

Jun 22, 2023 – 11:44 AM JST

| PDB ID       | : | 7W4Q                                               |
|--------------|---|----------------------------------------------------|
| EMDB ID      | : | EMD-32312                                          |
| Title        | : | Deactive state CI from Q1-NADH dataset, Subclass 6 |
| Authors      | : | Gu, J.; Yang, M.                                   |
| Deposited on | : | 2021-11-28                                         |
| Resolution   | : | 3.30 Å(reported)                                   |
|              |   |                                                    |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1. dev 50                                                      |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.9                                                              |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.33                                                               |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 3.30 Å.

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

3826

| Mol | Chain | Length | Quality of chain |     |
|-----|-------|--------|------------------|-----|
| 1   | А     | 433    | 28%              |     |
| 2   | В     | 176    | 98%              | ·   |
| 3   | С     | 156    | 97%              | •   |
| 4   | Е     | 115    | 99%              | •   |
| 5   | F     | 86     | 95%              | 5%  |
| 6   | G     | 88     | 95%              | 5%  |
| 6   | Х     | 88     | 8%               | •   |
| 7   | Н     | 112    | 19%              |     |
| 8   | Ι     | 112    | 87%              | 13% |



| Conti | nued fron | n previous | page             |                |
|-------|-----------|------------|------------------|----------------|
| Mol   | Chain     | Length     | Quality of chain |                |
| 9     | J         | 342        | 24%              | 13%            |
| 10    | ĸ         | 42         | 30%              | - 13/0         |
| 10    | Λ         | 40         | 98%              | •              |
| 11    | L         | 125        | 98%              | •              |
| 12    | М         | 690        | 99%              | ·              |
| 13    | Ν         | 144        | 97%              | •              |
| 14    | 0         | 217        | 29%              |                |
| 15    | Р         | 208        | 98%              | •              |
| 16    | Q         | 430        | 96%              |                |
| 17    | S S       | 70         | •                |                |
| 11    | د<br>ا    | 10         | 100%             |                |
| 18    | Т         | 96         | 100%             |                |
| 19    | U         | 83         | 96%              | •              |
| 20    | V         | 140        | 95%              | 5%             |
| 21    | W         | 142        | 9%               | •              |
| 22    | Y         | 70         | 96%              | •              |
| 23    | Z         | 84         | 27%              | <mark>.</mark> |
| 24    | 2         | 140        |                  |                |
| 24    | a         | 140        | 98%              | •              |
| 25    | b         | 126        | 80% .            | 18%            |
| 26    | с         | 156        | 100%             |                |
| 27    | d         | 175        | 99%              | ·              |
| 28    | е         | 107        | 99%              | ·              |
| 29    | f         | 49         | 84%              | 14%            |
| 30    | g         | 122        | 98%              | ••             |
| 31    | h         | 105        | 9%               | •              |
| 32    | i         | 347        | 99%              |                |
| 33    | i         | 115        | 86%              | 14%            |
| ·     |           |            | 1                |                |



| Mol | Chain | Length | Quality of chain |     |
|-----|-------|--------|------------------|-----|
| 34  | k     | 98     | 99%              | ·   |
| 35  | 1     | 603    | 99%              | •   |
| 36  | m     | 175    | 72% ·            | 26% |
| 37  | n     | 56     | 100%             |     |
| 38  | О     | 128    | 9%               | •   |
| 39  | р     | 178    | 99%              | ·   |
| 40  | r     | 459    | 99%              | ·   |
| 41  | s     | 318    | 95%              | 5%  |
| 42  | u     | 171    | 95%              | 5%  |
| 43  | v     | 124    | 98%              | •   |
| 44  | W     | 320    | 98%              | •   |

Continued from previous page...



# 2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 66581 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 1   | А     | 431      | Total<br>3318 | C<br>2095 | N<br>591 | 0<br>612 | S<br>20 | 0 | 0 |

• Molecule 2 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial.

| Mol | Chain | Residues |               | A        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|---|---|
| 2   | В     | 176      | Total<br>1412 | C<br>887 | N<br>243 | O<br>269 | S<br>13 | 0 | 0 |

• Molecule 3 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial.

| Mol | Chain | Residues |               | At       | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------|---|---|
| 3   | С     | 156      | Total<br>1248 | C<br>794 | N<br>227 | 0<br>213 | S<br>14 | 0 | 0 |

