

wwPDB X-ray Structure Validation Summary Report (i)

Sep 25, 2023 – 12:43 PM EDT

PDB ID	:	5W1S
Title	:	X-ray crystal structure of Escherichia coli RNA polymerase and TraR complex
Authors	:	Murakami, K.S.; Molodtsov, V.
Deposited on	:	2017-06-04
Resolution	:	3.81 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.81 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	Similar resolution
WIEUTIC	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R _{free}	130704	1212 (4.00-3.60)
Clashscore	141614	1288 (4.00-3.60)
Ramachandran outliers	138981	1243 (4.00-3.60)
Sidechain outliers	138945	1237 (4.00-3.60)
RSRZ outliers	127900	1121 (4.00-3.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain								
			2%								
1	А	329	45%		41%		10%	• •			
			3%								
1	В	329	40%	24%	•	34%					
			2%								
1	G	329	37%	27%	•	31%					
			6%								
1	Н	329	42%	22%	•	34%					
			6%								
2	С	1342	57%			38%		•			

Continued from previous page...

Mol	Chain	Length	Quality	y of chain	
2	Ι	1342	62%		34% •
3	D	1407	% 48%	31%	• 17%
3	J	1407	47%	30%	• 18%
4	Е	91	% • 63%		25% 10% ·
4	К	91	48%	30%	• 21%
5	F	613	4%	26%	• 24%
5	L	613	3% 	25%	• 23%
6	М	79	4%	33%	5% • 11%
6	N	79	42%	39%	6% 13%

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 56825 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	A 910	210	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	519	2490	1557	439	486	8	0	0	0
1	D	217	Total	С	Ν	0	S	0	0	0
	D	217	1677	1047	295	329	6	0	0	0
1	С	227	Total	С	Ν	0	S	0	0	0
	G	221	1755	1093	311	345	6	0	0	0
1	Ц	216	Total	С	Ν	0	S	0	0	0
	11	210	1662	1038	292	326	6		0	U

• Molecule 1 is a protein called DNA-directed RNA polymerase subunit alpha.

• Molecule 2 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues		A	toms		ZeroOcc	AltConf	Trace	
2	С	1340	Total	С	N	0	S	0	0	0
			10564	6628	1838	2055	43			
2	т	1340	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	1	1040	10566	6629	1840	2054	43	0	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase subunit beta'.

Mol	Chain	Residues		Α	toms		ZeroOcc	AltConf	Trace	
3	D	1173	Total 9095	C 5718	N 1628	0 1703	S 46	0	0	0
3	J	1155	Total 9001	C 5659	N 1612	0 1684	S 46	0	0	0

• Molecule 4 is a protein called DNA-directed RNA polymerase subunit omega.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
4	E	89	Total	С	Ν	0	S	0	0	0
-	-		691	421	129	140	1	0	Ŭ	Ŭ
4	K	79	Total	С	Ν	Ο	\mathbf{S}	0	0	0
4		12	573	350	110	112	1			U

• Molecule 5 is a protein called RNA polymerase sigma factor RpoD.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
5	F	468	Total	С	Ν	0	\mathbf{S}	0	0	0
0	I.	400	3813	2389	678	723	23	0	U	0
5	т	460	Total	С	Ν	0	S	0	0	0
0		409	3821	2393	679	726	23	0	0	0

• Molecule 6 is a protein called Protein TraR.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
6	М	70	Total	С	Ν	0	S	0	0	0
0	0 M	10	557	346	103	103	5	0	0	0
6	N	60	Total	С	Ν	0	S	0	0	0
0	1	09	552	343	102	102	5	0	0	0

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	74	HIS	-	expression tag	UNP P41065
М	75	HIS	-	expression tag	UNP P41065
М	76	HIS	-	expression tag	UNP P41065
М	77	HIS	-	expression tag	UNP P41065
М	78	HIS	-	expression tag	UNP P41065
М	79	HIS	-	expression tag	UNP P41065
N	74	HIS	-	expression tag	UNP P41065
N	75	HIS	-	expression tag	UNP P41065
N	76	HIS	-	expression tag	UNP P41065
N	77	HIS	-	expression tag	UNP P41065
N	78	HIS	-	expression tag	UNP P41065
Ν	79	HIS	-	expression tag	UNP P41065

• Molecule 7 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	D	1	Total Mg 1 1	0	0
7	J	1	Total Mg 1 1	0	0

