

wwPDB X-ray Structure Validation Summary Report (i)

Jan 2, 2024 – 10:04 am GMT

PDB ID	:	4V8N
Title	:	The crystal structure of agmatidine tRNA-Ile2 bound to the 70S ribosome in
		the A and P site.
Authors	:	Voorhees, R.M.; Mandal, D.; Neubauer, C.; Koehrer, C.; RajBhandary, U.L.;
		Ramakrishnan, V.
Deposited on	:	2013-02-13
Resolution	:	3.10 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	Similar resolution (#Entries, resolution range(Å))		
Clashscore	141614	1184 (3.10-3.10)		
Ramachandran outliers	138981	1141 (3.10-3.10)		
Sidechain outliers	138945	1141 (3.10-3.10)		
RSRZ outliers	127900	1067 (3.10-3.10)		
RNA backbone	3102	1116 (3.40-2.80)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain		
			6%			
1	AA	1522	24%	63%		11% ••
			7%			
1	CA	1522	23%	64%		11% ••
			12%			
2	AB	256	21%	59%	12%	• 8%
			21%			
2	CB	256	20%	59%	12%	8%
			12%			
3	AC	239	23%	50%	13%	13%

Mol	Chain	Length		Quality of chain	
2	00	020	21%		
3	CC	239	23% 8%	49%	15% 13%
4	AD	209	27%	57%	13% •
4	CD	209	30%	55%	12% •
5	AE	162	25%	56%	12% · 7%
5	CE	162	25%	56%	12% • 7%
6	AF	101	34%	58%	8%
6	CF	101	3%	54%	8%
7	AG	156	29%	65%	• ••
7	CG	156	32%	63%	
8	AH	138	38%	52%	9%
8	CH	138	37%	53%	10%
9	AI	128	19%	73%	7% ••
9	CI	128	20%	71%	8% ••
10	AJ	105	13%	72%	9% 6%
10	CJ	105	13%	72%	9% 6%
11	AK	129	34%	51%	7% 8%
11	CK	129	36%	51%	5% 8%
12	AL	135	20%	48%	22% • 7%
12	CL	135	20%	44%	24% • 7%
13	AM	126	19%	62%	13% • 6%
13	СМ	126	16%	64%	13% • 6%
14	AN	61	41%	46%	11% •
14	CN	61	34%	54%	13% •
15	AO	89	37%	53%	9% •
15	СО	89	37%	53%	9% •

Mol	Chain	Length		Quality of chain		
16	٨D	00	16%			
10	AF	00	23%	60%		11% • 5%
16	CP	88	30%	57%		8% • 5%
17	AQ	105	28%	62%		6% 5%
17	CQ	105	11%	59%		7% 5%
18	AR	88	6%	47%	8%	20%
18	CR	88	8%	50%	6%	20%
10		02	30%	50%	076	20%
19	AS	95	19%	51%	15%	15%
19	CS	93	20%	48%	16%	15%
20	AT	106	25%	58%		8% • 7%
20	CT	106	28%	56%		8% • 7%
21	AU	27	33%	48%		11% 7%
21	CU	27	30%	70% 52%	_	11% 7%
22	AV	78	28% 5% 33%	40%		22%
22	AY	78	29%	40%		23%
22	CV	78	44%	20/	40%	
		10	• 5. 59	%	40 %	•
22	CY	78	5% 44% 49%		40%	12%
23	AW	78	22%	44%	3	35%
23	CW	78	• 45%	41	L%	13%
24	AX	24	17% 25	% 8%	50%	
24	CX	24	• 38%	8%	50%	
25	B0	85	42%	47'	%	8% ••
25	D0	85	22%	49%	,)	8% ••
26	B1	98	39%	47%		15% •
26	D1	98	2%	470/		16%
		50	.% _%	4170		1070 • •
27	B2	72	28%	56%		15% •

Mol	Chain	Length		Quality	y of chain		
27	D2	72	6%		F.09/	11	0/
21	D2	12	<u>35%</u>		50%	11	% • •
28	B3	60	38%		53%		7% •
20	D2	60	25%				
28	D3	00	38%		53%		8%
29	B4	71	21%	32%	24%	• 189	%
	D 4	71	20%				_
29	D4	(1	24%	31%	24%	• 18	3%
30	B5	60	40%		35%	17%	• 7%
20	D5	60	2%		2201	2.70/	70/
- 30	D3	00	42%	72%	33%	17%	• 7%
31	B6	54	11%	52%		28%	• 7%
91	De	54		76%			
- 31	D0		11% <u>2%</u>	52%		28%	• 7%
32	B7	49	53%	6	4	1%	••
32	D7	49	2% 		4	15%	•••
	Do		3%				
33	B8	65	23%		57%	14%	5% •
33	D8	65	26%		54%	14%	5% •
24	DO	97		959	%		
34	В9	37	35%	97	62% 7%		•
34	D9	37	32%		65%		·
35	ВА	2915	40%		46%	1	1% ••
35	DA	2015	5%		400/	1	10/
- 00	DA	2310	.%		48%	1.	1% ••
36	BB	122	36%		52%		10% •
36	DB	122	37%		51%	_	10% •
37	BC	229	17%	33%	•	48%	
	DC	000	35%				
31	DC	229	17%	33%	•	48%	
38	BD	276	30%		51%	16%) ••
38	DD	276	29%		54%	15	% ••
39	BE	206	29%		50%	18%	•
39	DE	206	28%		52%	16%	.

Mol	Chain	Length		Quality of chain		
40	BF	210	6% 40%	45%		14% •
40	DF	210	3%	48%		14% •
41	BG	182	21%	63%		14% ••
41	DG	182	26%	69%		16% ••
42	BH	180	27%	49%	13%	• 8%
42	DH	180	27%	48%	14%	• 8%
43	BI	148	14%	67%		16% ••
43	DI	148	17%	64%		16% ••
44	BJ	173	50%	25%	2	24%
44	DJ	173	67	2%	14%	24%
45	BN	140	36%	44%		16% ••
45	DN	140	34%	47%		16% ••
46	ВО	122	40%	5	1%	8% •
46	DO	122	41%		51%	7% •
47	BP	150	20%	49%	23%	5% •
47	DP	150	21%	48%	24%	5% •
48	BQ	141	34%	56%		9% •
48	DQ	141	35%	579	6	6% ·
49	BR	118	25%	56%		17% ••
49	DR	118	24%	57%		17% ••
50	BS	112	24%	42%	20%	• 12%
50	DS	112	21%	46%	19%	• 12%
51	BT	146	18%	49%	23%	• 7%
51	DT	146	16%	49%	24%	• 7%
52	BU	118	38%	519	6	10% •

Mol	Chain	Length		Quality of chain	
52	DU	118	<u>6%</u> <u>36%</u>	52%	11% •
53	BV	101	29%	50%	18% ·
53	DV	101	30%	50%	16% ·
54	BW	113	41%	54%	•••
54	DW	113	42%	50%	6% •
55	BX	96	46%	47	% • •
55	DX	96	44%	499	6 · ·
56	BY	110	17%	49%	19% 6% 8%
56	DY	110	17%	51%	20% 6% 8%
57	BZ	206	24%	49%	14% • 10%
57	DZ	206	30%	54%	17% • 10%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
22	AG9	AV	36	Х	-	-	-
22	AG9	AY	36	Х	-	Х	-
22	AG9	CV	36	Х	-	Х	-
22	AG9	CY	36	X	-	-	Х
58	ZN	AD	1000	-	-	Х	-
58	ZN	AN	1000	-	-	Х	-
58	ZN	CD	1000	-	-	Х	-
58	ZN	CN	1000	-	-	Х	-

2 Entry composition (i)

There are 58 unique types of molecules in this entry. The entry contains 298096 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Atoms					AltConf	Trace
1		1504	Total	С	Ν	Ο	Р	0	0	0
1	1 AA 1504	32329	14390	5992	10444	1503	0	0	0	
1	CA	1504	Total	С	Ν	0	Р	0	0	0
	I CA	1504	32329	14390	5992	10444	1503	0	U	U

• Molecule 1 is a RNA chain called 16S RRNA.

• Molecule 2 is a protein called 30S RIBOSOMAL PROTEIN S2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	٨B	225	Total	С	Ν	0	S	0	0	1
	AD	230	1901	1213	342	341	5	0	0	
0	CP	225	Total	С	Ν	0	S	0	0	1
	CD	235	1901	1213	342	341	5	0	0	1

• Molecule 3 is a protein called 30S RIBOSOMAL PROTEIN S3.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
3		207	Total	С	Ν	0	S	0	0	1
0	AU	201	1613	1016	315	281	1	0	0	1
2	CC	207	Total	С	Ν	0	S	0	0	1
5		207	1613	1016	315	281	1	0	0	

• Molecule 4 is a protein called 30S RIBOSOMAL PROTEIN S4.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4		208	Total	С	Ν	Ο	\mathbf{S}	0	0	0
4	AD	208	1703	1066	339	291	7	0	0	0
4	CD	208	Total	С	Ν	0	S	0	0	0
4	CD	208	1703	1066	339	291	7	0	0	0

• Molecule 5 is a protein called 30S RIBOSOMAL PROTEIN S5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
Б		151	Total	С	Ν	0	\mathbf{S}	0	0	1
5	AL	151	1147	724	218	201	4	0	0	1
5	CF	151	Total	С	Ν	0	S	0	0	1
5	OE	151	1147	724	218	201	4	0	0	1

• Molecule 6 is a protein called 30S RIBOSOMAL PROTEIN S6.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6		101	Total	С	Ν	0	S	0	0	0
0	Аг	101	843	531	155	154	3	0	0	0
6	CE	101	Total	С	Ν	0	S	0	0	0
0	UL	101	843	531	155	154	3	0	0	0

• Molecule 7 is a protein called 30S RIBOSOMAL PROTEIN S7.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	AG	155	Total 1257	C 781	N 252	0 218	S 6	0	0	0
7	CG	155	Total 1257	C 781	N 252	0 218	S 6	0	0	0

• Molecule 8 is a protein called 30S RIBOSOMAL PROTEIN S8.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	۸Ц	128	Total	С	Ν	0	S	0	0	0
0	AII	130	1116	705	215	193	3	0	0	0
8	СН	138	Total	С	Ν	0	S	0	0	0
0		130	1116	705	215	193	3			U

• Molecule 9 is a protein called 30S RIBOSOMAL PROTEIN S9.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
0	ΔΤ	197	Total	С	Ν	Ο	0	0	0
9		127	1010	639	197	174	0	0	0
0	CI	197	Total	С	Ν	Ο	0	0	0
9		127	1010	639	197	174	0	0	0

• Molecule 10 is a protein called 30S RIBOSOMAL PROTEIN S10.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	AJ	99	Total 795	C 499	N 157	O 138	S 1	0	0	1

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	CJ	99	Total 795	C 499	N 157	0 138	S 1	0	0	1

• Molecule 11 is a protein called 30S RIBOSOMAL PROTEIN S11.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
11	ΛK	110	Total	С	Ν	0	S	0	0	0
11	АК	119	885	549	168	165	3	0	0	0
11	CK	110	Total	С	Ν	0	S	0	0	0
		119	885	549	168	165	3			U

• Molecule 12 is a protein called 30S RIBOSOMAL PROTEIN S12.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	ΔT	195	Total	С	Ν	0	S	0	0	1
	AL	120	971	611	196	163	1	0	0	1
10	CI	195	Total	С	Ν	0	S	0	0	1
	UL	120	971	611	196	163	1	0		

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AL	1	MET	-	expression tag	UNP Q5SHN3
AL	2	VAL	-	expression tag	UNP Q5SHN3
AL	3	ALA	-	expression tag	UNP Q5SHN3
AL	4	LEU	-	expression tag	UNP Q5SHN3
CL	1	MET	-	expression tag	UNP Q5SHN3
CL	2	VAL	-	expression tag	UNP Q5SHN3
CL	3	ALA	-	expression tag	UNP Q5SHN3
CL	4	LEU	-	expression tag	UNP Q5SHN3

• Molecule 13 is a protein called 30S RIBOSOMAL PROTEIN S13.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
12	АМ	110	Total	С	Ν	0	S	0	0	1
10	AM	119	938	579	194	163	2	0	0	1
12	CM	110	Total	С	Ν	0	\mathbf{S}	0	0	1
10	UM	119	938	579	194	163	2	0	0	1

• Molecule 14 is a protein called 30S RIBOSOMAL PROTEIN S14 TYPE Z.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
14	ΔN	60	Total	С	Ν	Ο	\mathbf{S}	0	Ο	0
14	AIN	00	492	312	104	72	4	0	0	0
14	CN	60	Total	С	Ν	Ο	S	0	0	0
14	UN	00	492	312	104	72	4	0	0	0

• Molecule 15 is a protein called 30S RIBOSOMAL PROTEIN S15.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
15	10	<u> </u>	Total	С	Ν	0	S	0	0	0
1.0	AU	00	734	459	147	126	2	0	0	0
15	CO	00	Total	С	Ν	0	S	0	0	0
10		00	734	459	147	126	2			U

• Molecule 16 is a protein called 30S RIBOSOMAL PROTEIN S16.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
16	AP	84	Total 701	C 443	N 140	0 117	S 1	0	0	1
16	СР	84	Total 701	C 443	N 140	0 117	S 1	0	0	1

• Molecule 17 is a protein called 30S RIBOSOMAL PROTEIN S17.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
17	10	100	Total	С	Ν	0	S	0	0	1
11	лQ	100	824	528	152	142	2	0	0	T
17	CO	100	Total	С	Ν	0	S	0	0	1
11	UQ	100	824	528	152	142	2			

• Molecule 18 is a protein called 30S RIBOSOMAL PROTEIN S18.

