73	0/1485					
21	BL	0.43	0/1114	0.74	0/1485					
22	AM	0.37	0/1260	0.67	0/1690					
22	BM	0.39	0/1260	0.67	0/1690					
23	AN	0.46	0/457	0.74	0/608					
23	BN	0.49	0/457	0.75	0/608					
24	AO	0.43	0/1238	0.74	1/1658~(0.1%)					
24	BO	0.41	0/1238	0.73	1/1658~(0.1%)					
25	AP	0.41	0/1215	0.70	0/1626					
25	BP	0.41	0/1215	0.69	0/1626					
26	AQ	0.46	0/1298	0.74	0/1741					
26	BQ	0.44	0/1298	0.74	0/1741					
27	AR	0.38	0/2750	0.69	0/3726					
27	BR	0.38	0/2750	0.69	0/3726					
28	AS	0.37	0/1003	0.65	1/1342~(0.1%)					
28	BS	0.39	0/1003	0.66	1/1342~(0.1%)					
29	AT	0.43	0/1233	0.66	0/1656					
29	BT	0.42	0/1233	0.66	0/1656					
30	AU	0.35	0/961	0.63	0/1288					
30	BU	0.35	0/961	0.62	0/1288					
31	AV	0.40	0/992	0.69	0/1326					
31	BV	0.42	0/992	0.68	0/1326					
32	AW	0.42	0/2119	0.74	0/2849					
32	BW	0.42	0/2119	0.73	0/2849					
33	AX	0.36	0/566	0.70	0/753					
33	BX	0.36	0/566	0.71	0/753					
34	AY	0.38	0/1895	0.67	$0/25\overline{23}$					
34	BY	0.38	0/1895	0.67	0/2523					
35	AZ	0.42	0/755	0.75	0/1013					
35	BZ	0.42	0/755	0.76	0/1013					
All	All	0.51	$1\overline{2}/166308~(0.0\%)$	0.79	150/241142~(0.1%)					

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a

Mol	Chain	#Chirality outliers	#Planarity outliers
5	A5	0	1
5	B5	0	1
10	AA	1	70
10	BA	1	74
26	BQ	0	1
27	AR	0	1
27	BR	0	1
All	All	2	149

sidechain that are expected to be planar.

The worst 5 of 12 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
10	AA	1109	U	O3'-P	7.44	1.70	1.61
10	BA	1	A	OP3-P	-7.12	1.52	1.61
10	AA	1	А	OP3-P	-6.89	1.52	1.61
10	BA	1109	U	O3'-P	-6.87	1.52	1.61
10	AA	1721	G	O3'-P	6.41	1.68	1.61

The worst 5 of 150 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
10	AA	1718	А	N9-C1'-C2'	11.64	129.13	114.00
10	BA	1718	А	N9-C1'-C2'	11.45	128.89	114.00
10	BA	1749	С	N1-C1'-C2'	10.71	127.93	114.00
10	BA	391	А	N9-C1'-C2'	10.52	127.67	114.00
10	AA	391	А	N9-C1'-C2'	10.36	127.47	114.00

All (2) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
10	AA	1718	A	C1'
10	BA	1718	А	C1'

5 of 149 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
5	A5	39	TYR	Sidechain
10	AA	43	U	Sidechain
10	AA	55	U	Sidechain
10	AA	59	С	Sidechain
10	AA	64	U	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A1	519	0	550	78	0
1	B1	519	0	550	80	0
2	A2	1693	0	1795	257	0
2	B2	1693	0	1795	265	0
3	A3	1629	0	1708	185	0
3	B3	1629	0	1708	178	0
4	A4	1724	0	1822	197	0
4	B4	1724	0	1822	191	0
5	A5	797	0	836	121	0
5	B5	797	0	837	108	0
6	A6	632	0	646	88	0
6	B6	632	0	646	97	0
7	A7	859	0	860	123	0
7	B7	859	0	860	129	0
8	A8	725	0	795	134	0
8	B8	725	0	795	124	0
9	A9	742	0	785	148	0
9	B9	742	0	787	134	0
10	AA	37231	0	18715	3076	0
10	BA	37231	0	18715	3025	0
11	AB	1642	0	1653	207	0
11	BB	1642	0	1653	216	0
12	AC	1820	0	1920	241	0
12	BC	1820	0	1920	236	0
13	AD	1475	0	1571	213	0
13	BD	1475	0	1571	211	0
14	AE	1827	0	1861	287	0
14	BE	1827	0	1861	282	0
15	AF	736	0	722	78	0
15	BF	736	0	722	88	0
16	AG	1520	0	1572	231	0
16	BG	1520	0	1572	231	0
17	AH	1040	0	1096	166	0
17	BH	1040	0	1096	170	0
18	AI	1135	0	1204	159	0
18	BI	1135	0	1204	146	0
19	AJ	833	0	903	82	0