• Molecule 8 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	D	2	Total Zn 2 2	0	0
8	J	2	Total Zn 2 2	0	0
8	М	1	Total Zn 1 1	0	0
8	Ν	1	Total Zn 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA-directed RNA polymerase subunit alpha

• Molecule 1: DNA-directed RNA polymerase subunit alpha

ASP SLU

• Molecule 2: DNA-directed RNA polymerase subunit beta

LEU ARG ASP VAL

LEU LEU ARG

MET VAL VAL VAL VAL VAL VA VA KA KA KA KA KA KA KA KA KA KA KA KA KA	K13 P14 P14 F15 F15 K17 K17 F19 P19 F29 F29 F29 F39 F39 F39 F39 F39 F39 F39 F39 F39 F3	L32 L32 Q36 Q41 P43 P43 C44 C44 C45 Q45 Q45 Q45	S55 V55 V55 V55 V55 060 861 861 863 861 863 863 861 872 872 872 872 872 872 872 872 872 872
F80 E84 C855 C855 C855 C855 C855 C855 C855 C8	P95 196 196 196 198 199 1102 1102 1102 1102 1102 1102 1105 1105	A109 E111 E111 E112 E112 D116 E119 E119 E119 E120 E120 F122 V123	M124 6125 6125 6126 7131 7131 7131 1135 1135 0130 0140 0140 0140 0148 1149 1149
H150 H151 8152 8152 8153 F157 F157 F157 8159 D1560 D160	H165 (168 (168 (170 (170 176 176 176 176 176 176 176 176 176 176	M193 [1,94 [1,94 [1,97 [1,97 [1,97 [1,97 [1,97 [1,97 [1,97 [1,97 [1,97] [1,97 [1,09] [1,209 [1,209] [1,209]	1207 1209 1209 1210 1211 1211 1220 1220 1221 1220 1221 1221 1223 1233 123
K236 L237 Q238 M239 R245 R245 L284 L284 L284	V289 11292 1292 1292 1301 1302 1302 1302 1303 1304 1304 1304 1311	N314 10221 1221 1221 1221 1221 1225 1225 122	1333 F337 F337 F337 1338 D342 F346 F346 F346 F346 F346 F346 F346 F346
R368 M369 M370 A331 L384 L388 F389	1395 1397 1397 1400 1409 1423 1423 1425	V428 M429 M429 E441 V443 N450 N450 R451 R451 R455 R455 R455 R455	E461 N462 N465 F464 F464 F464 F465 F465 F465 V476 E477 F476 E477 F476 E477 F479 E477 F479 E480 C482 C482 C482 C482
L484 D485 D485 P489 Q490 Q490 M92 M92 M92 M92	8499 V852 K603 K503 K503 R504 Q513 P514 P514 P515 Q515 Q517 Q516 Q517 Q516	N119 1524 1525 11525 11526 11520 1530 1530 1530 1530 1530 1530 1530 153	G537 11338 11338 11339 11339 11339 11339 11339 11339 11339 11339 11339 11339 11339 11353 11553 11561 11561
