

wwPDB X-ray Structure Validation Summary Report (i)

Sep 25, 2023 – 02:08 PM EDT

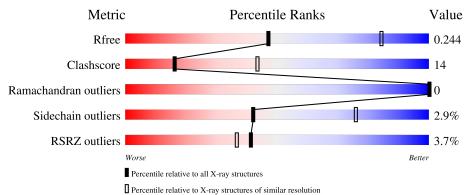
PDB ID	:	5VJM
Title	:	Crystal structure of H7 hemagglutinin mutant (V186K, K193T, G228S) from
		the influenza virus A/Shanghai $/2/2013$ (H7N9) with LSTa
Authors	:	Zhu, X.; Wilson, I.A.
Deposited on	:	2017-04-19
Resolution	:	2.91 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


Xtriage (Phenix) EDS buster-report Percentile statistics Refmac CCP4 Ideal geometry (proteins) Ideal geometry (DNA, RNA)	: : : : :	20191225.v01 (using entries in the PDB archive December 25th 2019) 5.8.0158 7.0.044 (Gargrove) Engh & Huber (2001) Parkinson et al. (1996)
Ideal geometry (DNA, RNA) Validation Pipeline (wwPDB-VP)		Parkinson et al. (1996) 2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.91 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ (\#\textbf{Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1957 (2.90-2.90)
Clashscore	141614	2172 (2.90-2.90)
Ramachandran outliers	138981	2115 (2.90-2.90)
Sidechain outliers	138945	2117 (2.90-2.90)
RSRZ outliers	127900	1906 (2.90-2.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	А	325	% 7 0%	25%				
2	В	183	9%	28%	•• 7%			

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 3858 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Hemagglutinin HA1.

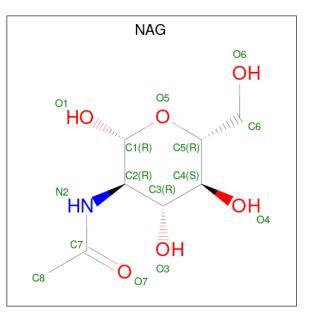
Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	314	Total 2397	C 1488	N 433	0 461	S 15	0	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual Comment		Reference
А	7	ALA	-	expression tag	UNP R4NN21
А	8	ASP	-	expression tag	UNP R4NN21
А	9	PRO	-	expression tag	UNP R4NN21
А	10	GLY	-	expression tag	UNP R4NN21
А	186	LYS	VAL	engineered mutation	UNP R4NN21
А	193	THR	LYS	engineered mutation	UNP R4NN21
A	228	SER	GLY	engineered mutation	UNP R4NN21

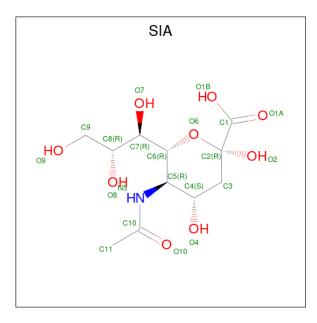
• Molecule 2 is a protein called Hemagglutinin HA2.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
2	В	171	Total 1387	C 857	N 242	0 281	S 7	0	0	0


There are 7 discrepancies between the modelled and reference sequences:

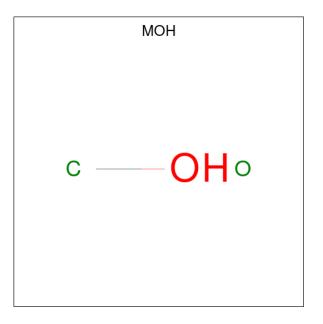
Chain	Residue	Modelled	Actual	Comment	Reference
В	177	SER	-	expression tag	UNP R4NN21
В	178	GLY	-	expression tag	UNP R4NN21
В	179	ARG	-	expression tag	UNP R4NN21
В	180	LEU	-	expression tag	UNP R4NN21
В	181	VAL	-	expression tag	UNP R4NN21
В	182	PRO	-	expression tag	UNP R4NN21
В	183	ARG	-	expression tag	UNP R4NN21