Mol	Chain	Residues		Ator	ns		ZeroOcc	AltConf	Trace
18	٨B	70	Total	С	Ν	0	0	0	0
10	лιι	10	574	367	112	95	0	0	0
10	CP	70	Total	С	Ν	0	0	0	0
10	UN	70	574	367	112	95	0	0	0

• Molecule 19 is a protein called 30S RIBOSOMAL PROTEIN S19.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	AS	79	Total 630	C 403	N 115	O 110	${ m S} { m 2}$	0	0	1

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
19	\mathbf{CS}	79	Total 630	C 403	N 115	0 110	${ m S} { m 2}$	0	0	1

• Molecule 20 is a protein called 30S RIBOSOMAL PROTEIN S20.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
20	AT	99	Total 763	C 470	N 162	0 129	${S \over 2}$	0	0	0
20	CT	99	Total 763	C 470	N 162	O 129	${ m S} 2$	0	0	0

• Molecule 21 is a protein called 30S RIBOSOMAL PROTEIN THX.

Mol	Chain	Residues		Aton	ns		ZeroOcc	AltConf	Trace
91	ATT	25	Total	С	Ν	0	0	0	1
21	AU	2.0	209	128	51	30	0	0	
91	CU	25	Total	С	Ν	0	0	0	1
21	00	20	209	128	51	30	0	0	

• Molecule 22 is a RNA chain called E-SITE TRNA ILE2 AGMATIDINE OR P-SITE TRNA ILE2 AGMATIDINE.

Mol	Chain	Residues		\mathbf{A}	toms			ZeroOcc	AltConf	Trace
20	AV	79	Total	С	Ν	0	Р	0	0	0
	AV	10	1667	746	299	545	77	0	0	0
20	۸V	79	Total	С	Ν	0	Р	0	0	0
	AI	10	1667	746	299	545	77	0	0	0
- 22	CV	70	Total	С	Ν	0	Р	0	0	0
	UV	10	1667	746	299	545	77	0	0	0
20	CV	79	Total	С	Ν	0	Р	0	0	0
		10	1667	746	299	545	77	0	0	0

• Molecule 23 is a RNA chain called A-SITE TRNA ILE2 AGMATIDINE.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
23	AW	78	Total	С	Ν	0	Р	0	0	0
20	ΔΨ	10	1659	741	295	546	77	0	0	0
93	CW	79	Total	С	Ν	0	Р	0	0	0
20		10	1659	741	295	546	77		U	0

• Molecule 24 is a RNA chain called MRNA.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
24	ΛV	19	Total	С	Ν	Ο	Р	0	0	0
24	АЛ	12	257	118	54	74	11	0	0	0
24	CY	19	Total	С	Ν	Ο	Р	0	0	0
24	UA	14	257	118	54	74	11		U	

• Molecule 25 is a protein called 50S RIBOSOMAL PROTEIN L27.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
25	P0	84	Total	С	Ν	Ο	S	0	0	0
2.0	DU	04	662	410	140	111	1	0	0	0
25	D0	Q /	Total	С	Ν	0	S	0	0	0
20	D0	04	662	410	140	111	1	0	0	0

• Molecule 26 is a protein called 50S RIBOSOMAL PROTEIN L28.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
26	B1	94	Total 734	C 460	N 148	0 125	S 1	0	0	1
26	D1	94	Total 734	C 460	N 148	0 125	S 1	0	0	1

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
B1	81	ARG	LYS	conflict	UNP P60494
D1	81	ARG	LYS	conflict	UNP P60494

• Molecule 27 is a protein called 50S RIBOSOMAL PROTEIN L29.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
97	Do	71	Total	С	Ν	0	S	0	0	0
21	D2	11	598	370	121	106	1	0	0	0
97	DЭ	71	Total	С	Ν	0	S	0	0	0
	D_2	11	598	370	121	106	1	0	0	0

• Molecule 28 is a protein called 50S RIBOSOMAL PROTEIN L30.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
28	B3	60	Total	С	Ν	Ο	S	0	0	1
20	D0	00	468	298	91	78	1	0	0	L
20	D3	60	Total	С	Ν	Ο	S	0	0	1
20	D3	00	468	298	91	78	1	0	0	1

• Molecule 29 is a protein called 50S RIBOSOMAL PROTEIN L31.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
20	P/	59	Total	С	Ν	0	S	0	0	1
29	D4		451	285	78	83	5	0	0	1
20	D4	59	Total	С	Ν	0	S	0	0	1
29	D4		451	285	78	83	5	0	0	1

• Molecule 30 is a protein called 50S RIBOSOMAL PROTEIN L32.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
30	R5	56	Total	С	Ν	Ο	S	0	0	1
- 50	D0	50	428	267	87	69	5	0	0	T
20	D5	56	Total	С	Ν	Ο	\mathbf{S}	0	0	1
- 50	D0	50	428	267	87	69	5		U	

• Molecule 31 is a protein called 50S RIBOSOMAL PROTEIN L33.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
21	R6	50	Total	С	Ν	Ο	S	0	0	0
51	D0	50	433	270	88	71	4	0	0	0
21	D6	50	Total	С	Ν	Ο	\mathbf{S}	0	0	0
51	D0	50	433	270	88	71	4	0	0	0

• Molecule 32 is a protein called 50S RIBOSOMAL PROTEIN L34.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
30	B7	18	Total	С	Ν	Ο	\mathbf{S}	0	0	1
32	Dí	40	410	251	103	54	2	0	0	
20	D7	18	Total	С	Ν	Ο	S	0	0	1
32	Di	40	410	251	103	54	2	0	0	

• Molecule 33 is a protein called 50S RIBOSOMAL PROTEIN L35.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
22	B8	64	Total	С	Ν	0	S	0	0	1
- 55	Do	04	508	326	102	78	2	0	0	1
22	D 9	64	Total	С	Ν	Ο	\mathbf{S}	0	0	1
- 55	Do	04	508	326	102	78	2	0	U	

• Molecule 34 is a protein called 50S RIBOSOMAL PROTEIN L36.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
34	B0	37	Total	С	Ν	0	S	0	0	0
- 04	D9	51	307	188	68	47	4	0	0	0
24	D0	27	Total	С	Ν	0	S	0	0	0
04	D9	57	307	188	68	47	4	0	0	0

• Molecule 35 is a RNA chain called 23S RIBOSOMAL RNA.

Mol	Chain	Residues			Atoms			ZeroOcc	AltConf	Trace
35	ΒΔ	2848	Total	С	Ν	0	Р	0	0	0
00	DA	2040	61341	27300	11478	19716	2847	0	0	0
25		2010	Total	С	Ν	Ο	Р	0	0	0
- 55	DA	2040	61341	27300	11478	19716	2847	0	0	0

• Molecule 36 is a RNA chain called 5S RIBOSOMAL RNA.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
36	BB	119	Total 2551	C 1136	N 471	O 826	Р 118	0	0	0
36	DB	119	Total 2551	C 1136	N 471	O 826	Р 118	0	0	0

• Molecule 37 is a protein called 50S RIBOSOMAL PROTEIN L1.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
27	BC	120	Total	С	Ν	0	S	0	0	0
51	DC	120	937	590	174	172	1	0	0	0
27	DC	120	Total	С	Ν	0	S	0	0	0
51	DC	120	937	590	174	172	1	0	0	0

• Molecule 38 is a protein called 50S RIBOSOMAL PROTEIN L2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
38	BD	979	Total	С	Ν	0	S	0	0	1
30		212	2105	1329	417	356	3	0	0	1
20	מת	070	Total	С	Ν	0	S	0	0	1
30		212	2105	1329	417	356	3	0	0	1

• Molecule 39 is a protein called 50S RIBOSOMAL PROTEIN L3.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
39	BE	205	Total 1564	C 988	N 300	O 270	S 6	0	0	1

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
39	DE	205	Total 1564	C 988	N 300	O 270	S 6	0	0	1

• Molecule 40 is a protein called 50S RIBOSOMAL PROTEIN L4.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
40	PE	208	Total	С	Ν	0	S	0	0	1
40	Dr	208	1624	1035	304	282	3	0	0	1
40	DE	208	Total	С	Ν	0	S	0	0	1
40		208	1624	1035	304	282	3	0	0	1

• Molecule 41 is a protein called 50S RIBOSOMAL PROTEIN L5.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
41	BC	191	Total	С	Ν	0	S	0	0	0
41	DG	101	1474	942	268	260	4	0	0	0
41	DC	191	Total	С	Ν	0	S	0	0	0
41	DG	101	1474	942	268	260	4	0	0	0

• Molecule 42 is a protein called 50S RIBOSOMAL PROTEIN L6.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
42	BH	165	Total 1260	C 800	N 234	0 225	S 1	0	0	1
42	DH	165	Total 1260	C 800	N 234	O 225	S 1	0	0	1

• Molecule 43 is a protein called 50S RIBOSOMAL PROTEIN L9.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
43	BI	146	Total	C 702	N	0	S	0	0	1
			1132	(23	201	207	T			
13	וח	146	Total	С	Ν	0	\mathbf{S}	0	0	1
64		140	1132	723	201	207	1		0	1

• Molecule 44 is a protein called 50S RIBOSOMAL PROTEIN L10.

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
44	BI	121	Total	С	Ν	Ο	0	0	1
44	DJ	131	651	390	131	130	0	0	1
4.4	וח	121	Total	С	Ν	Ο	0	0	1
44	DJ	131	651	390	131	130	0	0	1

4V8N

• Molecule 45 is a protein called 50S RIBOSOMAL PROTEIN L13.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
15	BN	120	Total	С	Ν	Ο	\mathbf{S}	0	0	1
40	DN	139	1105	712	207	182	4	0	0	1
15	DN	120	Total	С	Ν	0	S	0	0	1
40	DN	139	1105	712	207	182	4	0	0	1

• Molecule 46 is a protein called 50S RIBOSOMAL PROTEIN L14.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
46	BO	199	Total	С	Ν	0	S	0	0	0
40	DO	122	933	588	171	170	4	0	0	0
46	DO	199	Total	С	Ν	0	S	0	0	0
40	DO	122	933	588	171	170	4	0	0	0

• Molecule 47 is a protein called 50S RIBOSOMAL PROTEIN L15.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
47	BD	146	Total	С	Ν	Ο	S	0	0	0
41	DI	140	1114	692	227	193	2	0	0	0
47	пΡ	146	Total	С	Ν	0	S	0	0	0
41	DI	140	1114	692	227	193	2	0	0	0

• Molecule 48 is a protein called 50S RIBOSOMAL PROTEIN L16.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
18	BO	1.41	Total	С	Ν	0	S	0	0	1
40	ЪQ	141	1113	710	211	185	7	0	0	T
18	DO	1.41	Total	С	Ν	0	S	0	0	1
40	DQ	141	1113	710	211	185	7	0	0	1

• Molecule 49 is a protein called 50S RIBOSOMAL PROTEIN L17.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
40	BB	117	Total	С	Ν	Ο	0	0	0
49	DR	111	960	599	202	159	0	0	0
40	סח	117	Total	С	Ν	Ο	0	0	0
49	DR	111	960	599	202	159	0	0	0

• Molecule 50 is a protein called 50S RIBOSOMAL PROTEIN L18.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
50	BS	00	Total	С	Ν	Ο	0	0	1
50	DD	99	771	486	155	130	0	0	T
50	חפ	00	Total	С	Ν	Ο	0	0	1
- 50	Do	99	771	486	155	130	0	0	1

• Molecule 51 is a protein called 50S RIBOSOMAL PROTEIN L19.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
51	РT	126	Total	С	Ν	0	S	0	0	1
101	DI	130	1124	699	231	193	1	0	0	1
51	лт	126	Total	С	Ν	0	S	0	0	1
		130	1124	699	231	193	1	0	0	

• Molecule 52 is a protein called 50S RIBOSOMAL PROTEIN L20.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
52	BII	117	Total	С	Ν	0	S	0	0	Ο
52	DU	111	958	604	202	151	1	0	0	0
52	DU	117	Total	С	Ν	0	S	0	0	0
52	DU	111	958	604	202	151	1	0	0	0

• Molecule 53 is a protein called 50S RIBOSOMAL PROTEIN L21.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
53	BV	101	Total	С	Ν	0	S	0	0	0
- 55	DV	101	779	501	142	135	1	0	0	0
53	DV	101	Total	С	Ν	0	S	0	0	0
00		101	779	501	142	135	1			U

• Molecule 54 is a protein called 50S RIBOSOMAL PROTEIN L22.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
54	BW	112	Total	С	Ν	0	S	0	0	0
- 54	DW	115	896	563	176	155	2	0	0	0
54	DW	112	Total	С	Ν	0	S	0	0	0
04		113	896	563	176	155	2	0		U

• Molecule 55 is a protein called 50S RIBOSOMAL PROTEIN L23.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
55	BX	93	Total 726	C 471	N 132	O 123	0	0	1

Continued from previous page...