• Molecule 4 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace          |   |   |
|-----|-------|----------|--------------|----------|----------|----------|----------------|---|---|
| 4   | Е     | 115      | Total<br>961 | C<br>614 | N<br>176 | O<br>166 | ${ m S}{ m 5}$ | 0 | 0 |

• Molecule 5 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace                                                   |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------------------------------------------------|---|---|
| 5   | F     | 86       | Total<br>691 | C<br>434 | N<br>129 | 0<br>126 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0 | 0 |

• Molecule 6 is a protein called Acyl carrier protein.



| Mol | Chain | Residues |       | At  | oms | AltConf | Trace        |   |   |
|-----|-------|----------|-------|-----|-----|---------|--------------|---|---|
| 6   | G     | 88       | Total | С   | Ν   | Ο       | S            | 0 | 0 |
| 0   | u     | 00       | 693   | 447 | 102 | 139     | 5            | 0 | 0 |
| 6   | 6 X   | 00       | Total | С   | Ν   | Ο       | $\mathbf{S}$ | 0 | 0 |
| 0   |       | 88       | 696   | 449 | 103 | 139     | 5            | 0 |   |

• Molecule 7 is a protein called Complex I subunit B13.

| Mol | Chain | Residues |              | At       | $\mathbf{oms}$ | AltConf  | Trace           |   |   |
|-----|-------|----------|--------------|----------|----------------|----------|-----------------|---|---|
| 7   | Н     | 112      | Total<br>910 | C<br>588 | N<br>154       | 0<br>165 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 8 is a protein called Complex I-B14.5a.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---|---|
| 8   | Ι     | 97       | Total<br>780 | C<br>491 | N<br>147 | 0<br>139 | $\frac{S}{3}$ | 0 | 0 |

• Molecule 9 is a protein called NADH dehydrogenase ubiquinone 1 alpha subcomplex subunit 9, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |        |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|--------|---|---|
| 9   | J     | 297      | Total<br>2348 | C<br>1509 | N<br>420 | 0<br>411 | S<br>8 | 0 | 0 |

• Molecule 10 is a protein called Complex I-9kD.

| Mol | Chain | Residues |       | Atc | $\mathbf{ms}$ | AltConf | Trace        |   |   |
|-----|-------|----------|-------|-----|---------------|---------|--------------|---|---|
| 10  | K     | 49       | Total | С   | Ν             | Ο       | $\mathbf{S}$ | 0 | 0 |
| 10  | IX    | 42       | 355   | 219 | 67            | 68      | 1            |   | 0 |

• Molecule 11 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

| Mol | Chain | Residues |               | At       | $\mathbf{oms}$ |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------------|----------|-----------------|---------|-------|
| 11  | L     | 125      | Total<br>1016 | C<br>642 | N<br>181       | O<br>190 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 12 is a protein called NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace     |         |   |   |
|-----|-------|----------|---------------|-----------|----------|-----------|---------|---|---|
| 12  | М     | 690      | Total<br>5296 | C<br>3320 | N<br>923 | O<br>1014 | S<br>39 | 0 | 0 |



• Molecule 13 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|---------------|---|---|
| 13  | Ν     | 144      | Total<br>1204 | С<br>770 | N<br>218 | 0<br>212 | ${S \atop 4}$ | 0 | 0 |

• Molecule 14 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 14  | О     | 217      | Total<br>1664 | C<br>1060 | N<br>281 | O<br>313 | S<br>10 | 0 | 0 |

• Molecule 15 is a protein called Complex I-30kD.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |                 |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|-----------------|---|---|
| 15  | Р     | 208      | Total<br>1734 | C<br>1122 | N<br>298 | 0<br>312 | ${ m S} { m 2}$ | 0 | 0 |

• Molecule 16 is a protein called Complex I-49kD.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 16  | Q     | 419      | Total<br>3377 | C<br>2162 | N<br>578 | O<br>613 | S<br>24 | 0 | 0 |

• Molecule 17 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1.

| Mol | Chain | Residues |              | Ate      | oms      | AltConf | Trace      |   |   |
|-----|-------|----------|--------------|----------|----------|---------|------------|---|---|
| 17  | S     | 70       | Total<br>567 | C<br>364 | N<br>104 | 0<br>94 | ${f S}{5}$ | 0 | 0 |

• Molecule 18 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial.

| Mol | Chain | Residues |              | At       | AltConf  | Trace    |                 |   |   |
|-----|-------|----------|--------------|----------|----------|----------|-----------------|---|---|
| 18  | Т     | 96       | Total<br>741 | C<br>452 | N<br>140 | 0<br>146 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 19 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3.



| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 19  | U     | 83       | Total<br>643 | C<br>417 | N<br>110 | 0<br>115 | S<br>1 | 0 | 0 |

• Molecule 20 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11.

| Mol | Chain | Residues |       | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|-------|----------|----------|----------|--------|---|---|
| 20  | V     | 140      | Total | C<br>645 | N<br>171 | 0<br>180 | S<br>6 | 0 | 0 |

• Molecule 21 is a protein called Complex I-B16.6.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 21  | W     | 142      | Total<br>1173 | C<br>755 | N<br>203 | O<br>206 | S<br>9 | 0       | 0     |

• Molecule 22 is a protein called Complex I-AGGG.

| Mol | Chain | Residues |              | Ate      | oms     |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|---------|----------|--------|---------|-------|
| 22  | Y     | 70       | Total<br>597 | C<br>392 | N<br>98 | O<br>106 | S<br>1 | 0       | 0     |

• Molecule 23 is a protein called Complex I-B12.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|----------|----------|----------|--------|---|---|
| 23  | Ζ     | 84       | Total<br>674 | C<br>437 | N<br>116 | O<br>120 | S<br>1 | 0 | 0 |

• Molecule 24 is a protein called Complex I-SGDH.

| Mol | Chain | Residues |               | At       | oms      |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|-----------------|---------|-------|
| 24  | a     | 140      | Total<br>1165 | C<br>762 | N<br>199 | 0<br>201 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 25 is a protein called Complex I-B17.

| Mol | Chain | Residues |              | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|----------|--------|---------|-------|
| 25  | b     | 103      | Total<br>879 | C<br>573 | N<br>158 | 0<br>147 | S<br>1 | 0       | 0     |

• Molecule 26 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial.



| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 26  | С     | 156      | Total<br>1315 | C<br>853 | N<br>213 | 0<br>241 | S<br>8 | 0 | 0 |

• Molecule 27 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 27  | d     | 175      | Total<br>1461 | C<br>916 | N<br>265 | 0<br>272 | S<br>8 | 0       | 0     |

• Molecule 28 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial.

| Mol | Chain | Residues |              | At       | oms      | AltConf  | Trace         |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------------|---|---|
| 28  | е     | 107      | Total<br>890 | C<br>568 | N<br>145 | 0<br>173 | ${S \over 4}$ | 0 | 0 |

• Molecule 29 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial.

| Mol | Chain | Residues |              | Aton     | ıs      | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|---------|---------|-------|---|
| 29  | f     | 42       | Total<br>342 | C<br>225 | N<br>58 | O<br>59 | 0     | 0 |

• Molecule 30 is a protein called NADH dehydrogenase [ubiquinone] 1 subunit C2.

| Mol | Chain | Residues |               | At       | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|---------------|----------|----------|----------|--------|---|---|
| 30  | g     | 121      | Total<br>1000 | C<br>650 | N<br>173 | 0<br>171 | S<br>6 | 0 | 0 |

• Molecule 31 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 5.

| Mol | Chain | Residues |              | At                                               | oms      | AltConf  | Trace  |   |   |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|--------|---|---|
| 31  | h     | 105      | Total<br>847 | $\begin{array}{c} \mathrm{C} \\ 537 \end{array}$ | N<br>160 | 0<br>144 | S<br>6 | 0 | 0 |

• Molecule 32 is a protein called NADH-ubiquinone oxidoreductase chain 2.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 32  | i     | 347      | Total<br>2710 | C<br>1782 | N<br>420 | 0<br>462 | S<br>46 | 0 | 0 |

• Molecule 33 is a protein called NADH-ubiquinone oxidoreductase chain 3.



| Mol | Chain | Residues |              | At                                               | oms      | AltConf  | Trace      |   |   |
|-----|-------|----------|--------------|--------------------------------------------------|----------|----------|------------|---|---|
| 33  | j     | 99       | Total<br>800 | $\begin{array}{c} \mathrm{C} \\ 545 \end{array}$ | N<br>118 | 0<br>132 | ${f S}{5}$ | 0 | 0 |

• Molecule 34 is a protein called NADH-ubiquinone oxidoreductase chain 4L.

| Mol | Chain | Residues |              | A        | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|---|---|
| 34  | k     | 98       | Total<br>748 | C<br>493 | N<br>113 | 0<br>128 | S<br>14 | 0 | 0 |