4	V	5	Ο	
-	•	\mathbf{O}	\sim	

	Chain	Non H	H(model)	H(addad)	Clashos	Symm Clashes
10		1 NOII-II			Olasties	Symm-Clasnes
19	BJ AV	833 1062	0	903	81	0
20	AK	1003	0	1088	184	0
20	BK	1003	0	1088	178	0
21	AL	1097	0	1169	138	0
21	BL	1097	0	1109	135	0
22	AM	1239	0	1288	192	0
22	BM	1239	0	1288	192	0
23	AN	447	0	446	74	0
23	BN	447	0	446	81	0
24	AO	1214	0	1322	131	0
24	BO	1214	0	1322	131	0
25	AP	1197	0	1285	152	0
25	BP	1197	0	1285	142	0
26	AQ	1275	0	1354	213	0
26	BQ	1275	0	1354	199	0
27	AR	2682	0	2629	355	0
27	BR	2682	0	2629	327	0
28	AS	985	0	1026	114	0
28	BS	985	0	1026	122	0
29	AT	1211	0	1265	159	0
29	BT	1211	0	1265	162	0
30	AU	952	0	993	107	0
30	BU	952	0	993	124	0
31	AV	979	0	1041	136	0
31	BV	979	0	1041	141	0
32	AW	2079	0	2151	286	0
32	BW	2079	0	2151	293	0
33	AX	554	0	604	64	0
33	BX	554	0	604	72	0
34	AY	1868	0	1999	256	0
34	BY	1868	0	1999	242	0
35	AZ	747	0	758	107	0
35	BZ	747	0	758	109	0
36	A4	1	0	0	0	0
36	AA	90	0	0	0	0
36	AL	1	0	0	0	0
36	B4	1	0	0	0	0
36	BA	89	0	0	0	0
36	BD	1	0	0	0	0
36	BW	1	0	0	0	0
37	A5	1	0	0	0	0
37	A6	1	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
37	A9	1	0	0	0	0
37	AN	1	0	0	0	0
37	B5	1	0	0	0	0
37	B6	1	0	0	0	0
37	B9	1	0	0	0	0
37	BN	1	0	0	0	0
38	A2	2	0	0	0	0
38	A4	2	0	0	0	0
38	A5	1	0	0	0	0
38	AA	516	0	0	14	0
38	AC	1	0	0	0	0
38	AD	4	0	0	0	0
38	AE	3	0	0	0	0
38	AL	3	0	0	0	0
38	AM	4	0	0	1	0
38	AO	1	0	0	0	0
38	AP	1	0	0	0	0
38	AQ	2	0	0	0	0
38	AT	4	0	0	0	0
38	AW	4	0	0	0	0
38	AY	4	0	0	0	0
38	B2	2	0	0	0	0
38	B4	2	0	0	0	0
38	B5	1	0	0	0	0
38	BA	512	0	0	5	0
38	BC	2	0	0	0	0
38	BD	2	0	0	0	0
38	BE	5	0	0	0	0
38	BK	1	0	0	0	0
38	BL	2	0	0	0	0
38	BM	6	0	0	0	0
38	BO	1	0	0	0	0
38	BP	1	0	0	0	0
38	BQ	1	0	0	0	0
38	BT	6	0	0	0	0
38	BW	5	0	0	0	0
38	BY	3	0	0	0	0
All	All	$157\overline{632}$	0	$122\overline{867}$	15288	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 55.

The worst 5 of 15288 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
10:AA:604:G:H1	10:AA:1080:G:N2	1.23	1.36
4:A4:207:THR:HG21	4:A4:213:LEU:HG	1.21	1.21
10:BA:604:G:H1	10:BA:1080:G:N2	1.40	1.19
21:AL:9:ILE:H	21:AL:9:ILE:HD12	1.02	1.18
10:AA:534:A:H3'	10:AA:535:A:H5'	1.18	1.18

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perc	entiles
1	A1	65/68~(96%)	45 (69%)	11 (17%)	9 (14%)	0	4
1	B1	65/68~(96%)	44 (68%)	12~(18%)	9 (14%)	0	4
2	A2	205/208~(99%)	147 (72%)	38~(18%)	20 (10%)	0	10
2	B2	205/208~(99%)	146 (71%)	39~(19%)	20 (10%)	0	10
3	A3	194/197~(98%)	159 (82%)	25~(13%)	10 (5%)	2	21
3	B3	194/197~(98%)	159 (82%)	24~(12%)	11 (6%)	1	19
4	A4	213/265~(80%)	161 (76%)	33~(16%)	19 (9%)	1	12
4	B4	213/265~(80%)	161 (76%)	34~(16%)	18 (8%)	1	12
5	A5	96/119~(81%)	66 (69%)	20~(21%)	10 (10%)	0	8
5	B5	96/119~(81%)	65 (68%)	21 (22%)	10 (10%)	0	8
6	A6	78/81~(96%)	57 (73%)	15~(19%)	6 (8%)	1	15
6	B6	78/81~(96%)	57 (73%)	15 (19%)	6 (8%)	1	15
7	A7	102/162~(63%)	78 (76%)	17~(17%)	7 (7%)	1	16
7	B7	102/162~(63%)	78 (76%)	17 (17%)	7 (7%)	1	16
8	A8	91/143~(64%)	71 (78%)	13 (14%)	7 (8%)	1	15
8	B8	$9\overline{1}/143~(64\%)$	71 (78%)	13(14%)	7 (8%)	1	15