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
55	DX	93	Total 726	C 471	N 132	O 123	0	0	1

• Molecule 56 is a protein called 50S RIBOSOMAL PROTEIN L24.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
56	BY	101	Total 776	C 500	N 149	0 123	${f S}$ 4	0	0	1
56	DY	101	Total 776	$\begin{array}{c} \mathrm{C} \\ 500 \end{array}$	N 149	O 123	$\frac{S}{4}$	0	0	1

• Molecule 57 is a protein called 50S RIBOSOMAL PROTEIN L25.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
57	P7	195	Total	С	Ν	0	S	0	0	1
57	DZ	165	1468	936	262	268	2	0	0	T
57	DZ	185	Total	С	Ν	0	S	0	0	1
			1468	936	262	268	2			

• Molecule 58 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
58	AD	1	Total Zn 1 1	0	0
58	AN	1	Total Zn 1 1	0	0
58	CD	1	Total Zn 1 1	0	0
58	CN	1	Total Zn 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S RRNA

• Molecule 1: 16S RRNA

Chain CA:	23%	64%	11%
U U U U U U U U U U U U U U U U U U U	012 014 014 015 015 016 016 027 028 029 028 029 029 028 029 028 028 029 028 028 028 028 028 028 028 028 028 028	635 636 638 638 639 640 641 642 643 644 644 645 645 645 655 655	A53 A55 A55 A55 G57 A50 A50 A50 A50 A50 A50 A50 A50 A50 A50
062 063 065 066 067 066 068 070 071 072 073 073	(71) (77) (77) (83) (83) (183) (183) (183) (183) (183) (183) (183) (183) (193)	4045 6105 6106 6106 61110 61114 0114 0114 0114 01	0127 0131 0131 0131 0132 0132 0136
A140 A144 G142 G143 G144 G145 G146 G146 G146 G148 A149 G148 A149 C150	A 1151 A 1152 C 153 C 155 C 155 C 155 C 155 C 155 C 155 C 155 C 155 C 155 C 165 C 165 C 165 C 165 C 165 C 166 C 166 C 166 C 166 C 166 C 166 C 166 C 167 C 175 C 17	01174 0174 0177 0177 0177 0188 0188 0188 0188 0188	C189A C189B C189B C189E U189E U189E 0189F G189F G189F G1891
(188) (188) (188) (189) (189) (193) (193) (194) (198) (198) (198) (198) (198)	4199 U202 U203 U203 U204 U204 G216 G216 G216 G216 G216 G225 G225 G225 G225 G225 G225 G225 G22	C235 C234 C235 C235 C235 C235 C235 C235 C235 C245 C245 C245 C245 C245 C245 C245 C24	G254 0255 0255 0256 6257 6260 1261 A263 A263
U264 0265 0265 0266 0266 0268 0268 0270 0271 0271 0277 0277	(2217 (2217 (2281 (2285 (2285 (2285 (2285 (2285 (2285 (2285 (2285 (2285 (2285 (2285 (2299 (2291 (2292) (229	C308 (3309 (3309 (3310 (3311 (3314 (3315 (3316 (3316 (3316 (3321 (3326 (3326 (3326) (3326) (3326) (3326) (3326)	4327 6328 4329 6332 6333 6333 6334 6335 6334 6335 6335
C337 C337 C338 C338 C341 C341 C341 C342 C345 C345 C345 C345 C345 C345 C345 C345	A363 A365 A355 A355 A355 A355 A355 A355	A37 4 A37 4 A37 4 A37 6 A37 5 A38 5 A38 3 A38 9 C38 6 C38 7 C38 7	A393 (3394 (3395 (3395 (3395 (3396 (3399 (3399 (3399 (3399 (3399 (3399) (3399) (3399) (3399) (3399) (3399) (3399) (3309) (3309) (3309) (3306)
6402 6403 0404 0406 6406 6406 6407 6412 6413 6413 6413 6415 6414	C411 C411 C418 C418 C418 C421 C422 C422 C428 C428 C428 C428 C428 C428	A441 A441 A441 C442 C444 C444 C444 C444 C445 C445 C445	C457 C458 C458 C450 A461 A461 C471 A472 C473 C473
0475 0476 0476 0477 0480 0481 0483 0483 0483 0483 0485 0485 0485 0485 0485 0485 0487	488 489 489 489 489 489 489 489	0011 0011 0012 0018 0018 0018 0018 0018	U534 4535 6536 6538 6537 6537 6540 6541 6541 6542 6542
C556 C543 C544 C544 C545 C545 C545 C555 C555	4559 4559 4550 4560 4561 4561 4562 4573 4573 4573 4573 4573 4573 4573 4573	C 558 C	C601 A602 U603 U605 G604 A607 A607 A609
6610 4611 6612 6612 6612 6612 6626 6626 6626	6622 6622 6628 6629 6633 6633 6633 6633 6633 6634 6635 6635	4644 6649 6650 6650 6651 6655 6651 6655 6661 6661	6667 6668 0668 0669 0670 6673 676 676 A676
0677 0678 0679 0683 6683 0683 0688 0688 0688 0688 0688	6690 6691 6693 6694 6694 6694 6694 6694 6694 6697 6703 6710 6711 67112 67112 67112 67112 67114 67114 67114	Ar 10 C7 19 UT 28 UT 28 C7 19 C7 26 C7 26 C7 26 C7 36 C7 26 C7 26	C739 U740 C741 C742 C745 A746 C745 C745 C745 C747
C748 C749 C749 C749 C751 C752 C755 C755 C755 C755 C755 C755 C755	6760 6761 6762 6763 6764 6765 6765 6766 6775 6775 6775 6775 6777 6777 6777 6777 6776 6776 6776 6776 6766 6766 6766 6766 6766 6766 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6776 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6777 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778 6778	6786 4787 1785 1785 1784 4784 4793 6794 6799 6800 18001 18002 18005 6805 6805 6805 6805	C811 C812 U813 A814 A815 C817 C817 G818
A819 U820 0821 0821 0821 0823 0823 0825 0825 0826 0828 0828 0830	C C C C C C C C C C C C C C C C C C C	6361 6361 6361 6365 1963 A865 A865 6366 6366 6366 6365 6365 6365 6375 637	C880 0881 0881 C882 C883 C883 C885 C885 C885 C885 C888 C888
A 90 1 A 90 1	A906 A909 C910 C911 C911 C911 A914 A915 A918 A918 A918 A918 A918 A919 C922 C922 C922 C928 C928 C928 C928 C92	C930 C931 C932 C933 C935 C936 C936 A936 C941 C942 C942 C944 C945 C944 C945 C944 C945 C944 C947 C947 C947 C947 C947 C947 C947	C948 A949 C950 C951 C952 C953 C954 C955

• Molecule 5: 30S RIBOSOMAL PROTEIN S5

• Molecule 9: 30S RIBOSOMAL PROTEIN S9

WORLDWIDE PROTEIN DATA BANK

• Molecule 13: 30S RIBOSOMAL PROTEIN S13

Chain AM:

ALA PRO ARG LYS

Chain CM:

L66 E67 368

LYS ALA PRO ARG LYS

Chain AN:

Chain CN:

MET A2 K4 K4 A5 A5 L6 L6 L6 E8 E8

Chain AO:

R3 A5 G6 V7 E8 E8

Chain AR:

Chain CR:

Chain AS:

178 379

MET SER LYS ASN LYS ASN PRO PRO LYS PRO GLU ALA ALA ALA ARG GLN SER SER

K68 T69 I70 K71 R72 A73 A73 R74

MET SER SER SER ASN VS SER CVS PRO PRO PRO PRO SELU VS SELU VS SELU VS SELNA

T69 T70 K71 R72 A73

25%

24%

30%

• Molecule 29: 50S RIBOSOMAL PROTEIN L31

U363E	A363F C364	C365		G372	G386	0387 6388	G 389		A 394 U 395	<mark>6396</mark>	A402	U403	C404 11405	G406	G407	C409	G410 C411	A412	C417	G418	C419	C426	U427 A428		C433 U434	C435 C436		C444 C445	11448		C456	A457	6463	0404 G465	A400 G467	G468 G469	A470 A471 A472	
G473	64/4 U475	G476	A477	A478 A479	A480	G481 A482	A483	C484	G491	A492	6493 6494	G495	0708	0499	G500	A502	A ROR	G506	A507	C509	C510 11511	G512 G512	A513	C517	6018	C523 11524		C527 A528	4529 6530	C531	4032 G533	0534 C535	A536	6539 0110	0.940	G544 C545	A547 A548 G549	
G551	U554	U555	G556	U557 CFFR	G559	C960	G563		4571	A572	G5 74	A575	U576 2577	A578	G579 CE 80	C581	CE 87	U588	C589 4590	C591	(592 (503	U594	C595 G596	U597	G599 G599	A603	G604	U607	G6 10	C611	G613	U614 U614A	G614B	G615	A621	G622 G623	C624 G625 U626	
A627	A631	A632	A633	0634 0635	G636	A637 G638	U639	C640	G642	A643	A644 C645	A646	G647 C648	G649	CG50	A653	A654	C654B	G654C	G654E	C654F	G654H	C654I •	C654K	G654M	G6540 G6540	C654P	C654U C654R	G654S C654T	A654U	A054 V A655	G656 U657	C658	C661	7000	0665 0666	G669 A670	
C671	C673	G674	A675	A676	<mark>6680</mark>	G681	G686	reo 1	C693 C693	U694	C697	C698	C704	A705	A706	C708	0709 0710	G711	G712 G713		C719 C720	C721	A722 G723		6726 A727	C730	C731	C732 G733	G738	G739	G743	G744 G745	A746 11747	0/4/ G748	A752	C753 C754	C755 C756 U757	
C758	A764	G7 65	C766	0767 C768	G769	G771	C772	U773 A77A	6775	G776	A/// G778	07.79	G780 A781	A782	A783 A784	G785	C786 11787	A788	A789 C790	C791	G792 A703	De la	C796 C797	G7 98	A802	U803 4804	G805	C806 U807	G 808	C812	0013 C814	C815 C816	C817	4819 4819	4820 4821	U822 G823	<mark>4824</mark> C825 U826	
U827	0828 A829	G830	G831	G832 11833	C834	CB38	U839	C840	6842 G842	G843	C844 G845	C846	0847 6848	4040 A849	C850	G852	G853 C854	G855	C856 C857	U858	G859 11860	A861	G862 4863	G864	C865 A866	C867	A870	U8/1	G874	A878	G881	G882 G883	C884	C 886 C 886	A 88 /	C889 A890	G892 C893 C894	
U895	CB97	C898	A899	A900 4901	C902	C903 C904		C908	A910	A911	C914	C915	G916 A017	ITCH	G921	C923	С924 С925	A926	6927 6928		6932 4033	G934	A941	G942	0943 6944	A945 G946	G947	G950	C951 C952	A953	6955 C955	G956 A957	U958	A960 A960	G962	0963 C964	C965	
C970	G972	A973	G974	C975	6379	A980	A983	A984 CORE	C386		A990 C991	C992	(1993 1994	C995	A996	660 660	0999 41000	A1001	G1002 G1003	C1004	C1005	C1007	C1008 A1009	A1010	01011 01012	C1013 U1014	G1015	G1016 G1017	C1018 U1019	A1020	G1022	U1023 G1024	G1025	01020 A1027	A1028 A1029	G1030	U1033 G1034	•
G1037	G1039	C1040	C1041	G1042 C1043	G1044	A1045 A1046	G1047	A1048	01043 A1050	G1051	C1 05 2 C1 05 3	A1054	5 5	A	5 5	n	ם ט	0 0	u G	n	¥ ت	A	A ي	. U	G A	ບບ	Å	⊃ U	c c	. n :	A	A A	ر م	¥ ت9 ;	0.62	ი ი	U A	
n ·	A D	D	n	ບ ⊲	¢ 0 1	ے ت	G1107		A1111 A1111	G1112 	01113 G1114	G1115	C1116 C1117	C1118		C1123	C1124	A1129	U1130 G1131	A1132	U1133 C1135	G1136 G1136	G1137 G1138	G1139	C1140 U1141	U1142 A1142A	A1143	G1149	C1150 G1151	C1152	G1154 G1154	A1155	C1161		C1166	01167 01168	G1169 G1170 G1171 ●	
G1173	A11/4 U1175	G1176	A1177	C1178 C1179	C1180	C1181 A1182		G1186 C1187	U1188	A1189	G1190 G1191	G1192	G1193 A1104	G1195	6100	A1204	U1205	C1208	G1209 41210	U1211	G1212	G1216	A1 220	C1221		61231 61232	C1233	01234	U1240 A1241	A1242	G1 244 G1 244	G1245 A1246	A1247	01249 01249	G1 25 1	G1252 A1253	G1256	•
A1265	00775	C1270	G1271	A1272 111073	A1274	A1275	A1278	G1279	G1281 G1281		A1286 A1287	U1288	C1289	C1291	U1292	00710	U1300 A1301	A1302	C1305	C1306	G1211	U1312	U1313 C1314	C1315	01316 A1317	C1318 G1319	C1320	A1321	A1331 G1332		A0015	C1345	G1348	A 1043	A1354 G1355	G1358	A1359 A1360 G1361	
C1362	G1364	A1365		G1368 C1369		01372 A1373	G1374	C1375	G1377	A1378	A1379 G1380		A1384 C1385	C1386	C1387	G1389	A1 205	U1396	C1403	C1404	U1405	C1407	C1408 C1409	G1410	C1411 A1412	G1413	G1416	C1417 G1418	A1419 U1420		A1427 C1428	G1429 C1430	U1431	01432 U1433	A1434	G1440 G1441	G1442	