• Molecule 35 is a protein called NADH-ubiquinone oxidoreductase chain 5.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 35  | 1     | 603      | Total<br>4781 | C<br>3172 | N<br>740 | 0<br>818 | S<br>51 | 0 | 0 |

• Molecule 36 is a protein called NADH-ubiquinone oxidoreductase chain 6.

| Mol | Chain | Residues |              | At       | oms      |          | AltConf | Trace |   |
|-----|-------|----------|--------------|----------|----------|----------|---------|-------|---|
| 36  | m     | 129      | Total<br>948 | C<br>636 | N<br>138 | 0<br>166 | S<br>8  | 0     | 0 |

• Molecule 37 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1.

| Mol | Chain | Residues |       | Atc | $\mathbf{ms}$ |    |              | AltConf | Trace |
|-----|-------|----------|-------|-----|---------------|----|--------------|---------|-------|
| 37  | n     | 56       | Total | С   | Ν             | Ο  | $\mathbf{S}$ | 0       | 0     |
| 51  | 11    | 50       | 479   | 311 | 88            | 79 | 1            | 0       | 0     |

• Molecule 38 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4.

| Mol | Chain | Residues |               | Ato      | ms       | AltConf  | Trace |   |
|-----|-------|----------|---------------|----------|----------|----------|-------|---|
| 38  | Ο     | 128      | Total<br>1062 | C<br>691 | N<br>182 | O<br>189 | 0     | 0 |

• Molecule 39 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 39  | р     | 178      | Total<br>1520 | C<br>974 | N<br>275 | O<br>263 | S<br>8 | 0       | 0     |

• Molecule 40 is a protein called NADH-ubiquinone oxidoreductase chain 4.



| Mol | Chain | Residues |               | At        | oms      |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 40  | r     | 459      | Total<br>3630 | C<br>2412 | N<br>572 | O<br>608 | S<br>38 | 0       | 0     |

• Molecule 41 is a protein called NADH-ubiquinone oxidoreductase chain 1.

| Mol | Chain | Residues |               | At        | AltConf  | Trace    |         |   |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---|---|
| 41  | s     | 303      | Total<br>2394 | C<br>1607 | N<br>369 | O<br>397 | S<br>21 | 0 | 0 |

• Molecule 42 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8.

| Mol | Chain | Residues |               | $\mathbf{A}$ | toms     | AltConf  | Trace   |   |   |
|-----|-------|----------|---------------|--------------|----------|----------|---------|---|---|
| 42  | u     | 171      | Total<br>1386 | C<br>881     | N<br>250 | 0<br>245 | S<br>10 | 0 | 0 |

• Molecule 43 is a protein called Complex I-B18.

| Mol | Chain | Residues |               | At       | oms      |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|--------|---------|-------|
| 43  | v     | 124      | Total<br>1028 | C<br>642 | N<br>195 | 0<br>182 | S<br>9 | 0       | 0     |

• Molecule 44 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 44  | W     | 320      | Total<br>2582 | C<br>1643 | N<br>438 | 0<br>491 | S<br>10 | 0       | 0     |

• Molecule 45 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe<sub>4</sub>S<sub>4</sub>) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms               | AltConf |
|-----|-------|----------|---------------------|---------|
| 45  | А     | 1        | Total Fe S<br>8 4 4 | 0       |
| 45  | В     | 1        | TotalFeS844         | 0       |
| 45  | В     | 1        | Total Fe S<br>8 4 4 | 0       |
| 45  | С     | 1        | Total Fe S<br>8 4 4 | 0       |
| 45  | М     | 1        | Total Fe S<br>8 4 4 | 0       |
| 45  | М     | 1        | TotalFeS844         | 0       |

• Molecule 46 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula:  $C_{17}H_{21}N_4O_9P$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms |    |   |   |   | AltConf |
|-----|-------|----------|-------|----|---|---|---|---------|
| 46  | Λ     | 1        | Total | С  | Ν | Ο | Р | 0       |
| 40  | А     | 1        | 31    | 17 | 4 | 9 | 1 | 0       |

• Molecule 47 is 1,4-DIHYDRONICOTINAMIDE ADENINE DINUCLEOTIDE (three-letter code: NAI) (formula:  $C_{21}H_{29}N_7O_{14}P_2$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues | Atoms       |         |        |         |        | AltConf |
|-----|-------|----------|-------------|---------|--------|---------|--------|---------|
| 47  | А     | 1        | Total<br>44 | C<br>21 | N<br>7 | 0<br>14 | Р<br>2 | 0       |