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
9	A9	72/189~(38%)	50~(69%)	17~(24%)	5(7%)	1	16
9	B9	72/189~(38%)	50~(69%)	17~(24%)	5 (7%)	1	16
11	AB	202/241~(84%)	168 (83%)	28~(14%)	6 (3%)	4	32
11	BB	202/241~(84%)	167 (83%)	28 (14%)	7 (4%)	3	29
12	AC	227/243~(93%)	177 (78%)	31 (14%)	19 (8%)	1	12
12	BC	227/243~(93%)	176 (78%)	32 (14%)	19 (8%)	1	12
13	AD	177/181~(98%)	132 (75%)	36 (20%)	9 (5%)	2	22
13	BD	177/181~(98%)	130 (73%)	38 (22%)	9 (5%)	2	22
14	AE	228/296~(77%)	170 (75%)	40 (18%)	18 (8%)	1	14
14	BE	228/296~(77%)	172 (75%)	39 (17%)	17 (8%)	1	15
15	AF	87/101 (86%)	70 (80%)	12 (14%)	5 (6%)	1	19
15	BF	87/101 (86%)	70 (80%)	12 (14%)	5 (6%)	1	19
16	AG	190/200~(95%)	141 (74%)	33 (17%)	16 (8%)	1	12
16	BG	190/200~(95%)	142 (75%)	31 (16%)	17 (9%)	1	12
17	AH	127/130~(98%)	98 (77%)	24 (19%)	5 (4%)	3	26
17	BH	127/130~(98%)	98 (77%)	26 (20%)	3 (2%)	6	36
18	AI	141/145~(97%)	111 (79%)	25 (18%)	5 (4%)	3	29
18	BI	141/145~(97%)	110 (78%)	26 (18%)	5 (4%)	3	29
19	AJ	103/120~(86%)	89 (86%)	6 (6%)	8 (8%)	1	15
19	BJ	103/120~(86%)	89 (86%)	6 (6%)	8 (8%)	1	15
20	AK	138/151~(91%)	96 (70%)	28 (20%)	14 (10%)	0	9
20	BK	138/151~(91%)	95~(69%)	27 (20%)	16 (12%)	0	6
21	AL	139/142~(98%)	106 (76%)	17 (12%)	16 (12%)	0	6
21	BL	139/142~(98%)	106 (76%)	18 (13%)	15 (11%)	0	8
22	AM	152/155~(98%)	109 (72%)	22 (14%)	21 (14%)	0	4
22	BM	152/155~(98%)	110 (72%)	21 (14%)	21 (14%)	0	4
23	AN	51/55~(93%)	30~(59%)	11 (22%)	10 (20%)	0	2
23	BN	51/55~(93%)	31 (61%)	11 (22%)	9 (18%)	0	2
24	AO	148/153~(97%)	112 (76%)	20 (14%)	16 (11%)	0	8
24	BO	148/153~(97%)	113 (76%)	19 (13%)	16 (11%)	0	8
25	AP	146/149~(98%)	115 (79%)	20 (14%)	11 (8%)	1	15

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
25	BP	146/149~(98%)	115 (79%)	20 (14%)	11 (8%)	1	15
26	AQ	155/157~(99%)	115 (74%)	26 (17%)	14 (9%)	1	12
26	BQ	155/157~(99%)	112 (72%)	27~(17%)	16 (10%)	0	9
27	AR	336/343~(98%)	255~(76%)	48 (14%)	33 (10%)	0	10
27	BR	336/343~(98%)	256 (76%)	48 (14%)	32 (10%)	0	11
28	AS	123/144~(85%)	91 (74%)	25~(20%)	7 (6%)	1	19
28	BS	123/144~(85%)	90 (73%)	25~(20%)	8 (6%)	1	18
29	AT	148/155~(96%)	114 (77%)	17 (12%)	17 (12%)	0	6
29	BT	148/155~(96%)	113 (76%)	20 (14%)	15 (10%)	0	9
30	AU	122/126~(97%)	91 (75%)	20~(16%)	11 (9%)	1	12
30	BU	122/126~(97%)	89 (73%)	22 (18%)	11 (9%)	1	12
31	AV	119/130~(92%)	94 (79%)	16 (13%)	9 (8%)	1	15
31	BV	119/130~(92%)	96 (81%)	14 (12%)	9 (8%)	1	15
32	AW	257/260~(99%)	193 (75%)	40 (16%)	24 (9%)	0	11
32	BW	257/260~(99%)	195 (76%)	38 (15%)	24 (9%)	0	11
33	AX	66/80~(82%)	48 (73%)	12 (18%)	6 (9%)	1	12
33	BX	66/80~(82%)	48 (73%)	12 (18%)	6 (9%)	1	12
34	AY	233/293~(80%)	188 (81%)	31 (13%)	14 (6%)	1	19
34	BY	233/293~(80%)	187 (80%)	32 (14%)	14 (6%)	1	19
35	AZ	95/97~(98%)	70 (74%)	13 (14%)	12 (13%)	0	5
35	BZ	95/97~(98%)	69 (73%)	14 (15%)	12 (13%)	0	5
All	All	10052/11358~(88%)	7627 (76%)	1588 (16%)	837 (8%)	1	13

5 of 837 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	A1	20	SER
1	A1	35	LYS
1	A1	37	GLU
1	A1	59	GLU
1	A1	63	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	e Outliers Perc		entiles
1	A1	56/57~(98%)	53~(95%)	3~(5%)	22	50
1	B1	56/57~(98%)	53~(95%)	3~(5%)	22	50
2	A2	184/185~(100%)	171 (93%)	13~(7%)	14	43
2	B2	184/185~(100%)	171 (93%)	13~(7%)	14	43
3	A3	182/183~(100%)	164 (90%)	18 (10%)	8	29
3	B3	182/183~(100%)	165 (91%)	17 (9%)	9	32
4	A4	191/225~(85%)	166 (87%)	25~(13%)	4	22
4	B4	191/225~(85%)	166 (87%)	25 (13%)	4	22
5	A5	88/107 (82%)	80 (91%)	8 (9%)	9	33
5	B5	88/107~(82%)	80 (91%)	8 (9%)	9	33
6	A6	71/72~(99%)	67 (94%)	4 (6%)	21	49
6	B6	71/72~(99%)	67 (94%)	4 (6%)	21	49
7	A7	94/136~(69%)	84 (89%)	10 (11%)	6	27
7	B7	94/136~(69%)	84 (89%)	10 (11%)	6	27
8	A8	80/109~(73%)	68 (85%)	12 (15%)	3	18
8	B8	80/109~(73%)	68 (85%)	12 (15%)	3	18
9	A9	64/138~(46%)	56 (88%)	8 (12%)	4	23
9	B9	64/138~(46%)	56 (88%)	8 (12%)	4	23
11	AB	183/211~(87%)	167 (91%)	16 (9%)	10	35
11	BB	183/211~(87%)	167 (91%)	16 (9%)	10	35
12	AC	197/210~(94%)	178 (90%)	19 (10%)	8	30
12	BC	197/210~(94%)	179 (91%)	18 (9%)	9	33
13	AD	161/162~(99%)	137 (85%)	24 (15%)	3	18
13	BD	161/162~(99%)	137 (85%)	24 (15%)	3	18
14	AE	194/250~(78%)	171 (88%)	23 (12%)	5	24
14	BE	194/250~(78%)	171 (88%)	23 (12%)	5	24