• Molecule 3 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula:



 $\mathrm{C_8H_{15}NO_6}).$

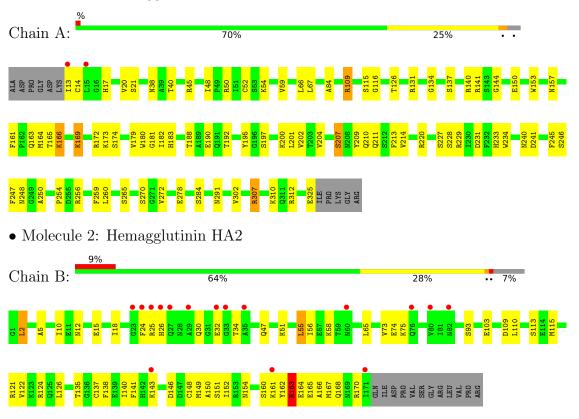
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C N O 14 8 1 5	0	0
3	А	1	Total C N O 14 8 1 5	0	0
3	В	1	Total C N O 14 8 1 5	0	0


• Molecule 4 is N-acetyl-alpha-neuraminic acid (three-letter code: SIA) (formula: $C_{11}H_{19}NO_9$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
4	Δ	1	Total	С	Ν	Ο	0	0
4	A	1	20	11	1	8	0	0

• Molecule 5 is METHANOL (three-letter code: MOH) (formula: CH_4O).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 2 & 1 & 1 \end{array}$	0	0


• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	5	Total O 5 5	0	0
6	В	5	Total O 5 5	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Hemagglutinin HA1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	H 3 2	Depositor
Cell constants	115.94Å 115.94 Å 295.76 Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	-
Resolution (Å)	49.97 - 2.91	Depositor
	49.97 - 2.91	EDS
% Data completeness	99.0(49.97 - 2.91)	Depositor
(in resolution range)	99.0(49.97 - 2.91)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	0.14	Depositor
$< I/\sigma(I) > 1$	$1.42 (at 2.91 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.11.1_2575: ???)	Depositor
D D	0.201 , 0.244	Depositor
R, R_{free}	0.201 , 0.244	DCC
R_{free} test set	863 reflections (5.07%)	wwPDB-VP
Wilson B-factor $(Å^2)$	86.1	Xtriage
Anisotropy	0.033	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29 , 48.2	EDS
L-test for twinning ²	$< L > = 0.49, < L^2 > = 0.32$	Xtriage
	$\begin{array}{c} 0.000 \; {\rm for} \; \text{-}1/3 ^{*} \mathrm{h} \text{+} 1/3 ^{*} \mathrm{k} \text{+} 1/3 ^{*} \mathrm{l} \text{-} \mathrm{k} \text{,} 8/3 ^{*} \mathrm{h} \text{+} 4/3 ^{*} \mathrm{k} \text{+} 1/3 ^{*} \mathrm{l} \end{array}$	
	$0.017 \text{ for } -2/3^{*}\text{h}-1/3^{*}\text{k}-1/3^{*}\text{l}, -1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}\text{h}-1/3^{*}\text{h}-2/3^{*}\text{k}+1/3^{*}\text{h}-1/3^{*}h$	
Estimated twinning fraction	1/3*l,-4/3*h+4/3*k+1/3*l	Xtriage
	0.001 for -h,1/3*h-1/3*k-1/3*l,-4/3*h-8/3*k	
	+1/3*l	
F_o, F_c correlation	0.95	EDS
Total number of atoms	3858	wwPDB-VP
Average B, all atoms $(Å^2)$	100.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.23% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SIA, NAG, MOH

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bo	ond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.55	0/2443	0.92	9/3303~(0.3%)
2	В	0.58	0/1411	0.97	5/1901~(0.3%)
All	All	0.56	0/3854	0.94	14/5204~(0.3%)

There are no bond length outliers.