	G1448 A1449	G1450	114 46.2	00510	G1459	G1461		FOFTO	C1467	01400 A1469	G1470	A1471 A1472	G1473	C1474	614/b	G1478	111 48 1	G1482	G1484	A1486	G1487	61488 U1489	A1490	G1492	C1493 41494	A1495	A1496 U1497	C1498	C1501	C1502 U1503	C1504	C1505 C1506	A1507	A1508	A1509A	A1509B G1510	C1511	G1515 C1516	G1517
U1518	G1519 G1520	U1523	G1524	A1528	A1528A	C1530	C1531	G1533	U1534	A1535 C1536	G1537	G1538 C1539	U1540	G1541	A1542 C1543	A1544	A1545 C1546	C1547	C1548		A1554	A1558	G1559	C1564	C1565	G1568	A1569 A1570	A1571	A15/2 G1573	C1574	C1577	U1578 A1579	A1580	G1581 C1582	A1583	C1584 A1586	A1587 C1588	C1589 U1590	G1591
C1592	G1595	-	C1598	U1602	A1603	C1607	A1608 A1600	A1610	7 7 7 7 7 7 7 7	A1014 C1615	A1616	C1617 A1618		U1621	G1628	-	C1638 111639	C1640	A1641	TOTA	C1648	A1652	G1653 A1654	700 TW	C1657 C1658	01669 U1669	G1666	G1667	A1 000 A1 669	C1670 U1671	C1672	U1673 G1674		G1678	G1681	G1682 C1683	U1688	A1689	U1693
C1694	G1695 G1696	G1697	A1698	A1701	G1702	G1704	G1705 111706		01709	C1/10 C1711	C1712	U1713 G1714		G1719	01/20 G1721	A1722	U1739 G1740	A1741	G1742	C1745A	G1746	G1/4/ G1747A	G1748	G1750	C1751	C1754	A1755 G1756	U1757	00/15	C1761 A1762	G1763	G1764	C1771	G1772 A1773	C1774	01775 G1776	U1779	A1780 C1781	
A1784	A1785 A1786		A1789	A1791	111 70 4	C1795	01796 71797	01798 01798	G1799	G1801	A1802	A1803 C1804	01805 01805		A1810 G1811		G1816 G1817	U1818	A1819	01020 A1821	100 100	61824 A1825	G1826 C1827	G1828	A1829 C1830	G1831	C1832 U1833	U1834	C1836	C1837 C1838		$\frac{01841}{61842}$		G1845 C1846	A1847	A1848	G1856 G1857	G1858 A1859	G1860
G1861	G1862 G1863	U1864	G1865 C1022		A1877	OIOTA	C1881 C1882	G1883	A1884	A1 000 C1 886	C1887	G1888 41889		U1898	41900 A1900	A1901	C1902 C1903		G1906	A1912	A1913	C1914 U1915	A1916	A1918	A1919	C1925	U1926	G1929	OCETS	G1935	A1938	U1939 U1940		G1945 111 946	C1947	61948 61949	G1950 U1951	A1952 A1953	G1954
U1955	U1956 C1957	-	C1962	G1964	C1965	C1967	G1968 A1060	A1970	A1971		G1980	A1981 C1982	C1983	001 070	G198/ C1988	<mark>G1989</mark>	C1990 111991	G1992	U1993	C1996	G1997	G1999	G2000	62002 G2002	G2010	U2011	G2012 A2013	A2014	A2015 U2016	U2017	A2020	C2021 U2022	G2023	G2007	U2028	G2029 A2030	A2031 G2032	A2033 U2034	G2035
C2036	C2040	U2041	A2042	07070	C2050	G2052	G2053 AD054	C2055	G2056	A2059	A2060	G2061 AD062	C2063	C2064	C2066	G2067	U2068 C2069	G2070	A2071	U2074	U2075	U2079		02060 G2087	G2088	G2090	U2091 U2092	G2093	G2095	U2096 C2097	U2098	U2099 G2100	G2101	U2102 C2103	G2104	C2105 G2106	C2107	C2111 G2112	U2113
A2114	G2115 G2116 G	A2117	U2118	G2120	G2121	G2123	G2124 C2125	A2126	G2127	C2120 C2129	U2130	G2131	G2133	A2134	A2135 C2136	C2137	C2138	C2140	G2141	C2143	U2144	C2145 C2146	G2147	G2149 G2149	U2150	G2152	G2153 G2154	G2155	G2157	A2158 G2159	G2160	C2161 • G2162 •	C2163	C2164 C2165	G2166	02167 G2168	A2169 • A2170 •	A2171 • U2172 •	A2173
C2174	C2175 A2176	C2177	C2178	U2180	G2181	C2183	G2184 C2185	G2186	G2187	U2189	G2190	G2191 G2192	G2193	G2194	C2195 C2196	U2197	A2198 A2199	C2200	C2201	20220	G2206	42208 A2208	U2218	62220	G2221	G2223	62224 A2225	C2226	u2233	G2234 G2235	C2236	G2237 G2238	G2239	112244	U2245	G2246 A2247	C2248 U2249	G2250	U2257
C2258	C2261	U2262	C2263		A2267	A2269	G2270 G2271	U2272	A2273	A22/4 C2275	G2276	G2277	G2282	C2283	C2284 C2285	A2286	A2287 A2288	G2289	G2290	C2292	C2293	C2294 C2295	U2296 C2267	42298 A2298	G2299 G2300	c2301	G2302 G2303	G2304	A2305 C2306	G2307 G2308	A2309	A2310 • A2311	U2312	C2313 C2314	G2315	C2316 C2317	G2318 G2319	A2320 G2321	A2322
G2323	A2327	A2328	G2329	62331 62331		42335	A2336	G2340	G2341	C2343	U2344	G2345 47346	C2347		C2350	<mark>G2354</mark>	C2355 C2356	U2357		A2361	G2362	C2364	G2365	A2369	G2370 G2371	G2372	G2373 C2374	12004	A2371 A2378	G2383	G2384	C2385	G2389	U2390 C2391	A2392	A2393 C2394	C2395 G2396	G2400	U2401
C2402	G2405	U2406	G2407	A2411	A2412	G2415	C2416	A2418	U2419	G2421 G2421	A2422	U2423 C2424	02425 A2425		G2429 G2429	A2430	A 24.35		A2439	C2441	C2442	C2443 G2444	G2445	G2447	A2448 112449	A2450	G2455	C2456	C2463	C2464 C2465	C2466	C2467 G2468	A2469	G2470 C2471	G2472	02473 C2474	C2475 A2476	C2477	G2479
C2480	G2481 G2482	C2483	G2484	A2488	1104	02492 U2492	U2493 C2404	10170	C2498	U2500	C2501	G2502	U2504	G2505	02507 C2507	G2508	<mark>(22509</mark>	C2512	G2513 117514	C2515 C2515	G2516	A2518	U2519	C2521	U2522 02523	G2524	G2525 G2526	C2527	02529 G2529	A2530 A2531	G2532	U2537	C2538	C2539	A2542	G2543 G2544	U2552	G2553 U2554	U2555
																						W O	D R		W D ATA		E												

G622	G624	G625	U626	A627	A631	A632	A033 C634	C635	G636 A637	G638	U639	C641	G642	A643 A644	C645	A646 C647	G648	G649 Gero	0000	A653	G654A	C654B	G654C	G654E	C654F	G654H	C654I • A654J •	C654K	G654M	G654N	C654P	C654Q • C654R •	G654S	C654T	A654V	A655 G656	U657	Cepg	C661 C662	4
CGG5	0000	<mark>G669</mark>	A670	C671	C673	G674	A676 A676		G681 G681		A685 C686	G687 C687	N688	C692	C693	U694	G704	A705	G7 07	C708	0/09 G710	G711	G712 G713		G717 4718	C7 19	C720 C721	A722	G/ 23	G726 A727		C730	C736	C737 G738	G739	G7 <u>43</u>	G7 44	G745 A746	U747 C748	2
A752	C754	C755	C756	0757 0758	G759	<u>6760</u>	A764	<mark>G765</mark>	G768	G769	G770	C772	U773	A774 G775	G776	A777 G778	0779	002.4	A 7 8 2 A 7 8 3	A784	G786 C786	<mark>U787</mark>	A788 A789	C790	C791 6792	A793	C796	C797	<u>6,798</u>	A802 11803	A804	G805 C806	U807	G 808	C812	U813 C814	C815	C816 C817	G818 A819	A820
A821	0822 G823	A824	C825	0826 11827	U828	4829	6030 G831	G832	0833 C834	<u>A835</u>	G836 7837	C838 C838	0839	C840 A841	G842	G843 C844	G845	C846 11947	084.0 G84.8	A849	<mark>G852</mark>	G853	G854 G855	CB56	C857 IIRER	G859	U860 A861	G862	A863 G864	C865 A866		<u>A870</u>	U871	G874		U877 A878	G879	G881 G881	(1882 (1883	C884
C885		C888	C889	4890 6897	C893	C894		C897	C898 A899	• 006V	A901	C903	C904	1907	C9 08	A909	A911	1	C914 C915	G916	A917 A918	G919	(1920	U922	C923 C924	C925	A926 G927	G928	G932	A933 C934	C935	C936 U937	6938	A941	G942	0943 6944	A945	G946 G947	G948	<mark>(950</mark>
C951	4953 A953	<mark>G954</mark>	C955	6956 4957	0958 0958	A959	A960 C961	G962	0963 C964	C965	11060	0.909 C970	C971	G972 A973	G974	C975	6979	A980	A983	A984	C986 C986		A990	C992	0993 0994	C995	A996 G997	C998	0999 A1000	A1001 61002	G1003	C1004 C1005	C1006	C1007 C1008	A1009	A1010 G1011	U1012	C1013 U1014	G1015 G1016	G1017
C1018	01019 A1020	A1021	G1022	01023 61024	G1025	U1026	A1028	A1029	G1030	U1033	G1034	G1037	C1038	G1039 C1040	C1041	G1042	G1044	A1045	G1047	A1048	C1049 A1050	G1051	C1052	A1054	७ ए	Ā	ი ი	D	⊃ ʊ	. თ. ლ	D	U A	U	A	5	ວ 🗸	5	ບບ	A 11	0 0
с :	n	U	A	A A	4 10	A Z	n	50	ე ლ	U	A	U U	Å	5 5	n	U ⊲	4 D	D	G G1107	U1108	G1109 G1110	A1111	G1112 III 113	G1114	G1115 C1116	G1117	C1118	G1122	C1123 C1124	A1170	U1130	G1131 A1132	U1133	C1135 G1136	G1137	G1138 G1139	C1140	01141 01142	A1142A A1143	
G1149	G1151 G1151	C1152	C1153	G1154 A1155	A1156	C1161	G1162 G1162	10 L	U1165 C1166	U1167	G1168 C1160	G1170	G1171	G1173 A1174	U1175	G1176	C1178	C1179 C1180	C1180 C1181	A1182	G1186	G1187	U1188 A1189	G1190	G1191 G1192	G1193	A1194 G1195		61203 A1204	U1205	c1208	G1209 A1210	U1211	G1212	G1215	G1216	A1220	C1221 C1221A	G1031	G1232
C1233	01234 G1235	-	U1240	A1241	G1243	G1244	61245 A1246	A1247	61248 U1249	G1250	C1251	41253 A1253		G1256	<mark>G12</mark> 59	G1260 C1261	A1262	1 J C L A	A1 205 G1 266		G1270 G1271	A1272	U1273 41274	A1275	A1 77 8	G1279	G1280 G1281	U1282	61283 A1284	G1285 A1286	A1287	U1288	C1291	U1292 C1293		01300 A1301	A1302	C1305	C1306	G1311
U1312	C1314	C1315	U1316	A131/ C1318	G1319 G1319	C1320		A1331	61332	A1336	G1337	G1339	U1340	U1341	G1344	C1345	G1348	A1349	A1354	G1355	G1358	A1359	A1360 C1361	C1362	C1363 C1364	A1365	G1368	G1369	01372	A1373 C1374	C1375	C1376 G1377	A1378	A1379 G1380		A1384 G1385	C1386	C138/ G1388	G1389	A1395
U1396	0139/ C1398	C1399	G1400	G1401 C1402	C1403	C1404	01405 U1406	C1407	C1408 C1409	G1410	C1411	A1412 G1413		G1416 C1417	G1418	A1419 111420		A1427	C1428 G1429	C1430	01431 C1432	U1433	A1434	U1438	A1439 C1440	G1441	G1442	A1445	G1448	A1449 C1450		U1453	G1459	A1460 G1461		C1464	C1467	C1468 A1469	G1470 A1471	A1472
G1473	G1475	_	G1478	111 48 1	G1482	G1484	41465 A1486	G1487	G1488 U1489	A1490	G1491	C1493	A1494	A1495 A1496	U1497	C1498	C1501	C1502	01503 C1504	C1505	C1506 A1507	A1508		A1509B	G1510 C1511		G1515 C1516	G1517	01518 G1519	G1520 111 523	G1524	A1528	A1528A	G1529 C1530	C1531	C1532 G1533	U1534	A1535 C1536	G1537 G1538	G1539
U1540	41542 A1542	C1543	A1544	A1545 C1546	C1547	C1548		A1554	A1558	G1559	C156A	C1565 C1565		G1568 A1569	A1570	A1571 A1572	G1573	C1574	C1577	U1578	A15/9 A1580	G1581	C1582 41583	C1584	A1586 A1587	C1588	C1589 U1590	G1591	C1997	G1595	C1598	U1602	A1603	C1607	A1608	A1609 A1610		A1614	C1617 A1618	