α \cdot \cdot \cdot	C		
Continued	trom	nremons	ทกกค
Contentaca	<i>J</i> 10110	precious	pagem

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
15	AF	80/92~(87%)	72 (90%)	8 (10%)	7	29
15	BF	80/92~(87%)	71 (89%)	9 (11%)	6	25
16	AG	163/169~(96%)	147~(90%)	16 (10%)	8	29
16	BG	163/169~(96%)	146 (90%)	17 (10%)	7	28
17	AH	116/117~(99%)	101 (87%)	15~(13%)	4	22
17	BH	116/117~(99%)	102 (88%)	14 (12%)	5	23
18	AI	120/122~(98%)	115 (96%)	5 (4%)	30	56
18	BI	120/122~(98%)	115 (96%)	5 (4%)	30	56
19	AJ	98/111 (88%)	93~(95%)	5 (5%)	24	51
19	BJ	98/111~(88%)	93~(95%)	5(5%)	24	51
20	AK	112/121 (93%)	96 (86%)	16 (14%)	3	19
20	BK	112/121~(93%)	96 (86%)	16 (14%)	3	19
21	AL	113/114 (99%)	101 (89%)	12 (11%)	6	27
21	BL	113/114 (99%)	102 (90%)	11 (10%)	8	30
22	AM	134/135~(99%)	121 (90%)	13 (10%)	8	30
22	BM	134/135~(99%)	121 (90%)	13 (10%)	8	30
23	AN	47/49~(96%)	41 (87%)	6 (13%)	4	22
23	BN	47/49~(96%)	41 (87%)	6(13%)	4	22
24	AO	134/136~(98%)	127~(95%)	7~(5%)	23	51
24	BO	134/136~(98%)	127~(95%)	7(5%)	23	51
25	AP	133/134 (99%)	124 (93%)	9~(7%)	16	44
25	BP	133/134 (99%)	124 (93%)	9~(7%)	16	44
26	AQ	141/141 (100%)	125 (89%)	16 (11%)	6	25
26	BQ	141/141 (100%)	126 (89%)	15 (11%)	6	27
27	AR	291/295~(99%)	261 (90%)	30 (10%)	7	28
27	BR	291/295~(99%)	260 (89%)	31 (11%)	6	27
28	AS	105/117~(90%)	102 (97%)	3 (3%)	42	64
28	BS	105/117~(90%)	101 (96%)	4 (4%)	33	58
29	AT	129/134~(96%)	117 (91%)	12 (9%)	9	32
29	BT	129/134~(96%)	116 (90%)	13 (10%)	7	29
30	AU	103/104 (99%)	97 (94%)	6 (6%)	20	48

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
30	BU	103/104~(99%)	99~(96%)	4 (4%)	32	58
31	AV	108/115~(94%)	100 (93%)	8 (7%)	13	41
31	BV	108/115~(94%)	99~(92%)	9~(8%)	11	38
32	AW	226/227~(100%)	196 (87%)	30 (13%)	4	22
32	BW	226/227~(100%)	197 (87%)	29 (13%)	4	22
33	AX	57/67~(85%)	55~(96%)	2(4%)	36	61
33	BX	57/67~(85%)	55~(96%)	2(4%)	36	61
34	AY	201/244~(82%)	187 (93%)	14 (7%)	15	43
34	BY	201/244~(82%)	187 (93%)	14 (7%)	15	43
35	AZ	82/82~(100%)	76~(93%)	6 (7%)	14	42
35	BZ	82/82~(100%)	76 (93%)	6 (7%)	14	42
All	All	8876/9742 (91%)	8034 (90%)	842 (10%)	8	31

5 of 842 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
4	B4	92	ASP
13	BD	130	ARG
32	BW	89	MET
4	B4	190	PHE
4	B4	81	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 276 such sidechains are listed below:

Mol	Chain	Res	Type
25	BP	20	GLN
26	BQ	153	GLN
31	BV	112	GLN
25	AP	20	GLN
23	AN	12	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
10	AA	1743/1753~(99%)	452 (25%)	194 (11%)
10	BA	1743/1753~(99%)	453~(25%)	194 (11%)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
All	All	3486/3506~(99%)	905~(25%)	388 (11%)

5 of 905 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
10	AA	2	А
10	AA	3	С
10	AA	4	С
10	AA	9	U
10	AA	17	С