The worst 5 of 14 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	В	55	LEU	CA-CB-CG	-9.46	93.53	115.30
1	А	169	LYS	CD-CE-NZ	9.29	133.06	111.70
1	А	38	ASN	N-CA-CB	7.83	124.70	110.60
2	В	121	ARG	NE-CZ-NH1	-7.39	116.61	120.30
2	В	32	GLU	CA-CB-CG	6.58	127.87	113.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2397	0	2351	64	0
2	В	1387	0	1291	54	0
3	А	28	0	26	1	0
3	В	14	0	13	3	0

Continued on next page...

Mol	0	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	А	20	0	17	1	0
5	А	2	0	0	0	0
6	А	5	0	0	0	0
6	В	5	0	0	1	0
All	All	3858	0	3698	109	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

The worst 5 of 109 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:25:ARG:HE	2:B:34:THR:HG21	1.39	0.88
1:A:48:ILE:HD11	1:A:52:CYS:SG	2.14	0.87
2:B:167:MET:HE3	2:B:170:ARG:HB2	1.60	0.83
2:B:141:PHE:CD2	2:B:170:ARG:HG2	2.14	0.82
2:B:30:GLN:HE22	2:B:146:ASP:H	1.30	0.77

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	312/325~(96%)	304~(97%)	8(3%)	0	100	100
2	В	169/183~(92%)	163 (96%)	6 (4%)	0	100	100
All	All	481/508~(95%)	467 (97%)	14 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	264/272~(97%)	258~(98%)	6(2%)	50 80
2	В	146/157~(93%)	140 (96%)	6 (4%)	30 64
All	All	410/429 (96%)	398~(97%)	12 (3%)	42 76

5 of 12 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	В	113	SER
2	В	124	ARG
2	В	163	ARG
2	В	143	LYS
1	А	174	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 8 such sidechains are listed below:

Mol	Chain	Res	Type
2	В	60	ASN
2	В	53	ASN
1	А	296	ASN
1	А	248	ASN
2	В	30	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

5 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	e Chain Res		vpe Chain R		Link	Bo	ond leng	\mathbf{ths}	B	ond ang	les
NIOI	Type	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2		
4	SIA	А	503	5	20,20,21	2.34	4 (20%)	24,28,31	1.60	4 (16%)		
5	MOH	А	504	4	1,1,1	0.39	0	-				
3	NAG	А	501	1	14,14,15	0.68	0	17,19,21	0.56	0		
3	NAG	А	502	1	$14,\!14,\!15$	2.55	2 (14%)	17,19,21	2.91	2 (11%)		
3	NAG	В	201	2	14,14,15	1.22	2 (14%)	17,19,21	1.06	1 (5%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	SIA	А	503	5	-	6/18/34/38	0/1/1/1
3	NAG	А	501	1	-	0/6/23/26	0/1/1/1
3	NAG	А	502	1	-	0/6/23/26	0/1/1/1
3	NAG	В	201	2	-	2/6/23/26	0/1/1/1

The worst 5 of 8 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	А	502	NAG	O5-C1	9.09	1.58	1.43
4	А	503	SIA	C2-C1	8.59	1.60	1.52
4	А	503	SIA	O6-C2	3.77	1.48	1.43
3	В	201	NAG	C1-C2	2.87	1.56	1.52
3	В	201	NAG	O5-C1	2.82	1.48	1.43