G1628	C1638	C1640	A1641 G1642		C1648	A1652	A1654	A1655	C1656 C1657	C1658	U1659	C1666	G1667	A1668	A1669 C1670	U1671	C1672	016/3 G1674	C1675	C1670	OIOTA	G1681	G1682 C1683		U1688 A1689		01093 C1694	G1695	G1697 G1697	A1698	A1701	G1702	G1704 G1704	G1705	90 / T.O	U1709	C1/10 C1711	C1712 U1713	G1714 G1717	
G1718 G1719	U1720	A1722	U1739 G1740	A1741	61/42	C1745A	61/40 G1747	G1747A	G1748 A1749	G1750	C1751		A1755	G1756	01/5/ 61758		C1761	A1/62 G1763	G1764	r1760	G1770	C1771	G1772 A1773	C1774	01775 G1776		01//9 A1780	A 1 7 0 /	A1785	A1786	A1789	C1790	TAITY	U1794	01796 U1796	C1797	61199 61799	C1800 G1801	A1802 A1803	
C1804 111805		61811	61816	G1817	01818 A1819	U1820		G1 <mark>826</mark>	61831	C1832	U1833	01834 C1835	C1836	C1837	C1838	U1841	G1842	C1843 C1844	G1845	G1846 A1 847	A104 (A1848		G1856 G1857	G1858	A1859 G1860	G1861	G1863	U1864 C186E	C1866	A1876	G1878	C1879	C1881	C1882	41884 A1884	A1885	C1887	G1888 A1889	U1898	
G1899 A1900	A1901	61903 61903	61 <u>906</u>	G1907	C1908	A1912	C1914	U1915	A1916 U1917	A1918		01923	C1925	U1926	A1927 A1928	G1929	G1930	61935		A1938	01939 U1940		G1945 U1946	C1947	G1948	U1951	A1952 A1953	G1954 111 05 5	COGTO	C1958	C1962	U1963	G1965	A1966	G1968	A1969	A1971	A1972	G1 <mark>980</mark> A1981	
C1982 C1983		C1988	G1989 C1990	U1991	G1992 U1993	900 1000 1000	G1997	G1998	C1999 G2000	A2001	G2002	00000	G2010	U2011	62012 42013	A2014	A2015	U2016 U2017		A2020	U2022	G2023	G2027	U2028	G2029 A2030	A2031	42032 A2033	U2034	C2036		U2041	A2042	02043	C2050	G2052	G2053	A 2034 C2055	G2056	A2059 A2060	
G2061 A2062	C2063	C2065	C2066 G2067	U2068	G2069 G2070	A2071	C2073	U2074	02075	C2078	U2079		G2087	G2088	05080	U2091	U2092	G2094	C2095	U2096 C2007	U2098	<mark>U2099</mark>	G2100 G2101	U2102	C2103 G2104	C2105	G2107 C2107	C2108	G2110	C2111	U2113	A2114	G2116 G2116	A2117	02118 A2119	G2120		G2123 G2124	G2125 A2126	
G2127	C2129	G2131	U2132 • G2133 •	A2134	A2135 C2136	C2137	C2138 C2139	C2140	G2141 C2142	C2143	U2144	C2145	G2147	G2148	G2149 112150	G2151	G2152	G2154	G2155	G2156	A2158	G2159	G2160 C2161	G2162	C2163 C2164	G2165	02167 U2167	G2168	A2109 A2170	A2171 110170	A2173	C2174	A2176	C2177	C2179	U2180	G2182	C2183 G2184	C2185 G2186	
G2187 C2188	U2189	G2191	G2192 G2193	G2194	C2195 C2196	U2197	A2198 A2199	C2200	C2201 C2202		G2206	4220/ A2208	U2218	G2219	G2220	G2222	G2223	42225 A2225	C2226	A2227	C2229	G2230	C2231 U2232	U2233	G2234 G2235	C2236	G2238	<mark>G2239</mark>	G2242	U2243	02245 02245	G2246	A2241 C2248	U2249	002790	U2257	00770	C2261 U2262	C2263 C2264	
A 2267	A2268	62270 G2270	G2271 112272	A2273	A2274 C2275	G2276		G2282	C2283 C2284	C2285	A2286	A228/	G2289	G2290	16220	C2293	C2294	U2296	C2297	A2298	G2300	C2301	G2302 G2303	G2304	A2305 C2306	G2307	42308 A2309	A2310	N2311 U2312	C2313	G2315	C2316	G2318	G2319	62321	A2322	02020	A2327 A2328	G2329 G2330	
G2331	G2334	A2336	G2340	G2341	U2344	G2345	A2340 C2347		C2350	G2354	C2355	C2356		A2360	A2361 G2362	c2363	C2364	62200	A2369	G2370		C2374	A2377	A2378	C2381	G2382	G2384	C2385	G2 <mark>389</mark>	U2390	A2392	A2393		G2397	G2400	U2401	02402	G2405 U2406	A2411	
A2412	G2415	C2417 C2417	A2418 112419	C2420	G2421 A2422	U2423	C2424 A2425	-	G2428 G2429	A2430		A2435	A2439	C2440	C2441 C2442	C2443	G2444	G2446 G2446	G2447	A2448	A2450		G2454 G2455	C2456	A2459		02463 C2463	C2464	C2466	C2467	A2469	G2470	G2471 G2472	U2473	C2475	A2476	A2478	G2481	G2482 C2483	
G2484	A2488	U2491	U2492 112493	G2494	C2498	C2499	C2501	G2502	A2503 U2504	G2505	U2506	C.250 /	C2512	G2513	U2514 C2515	G2516	C2517	N2519	C2520	C2521	G2623	G2524	G2525 G2526	C2527	U2528 G2529	A2530	1002A	A2534	G2536	U2537	C2539	A DE A D	62543	G2544	U2552	G2553 11755 J	U2555	C2556 G2557	C2558 C2559	•
1125.62	U2563	A2304 A2565	A2566 G2567	C2568	G2570	C2571	A25/2 C2573		C2579 U2580	G2581	G2582	G2583	U2585	00 10 10	G2588 A 7589	A2590	C2591	U2593	C2594	G2595	06070	A2602	G2603 U2604	U2605	C2606	U2609	U2611	C2612 112613	02013 A2614	U2615	C2617		42629	G2630	42031 A2632	C.De DE		G2638 A2639	G2640	•
G2645 C2646	U2647	U2649	U2650 C2651	C2652	02653	U2656	A2657 C2658	G2659	A2660 G2661	A2662		A2665	C2667	G2668	63969	G2672	G2673	A2679	C2680	C2681	20020	U2688	U2689 C2690	C2691	C2692 A2693	G2694	G2697	U2698	C2700	C2701	C2703	C2704	A2100	C2710	N2712	A2712A	G2714	C2715 U2716	G2717	•

• Molecule 37: 50S RIBOSOMAL PROTEIN L1

ARG LYS LYS

• Molecule 50: 50S RIBOSOMAL PROTEIN L18

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	211.90Å 450.79Å 625.61Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	50.00 - 3.10	Depositor
Resolution (A)	49.95 - 3.10	EDS
% Data completeness	98.1 (50.00-3.10)	Depositor
(in resolution range)	97.6 (49.95 - 3.10)	EDS
R_{merge}	0.02	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.63 (at 3.12 \text{\AA})$	Xtriage
Refinement program	CNS 1.2	Depositor
B B.	0.250 , 0.280	Depositor
n, n_{free}	0.273 , (Not available)	DCC
R_{free} test set	No test flags present.	wwPDB-VP
Wilson B-factor $(Å^2)$	71.3	Xtriage
Anisotropy	0.237	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.29, 91.6	EDS
L-test for $twinning^2$	$ < L >=0.42, < L^2>=0.25$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.88	EDS
Total number of atoms	298096	wwPDB-VP
Average B, all atoms $(Å^2)$	100.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.48% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: AG9, ZN $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	I	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	AA	0.44	0/36190	0.70	7/56486~(0.0%)
1	CA	0.42	0/36190	0.70	7/56486~(0.0%)
2	AB	0.30	0/1936	0.58	0/2611
2	CB	0.31	0/1936	0.58	0/2611
3	AC	0.31	0/1637	0.56	0/2207
3	CC	0.31	0/1637	0.56	0/2207
4	AD	0.37	0/1733	0.61	0/2318
4	CD	0.36	0/1733	0.60	0/2318
5	AE	0.36	0/1163	0.62	0/1566
5	CE	0.36	0/1163	0.63	0/1566
6	AF	0.34	0/856	0.59	0/1154
6	CF	0.34	0/856	0.59	0/1154
7	AG	0.29	0/1276	0.52	0/1709
7	CG	0.30	0/1276	0.52	0/1709
8	AH	0.32	0/1136	0.60	0/1527
8	CH	0.33	0/1136	0.60	0/1527
9	AI	0.31	0/1027	0.54	0/1373
9	CI	0.31	0/1027	0.55	0/1373
10	AJ	0.33	0/808	0.58	0/1087
10	CJ	0.33	0/808	0.57	0/1087
11	AK	0.33	0/900	0.60	0/1213
11	CK	0.33	0/900	0.60	0/1213
12	AL	0.46	0/987	0.79	0/1322
12	CL	0.43	0/987	0.78	0/1322
13	AM	0.32	0/943	0.61	0/1256
13	CM	0.33	0/943	0.61	0/1256
14	AN	0.31	0/501	0.51	0/664
14	CN	0.33	0/501	0.51	0/664
15	AO	0.33	0/745	0.58	0/992
15	CO	0.35	0/745	0.58	0/992
16	AP	0.38	0/717	0.61	0/965
16	CP	0.37	0/717	0.60	0/965

4V8N	
------	--

		В	ond lengths	I	Bond angles
NIOI	Chain	RMSZ	# Z > 5	RMSZ	$ \widetilde{Z} >5$
17	AQ	0.39	0/837	0.63	0/1119
17	CQ	0.37	0/837	0.62	0/1119
18	AR	0.33	0/579	0.64	0/768
18	CR	0.32	0/579	0.64	0/768
19	AS	0.36	0/643	0.58	0/867
19	CS	0.37	0/643	0.58	0/867
20	AT	0.32	0/765	0.54	0/1007
20	CT	0.31	0/765	0.54	0/1007
21	AU	0.42	0/213	0.53	0/279
21	CU	0.43	0/213	0.53	0/279
22	AV	1.84	39/1830~(2.1%)	0.95	3/2849~(0.1%)
22	AY	1.92	52/1830~(2.8%)	0.98	2/2849~(0.1%)
22	CV	0.88	0/1830	0.88	3/2849~(0.1%)
22	CY	1.56	22/1830~(1.2%)	1.25	27/2849~(0.9%)
23	AW	2.12	62/1853~(3.3%)	1.06	9/2887~(0.3%)
23	CW	0.83	0/1853	0.99	8/2887~(0.3%)
24	AX	0.55	0/290	0.83	0/450
24	CX	0.81	0/290	0.81	0/450
25	B0	0.42	0/671	0.62	0/892
25	D0	0.38	0/671	0.62	0/892
26	B1	0.48	0/741	0.78	2/986~(0.2%)
26	D1	0.44	0/741	0.76	0/986
27	B2	0.43	0/600	0.74	0/793
27	D2	0.34	0/600	0.59	0/793
28	B3	0.43	0/473	0.66	1/636~(0.2%)
28	D3	0.40	0/473	0.67	0/636
29	B4	0.38	0/461	0.64	0/623
29	D4	0.38	0/461	0.64	0/623
30	B5	0.56	0/442	0.73	0/598
30	D5	0.48	0/442	0.72	0/598
31	B6	0.37	0/440	0.72	1/586~(0.2%)
31	D6	0.37	0/440	0.72	1/586~(0.2%)
32	B7	0.54	0/418	0.65	0/552
32	D7	0.51	0/418	0.66	0/552
33	B8	0.59	0/516	0.84	0/681
33	D8	0.52	0/516	0.84	0/681
34	B9	0.31	0/310	0.59	0/407
34	D9	0.32	0/310	0.58	0/407
35	BA	0.60	$1/68704~(\overline{0.0\%})$	0.73	42/107260 (0.0%)
35	DA	0.51	0/68704	0.73	$35/1072\overline{60}~(0.0\%)$
36	BB	0.41	$\overline{0/2853}$	0.69	0/4451
36	DB	0.38	0/2853	0.69	0/4451
37	BC	0.30	0/956	0.53	0/1288

4V8N

N /L = 1		E	Bond lengths]	Bond angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
37	DC	0.31	0/956	0.53	0/1288
38	BD	0.50	0/2155	0.78	2/2907~(0.1%)
38	DD	0.46	0/2155	0.78	3/2907~(0.1%)
39	BE	0.50	0/1597	0.74	0/2155
39	DE	0.45	0/1597	0.74	0/2155
40	BF	0.46	0/1659	0.69	0/2246
40	DF	0.42	0/1659	0.68	0/2246
41	BG	0.35	0/1498	0.67	0/2013
41	DG	0.34	0/1498	0.67	0/2013
42	BH	0.36	0/1285	0.70	$1/1741 \ (0.1\%)$
42	DH	0.37	0/1285	0.69	$1/1741 \ (0.1\%)$
43	BI	0.36	0/1147	0.86	3/1553~(0.2%)
43	DI	0.35	0/1147	0.85	3/1553~(0.2%)
45	BN	0.43	0/1132	0.70	0/1527
45	DN	0.41	0/1132	0.69	0/1527
46	BO	0.46	0/943	0.67	0/1269
46	DO	0.45	0/943	0.69	0/1269
47	BP	0.47	0/1131	0.93	5/1504~(0.3%)
47	DP	0.42	0/1131	0.92	4/1504~(0.3%)
48	BQ	0.43	0/1134	0.59	0/1517
48	DQ	0.42	0/1134	0.59	0/1517
49	BR	0.45	0/974	0.78	2/1302~(0.2%)
49	DR	0.42	0/974	0.78	2/1302~(0.2%)
50	BS	0.36	0/779	0.63	0/1038
50	DS	0.36	0/779	0.64	0/1038
51	BT	0.44	0/1138	0.76	1/1521~(0.1%)
51	DT	0.44	0/1138	0.76	$1/1521 \ (0.1\%)$
52	BU	0.50	0/975	0.69	0/1297
52	DU	0.45	0/975	0.67	0/1297
53	BV	0.40	0/790	0.70	0/1057
53	DV	0.38	0/790	0.69	0/1057
54	BW	0.52	0/907	0.73	0/1216
54	DW	0.45	0/907	0.73	0/1216
55	BX	0.46	0/740	0.69	0/995
55	DX	0.45	0/740	0.69	0/995
56	BY	0.46	0/789	0.72	$1/10\overline{53}\ (0.1\%)$
56	DY	0.42	0/789	0.71	1/1053~(0.1%)
57	ΒZ	0.44	0/1500	0.68	0/2037
57	DZ	0.38	0/1500	0.64	0/2037
All	All	0.56	$17\overline{6}/322506~(0.1\%)$	0.72	$178/482452 \ (0.0\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected

by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	AA	0	18
1	CA	0	19
22	AV	1	17
22	AY	1	19
22	CV	1	10
22	CY	1	17
23	AW	0	21
23	CW	0	11
35	BA	5	46
35	DA	4	41
All	All	13	219

The worst 5 of 176 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	CY	56	U	C2-N3	28.94	1.58	1.37
22	CY	57	U	C3'-O3'	17.68	1.67	1.42
22	CY	56	U	N3-C4	14.74	1.51	1.38
22	CY	56	U	N1-C2	13.32	1.50	1.38
22	CY	58	С	P-O5'	12.55	1.72	1.59

The worst 5 of 178 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	CY	56	U	C5-C6-N1	16.14	130.77	122.70
43	BI	50	ARG	NE-CZ-NH1	13.96	127.28	120.30
43	BI	50	ARG	NE-CZ-NH2	-13.50	113.55	120.30
43	DI	50	ARG	NE-CZ-NH2	-13.46	113.57	120.30
43	DI	50	ARG	NE-CZ-NH1	13.32	126.96	120.30