5 of 388 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
10	BA	336	U
10	BA	771	А
10	BA	380	G
10	BA	558	G
10	BA	911	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 192 ligands modelled in this entry, 192 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	A1	67/68~(98%)	-0.28	1 (1%) 73 64	99, 157, 220, 262	0
1	B1	67/68~(98%)	-0.52	0 100 100	99, 157, 220, 262	0
2	A2	207/208~(99%)	1.20	57~(27%) 0 0	96, 144, 194, 231	0
2	B2	207/208~(99%)	0.59	16 (7%) 13 11	98, 145, 194, 231	0
3	A3	196/197~(99%)	-0.00	6 (3%) 49 38	82, 138, 187, 267	0
3	B3	196/197~(99%)	-0.09	3 (1%) 73 64	75, 138, 186, 266	0
4	A4	215/265~(81%)	0.62	23 (10%) 6 6	80, 146, 201, 228	0
4	B4	215/265~(81%)	0.76	30 (13%) 2 3	77, 145, 202, 229	0
5	A5	98/119~(82%)	0.11	3 (3%) 49 38	71, 124, 201, 246	0
5	B5	98/119~(82%)	0.53	8 (8%) 11 10	68, 124, 201, 246	0
6	A6	80/81~(98%)	0.10	0 100 100	86, 130, 172, 187	0
6	B6	80/81~(98%)	-0.24	0 100 100	86, 128, 172, 186	0
7	A7	104/162~(64%)	-0.12	0 100 100	100, 150, 201, 249	0
7	B7	104/162~(64%)	0.20	7 (6%) 17 14	104, 151, 199, 249	0
8	A8	93/143~(65%)	0.08	0 100 100	112, 159, 219, 255	0
8	B8	93/143~(65%)	0.10	3 (3%) 47 37	110, 159, 218, 256	0
9	A9	73/189~(38%)	0.26	6 (8%) 11 10	146, 185, 238, 253	0
9	B9	73/189~(38%)	0.61	13 (17%) 1 2	148, 186, 238, 254	0
10	AA	1745/1753~(99%)	0.07	33 (1%) 66 58	80, 134, 291, 454	0
10	BA	1745/1753~(99%)	0.05	34 (1%) 66 58	80, 134, 291, 454	0
11	AB	204/241 (84%)	-0.30	4 (1%) 65 56	82, 136, 177, 225	0
11	BB	204/241~(84%)	-0.05	2 (0%) 82 74	78, 136, 177, 224	0
12	AC	229/243~(94%)	-0.21	2 (0%) 84 77	89, 131, 194, 244	0
12	BC	229/243~(94%)	-0.34	0 100 100	87, 132, 194, 246	0

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q < 0.9
13	AD	179/181~(98%)	0.18	5 (2%) 53 42	77, 122, 182, 214	0
13	BD	179/181~(98%)	-0.03	5 (2%) 53 42	82, 125, 184, 215	0
14	AE	230/296~(77%)	0.00	4 (1%) 70 60	62, 114, 194, 243	0
14	BE	230/296~(77%)	-0.16	3 (1%) 77 68	65, 116, 194, 244	0
15	AF	89/101 (88%)	-0.31	0 100 100	87, 136, 190, 230	0
15	BF	89/101 (88%)	-0.37	0 100 100	86, 137, 190, 229	0
16	AG	192/200~(96%)	0.02	2 (1%) 82 74	86, 140, 191, 286	0
16	BG	192/200~(96%)	-0.13	6 (3%) 49 38	86, 140, 191, 287	0
17	AH	129/130~(99%)	-0.21	0 100 100	65, 105, 154, 194	0
17	BH	129/130~(99%)	-0.09	0 100 100	62, 106, 154, 193	0
18	AI	143/145~(98%)	0.57	18 (12%) 3 5	87, 135, 188, 222	0
18	BI	143/145~(98%)	0.67	14 (9%) 7 7	87, 135, 189, 221	0
19	AJ	105/120~(87%)	-0.14	1 (0%) 82 74	84, 132, 199, 218	0
19	BJ	105/120~(87%)	-0.08	0 100 100	86, 133, 198, 218	0
20	AK	140/151~(92%)	0.05	4 (2%) 51 41	93, 144, 191, 223	0
20	BK	140/151~(92%)	0.48	11 (7%) 12 11	90, 144, 192, 224	0
21	AL	141/142~(99%)	0.18	4 (2%) 53 42	71, 126, 169, 213	0
21	BL	141/142~(99%)	0.93	25 (17%) 1 2	74, 128, 169, 212	0
22	AM	154/155~(99%)	0.42	7 (4%) 33 28	94, 154, 204, 233	0
22	BM	154/155~(99%)	0.32	6 (3%) 39 31	95, 155, 205, 233	0
23	AN	53/55~(96%)	0.23	0 100 100	83, 124, 156, 193	0
23	BN	53/55~(96%)	0.80	9 (16%) 1 2	83, 126, 157, 192	0
24	AO	150/153~(98%)	-0.17	1 (0%) 87 82	73, 124, 223, 287	0
24	BO	150/153~(98%)	0.03	2 (1%) 77 68	71, 124, 222, 288	0
25	AP	148/149~(99%)	0.30	11 (7%) 14 12	92, 141, 168, 200	0
25	BP	148/149~(99%)	0.04	4 (2%) 54 44	94, 141, 170, 200	0
26	AQ	157/157~(100%)	0.12	10 (6%) 19 15	69, 129, 214, 227	0
26	BQ	157/157~(100%)	0.20	4 (2%) 57 47	65, 128, 208, 258	0
27	AR	338/343~(98%)	0.17	15 (4%) 34 29	93, 146, 218, 268	0
27	BR	338/343~(98%)	-0.05	9 (2%) 54 44	94, 145, 209, 244	0
28	AS	125/144~(86%)	0.07	5 (4%) 38 31	117, 164, 222, 245	0