• Molecule 48 is 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (three-letter code: PEE) (formula:  $C_{41}H_{78}NO_8P$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues |       | Ato | oms |   |   | AltConf |
|-----|-------|----------|-------|-----|-----|---|---|---------|
| 19  | Р     | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 40  | D     | 1        | 51    | 41  | 1   | 8 | 1 | 0       |
| 19  | 48 C  | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 40  |       | 1        | 47    | 37  | 1   | 8 | 1 | 0       |
| 19  | 0     | 1        | Total | С   | Ν   | Ο | Р | 0       |
| 40  | Q     | 1        | 47    | 37  | 1   | 8 | 1 | 0       |
| 19  | 1     | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 40  | 1     | I        | 46    | 36  | 1   | 8 | 1 | 0       |
| 19  | 1     | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 40  | 1     | 1        | 46    | 36  | 1   | 8 | 1 | 0       |
| 19  | m     | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 40  | 111   | 1        | 41    | 31  | 1   | 8 | 1 | 0       |
| 18  | r     | 1        | Total | С   | Ν   | Ο | Р | 0       |
| 40  |       |          | 51    | 41  | 1   | 8 | 1 | U       |
| 18  | G     | 1        | Total | С   | Ν   | Ο | Р | 0       |
| 40  | 5     |          | 51    | 41  | 1   | 8 | 1 | U       |

• Molecule 49 is S-[2-({N-[(2R)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta -alanyl}amino)ethyl] dodecanethioate (three-letter code: 8Q1) (formula: C<sub>23</sub>H<sub>45</sub>N<sub>2</sub>O<sub>8</sub>PS) (labeled as "Ligand of Interest" by depositor).





| Mol  | Chain | Residues | Atoms |    |   |   |   |   | AltConf |
|------|-------|----------|-------|----|---|---|---|---|---------|
| 40   | C     | 1        | Total | С  | Ν | 0 | Р | S | 0       |
| 49 G | G     | L        | 35    | 23 | 2 | 8 | 1 | 1 | 0       |
| 40   | 49 X  | 1        | Total | С  | Ν | 0 | Р | S | 0       |
| 49   |       |          | 35    | 23 | 2 | 8 | 1 | 1 | 0       |

• Molecule 50 is CARDIOLIPIN (three-letter code: CDL) (formula:  $C_{81}H_{156}O_{17}P_2$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues | A           | AltConf |         |        |   |
|-----|-------|----------|-------------|---------|---------|--------|---|
| 50  | Ι     | 1        | Total<br>51 | C<br>32 | 0<br>17 | Р<br>2 | 0 |



|              | •           |      |
|--------------|-------------|------|
| Continued fr | om previous | page |

| Mol | Chain | Residues | A     | Atoms |    |   |   |  |
|-----|-------|----------|-------|-------|----|---|---|--|
| 50  | 9     | 1        | Total | С     | Ο  | Р | 0 |  |
| 50  | a     | T        | 91    | 72    | 17 | 2 | 0 |  |
| 50  | ;     | 1        | Total | С     | Ο  | Р | 0 |  |
| 50  | 1     | L        | 66    | 47    | 17 | 2 | 0 |  |
| 50  | 1     | 1        | Total | С     | Ο  | Р | 0 |  |
| 50  | 1     | 1        | 99    | 80    | 17 | 2 | 0 |  |
| 50  | 1     | 1        | Total | С     | Ο  | Р | 0 |  |
| 50  | 1     |          | 100   | 81    | 17 | 2 | 0 |  |
| 50  | r     | 1        | Total | С     | Ο  | Р | 0 |  |
| 50  | r     | T        | 100   | 81    | 17 | 2 |   |  |

• Molecule 51 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: C<sub>21</sub>H<sub>30</sub>N<sub>7</sub>O<sub>17</sub>P<sub>3</sub>) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues | Atoms |    |   |    |   | AltConf |
|-----|-------|----------|-------|----|---|----|---|---------|
| 51  | т     | 1        | Total | С  | Ν | Ο  | Р | 0       |
| 51  | J     | 1        | 48    | 21 | 7 | 17 | 3 | 0       |

• Molecule 52 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula:  $Fe_2S_2$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms      | AltConf |
|-----|-------|----------|------------|---------|
| 52  | М     | 1        | Total Fe S | 0       |
| 52  | IVI   | 1        | 4 2 2      | 0       |
| 50  | 0     | 1        | Total Fe S | 0       |
| 52  | 0     | 1        | 4 2 2      | 0       |