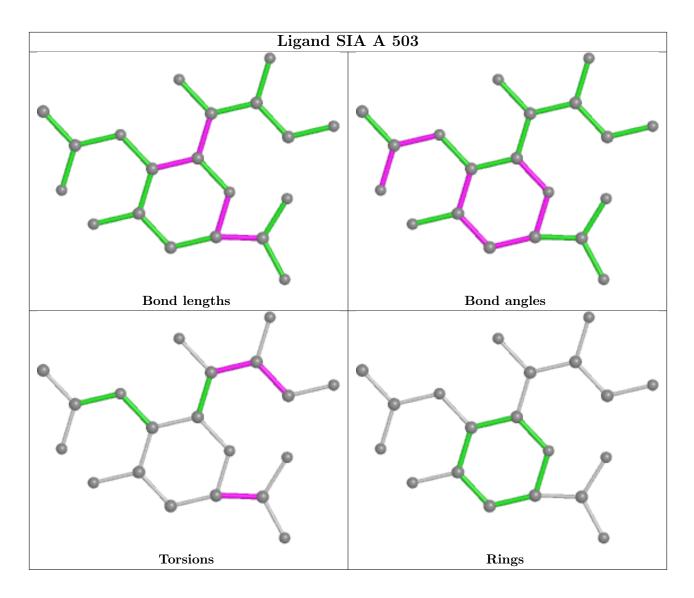
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	А	502	NAG	C1-O5-C5	11.41	127.65	112.19
4	А	503	SIA	C6-O6-C2	4.35	120.64	111.34
4	А	503	SIA	O6-C2-C3	-3.29	105.93	110.46
3	В	201	NAG	C1-O5-C5	2.60	115.71	112.19
4	А	503	SIA	C3-C4-C5	-2.42	108.53	111.46

The worst 5 of 7 bond angle outliers are listed below:

There are no chirality outliers.

5 of 8 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	В	201	NAG	O5-C5-C6-O6
3	В	201	NAG	C4-C5-C6-O6
4	А	503	SIA	C7-C8-C9-O9
4	А	503	SIA	O8-C8-C9-O9
4	А	503	SIA	C6-C7-C8-O8


There are no ring outliers.

3 monomers are involved in 5 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	А	503	SIA	1	0
3	А	502	NAG	1	0
3	В	201	NAG	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# RSRZ > 2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q < 0.9
1	А	314/325~(96%)	-0.11	2 (0%) 89 89	53, 86, 132, 165	0
2	В	171/183~(93%)	0.48	16 (9%) 8 6	49, 118, 177, 208	0
All	All	485/508~(95%)	0.10	18 (3%) 41 37	49, 92, 162, 208	0

The worst 5 of 18 RSRZ outliers are listed below:

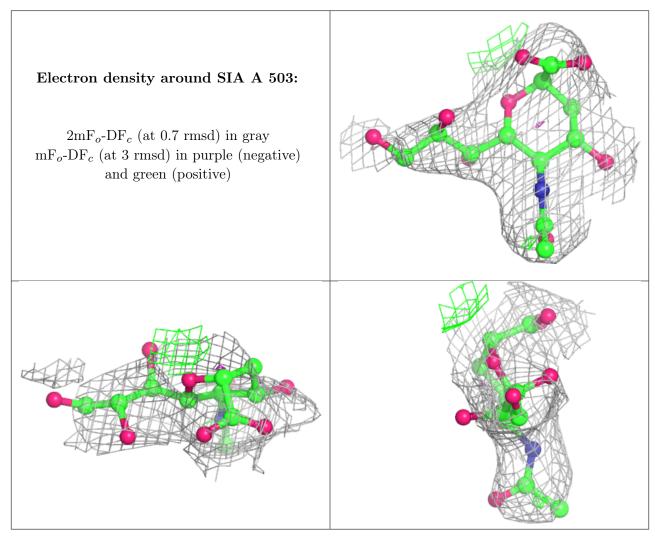
Mol	Chain	Res	Type	RSRZ
2	В	27	GLN	4.2
2	В	171	ILE	4.0
2	В	60	ASN	3.8
2	В	161	LYS	3.6
2	В	26	HIS	3.6

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.


6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
5	MOH	А	504	2/2	0.68	0.19	$136,\!136,\!136,\!155$	0
4	SIA	А	503	20/21	0.79	0.33	127,161,171,175	0
3	NAG	А	501	14/15	0.85	0.15	101,128,136,136	0
3	NAG	А	502	14/15	0.87	0.18	127,142,151,159	0
3	NAG	В	201	14/15	0.87	0.25	79,103,106,107	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