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
28	BS	125/144~(86%)	1.57	45 (36%) 0 0	119, 165, 222, 245	0
29	AT	150/155~(96%)	1.01	26 (17%) 1 2	80, 152, 191, 230	0
29	BT	150/155~(96%)	0.70	20 (13%) 3 4	79, 151, 192, 229	0
30	AU	124/126~(98%)	0.66	23 (18%) 1 1	117, 177, 213, 227	0
30	BU	124/126~(98%)	0.95	21 (16%) 1 2	136, 185, 221, 250	0
31	AV	121/130~(93%)	-0.18	5 (4%) 37 30	78, 143, 206, 254	0
31	BV	121/130~(93%)	0.19	3 (2%) 57 47	76, 142, 206, 253	0
32	AW	259/260~(99%)	-0.21	0 100 100	84, 125, 166, 200	0
32	BW	259/260~(99%)	-0.45	0 100 100	87, 126, 167, 199	0
33	AX	68/80~(85%)	0.39	3 (4%) 34 29	106, 155, 242, 271	0
33	BX	68/80~(85%)	0.74	9 (13%) 3 4	107, 158, 243, 271	0
34	AY	235/293~(80%)	0.81	41 (17%) 1 2	108, 159, 237, 316	0
34	BY	235/293~(80%)	0.46	27 (11%) 4 5	110, 159, 237, 315	0
35	AZ	97/97~(100%)	-0.22	0 100 100	74, 129, 185, 209	0
35	BZ	97/97~(100%)	-0.39	2 (2%) 63 54	77, 129, 184, 210	0
All	All	13676/14864~(92%)	0.15	661 (4%) 30 26	62, 139, 215, 454	0

The worst 5 of 661 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
10	BA	213	U	12.7
10	BA	211	U	12.1
4	B4	229	LEU	10.0
34	AY	235	VAL	10.0
4	B4	15	LYS	9.7

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	\mathbf{RSR}	$B-factors(A^2)$	$\mathbf{Q} < 0.9$
36	MG	BA	1875	1/1	0.17	0.44	193,193,193,193	0
36	MG	BA	1855	1/1	0.56	0.79	275,275,275,275	0
36	MG	BA	1842	1/1	0.63	0.50	210,210,210,210	0
36	MG	BA	1849	1/1	0.63	0.23	198,198,198,198	0
36	MG	BA	1867	1/1	0.67	0.14	180,180,180,180	0
36	MG	BA	1845	1/1	0.69	0.24	225,225,225,225	0
36	MG	BA	1807	1/1	0.70	0.38	210,210,210,210	0
36	MG	AA	1870	1/1	0.73	0.43	195,195,195,195	0
36	MG	AA	1888	1/1	0.74	0.30	205,205,205,205	0
36	MG	BA	1847	1/1	0.75	0.26	204,204,204,204	0
36	MG	BA	1876	1/1	0.75	0.25	184,184,184,184	0
36	MG	BA	1873	1/1	0.76	0.60	218,218,218,218	0
36	MG	BA	1837	1/1	0.76	0.26	178,178,178,178	0
36	MG	BA	1872	1/1	0.76	0.61	200,200,200,200	0
36	MG	BA	1883	1/1	0.76	0.60	187,187,187,187	0
36	MG	BA	1886	1/1	0.76	0.22	214,214,214,214	0
36	MG	AA	1882	1/1	0.77	0.43	181,181,181,181	0
36	MG	AA	1866	1/1	0.77	0.17	197,197,197,197	0
36	MG	AA	1883	1/1	0.78	0.41	209,209,209,209	0
36	MG	BA	1854	1/1	0.78	0.26	189,189,189,189	0
36	MG	BA	1887	1/1	0.78	0.35	206,206,206,206	0
36	MG	BA	1838	1/1	0.79	0.47	172,172,172,172	0
36	MG	AA	1876	1/1	0.79	0.14	180,180,180,180	0
36	MG	BA	1843	1/1	0.79	0.22	196,196,196,196	0
36	MG	BA	1878	1/1	0.79	0.17	177,177,177,177	0
36	MG	AA	1813	1/1	0.79	0.12	191,191,191,191	0
36	MG	BA	1871	1/1	0.79	0.19	209,209,209,209	0
36	MG	AA	1852	1/1	0.79	0.10	173,173,173,173	0
36	MG	AA	1809	1/1	0.80	0.40	193,193,193,193	0
36	MG	AA	1859	1/1	0.80	0.09	193,193,193,193	0
36	MG	BW	301	1/1	0.80	0.13	166,166,166,166	0
36	MG	BA	1884	1/1	0.81	0.13	219,219,219,219	0
36	MG	BA	1836	1/1	0.81	0.36	175,175,175,175	0
36	MG	AA	1855	1/1	0.81	0.61	214,214,214,214	0
36	MG	BA	1820	1/1	0.81	0.15	170,170,170,170	0
36	MG	AA	1841	1/1	0.82	0.21	170,170,170,170	0