P564 E565 E565 G566 G566 G566 C566 C566 S575 S576 S576 S576 S576 S576 S576 S	6885 1586 1586 1587 1589 7589 7589 7589 7595 657 657 0595 657 0595 0595	T600 D601 H604 R604 S607 S607 S607 E610 E610 C615 A617 Q618 A619	Ne20 Ne22 Ne22 Ne22 Ne33 Ne33 Ne33 Ne33 Ne53 Ne55 Ne55 Ne55
V661 S662 V663 V663 L671 L671 E672 H673 D674 A679 A679	N884 M885 Q885 Q885 Q885 A887 A889 A985 D985 K897 K897	V700 E705 E705 S712 S712 V714 K720 V725 Q725	A729 1732 1733 1734 1734 1735 1735 1735 1735 1735 1735 1741 1741 1741 1743 1744 1744 1744 1748 1748
Y756 Y756 1765 P769 C770 E778 E778	D781 782 1783 1783 1790 1790 1790 1797 1797	N798 N799 N890 N890 V892 V892 N897 N897 Y810 Y811 F812 E813 D814	E820 8824 1827 1827 1827 1827 1827 1837 1837 0338 0338 0338 0338 1850 1850 1850 1855 1850
1870 V871 Y872 A875 A875 L883 V884 C885 K886 K886 V885	K890 (891 (891 1895 1895 1895 1895 1895 1893 1993 1993 1993 1993	499 4910 7913 8917 1918 1919 1920 1921 1921 1922 1923 7923 7924	V928 • V933 V933 V944 E949 E949 E949 E949 E949 E949 E949
F972 8973 8974 1976 1976 1976 1979 1979 0983 6982 6982 6982 6982	E985 5995 5995 1999 1999 1999 1992 1992 199	L1000 L1001 L1003 L1003 E1006 E1006 A1013 L1014 L1014	Ε1016 Ε1016 γ1017 γ1018 γ1016 Γ1036 Γ1036 Γ1036 Γ1037 Γ1036 Γ1036 Γ1043 Γ1048 Γ1046 Γ1049 Γ1069 Υ1050 Υ1050 Γ1054 Γ1054
R1058 R1059 2006 01063 01063 01066 M1066 A1067 H1070	41071 41072 41072 41075 51077 81076 11075 11078 11078 11078 11082 11082	P1086 Y1087 P1087 P1097 P1097 P1098 P1098 P1098 P1098 P1098 P1106 P1108 P1108	N1108 11109 11109 1110 11116 11116 11116 111124 11128 11128 11128 11128 11128 11128 11128 11128 11128 11128 11128 11128 11128 11128 11128 11128
R1142 01146 01149 01150 01154 01153 01154 01155 01154 01155	Q1157 V1158 V1158 V1158 D1160 D1166 D1165 D1165 D1165 D1166 D1166	E1174 N1175 L1176 L1176 N1180 P1180 11182 11184 P1185 D1188 D1188 D1188	A1190 E1192 E1192 A1198 A1196 L1196 L1198 L1198 L1198 11198 11200 A1202 A1202 A1210 A1211 L1212 A1211 L1212 A1215 A1215
R1216 41220 F1221 E1222 V1225 M1230 M1230 L1233	K1234 H1237 H1238 U1238 D1240 D1240 D1240 H1243 H1243 H1244 T1248 C1249	51250 51250 11255 11255 71255 71255 71255 71255 71275 71275 71275 71275	A1.260 Y1281 C1282 A1284 A1284 A1285 A1286 C1286 C1286 C1286 C1286 C1296 C1300 R1301 R1301 R1301 R1301