5 of 13 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
22	AV	36	AG9	C4
22	AY	36	AG9	C4
35	BA	752	А	C3'
35	BA	790	С	C3'
35	BA	1799	G	C3'

5 of 219 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	AA	265	G	Sidechain
1	AA	292	G	Sidechain
1	AA	387	U	Sidechain
1	AA	436	С	Sidechain
1	AA	97	G	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	AA	32329	0	16318	1334	0
1	CA	32329	0	16318	1413	0
2	AB	1901	0	1951	265	0
2	CB	1901	0	1951	274	0
3	AC	1613	0	1677	225	0
3	CC	1613	0	1677	239	0
4	AD	1703	0	1765	229	1
4	CD	1703	0	1766	226	0
5	AE	1147	0	1207	149	0
5	CE	1147	0	1207	155	0
6	AF	843	0	857	81	0
6	CF	843	0	857	81	1
7	AG	1257	0	1296	124	0
7	CG	1257	0	1296	123	0
8	AH	1116	0	1177	123	0
8	СН	1116	0	1177	126	0
9	AI	1010	0	1035	154	0
9	CI	1010	0	1035	159	0
10	AJ	795	0	840	181	0
10	CJ	795	0	840	178	0
11	AK	885	0	904	85	0
11	CK	885	0	904	85	0
12	AL	971	0	1057	215	0
12	CL	971	0	1057	213	0
13	AM	938	0	991	131	0
13	CM	938	0	991	131	0
14	AN	492	0	531	49	0
14	CN	492	0	532	54	0
15	AO	734	0	771	57	0

4V8N	
4V8N	

		Non T	puye	TT(addad)	Clashag	Sama Clashas
1101	Chain	NON-H	H(model)	H(added)	Clasnes	Symm-Clasnes
15		701	0	7720	62	0
10	AP	701	0	720	83	0
16	CP	701	0	720	82	0
17	AQ	824	0	891	83	0
17	CQ	824	0	891	79	0
18	AR	574	0	644	72	0
18	CR	574	0	644	73	0
19	AS	630	0	652	87	0
19	CS	630	0	652	79	0
20	AT	763	0	861	90	0
20	CT	763	0	861	85	0
21	AU	209	0	221	22	0
21	CU	209	0	221	24	0
22	AV	1667	0	857	264	0
22	AY	1667	0	857	326	0
22	CV	1667	0	857	235	0
22	CY	1667	0	854	329	0
23	AW	1659	0	843	396	0
23	CW	1659	0	843	323	0
24	AX	257	0	132	12	0
24	CX	257	0	132	35	0
25	B0	662	0	688	69	0
25	D0	662	0	688	72	0
26	B1	734	0	808	71	0
26	D1	734	0	808	87	0
27	B2	598	0	653	72	0
27	D2	598	0	653	70	0
28	B3	468	0	523	35	0
28	D3	468	0	523	37	0
29	B4	451	0	449	97	0
29	D4	451	0	449	82	0
30	B5	428	0	445	73	0
30	D5	428	0	445	72	0
31	B6	433	0	461	85	0
31	D6	433	0	461	86	0
32	B7	410	0	454	23	0
32	D7	410	0	454	24	0
33	B8	508	0	576	110	0
33	D8	508	0	576	110	0
34	B9	307	0	338	28	0
34	D9	307	0	338	32	0
35	BA	61341	0	30928	1763	0

4	V	8	Ν
---	---	---	---

	Chain	Non H	puye	II(addad)	Clashag	Summe Clashes
1VI01		1NOII-H	H(model)		Clasnes	Symm-Clasnes
35	DA	01341	0	30928	1842	0
30	BB	2551	0	1295	93	0
30	DB	2551	0	1295	112	0
31	BC	937	0	957	113	0
31	DC	937	0	957	112	0
38	BD	2105	0	2182	267	0
38	DD	2105	0	2182	278	0
39	BE	1564	0	1629	236	0
39	DE	1564	0	1629	240	0
40	BF	1624	0	1677	169	0
40	DF	1624	0	1677	173	0
41	BG	1474	0	1534	248	0
41	DG	1474	0	1534	305	0
42	BH	1260	0	1326	154	0
42	DH	1260	0	1326	157	0
43	BI	1132	0	1218	204	0
43	DI	1132	0	1218	196	0
44	BJ	651	0	166	32	0
44	DJ	651	0	170	17	0
45	BN	1105	0	1180	145	0
45	DN	1105	0	1180	150	0
46	BO	933	0	996	116	0
46	DO	933	0	996	112	0
47	BP	1114	0	1187	284	0
47	DP	1114	0	1187	288	0
48	BQ	1113	0	1171	132	0
48	DQ	1113	0	1171	140	0
49	BR	960	0	1021	124	0
49	DR	960	0	1021	126	0
50	BS	771	0	832	153	0
50	DS	771	0	832	146	0
51	BT	1124	0	1181	251	0
51	DT	1124	0	1181	242	0
52	BU	958	0	1015	138	0
52	DU	958	0	1015	132	0
53	BV	779	0	852	151	0
53	DV	779	0	852	149	0
54	BW	896	0	953	70	0
54	DW	896	0	953	75	0
55	BX	726	0	778	52	0
55	DX	726	0	778	60	0
56	BY	776	0	870	175	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
56	DY	776	0	870	175	0
57	ΒZ	1468	0	1492	265	0
57	DZ	1468	0	1491	341	0
58	AD	1	0	0	4	0
58	AN	1	0	0	3	0
58	CD	1	0	0	5	0
58	CN	1	0	0	3	0
All	All	298096	0	201782	19809	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 40.

The worst 5 of 19809 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
22:CY:57:U:C6	57:DZ:182:LYS:HA	1.08	1.58	
1:CA:1196:U:C4	24:CX:23:A:C5	1.96	1.53	
22:CY:57:U:H6	57:DZ:182:LYS:CA	1.20	1.50	
1:CA:1196:U:O4	24:CX:23:A:C4	1.70	1.45	
22:CY:62:U:O2'	57:DZ:186:GLU:CB	1.68	1.39	

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
4:AD:27:TYR:OH	$6:CF:15:ASP:OD2[4_455]$	2.05	0.15	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
2	AB	233/256~(91%)	153~(66%)	55~(24%)	25~(11%)	0 2
2	CB	233/256~(91%)	152~(65%)	57~(24%)	24 (10%)	0 3
3	AC	205/239~(86%)	141 (69%)	43 (21%)	21 (10%)	0 3
3	CC	205/239~(86%)	142 (69%)	40 (20%)	23 (11%)	0 2
4	AD	206/209~(99%)	133 (65%)	46 (22%)	27 (13%)	0 1
4	CD	206/209 (99%)	135 (66%)	44 (21%)	27 (13%)	0 1
5	AE	149/162~(92%)	111 (74%)	24 (16%)	14 (9%)	0 3
5	CE	149/162~(92%)	110 (74%)	25 (17%)	14 (9%)	0 3
6	AF	99/101~(98%)	77 (78%)	15 (15%)	7 (7%)	1 6
6	CF	99/101~(98%)	76 (77%)	17 (17%)	6 (6%)	1 9
7	AG	153/156~(98%)	108 (71%)	41 (27%)	4 (3%)	5 26
7	CG	153/156~(98%)	110 (72%)	39~(26%)	4 (3%)	5 26
8	AH	136/138~(99%)	100 (74%)	29 (21%)	7(5%)	2 13
8	СН	136/138~(99%)	99 (73%)	29 (21%)	8 (6%)	1 10
9	AI	121/128~(94%)	90 (74%)	22 (18%)	9(7%)	1 6
9	CI	121/128~(94%)	91 (75%)	20 (16%)	10 (8%)	1 5
10	AJ	97/105~(92%)	76 (78%)	17 (18%)	4 (4%)	3 16
10	CJ	97/105~(92%)	76 (78%)	17 (18%)	4 (4%)	3 16
11	AK	117/129~(91%)	83 (71%)	26 (22%)	8 (7%)	1 7
11	CK	117/129~(91%)	83 (71%)	26~(22%)	8 (7%)	1 7
12	AL	123/135~(91%)	75 (61%)	28 (23%)	20 (16%)	0 0
12	CL	123/135~(91%)	75 (61%)	28 (23%)	20 (16%)	0 0
13	AM	107/126~(85%)	67 (63%)	25 (23%)	15 (14%)	0 1
13	CM	107/126~(85%)	66 (62%)	26 (24%)	15 (14%)	0 1
14	AN	58/61~(95%)	41 (71%)	9 (16%)	8 (14%)	0 1
14	CN	58/61~(95%)	40 (69%)	9 (16%)	9 (16%)	0 0
15	AO	86/89~(97%)	52 (60%)	25 (29%)	9 (10%)	0 3
15	CO	86/89~(97%)	50 (58%)	27 (31%)	9 (10%)	0 3
16	AP	82/88~(93%)	48 (58%)	24 (29%)	10 (12%)	0 1
16	CP	82/88~(93%)	49 (60%)	24 (29%)	9 (11%)	0 2
17	AQ	98/105~(93%)	70 (71%)	22 (22%)	6 (6%)	1 9
17	CQ	98/105~(93%)	71 (72%)	20 (20%)	7 (7%)	1 6

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
18	AR	68/88~(77%)	44 (65%)	18 (26%)	6 (9%)	1	4
18	CR	68/88~(77%)	44 (65%)	18 (26%)	6 (9%)	1	4
19	AS	77/93~(83%)	47 (61%)	17~(22%)	13~(17%)	0	0
19	CS	77/93~(83%)	48 (62%)	16 (21%)	13~(17%)	0	0
20	AT	97/106~(92%)	67 (69%)	17 (18%)	13 (13%)	0	1
20	CT	97/106~(92%)	67 (69%)	18 (19%)	12 (12%)	0	1
21	AU	23/27~(85%)	14 (61%)	6 (26%)	3 (13%)	0	1
21	CU	23/27~(85%)	13 (56%)	7 (30%)	3 (13%)	0	1
25	B0	82/85~(96%)	67 (82%)	12 (15%)	3(4%)	3	19
25	D0	82/85~(96%)	66 (80%)	13 (16%)	3 (4%)	3	19
26	B1	92/98~(94%)	68 (74%)	13 (14%)	11 (12%)	0	1
26	D1	92/98~(94%)	71 (77%)	9 (10%)	12 (13%)	0	1
27	B2	69/72~(96%)	50 (72%)	14 (20%)	5 (7%)	1	6
27	D2	69/72~(96%)	45 (65%)	16 (23%)	8 (12%)	0	2
28	B3	58/60~(97%)	44 (76%)	9~(16%)	5(9%)	1	4
28	D3	58/60~(97%)	44 (76%)	9~(16%)	5 (9%)	1	4
29	B4	56/71~(79%)	26 (46%)	15 (27%)	15 (27%)	0	0
29	D4	56/71~(79%)	26 (46%)	16 (29%)	14~(25%)	0	0
30	B5	54/60~(90%)	43 (80%)	3~(6%)	8 (15%)	0	0
30	D5	54/60~(90%)	43 (80%)	3~(6%)	8 (15%)	0	0
31	B6	48/54~(89%)	22 (46%)	12 (25%)	14 (29%)	0	0
31	D6	48/54~(89%)	22 (46%)	12~(25%)	14 (29%)	0	0
32	B7	46/49~(94%)	43 (94%)	3~(6%)	0	100	100
32	D7	46/49~(94%)	43 (94%)	3~(6%)	0	100	100
33	B8	62/65~(95%)	41 (66%)	13 (21%)	8 (13%)	0	1
33	D8	62/65~(95%)	41 (66%)	13~(21%)	8 (13%)	0	1
34	B9	35/37~(95%)	28 (80%)	7(20%)	0	100	100
34	D9	35/37~(95%)	28 (80%)	7~(20%)	0	100	100
37	BC	$\overline{116/229}~(51\%)$	94 (81%)	19 (16%)	3(3%)	5	26
37	DC	116/229~(51%)	94 (81%)	19 (16%)	3 (3%)	5	26
38	BD	$270/27\overline{6\ (98\%)}$	209 (77%)	32~(12%)	29 (11%)	0	2

Continued fro	m previous	page
Continued fro	m precious	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
38	DD	270/276~(98%)	207 (77%)	34~(13%)	29~(11%)	0 2
39	BE	203/206~(98%)	134 (66%)	36~(18%)	33~(16%)	0 0
39	DE	203/206~(98%)	134 (66%)	37~(18%)	32 (16%)	0 0
40	BF	206/210~(98%)	149 (72%)	31~(15%)	26 (13%)	0 1
40	DF	206/210~(98%)	148 (72%)	32~(16%)	26 (13%)	0 1
41	BG	177/182~(97%)	112 (63%)	39~(22%)	26 (15%)	0 0
41	DG	177/182~(97%)	93 (52%)	57 (32%)	27 (15%)	0 0
42	BH	163/180~(91%)	110 (68%)	29 (18%)	24 (15%)	0 0
42	DH	163/180~(91%)	110 (68%)	28 (17%)	25 (15%)	0 0
43	BI	144/148~(97%)	84 (58%)	37~(26%)	23 (16%)	0 0
43	DI	144/148~(97%)	85 (59%)	36~(25%)	23 (16%)	0 0
45	BN	137/140~(98%)	99 (72%)	22 (16%)	16 (12%)	0 1
45	DN	137/140~(98%)	101 (74%)	20 (15%)	16 (12%)	0 1
46	BO	120/122~(98%)	99 (82%)	14 (12%)	7~(6%)	1 10
46	DO	120/122~(98%)	96 (80%)	16~(13%)	8 (7%)	1 7
47	BP	144/150~(96%)	69 (48%)	43 (30%)	32~(22%)	0 0
47	DP	144/150~(96%)	69 (48%)	43 (30%)	32~(22%)	0 0
48	BQ	139/141~(99%)	100 (72%)	27~(19%)	12 (9%)	1 4
48	DQ	139/141~(99%)	99 (71%)	28~(20%)	12 (9%)	1 4
49	BR	115/118 (98%)	88 (76%)	13~(11%)	14 (12%)	0 1
49	DR	115/118~(98%)	87 (76%)	14~(12%)	14 (12%)	0 1
50	BS	97/112~(87%)	54 (56%)	24~(25%)	19 (20%)	0 0
50	DS	97/112~(87%)	52 (54%)	26~(27%)	19 (20%)	0 0
51	BT	134/146~(92%)	85 (63%)	19~(14%)	30 (22%)	0 0
51	DT	134/146~(92%)	86 (64%)	18 (13%)	30 (22%)	0 0
52	BU	115/118~(98%)	90 (78%)	19 (16%)	6 (5%)	2 12
52	DU	115/118~(98%)	88 (76%)	20 (17%)	7~(6%)	1 9
53	BV	99/101~(98%)	64 (65%)	22 (22%)	13 (13%)	0 1
53	DV	99/101~(98%)	64 (65%)	22 (22%)	13 (13%)	0 1
54	BW	111/113 (98%)	91 (82%)	12 (11%)	8 (7%)	1 6
54	DW	$\overline{111/113} \ (98\%)$	91 (82%)	13 (12%)	7 (6%)	1 8