4	V	5	Ο

	Continued from previous page							
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	$Q{<}0.9$
36	MG	BA	1829	1/1	0.82	0.12	163,163,163,163	0
36	MG	AA	1868	1/1	0.82	0.99	197,197,197,197	0
36	MG	AA	1834	1/1	0.82	0.24	182,182,182,182	0
36	MG	AA	1871	1/1	0.82	0.38	201,201,201,201	0
36	MG	AA	1874	1/1	0.82	0.30	194,194,194,194	0
36	MG	BA	1881	1/1	0.83	0.09	149,149,149,149	0
36	MG	AA	1845	1/1	0.83	0.21	193,193,193,193	0
36	MG	BA	1825	1/1	0.84	0.13	153, 153, 153, 153	0
36	MG	AA	1869	1/1	0.84	0.33	209,209,209,209	0
36	MG	AA	1836	1/1	0.84	0.17	166,166,166,166	0
36	MG	AA	1861	1/1	0.84	0.20	204,204,204,204	0
36	MG	BA	1866	1/1	0.84	0.30	186,186,186,186	0
36	MG	AA	1890	1/1	0.84	0.11	218,218,218,218	0
36	MG	AA	1848	1/1	0.84	0.14	183,183,183,183	0
36	MG	AA	1858	1/1	0.84	0.08	162,162,162,162	0
36	MG	BA	1888	1/1	0.84	2.04	227,227,227,227	0
36	MG	BA	1824	1/1	0.84	0.08	172,172,172,172	0
36	MG	BA	1801	1/1	0.85	0.12	186,186,186,186	0
36	MG	BA	1859	1/1	0.86	0.25	194,194,194,194	0
36	MG	BA	1853	1/1	0.86	0.09	194,194,194,194	0
36	MG	AL	201	1/1	0.86	0.17	182,182,182,182	0
36	MG	BA	1851	1/1	0.86	0.17	169,169,169,169	0
36	MG	BA	1865	1/1	0.87	0.20	183,183,183,183	0
36	MG	AA	1879	1/1	0.87	0.21	193,193,193,193	0
36	MG	BA	1848	1/1	0.87	0.36	206,206,206,206	0
36	MG	AA	1830	1/1	0.87	0.16	183,183,183,183	0
36	MG	BA	1880	1/1	0.87	0.09	193,193,193,193	0
36	MG	BA	1889	1/1	0.87	0.13	209,209,209,209	0
36	MG	BA	1835	1/1	0.87	0.23	187,187,187,187	0
36	MG	BA	1862	1/1	0.88	0.07	177,177,177,177	0
36	MG	AA	1854	1/1	0.88	0.14	158,158,158,158	0
36	MG	AA	1863	1/1	0.88	0.12	183,183,183,183	0
36	MG	AA	1850	1/1	0.88	0.17	185,185,185,185	0
36	MG	BA	1879	1/1	0.88	0.41	221,221,221,221	0
36	MG	B4	301	1/1	0.88	0.07	165,165,165,165	0
36	MG	AA	1886	1/1	0.88	0.21	148,148,148,148	0
36	MG	AA	1807	1/1	0.89	0.07	194,194,194,194	0
36	MG	BA	1869	1/1	0.89	0.15	188,188,188,188	0
36	MG	AA	1814	1/1	0.89	0.07	197,197,197,197	0
36	MG	BA	1827	1/1	0.89	0.22	199,199,199,199	0
36	MG	AA	1826	1/1	0.89	0.11	155,155,155,155	0
36	MG	AA	1806	1/1	0.89	0.13	151,151,151,151	0

 α 1 L.

4	V	5	Ο

MolTypeChainResAtomsRSCCRSRB-factors(A^2 36MGBA18111/10.890.21170,170,170,170) Q<0.9
36 MG BA 1811 1/1 0.89 0.21 170,170,170,170	
	0 0
36 MG AA 1812 1/1 0.89 0.55 173,173,173,17	3 0
36 MG BA 1850 1/1 0.89 0.48 221,221,221,221,221	1 0
<u>36</u> MG AA 1887 1/1 0.90 0.08 198,198,198,19	8 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 0
36 MG AA 1889 1/1 0.90 0.71 200,200,200,200	0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2 \qquad 0$
36 MG BA 1852 1/1 0.90 0.22 170,170,170,17	0 0
36 MG BA 1834 1/1 0.90 0.14 138,138,138,138,138	8 0
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	5 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0
36 MG AA 1860 1/1 0.90 0.12 176,176,176,176	6 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 0
36 MG BA 1870 1/1 0.90 0.10 205,205,205,200	5 0
36 MG BA 1877 1/1 0.91 0.13 177,177,177	7 0
36 MG BA 1830 1/1 0.91 0.34 204,204,204,20	4 0
36 MG BA 1814 1/1 0.91 0.10 214,214,214,21	4 0
36 MG AA 1884 1/1 0.91 0.47 190,190,190,19	0 0
36 MG BA 1821 1/1 0.91 0.11 160,160,160	0 0
36 MG AA 1823 1/1 0.91 0.20 130,130,130,13	0 0
36 MG AA 1872 1/1 0.91 0.31 196,196,196,19	6 0
36 MG AA 1820 1/1 0.91 0.13 157,157,157	7 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 0
36 MG AA 1856 1/1 0.91 0.74 182,182,182,18	2 0
36 MG BA 1861 1/1 0.91 0.18 181,181,181	1 0
36 MG BD 201 1/1 0.91 0.61 233,233,233,23	3 0
36 MG AA 1832 1/1 0.91 0.07 189,189,189,18	9 0
36 MG AA 1842 1/1 0.92 0.12 175,175,175,17	5 0
36 MG BA 1802 1/1 0.92 0.10 169,169,169,16	9 0
36 MG AA 1844 1/1 0.92 0.36 166,166,166	6 0
36 MG BA 1868 1/1 0.92 0.20 208,208,208,20	8 0
36 MG BA 1860 1/1 0.92 0.07 177,177,177	7 0
36 MG AA 1864 1/1 0.92 0.17 176,176,176,17	6 0
36 MG AA 1839 1/1 0.92 0.12 143,143,143,143	3 0
36 MG AA 1837 1/1 0.92 0.12 149,149,149,149	9 0
36 MG BA 1882 1/1 0.93 0.57 196,196,196	6 0
36 MG AA 1885 1/1 0.93 0.20 223,223,223,223,223	3 0