• Molecule 3: DNA-directed RNA polymerase subunit beta'

Chain D:	48%	31% •	17%
MET LYS LYS LYS LEU LEU LEU RYS RYS RYS RYS RYS RYS RYS RYS RYS RYS	D18 D18 A19 A19 A22 B22 A23 B23 B23 B23 B33 B23 B33 B23 B33 B33 B33 B33 B33 B33 B33 B33 B34 B33 B34 B33 B44 B44 F39 F39	K60 K50 B54 D54 C57 F57 F57 F57 F62 F62 F62 F62	K74 Y75 K79 H80 R81 C83 C83 C83 C83 C83 C83 C83
K87 C58 C58 C58 C58 C58 C58 C58 C58 C59 C94 C97 C94 C97 C94 C97 C97 C97 C97 C97 C97 C97 C97 C97 C97	P1 10 H1 13 H1 14 H1 14 H1 14 H1 12 H1 28 H1 28	8143 1147 1154 1155 1155 1155 1155 1155 1156 1156	4164 F172 C173 C173 E175 F176 F176 M180 L188
1189 1190 1194 1194 1194 1194 1205 1205 1206 1206 1206 1206	2210 2210 2213 2214 2215 2215 2225 2225 2225 2225 2225	1238 1238 1239 1239 1239 1238 1238 1238 1238 1247 1255 1248 1255	P254 P255 C258 R259 R259 R259 D264 L265 N266
D267 L268 N274 N274 N276 L268 L288 L288 L288 L295 C295 K296	R297 N298 N298 N298 A305 L306 L306 L306 L306 R310 R311 R311 R311 R315 R316 T316 T316 T316 T316 T316 T317 R316 R316 R316 R316 R316 R316 R317 R320 R320 R320 R320 R320 R320 R320 R320	R322 P323 L324 K325 R330 R330 R335 R335 R335 R335 R336 R335 R336 R336	1343 1344 1345 1345 1347 1347 1356 1355 1355 1355
C358 P359 P359 P359 P356 C366 C366 C366 C366 C366 C366 C366 C	C C C C C C C C C C C C C C C C C C C	415 6413 6414 6414 6415 6416 6416 8417 8426 8426 8426 8426 8426	P427 1428 1428 1430 1432 1432 1433 1434 1434 1434 1433 1433
P439 P439 K445 K445 R446 P445 P445 P445 P452 P452 P461 P461 P462 P462 P462 P463	D464 4465 4465 4466 4472 1473 1473 1473 1475 1477 1477 1477 1476 1477 1478 1478 1487 1487 1487 1487	1490 1494 1494 1495 1495 1495 1500 1500 1500 1500 1500	L510 Y511 M513 M513 M513 R514 R514 C517 V518
V526 L527 L527 T528 G529 G529 G528 L536 L536 A542 A542 H545 V548 V548 V548 V548 V548 V548	E556 KE576 KE576 A559 A559 A559 A559 A559 A550 C571 T572 T572 T572 T572 C571 T572 C571 T572 C576 C571 T572 C576 C571 C572 C576 C576 C577 C577 C577 C577 C577 C577	K598 1601 1601 7609 7609 7609 7615 7615 7615 7615 7616	1624 M625 A633 A633 S638 V639 C640 I641
P647 P647 E668 A659 F660 V661 F664 F668 F668 F668 R678 R678 N680 N680 N681	V682 V682 D684 D684 N685 A685 A686 A688 A688 N690 N690 N690 N690 N693 N694 K695 K695 K695 K695 M697 M697 M697	7705 7705 7707 7707 7709 7712 7712 7718 7718 7718	N720 1722 1723 1722 1722 1723 1732 1735 1735 1735 1735
1737 1737 1738 1738 1739 1740 1740 1744 1744 1746 1745 1745 1745 1745 1745 1745 1750	R764 R764 L770 T770 R771 R772 R772 R780 G782 G782 R786 R798 R798 R798	T797 R798 001 0005 0812 0812 0812 0812 0813	1820 824 V825 1826 827 6827 6827 0831 V831
E833 P834 L835 L835 L835 R844 T844 T844 C948 L949 L949 L949 L853	L857 V858 P859 R850 R850 L863 L863 L872 L872 L872 L872 K877 V877 N875 N875 V877 V877 V877	R833 S884 V885 D889 D889 D889 D889 D889 D889 D889 D	1901 1903 1903 1904 1905 1906 1908 1908 1908 1910 N910
6912 E913 1918 8925 8925 1936 1933 1933 1933 1033 1033 1033 1033 1033	GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	SER TLE LYS LEU SER ASN VAL VAL VAL VAL VAL SER ASN	GLY GLY LYS LYS LEU VAL TLE TLE TLE TLE ARG ASN THR
GLU LEU LEU LEU LEU TLE GLY GLY GLY CYS CLU SEL CYS CLU	PRO TYR GLY ALLA ALLA ALLA ALLA ALLA GLY GLY GLY GLY GLY GLY GLY GLY THR	VAL ALA ALA ASN ASP ASP ASP PRO HIS PRO PRO VAL VAL VAL THR	GLU VAL SER GLY PHE VAL ARG PHE THR ASP MET
11LE GLY GLY GLY GLN GLN THR THR ARG GLN THR ASP GLN THR CLEU CLEU CLEU SER	SER LEU VAL VAL LEU VAL LEU ARP GLU ARC GLY ARC GLY ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	ALA LEU LEU LYS LYS LYS ALA ASP ASP ASN ASP ASP ASP VAL	LLE PRO GLY ASP ASP PRO PRO GLN TYR PHE
LEU GLY GLY LYS LYS LYS TILE AIA GLN GLN GLN GLN GLN SER SER	dLY THR LLEU LLEU LLEU ARLA ARLA ARLA ARLA GLN GLN GLN GLI3 GLI3 GLI3 GLI3 CLI13 CLI13 CLI13	P1139 R1140 11155 11155 11155 11155 11155 11165 11165 11165 11165 21164 21165 21165	61166 61167 E1167 E1168 M1170 61171 K1172 R1173 R1174 I1177