• Molecule 53 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 53  | М     | 1        | Total Mg<br>1 1 | 0       |

• Molecule 54 is (9R,11S)-9-({[(1S)-1-HYDROXYHEXADECYL]OXY}METHYL)-2,2-DI METHYL-5,7,10-TRIOXA-2LAMBDA 5 -AZA-6LAMBDA 5 -PHOSPHAOCTACOSA NE-6,6,11-TRIOL (three-letter code: PLX) (formula: C<sub>42</sub>H<sub>89</sub>NO<sub>8</sub>P) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues |       | AltConf |   |   |   |   |
|-----|-------|----------|-------|---------|---|---|---|---|
| 54  | N     | 1        | Total | С       | Ν | 0 | Р | 0 |
| 54  | 11    | 1        | 52    | 42      | 1 | 8 | 1 | 0 |
| 54  | 0     | 1        | Total | С       | Ν | 0 | Р | 0 |
| 54  | a     | 1        | 52    | 42      | 1 | 8 | 1 | 0 |
| 54  | ď     | 1        | Total | С       | Ν | Ο | Р | 0 |
| 54  | g     | T        | 52    | 42      | 1 | 8 | 1 | 0 |
| 54  | i     | 1        | Total | С       | Ν | Ο | Р | 0 |
| 54  | J     | 1        | 52    | 42      | 1 | 8 | 1 | 0 |
| 54  | r     | 1        | Total | С       | Ν | Ο | Р | 0 |
| 04  | 1     | 1        | 52    | 42      | 1 | 8 | 1 | 0 |
| 54  | r     | 1        | Total | С       | Ν | Ο | Р | 0 |
| 04  | 1     | 1        | 52    | 42      | 1 | 8 | 1 | 0 |

• Molecule 55 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 55  | Т     | 1        | Total Zn<br>1 1 | 0       |

• Molecule 56 is Coenzyme Q10, (2Z,6E,10Z,14E,18E,22E,26Z)-isomer (three-letter code: UQ) (formula: C<sub>59</sub>H<sub>90</sub>O<sub>4</sub>) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms                                                                              | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------------|---------|
| 56  | S     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 28 & 24 & 4 \end{array}$ | 0       |

• Molecule 57 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula:  $C_{10}H_{15}N_5O_{10}P_2$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues |             | AltConf |        |         |        |   |
|-----|-------|----------|-------------|---------|--------|---------|--------|---|
| 57  | W     | 1        | Total<br>27 | C<br>10 | N<br>5 | O<br>10 | Р<br>2 | 0 |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial



• Molecule 2: NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial



99%

Chain E:





• Molecule 9: NADH dehydrogenase ubiquinone 1 alpha subcomplex subunit 9, mitochondrial