 α ntinau d fa

4	V	5	Ο

Conti	Continued from previous page							
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q < 0.9
36	MG	BA	1856	1/1	0.93	0.11	173,173,173,173	0
36	MG	BA	1858	1/1	0.93	0.05	163,163,163,163	0
36	MG	BA	1833	1/1	0.93	0.14	172,172,172,172	0
36	MG	AA	1843	1/1	0.93	0.09	182,182,182,182	0
36	MG	AA	1846	1/1	0.93	0.13	161,161,161,161	0
36	MG	AA	1847	1/1	0.93	0.27	186,186,186,186	0
36	MG	BA	1810	1/1	0.93	0.41	188,188,188,188	0
36	MG	BA	1803	1/1	0.94	0.40	169, 169, 169, 169, 169	0
36	MG	BA	1804	1/1	0.94	0.10	191,191,191,191	0
36	MG	AA	1865	1/1	0.94	0.12	184,184,184,184	0
36	MG	BA	1823	1/1	0.94	0.15	123,123,123,123	0
36	MG	AA	1880	1/1	0.94	0.09	193,193,193,193	0
36	MG	AA	1827	1/1	0.94	0.43	178,178,178,178	0
36	MG	AA	1811	1/1	0.94	0.12	154,154,154,154	0
36	MG	AA	1857	1/1	0.94	0.09	140,140,140,140	0
36	MG	BA	1816	1/1	0.94	0.14	127,127,127,127	0
36	MG	BA	1817	1/1	0.94	0.07	134,134,134,134	0
36	MG	AA	1822	1/1	0.95	0.14	139,139,139,139	0
36	MG	BA	1809	1/1	0.95	0.18	172,172,172,172	0
36	MG	BA	1828	1/1	0.95	0.18	145,145,145,145	0
36	MG	BA	1839	1/1	0.95	0.11	140,140,140,140	0
36	MG	BA	1840	1/1	0.95	0.14	128,128,128,128	0
36	MG	AA	1851	1/1	0.95	0.32	187,187,187,187	0
36	MG	AA	1803	1/1	0.95	0.08	147,147,147,147	0
36	MG	BA	1885	1/1	0.95	0.23	161,161,161,161	0
36	MG	BA	1857	1/1	0.95	0.18	130,130,130,130	0
36	MG	BA	1832	1/1	0.95	0.03	194,194,194,194	0
36	MG	BA	1846	1/1	0.95	0.07	147,147,147,147	0
36	MG	BA	1812	1/1	0.95	0.65	166,166,166,166	0
36	MG	AA	1881	1/1	0.95	0.29	198,198,198,198	0
36	MG	AA	1805	1/1	0.95	0.49	175,175,175,175	0
37	ZN	B9	500	1/1	0.95	0.06	247,247,247,247	0
36	MG	AA	1808	1/1	0.96	0.36	136,136,136,136	0
36	MG	A4	301	1/1	0.96	0.16	174,174,174,174	0
36	MG	AA	1815	1/1	0.96	0.39	144,144,144,144	0
36	MG	AA	1818	1/1	0.96	0.13	121,121,121,121	0
36	MG	AA	1801	1/1	0.96	0.06	160,160,160,160	0
36	MG	BA	1841	1/1	0.96	0.11	129,129,129,129	0
36	MG	AA	1831	1/1	0.96	0.20	111,111,111,111	0
36	MG	AA	1821	1/1	0.96	0.17	144,144,144,144	0
36	MG	AA	1804	1/1	0.96	0.12	150,150,150,150	0
36	MG	AA	1862	1/1	0.97	0.05	191,191,191,191	0

 α 1 L.

4	V	5	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
36	MG	AA	1829	1/1	0.97	0.05	160,160,160,160	0
36	MG	AA	1833	1/1	0.97	0.10	135,135,135,135	0
36	MG	AA	1810	1/1	0.97	0.28	175,175,175,175	0
36	MG	BA	1813	1/1	0.97	0.07	187,187,187,187	0
36	MG	AA	1853	1/1	0.97	0.09	177,177,177,177	0
36	MG	AA	1828	1/1	0.97	0.14	133,133,133,133	0
36	MG	BA	1874	1/1	0.97	0.38	164,164,164,164	0
36	MG	AA	1849	1/1	0.97	0.21	$159,\!159,\!159,\!159,\!159$	0
36	MG	BA	1863	1/1	0.97	0.11	166,166,166,166	0
36	MG	BA	1819	1/1	0.97	0.12	122,122,122,122	0
36	MG	BA	1808	1/1	0.97	0.48	140,140,140,140	0
36	MG	BA	1831	1/1	0.97	0.14	115,115,115,115	0
36	MG	BA	1818	1/1	0.98	0.07	111,111,111,111	0
36	MG	AA	1816	1/1	0.98	0.09	96,96,96,96	0
36	MG	AA	1867	1/1	0.98	0.07	193,193,193,193	0
36	MG	AA	1825	1/1	0.98	0.13	115,115,115,115	0
36	MG	AA	1819	1/1	0.98	0.11	136,136,136,136	0
36	MG	BA	1805	1/1	0.98	0.09	150,150,150,150	0
36	MG	BA	1844	1/1	0.98	0.08	157,157,157,157	0
36	MG	AA	1817	1/1	0.98	0.19	126,126,126,126	0
36	MG	BA	1815	1/1	0.98	0.33	155, 155, 155, 155, 155	0
36	MG	AA	1877	1/1	0.98	0.20	170,170,170,170	0
36	MG	AA	1840	1/1	0.98	0.09	124,124,124,124	0
37	ZN	A6	500	1/1	0.99	0.11	118,118,118,118	0
37	ZN	A9	500	1/1	0.99	0.10	169,169,169,169	0
37	ZN	B5	500	1/1	0.99	0.16	87,87,87,87	0
37	ZN	B6	500	1/1	0.99	0.13	108,108,108,108	0
37	ZN	A5	500	1/1	0.99	0.11	95,95,95,95	0
37	ZN	BN	500	1/1	0.99	0.12	113,113,113,113	0
37	ZN	AN	500	1/1	1.00	0.12	105,105,105,105	0

6.5 Other polymers (i)

There are no such residues in this entry.