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
55	BX	91/96~(95%)	71 (78%)	15~(16%)	5~(6%)	2 11
55	DX	91/96~(95%)	67 (74%)	19 (21%)	5~(6%)	2 11
56	BY	99/110 (90%)	48 (48%)	26~(26%)	25~(25%)	0 0
56	DY	99/110 (90%)	48 (48%)	26~(26%)	25~(25%)	0 0
57	BZ	183/206~(89%)	111 (61%)	45 (25%)	27~(15%)	0 0
57	DZ	183/206~(89%)	111 (61%)	42 (23%)	30 (16%)	0 0
All	All	11600/12592~(92%)	7946 (68%)	2292 (20%)	1362 (12%)	0 1

5 of 1362 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	AB	15	VAL
2	AB	75	LYS
2	AB	101	MET
2	AB	123	ALA
2	AB	165	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
2	AB	202/220~(92%)	186 (92%)	16 (8%)	12 40	
2	CB	202/220~(92%)	187~(93%)	15~(7%)	13 42	
3	AC	160/188~(85%)	145~(91%)	15~(9%)	8 32	
3	$\mathbf{C}\mathbf{C}$	160/188~(85%)	146 (91%)	14 (9%)	10 36	
4	AD	180/181~(99%)	162 (90%)	18 (10%)	7 28	
4	CD	180/181~(99%)	162 (90%)	18 (10%)	7 28	
5	AE	115/123~(94%)	107~(93%)	8~(7%)	15 45	
5	CE	115/123~(94%)	107~(93%)	8~(7%)	15 45	
6	AF	90/90~(100%)	87 (97%)	3(3%)	38 69	
6	$\overline{\mathrm{CF}}$	90/90~(100%)	87 (97%)	3~(3%)	38 69	

4V8N	
------	--

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
7	AG	126/127~(99%)	121~(96%)	5(4%)	31	65
7	CG	126/127~(99%)	121 (96%)	5~(4%)	31	65
8	AH	119/119~(100%)	109~(92%)	10 (8%)	11	38
8	CH	119/119~(100%)	109 (92%)	10 (8%)	11	38
9	AI	98/99~(99%)	90~(92%)	8 (8%)	11	38
9	CI	98/99~(99%)	90~(92%)	8 (8%)	11	38
10	AJ	88/92~(96%)	83 (94%)	5~(6%)	20	52
10	CJ	88/92~(96%)	83 (94%)	5~(6%)	20	52
11	AK	90/99~(91%)	85 (94%)	5~(6%)	21	52
11	CK	90/99~(91%)	85 (94%)	5~(6%)	21	52
12	AL	104/111~(94%)	85 (82%)	19 (18%)	1	7
12	CL	104/111~(94%)	84 (81%)	20 (19%)	1	6
13	AM	94/101~(93%)	84 (89%)	10 (11%)	6	26
13	CM	94/101~(93%)	84 (89%)	10 (11%)	6	26
14	AN	49/50~(98%)	47 (96%)	2 (4%)	30	64
14	CN	49/50~(98%)	47 (96%)	2 (4%)	30	64
15	AO	79/80~(99%)	75~(95%)	4(5%)	24	56
15	CO	79/80~(99%)	75~(95%)	4(5%)	24	56
16	AP	72/74~(97%)	66~(92%)	6 (8%)	11	38
16	CP	72/74~(97%)	66~(92%)	6 (8%)	11	38
17	AQ	94/97~(97%)	90 (96%)	4 (4%)	29	62
17	CQ	94/97~(97%)	90 (96%)	4 (4%)	29	62
18	AR	61/77~(79%)	59~(97%)	2 (3%)	38	69
18	CR	61/77~(79%)	59~(97%)	2(3%)	38	69
19	AS	69/80~(86%)	62 (90%)	7 (10%)	7	28
19	CS	69/80~(86%)	61 (88%)	8 (12%)	5	22
20	AT	76/82~(93%)	71 (93%)	5 (7%)	16	47
20	CT	76/82~(93%)	71 (93%)	5 (7%)	16	47
21	AU	19/22~(86%)	17 (90%)	2 (10%)	7	26
21	CU	19/22~(86%)	18 (95%)	1(5%)	22	54
25	B0	66/67~(98%)	59~(89%)	7 (11%)	6	26

4	V	8	Ν
4	v	0	LΝ

α \cdot \cdot \cdot	c	•	
Continued	trom	nremons	naae
Continucu	110110	preduous	puye
		1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
25	D0	66/67~(98%)	59~(89%)	7~(11%)	6	26
26	B1	78/83~(94%)	70~(90%)	8 (10%)	7	27
26	D1	78/83~(94%)	68~(87%)	10~(13%)	4	18
27	B2	66/67~(98%)	57~(86%)	9~(14%)	3	16
27	D2	66/67~(98%)	60 (91%)	6 (9%)	9	33
28	B3	51/52~(98%)	48 (94%)	3 (6%)	19	50
28	D3	51/52~(98%)	48 (94%)	3 (6%)	19	50
29	B4	51/63~(81%)	42 (82%)	9 (18%)	2	8
29	D4	51/63~(81%)	42 (82%)	9 (18%)	2	8
30	B5	47/52~(90%)	42 (89%)	5 (11%)	6	26
30	D5	47/52~(90%)	42 (89%)	5 (11%)	6	26
31	B6	49/52~(94%)	43 (88%)	6 (12%)	5	19
31	D6	49/52~(94%)	43 (88%)	6 (12%)	5	19
32	B7	40/42~(95%)	35 (88%)	5 (12%)	4	18
32	D7	40/42~(95%)	36 (90%)	4 (10%)	7	28
33	B8	53/55~(96%)	44 (83%)	9 (17%)	2	9
33	D8	53/55~(96%)	44 (83%)	9~(17%)	2	9
34	B9	34/34~(100%)	33 (97%)	1 (3%)	42	72
34	D9	34/34~(100%)	33~(97%)	1 (3%)	42	72
37	BC	99/181~(55%)	94~(95%)	5 (5%)	24	56
37	DC	99/181~(55%)	94 (95%)	5 (5%)	24	56
38	BD	213/218~(98%)	185 (87%)	28 (13%)	4	17
38	DD	213/218~(98%)	187 (88%)	26 (12%)	5	19
39	BE	165/166~(99%)	144 (87%)	21 (13%)	4	18
39	DE	165/166~(99%)	143 (87%)	22 (13%)	4	16
40	BF	165/166~(99%)	149 (90%)	16 (10%)	8	30
40	DF	165/166~(99%)	149 (90%)	16 (10%)	8	30
41	BG	155/156~(99%)	140 (90%)	15 (10%)	8	30
41	DG	155/156~(99%)	140 (90%)	15 (10%)	8	30
42	BH	137/148~(93%)	121 (88%)	16 (12%)	5	22
42	DH	137/148~(93%)	121 (88%)	16 (12%)	5	22

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
43	BI	122/124~(98%)	112 (92%)	10 (8%)	11	38
43	DI	122/124~(98%)	112 (92%)	10 (8%)	11	38
45	BN	117/119~(98%)	101 (86%)	16 (14%)	3	16
45	DN	117/119~(98%)	101 (86%)	16 (14%)	3	16
46	BO	100/100~(100%)	94~(94%)	6 (6%)	19	49
46	DO	100/100~(100%)	94~(94%)	6 (6%)	19	49
47	BP	112/116~(97%)	93~(83%)	19 (17%)	2	9
47	DP	112/116~(97%)	93~(83%)	19 (17%)	2	9
48	BQ	110/111 (99%)	100 (91%)	10 (9%)	9	33
48	DQ	110/111 (99%)	101 (92%)	9 (8%)	11	38
49	BR	100/101~(99%)	87 (87%)	13 (13%)	4	18
49	DR	100/101~(99%)	86 (86%)	14 (14%)	3	15
50	BS	77/88~(88%)	64 (83%)	13 (17%)	2	9
50	DS	77/88~(88%)	64 (83%)	13 (17%)	2	9
51	BT	118/127~(93%)	96 (81%)	22 (19%)	1	7
51	DT	118/127~(93%)	95~(80%)	23 (20%)	1	6
52	BU	92/94~(98%)	83~(90%)	9 (10%)	8	29
52	DU	92/94~(98%)	81 (88%)	11 (12%)	5	20
53	BV	82/82~(100%)	67~(82%)	15 (18%)	1	7
53	DV	82/82~(100%)	68~(83%)	14 (17%)	2	9
54	BW	91/92~(99%)	81 (89%)	10 (11%)	6	25
54	DW	91/92~(99%)	81 (89%)	10 (11%)	6	25
55	BX	74/78~(95%)	69~(93%)	5 (7%)	16	45
55	DX	74/78~(95%)	69~(93%)	5 (7%)	16	45
56	BY	84/91~(92%)	70 (83%)	14 (17%)	2	9
56	DY	84/91 (92%)	69~(82%)	15 (18%)	2	8
57	BZ	162/179~(90%)	140 (86%)	22 (14%)	3	16
57	DZ	162/179~(90%)	145 (90%)	17 (10%)	7	26
All	All	9790/10432 (94%)	8794 (90%)	996 (10%)	7	27

 $5~{\rm of}~996$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
55	BX	68	ARG
49	DR	100	LEU
8	CH	115	SER
49	DR	54	LEU
53	DV	91	TYR

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 311 such side chains are listed below:

Mol	Chain	Res	Type
27	D2	70	GLN
48	DQ	45	GLN
30	D5	4	HIS
39	DE	192	ASN
53	DV	80	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	AA	1503/1522~(98%)	215 (14%)	29 (1%)
1	CA	1503/1522~(98%)	218 (14%)	31 (2%)
22	AV	76/78~(97%)	25 (32%)	0
22	AY	76/78~(97%)	24 (31%)	2(2%)
22	CV	76/78~(97%)	24 (31%)	0
22	CY	76/78~(97%)	23 (30%)	2(2%)
23	AW	77/78~(98%)	41 (53%)	4(5%)
23	CW	77/78~(98%)	39~(50%)	3~(3%)
24	AX	11/24~(45%)	2 (18%)	0
24	CX	11/24~(45%)	2(18%)	0
35	BA	2847/2915~(97%)	498 (17%)	49 (1%)
35	DA	2847/2915~(97%)	498 (17%)	49 (1%)
36	BB	118/122~(96%)	18 (15%)	1 (0%)
36	DB	118/122~(96%)	17 (14%)	1 (0%)
All	All	9416/9634 (97%)	1644 (17%)	171 (1%)

5 of 1644 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	AA	9	G
1	AA	31	G
1	AA	32	А
1	AA	39	G

Continued from previous page...

Mol	Chain	Res	Type
1	AA	47	С

5 of 171 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	CA	1504	G
35	DA	1395	А
22	CY	4	С
35	DA	474	G
35	DA	1819	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

4 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Typ	Turne	Chain	Dec	Pog Link	Bond lengths			Bond angles				
	туре	Chain	Unam	nes	LIIIK	Res Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
22	AG9	AV	36	22	22,29,30	0.76	1 (4%)	25,39,42	1.05	2 (8%)		
22	AG9	AY	36	22	22,29,30	1.36	2 (9%)	25,39,42	1.21	3 (12%)		
22	AG9	CY	36	22	22,29,30	1.86	4 (18%)	25,39,42	1.09	2 (8%)		
22	AG9	CV	36	22	22,29,30	1.53	2 (9%)	25,39,42	1.04	2 (8%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
22	AG9	AV	36	22	1/1/9/13	3/14/47/48	0/2/2/2
22	AG9	AY	36	22	1/1/9/13	7/14/47/48	0/2/2/2
22	AG9	CY	36	22	1/1/9/13	7/14/47/48	0/2/2/2
22	AG9	CV	36	22	1/1/9/13	3/14/47/48	0/2/2/2

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
22	CY	36	AG9	C2-N1	6.08	1.43	1.38
22	CV	36	AG9	C2-N1	5.59	1.43	1.38
22	AY	36	AG9	C2-N1	5.10	1.42	1.38
22	CV	36	AG9	C2-N3	3.89	1.37	1.30
22	CY	36	AG9	C2-N3	3.43	1.36	1.30

The worst 5 of 9 bond length outliers are listed below:

The worst 5 of 9 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	AY	36	AG9	N2-C2-N1	3.73	119.71	117.34
22	AV	36	AG9	N2-C2-N1	3.49	119.56	117.34
22	CV	36	AG9	N2-C2-N1	3.47	119.54	117.34
22	AY	36	AG9	CD-NE-CZ	3.09	124.72	114.64
22	CV	36	AG9	CD-NE-CZ	3.01	124.45	114.64

All (4) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
22	AV	36	AG9	C4
22	AY	36	AG9	C4
22	CV	36	AG9	C4
22	CY	36	AG9	C4

5 of 20 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
22	AV	36	AG9	N1-C2-N2-CA
22	AV	36	AG9	N3-C2-N2-CA
22	AY	36	AG9	N1-C2-N2-CA
22	AY	36	AG9	N3-C2-N2-CA
22	CV	36	AG9	N1-C2-N2-CA

There are no ring outliers.