• Molecule 13: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12



• Molecule 14: NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial

| Chain O:                                                                                     | 9%                                                                                                   | 100%                                                                     |                                                      |                                                                                                      |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| (333<br>A34<br>(335<br>636<br>646<br>656<br>656<br>658<br>658                                | B84<br>D146<br>E150<br>€150<br>€153<br>K155<br>K155                                                  | G157 ♦<br>1158 1158 1158 1158 1158 1158 1158 1158                        | N189<br>D190<br>E194<br>K199<br>D200<br>1201         | E202<br>E203<br>E204<br>1206<br>D206<br>E207<br>A210<br>C211<br>K212<br>F214<br>F214<br>F214<br>K215 |
| P216<br>6217<br>P218<br>R219<br>S220<br>G221<br>F223<br>F223<br>F223<br>C225<br>C225<br>C225 | A228<br>G229<br>G230<br>L231<br>T233<br>S233<br>S233<br>S233<br>F235<br>F235<br>F235<br>F235<br>F235 | K239<br>5240<br>5241<br>6242<br>7243<br>6248<br>6248<br>1249             |                                                      |                                                                                                      |
| • Molecule 15: Con                                                                           | nplex I-30kD                                                                                         |                                                                          |                                                      |                                                                                                      |
| Chain P:                                                                                     |                                                                                                      | 98%                                                                      | <del>.</del>                                         |                                                                                                      |
| T43<br>R44<br>C80<br>D91<br>0123                                                             | E154<br>N180<br>D183<br>R231<br>E250<br>E250                                                         |                                                                          |                                                      |                                                                                                      |
| • Molecule 16: Con                                                                           | nplex I-49kD                                                                                         |                                                                          |                                                      |                                                                                                      |
| Chain Q:                                                                                     |                                                                                                      | 96%                                                                      | • •                                                  |                                                                                                      |
| A34 ◆<br>E45 ◆<br>C48 ◆<br>C48 ◆<br>C48 ◆<br>F55 ◆<br>K56 ◆<br>K56 ◆<br>K56 ◆                | H60<br>W61<br>W62<br>W62<br>P71<br>P71<br>P72<br>P72<br>ASP<br>THR<br>THR<br>LEU<br>VAL              | NT 9<br>NT 9<br>PR 6<br>GLN<br>HIS<br>PR 0<br>ALA<br>HIS<br>R118<br>V141 | M144<br>(234<br>0282<br>7308<br>7308<br><b>19455</b> | R463                                                                                                 |
| • Molecule 17: NA                                                                            | DH dehydrogenase                                                                                     | [ubiquinone] 1 alpha su                                                  | ubcomplex sub                                        | unit 1                                                                                               |
| Chain S:                                                                                     |                                                                                                      | 100%                                                                     |                                                      |                                                                                                      |
| M1<br>D70                                                                                    |                                                                                                      |                                                                          |                                                      |                                                                                                      |
| • Molecule 18: NA                                                                            | DH dehydrogenase                                                                                     | [ubiquinone] iron-sulfu                                                  | r protein 6, mi                                      | tochondrial                                                                                          |
| Chain T:                                                                                     |                                                                                                      | 100%                                                                     |                                                      |                                                                                                      |
| C28<br>V29<br>R30<br>F31<br>F31<br>F33<br>F33<br>F33<br>F33<br>F34<br>F47<br>D47             | Elos<br>H122<br>H123                                                                                 |                                                                          |                                                      |                                                                                                      |
| • Molecule 19: NA                                                                            | DH dehydrogenase                                                                                     | [ubiquinone] 1 alpha su                                                  | ubcomplex sub                                        | unit 3                                                                                               |
| Chain U:                                                                                     |                                                                                                      | 96%                                                                      | ·                                                    |                                                                                                      |
| A2<br>G3<br>L5<br>A6<br>A12<br>A12<br>K15<br>N52                                             | De0<br>G61<br>N62<br>S68<br>L84<br>L84                                                               |                                                                          |                                                      |                                                                                                      |