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	186.48Å 206.04Å 310.30Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	49.84 - 3.81	Depositor
Resolution (A)	49.84 - 3.81	EDS
% Data completeness	99.6 (49.84-3.81)	Depositor
(in resolution range)	86.5(49.84-3.81)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$0.60 (at 3.77 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.11.1_2575: ???)	Depositor
D D.	0.208 , 0.262	Depositor
Λ, Λ_{free}	0.208 , 0.262	DCC
R_{free} test set	2000 reflections $(1.70%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	156.4	Xtriage
Anisotropy	0.169	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.27, 180.1	EDS
L-test for twinning ²	$ < L >=0.47, < L^2>=0.30$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	56825	wwPDB-VP
Average B, all atoms $(Å^2)$	239.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.65% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.29	0/2524	0.63	1/3421~(0.0%)
1	В	0.30	0/1697	0.60	0/2300
1	G	0.28	0/1777	0.59	0/2408
1	Н	0.29	0/1681	0.63	2/2278~(0.1%)
2	С	0.30	0/10733	0.58	1/14482~(0.0%)
2	Ι	0.29	0/10735	0.56	0/14484
3	D	0.31	0/9235	0.59	0/12472
3	J	0.29	0/9140	0.56	2/12341~(0.0%)
4	Е	0.27	0/693	0.52	0/935
4	Κ	0.26	0/575	0.43	0/774
5	F	0.28	0/3864	0.54	1/5194~(0.0%)
5	L	0.27	0/3872	0.53	0/5205
6	М	0.34	0/567	0.64	1/766~(0.1%)
6	N	0.37	0/562	0.64	1/759~(0.1%)
All	All	0.29	0/57655	0.57	9/77819~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	С	0	2
2	Ι	0	2
3	D	0	2
3	J	0	2
5	F	0	1
All	All	0	9

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	А	318	LEU	CA-CB-CG	6.11	129.35	115.30
6	М	32	ILE	C-N-CD	-6.10	107.18	120.60
1	Н	29	GLU	C-N-CD	-5.98	107.44	120.60
3	J	1221	LEU	CA-CB-CG	5.83	128.71	115.30
6	Ν	32	ILE	C-N-CD	-5.66	108.16	120.60

The worst 5 of 9 bond angle outliers are listed below:

There are no chirality outliers.

5 of 9 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	С	109	ALA	Peptide
2	С	236	LYS	Peptide
3	D	1184	ASP	Peptide
3	D	901	ARG	Peptide
5	F	600	HIS	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2490	0	2542	120	0
1	В	1677	0	1703	61	0
1	G	1755	0	1773	78	0
1	Н	1662	0	1687	59	0
2	С	10564	0	10571	426	0
2	Ι	10566	0	10576	351	0
3	D	9095	0	9222	385	0
3	J	9001	0	9167	375	0
4	Е	691	0	695	26	0
4	K	573	0	587	20	0
5	F	3813	0	3880	119	0
5	L	3821	0	3884	109	0
6	М	557	0	547	31	0
6	N	552	0	542	44	0
7	D	1	0	0	0	0
7	J	1	0	0	0	0

	J							
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes		
8	D	2	0	0	0	0		
8	J	2	0	0	0	0		
8	М	1	0	0	0	0		
8	Ν	1	0	0	0	0		
All	All	56825	0	57376	1966	0		

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.

The worst 5 of 1966 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:45:ARG:HG2	1:B:38:THR:HB	1.42	1.02
1:G:190:ALA:HB2	1:G:200:LYS:HB2	1.42	1.01
2:C:525:THR:HG21	2:C:687:ARG:HD2	1.38	1.00
2:C:696:ASP:HB2	2:C:798:GLN:HG2	1.44	0.99
2:C:10:ARG:HD3	2:C:1181:PRO:HG2	1.46	0.96

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	317/329~(96%)	247~(78%)	52 (16%)	18 (6%)	1	21
1	В	213/329~(65%)	194 (91%)	15 (7%)	4 (2%)	8	42
1	G	225/329~(68%)	199~(88%)	20 (9%)	6 (3%)	5	35
1	Н	212/329~(64%)	196~(92%)	12~(6%)	4 (2%)	8	42
2	С	1338/1342~(100%)	1201 (90%)	118 (9%)	19 (1%)	11	46
2	Ι	1338/1342~(100%)	1197 (90%)	120 (9%)	21 (2%)	9	44

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	\mathbf{erc}	entiles
3	D	1169/1407~(83%)	1038 (89%)	104 (9%)	27 (2%)		6	38
3	J	1151/1407~(82%)	1026 (89%)	99~(9%)	26 (2%)		6	38
4	Е	87/91~(96%)	80 (92%)	5~(6%)	2(2%)		6	38
4	K	70/91~(77%)	61 (87%)	8 (11%)	1 (1%)		11	46
5	F	462/613~(75%)	426 (92%)	28~(6%)	8 (2%)		9	43
5	L	463/613~(76%)	425 (92%)	30 (6%)	8 (2%)		9	43
6	М	68/79~(86%)	56 (82%)	7 (10%)	5 (7%)		1	16
6	N	67/79~(85%)	56 (84%)	6 (9%)	5 (8%)		1	15
All	All	7180/8380~(86%)	6402 (89%)	624 (9%)	154 (2%)		7	40

Continued from previous page...