4 monomers are involved in 36 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
22	AV	36	AG9	6	0
22	AY	36	AG9	11	0
22	CY	36	AG9	7	0
22	CV	36	AG9	12	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 4 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
13	AM	5
13	CM	5
9	AI	2
9	CI	2
41	DG	1
41	BG	1

The worst 5 of 16 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	AM	112:GLY	С	113:PRO	Ν	4.84
1	CM	112:GLY	С	113:PRO	Ν	4.84
1	AM	69:GLU	С	70:LEU	Ν	4.24
1	CM	69:GLU	С	70:LEU	Ν	4.23
1	DG	112:PRO	С	113:ARG	Ν	4.14

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	AA	1504/1522~(98%)	0.58	95 (6%) 20 8	44, 101, 184, 200	0
1	CA	1504/1522~(98%)	0.57	103 (6%) 17 7	55, 115, 186, 200	0
2	AB	235/256~(91%)	0.69	30 (12%) 3 1	75, 134, 176, 198	0
2	CB	235/256~(91%)	1.22	55~(23%) 0 0	94, 148, 183, 200	0
3	AC	207/239~(86%)	0.80	28 (13%) 3 1	82, 127, 157, 179	0
3	CC	207/239~(86%)	1.21	51 (24%) 0 0	92, 141, 170, 185	0
4	AD	208/209~(99%)	0.63	17 (8%) 11 4	64, 112, 142, 179	0
4	CD	208/209~(99%)	0.27	7 (3%) 45 24	56, 99, 135, 157	0
5	AE	151/162~(93%)	0.42	6 (3%) 38 19	65, 95, 142, 167	0
5	CE	151/162~(93%)	0.95	26 (17%) 1 0	69, 119, 151, 160	0
6	AF	101/101 (100%)	0.10	0 100 100	59, 98, 138, 173	0
6	CF	101/101 (100%)	0.10	3 (2%) 50 27	64, 110, 133, 173	0
7	AG	155/156~(99%)	1.21	35 (22%) 0 0	76, 123, 155, 198	0
7	CG	155/156~(99%)	1.14	33 (21%) 0 0	94, 131, 160, 194	0
8	AH	138/138 (100%)	0.35	7 (5%) 28 13	61, 101, 128, 144	0
8	CH	138/138 (100%)	0.73	14 (10%) 7 2	83, 121, 148, 166	0
9	AI	127/128~(99%)	1.66	39 (30%) 0 0	81, 148, 176, 191	0
9	CI	127/128~(99%)	2.05	61 (48%) 0 0	99, 153, 181, 193	0
10	AJ	99/105~(94%)	1.82	41 (41%) 0 0	71, 149, 177, 185	0
10	CJ	99/105~(94%)	2.37	54 (54%) 0 0	97, 159, 182, 189	0
11	AK	119/129~(92%)	0.52	9 (7%) 13 5	63, 94, 136, 187	0
11	CK	119/129~(92%)	0.57	12 (10%) 7 2	78, 108, 141, 176	0
12	AL	125/135~(92%)	1.05	22 (17%) 1 0	53, 93, 146, 180	0
12	CL	125/135~(92%)	1.11	27 (21%) 0 0	63, 111, 149, 177	0

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
13	AM	119/126~(94%)	1.32	33 (27%) 0 0	75, 129, 161, 178	0
13	CM	119/126~(94%)	1.99	49 (41%) 0 0	96, 150, 169, 186	0
14	AN	60/61~(98%)	1.37	16 (26%) 0 0	71, 118, 145, 157	0
14	CN	60/61~(98%)	1.53	21 (35%) 0 0	108, 143, 166, 187	0
15	AO	88/89~(98%)	0.41	4 (4%) 33 16	60, 97, 130, 148	0
15	CO	88/89~(98%)	0.65	8 (9%) 9 3	67, 110, 138, 146	0
16	AP	84/88~(95%)	1.07	14 (16%) 1 1	67, 112, 156, 178	0
16	CP	84/88~(95%)	0.48	3 (3%) 42 22	60, 87, 137, 157	0
17	AQ	100/105~(95%)	0.63	9 (9%) 9 3	74, 109, 138, 151	0
17	CQ	100/105~(95%)	0.77	12 (12%) 4 2	70, 109, 139, 165	0
18	AR	70/88~(79%)	0.58	5 (7%) 16 6	69, 98, 139, 157	0
18	CR	70/88~(79%)	0.78	7 (10%) 7 2	77, 111, 148, 156	0
19	AS	79/93~(84%)	1.90	28 (35%) 0 0	89, 137, 171, 185	0
19	CS	79/93~(84%)	2.41	38 (48%) 0 0	112, 154, 178, 200	0
20	AT	99/106~(93%)	1.11	16 (16%) 1 1	65, 117, 160, 167	0
20	CT	99/106~(93%)	0.89	11 (11%) 5 2	66, 107, 151, 163	0
21	AU	25/27~(92%)	2.10	13 (52%) 0 0	84, 120, 146, 156	0
21	CU	25/27~(92%)	3.92	19 (76%) 0 0	91, 135, 171, 188	0
22	AV	77/78~(98%)	1.44	22~(28%) 0 0	65, 141, 179, 199	0
22	AY	77/78~(98%)	1.56	23 (29%) 0 0	90, 140, 185, 189	0
22	CV	77/78~(98%)	2.17	34~(44%) 0 0	94, 175, 196, 200	0
22	CY	77/78~(98%)	2.82	46 (59%) 0 0	138, 176, 197, 200	0
23	AW	78/78~(100%)	2.19	38 (48%) 0 0	70, 173, 191, 199	0
23	CW	78/78~(100%)	3.28	55~(70%) 0 0	99, 188, 200, 200	0
24	AX	12/24~(50%)	1.04	1 (8%) 11 4	59, 88, 157, 160	0
24	CX	12/24~(50%)	1.89	4 (33%) 0 0	92, 163, 185, 185	0
25	B0	84/85~(98%)	0.75	7 (8%) 11 4	39, 66, 124, 167	0
25	D0	84/85 (98%)	1.26	19~(22%) 0 0	71, 105, 146, 165	0
26	B1	94/98~(95%)	0.07	0 100 100	33, 61, 114, 141	0
26	D1	$94/98~(9\overline{5\%})$	0.22	2 (2%) 63 43	43, 74, 127, 149	0
27	B2	71/72~(98%)	-0.09	1 (1%) 75 56	41, 70, 122, 160	0

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(A^2)$	Q < 0.9
27	D2	71/72~(98%)	0.24	4 (5%) 24 11	57, 97, 139, 178	0
28	B3	60/60~(100%)	0.39	2 (3%) 46 24	42,63,108,167	0
28	D3	60/60~(100%)	1.31	15~(25%) 0 0	65,109,149,175	0
29	B4	58/71~(81%)	1.32	12 (20%) 1 0	96, 144, 171, 187	0
29	D4	58/71~(81%)	1.32	14 (24%) 0 0	86, 165, 194, 200	0
30	B5	56/60~(93%)	-0.11	0 100 100	25, 63, 126, 148	0
30	D5	56/60~(93%)	0.17	1 (1%) 68 47	48, 80, 128, 146	0
31	B6	50/54~(92%)	3.53	39 (78%) 0 0	99, 140, 171, 180	0
31	D6	50/54~(92%)	4.67	41 (82%) 0 0	113, 150, 174, 191	0
32	B7	48/49~(97%)	0.14	1 (2%) 63 43	23, 42, 83, 129	0
32	D7	48/49~(97%)	0.31	1 (2%) 63 43	35, 54, 98, 131	0
33	B8	64/65~(98%)	0.39	2 (3%) 49 26	30, 61, 107, 123	0
33	D8	64/65~(98%)	0.70	7 (10%) 5 2	46, 88, 134, 177	0
34	B9	37/37~(100%)	5.29	35 (94%) 0 0	91, 136, 157, 159	0
34	D9	37/37~(100%)	6.00	36 (97%) 0 0	126, 149, 172, 183	0
35	BA	2848/2915~(97%)	0.34	124 (4%) 34 17	20, 56, 184, 200	0
35	DA	2848/2915~(97%)	0.40	150 (5%) 26 12	39, 82, 186, 200	0
36	BB	119/122~(97%)	0.63	1 (0%) 86 72	52, 81, 149, 178	0
36	DB	119/122~(97%)	0.87	9 (7%) 13 5	102, 151, 183, 195	0
37	BC	120/229~(52%)	3.70	85 (70%) 0 0	119, 168, 189, 200	0
37	DC	120/229~(52%)	3.45	81 (67%) 0 0	132, 170, 187, 199	0
38	BD	272/276~(98%)	-0.02	4 (1%) 73 54	24, 55, 93, 150	0
38	DD	272/276~(98%)	0.11	2 (0%) 87 75	37, 73, 110, 144	0
39	BE	205/206~(99%)	0.17	7 (3%) 45 24	20, 62, 129, 165	0
39	DE	205/206~(99%)	0.31	6 (2%) 51 28	41, 82, 136, 159	0
40	BF	208/210~(99%)	0.28	12 (5%) 23 10	22, 63, 144, 195	0
40	DF	208/210~(99%)	0.23	7 (3%) 45 24	38, 90, 145, 184	0
41	BG	181/182~(99%)	1.00	28 (15%) 2 1	51, 103, 155, 182	0
41	DG	181/182~(99%)	1.30	47 (25%) 0 0	102, 141, 167, 183	0
42	BH	165/180~(91%)	0.61	14 (8%) 10 4	49, 86, 136, 174	0
42	DH	165/180~(91%)	1.99	68 (41%) 0 0	102, 139, 167, 182	0

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
43	BI	146/148~(98%)	1.76	49 (33%) 0 0	55, 147, 187, 200	0
43	DI	146/148~(98%)	1.65	45 (30%) 0 0	59, 139, 183, 200	0
44	BJ	0/173	-	-	-	-
44	DJ	0/173	-	-	-	-
45	BN	139/140~(99%)	0.02	2 (1%) 75 56	36, 64, 118, 147	0
45	DN	139/140 (99%)	0.39	3 (2%) 62 41	69, 104, 136, 155	0
46	BO	122/122~(100%)	-0.11	0 100 100	33, 60, 94, 116	0
46	DO	122/122~(100%)	0.07	0 100 100	54, 83, 110, 141	0
47	BP	146/150~(97%)	0.51	5 (3%) 45 24	28, 74, 128, 189	0
47	DP	146/150~(97%)	0.68	10 (6%) 17 7	41, 98, 144, 173	0
48	BQ	141/141~(100%)	0.29	2 (1%) 75 56	38,67,109,143	0
48	DQ	141/141~(100%)	0.81	15 (10%) 6 2	63, 113, 153, 178	0
49	BR	117/118~(99%)	0.09	0 100 100	36,62,103,136	0
49	DR	117/118~(99%)	0.17	2 (1%) 70 49	42, 76, 118, 151	0
50	BS	99/112~(88%)	1.21	22~(22%) 0 0	52, 95, 141, 160	0
50	DS	99/112~(88%)	1.93	38~(38%) 0 0	101, 137, 163, 186	0
51	BT	136/146~(93%)	0.06	4 (2%) 51 28	47, 78, 140, 181	0
51	DT	136/146~(93%)	0.31	7 (5%) 28 13	58, 92, 151, 176	0
52	BU	117/118~(99%)	0.03	2 (1%) 70 49	27, 53, 102, 144	0
52	DU	117/118~(99%)	0.45	7 (5%) 21 10	46, 97, 137, 163	0
53	BV	101/101~(100%)	0.03	1 (0%) 82 67	24, 72, 124, 168	0
53	DV	101/101~(100%)	0.98	17~(16%) 1 0	53, 116, 146, 171	0
54	BW	113/113~(100%)	0.05	3 (2%) 54 31	28, 52, 105, 180	0
54	DW	113/113~(100%)	0.07	2 (1%) 68 47	49, 71, 119, 165	0
55	BX	93/96~(96%)	-0.15	0 100 100	29,63,100,141	0
55	DX	93/96~(96%)	0.16	2 (2%) 62 41	55, 83, 115, 138	0
56	BY	101/110~(91%)	0.35	5 (4%) 28 13	47, 89, 131, 157	0
56	DY	101/110 (91%)	1.03	19 (18%) 1 0	60, 106, 149, 164	0
57	BZ	185/206~(89%)	1.59	54~(29%) 0 0	51, 113, 163, 188	0
57	DZ	185/206~(89%)	1.74	62 (33%) 0 0	99, 144, 171, 189	0
All	All	21266/22572~(94%)	0.72	2566 (12%) 4 1	20, 98, 177, 200	0

The worst 5 of 2566 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
43	BI	88	ILE	22.2
37	BC	171	ALA	19.2
35	BA	277	С	18.4
34	D9	34	GLN	17.3
48	DQ	141	GLN	15.8

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
22	AG9	CY	36	28/29	0.75	0.51	33,49,70,70	0
22	AG9	CV	36	28/29	0.81	0.42	33,49,70,70	0
22	AG9	AY	36	28/29	0.88	0.34	43,59,79,79	0
22	AG9	AV	36	28/29	0.90	0.26	43,59,79,79	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
58	ZN	AD	1000	1/1	0.84	0.25	165, 165, 165, 165	0
58	ZN	CN	1000	1/1	0.84	0.07	178,178,178,178	0
58	ZN	CD	1000	1/1	0.95	0.29	200,200,200,200	0
58	ZN	AN	1000	1/1	0.95	0.08	88,88,88,88	0

6.5 Other polymers (i)

There are no such residues in this entry.