5 of 154 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	14	VAL
1	А	107	ILE
1	А	136	GLU
1	А	162	GLU
1	А	167	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	278/286~(97%)	226 (81%)	52~(19%)	1	11
1	В	186/286~(65%)	171~(92%)	15 (8%)	11	41
1	G	193/286~(68%)	169~(88%)	24 (12%)	4	24
1	Н	183/286~(64%)	172 (94%)	11 (6%)	19	50
2	С	1154/1157~(100%)	1052~(91%)	102 (9%)	10	38
2	Ι	1154/1157~(100%)	1058~(92%)	96 (8%)	11	40
3	D	962/1168~(82%)	882 (92%)	80 (8%)	11	40
3	J	960/1168~(82%)	876 (91%)	84 (9%)	10	38

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
4	Ε	72/75~(96%)	63~(88%)	9~(12%)	4	24
4	К	62/75~(83%)	59~(95%)	3~(5%)	25	56
5	F	417/540 (77%)	387~(93%)	30 (7%)	14	45
5	L	418/540~(77%)	380 (91%)	38~(9%)	9	36
6	М	59/68~(87%)	55~(93%)	4 (7%)	16	47
6	Ν	59/68~(87%)	56~(95%)	3~(5%)	24	54
All	All	6157/7160~(86%)	5606 (91%)	551 (9%)	9	38

Continued from previous page...

5 of 551 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	J	641	ILE
3	J	847	ASP
3	J	573	THR
5	L	405	ILE
3	D	425	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 72 such sidechains are listed below:

Mol	Chain	Res	Type
3	J	206	ASN
6	М	71	HIS
3	J	680	ASN
3	J	1295	ASN
3	D	320	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 8 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	319/329~(96%)	-0.01	8 (2%) 57 49	152, 220, 344, 468	0
1	В	217/329~(65%)	-0.05	9 (4%) 37 31	140, 238, 332, 383	0
1	G	227/329~(68%)	-0.06	7 (3%) 49 40	204, 264, 358, 416	0
1	Н	216/329~(65%)	0.41	19 (8%) 10 8	204, 298, 387, 432	0
2	С	1340/1342~(99%)	0.23	83 (6%) 20 16	104, 197, 403, 528	0
2	Ι	1340/1342~(99%)	0.38	109 (8%) 12 10	127, 264, 377, 485	0
3	D	1173/1407~(83%)	-0.07	12 (1%) 82 76	101, 174, 294, 419	0
3	J	1155/1407~(82%)	0.07	34 (2%) 51 42	125, 213, 329, 431	0
4	Ε	89/91~(97%)	-0.34	1 (1%) 80 74	160, 216, 269, 393	0
4	K	72/91~(79%)	1.28	16 (22%) 0 0	227, 323, 429, 470	0
5	F	468/613~(76%)	0.08	25 (5%) 26 23	137, 239, 365, 477	0
5	L	469/613~(76%)	-0.06	19 (4%) 37 31	162, 251, 379, 489	0
6	М	70/79~(88%)	0.12	3 (4%) 35 30	226, 315, 399, 479	0
6	N	69/79~(87%)	0.45	11 (15%) 1 2	325, 403, 501, 568	0
All	All	7224/8380 (86%)	0.14	356 (4%) 29 25	101, 230, 372, 568	0

The worst 5 of 356 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	С	338	THR	14.4
2	С	252	SER	10.7
2	С	241	LEU	9.4
3	J	1198	VAL	9.2
2	С	251	ALA	9.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
7	MG	D	2001	1/1	0.42	0.18	251,251,251,251	0
8	ZN	N	101	1/1	0.78	0.06	465,465,465,465	0
8	ZN	М	101	1/1	0.84	0.04	468,468,468,468	0
8	ZN	J	2002	1/1	0.87	0.15	229,229,229,229	0
8	ZN	D	2002	1/1	0.94	0.15	182,182,182,182	0
8	ZN	D	2003	1/1	0.97	0.49	334,334,334,334	0
7	MG	J	2001	1/1	0.98	0.47	170,170,170,170	0
8	ZN	J	2003	1/1	0.99	0.24	126,126,126,126	0

6.5 Other polymers (i)

There are no such residues in this entry.