 $\bullet$  Molecule 20: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11



|                                                               | 37%                                                                                            |                                                                                                                                                                                             |                                                                                            |                                        |                                                      |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| Chain V:                                                      |                                                                                                | 95%                                                                                                                                                                                         |                                                                                            | 5%                                     |                                                      |
| A2<br>K3<br>L5<br>L5<br>L5<br>K8<br>K8<br>D11<br>D11          | P13<br>E14<br>C115<br>E17<br>C18<br>H19<br>R20<br>K21<br>K21<br>Y23<br>Y23                     | 128<br>A31<br>135<br>135<br>V36<br>837<br>A38                                                                                                                                               | 849<br>840<br>141<br>845<br>845<br>845<br>845<br>845<br>845<br>845<br>845                  | 651<br>652<br>753<br>667<br>671<br>671 | C75<br>176<br>877<br>877<br>877<br>877<br>877<br>881 |
| K83<br>P84<br>D85<br>D85<br>D86<br>A96<br>A96<br>A103<br>A103 | T105<br>R106<br>8107<br>7108<br>6109<br>6119<br>6119<br>1120<br>1120<br>1120                   | т <del>т</del><br>т                                                                                                                                                                         |                                                                                            |                                        |                                                      |
| • Molecule 21: Co                                             | omplex I-B16.6                                                                                 |                                                                                                                                                                                             |                                                                                            |                                        |                                                      |
| Chain W:                                                      |                                                                                                | 99%                                                                                                                                                                                         |                                                                                            | •                                      |                                                      |
| A3<br>84<br>84<br>R28<br>R28<br>G29<br>H50<br>M50<br>D64      | E94<br>K99<br>D100<br>W106<br>M121                                                             | <b>T</b> 144                                                                                                                                                                                |                                                                                            |                                        |                                                      |
| • Molecule 22: Co                                             | omplex I-AGGG                                                                                  |                                                                                                                                                                                             |                                                                                            |                                        |                                                      |
| Chain Y:                                                      | 29%                                                                                            | 96%                                                                                                                                                                                         |                                                                                            | ·                                      |                                                      |
| G36<br>G37<br>H39<br>E41<br>E41<br>F60<br>F73                 | A79<br>A79<br>C82<br>B83<br>B94<br>C94<br>C95<br>C95<br>C95<br>C95<br>C95<br>C95<br>C95<br>C95 | G98<br>199<br>1100<br>1102<br>1102<br>€104<br>€105                                                                                                                                          |                                                                                            |                                        |                                                      |
| • Molecule 23: Co                                             | omplex I-B12                                                                                   |                                                                                                                                                                                             |                                                                                            |                                        |                                                      |
| Chain Z:                                                      | 7%                                                                                             | 98%                                                                                                                                                                                         |                                                                                            | <del>.</del>                           |                                                      |
| E8<br>H9<br>G10<br>H11<br>S12<br>X13<br>M14<br>E15<br>E15     | K20<br>K23<br>K23<br>K23<br>K23<br>K23<br>R23<br>R242<br>R42<br>N60                            | а 10<br>484<br>А 84<br>А 84<br>А 84<br>А 84<br>А 84<br>А 84<br>С 88<br>В 89<br>С 85<br>В 89<br>С 85<br>В 80<br>С 85<br>В 80<br>С 85<br>С 85<br>С 85<br>С 85<br>С 85<br>С 85<br>С 85<br>С 85 |                                                                                            |                                        |                                                      |
| • Molecule 24: Co                                             | omplex I-SGDH                                                                                  |                                                                                                                                                                                             |                                                                                            |                                        |                                                      |
| Chain a:                                                      |                                                                                                | 98%                                                                                                                                                                                         |                                                                                            | <del>.</del>                           |                                                      |
| H50<br>G51<br>K52<br>B35<br>B35<br>B100<br>C104<br>C104       | R119<br>D188<br>N189                                                                           |                                                                                                                                                                                             |                                                                                            |                                        |                                                      |
| • Molecule 25: Co                                             | omplex I-B17                                                                                   |                                                                                                                                                                                             |                                                                                            |                                        |                                                      |
| Chain b:                                                      | 80%                                                                                            |                                                                                                                                                                                             | • 189                                                                                      | %                                      |                                                      |
| S2<br>K9<br>K9<br>E33<br>P36<br>P36<br>P37<br>R38             | R38<br>V40<br>PR0<br>PR0<br>PLU<br>GLU<br>GLU<br>LVS<br>LVS<br>LVS<br>CLN<br>CLN               | ASP<br>ALA<br>TRP<br>PRO<br>TRP<br>LYS<br>ILYS<br>LYS<br>LYS                                                                                                                                | 164           Y65           B66           H67           E112           E112           E122 | D125<br>Q126<br>H127                   |                                                      |

 $\bullet$  Molecule 26: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial



| Chain a:                                                                                                                               |                       |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Chain C. 100%                                                                                                                          |                       |
| H31<br>V32<br>V33<br>K34<br>K34<br>K43<br>F134<br>F134<br>F134<br>F134<br>F173<br>F173<br>F173<br>F173<br>F173<br>F173<br>F173<br>F173 |                       |
| • Molecule 27: NADH dehydrogenase [ubiquinone] 1 beta subcomplex sub                                                                   | ounit 10              |
| Chain d: 99%                                                                                                                           |                       |
| P2<br>B3<br>B3<br>R15<br>R15<br>P3<br>P3<br>P3<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4<br>P4           |                       |
| • Molecule 28: NADH dehydrogenase [ubiquinone] 1 beta subcomplex drial                                                                 | subunit 11, mitochon- |
| Chain e: 99%                                                                                                                           |                       |
| P48<br>P499<br>E50<br>F51<br>T52<br>F51<br>F61<br>F61<br>F61<br>F61<br>F61<br>F61<br>F61<br>F61<br>F61<br>F6                           |                       |
| • Molecule 29: NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochor                                                                  | ndrial                |
| 16%           Chain f:         84%         14%                                                                                         | ı                     |
| LYS<br>TITE<br>ARG<br>GUU<br>PRO<br>PRO<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37<br>C37                          |                       |
| $\bullet$ Molecule 30: NADH dehydrogen<br>ase [ubiquinone] 1 subunit C2                                                                |                       |
| Chain a                                                                                                                                |                       |
| Ghan g. 98%                                                                                                                            |                       |
| R122<br>R122<br>R122<br>R122                                                                                                           |                       |
| $\bullet$ Molecule 31: NADH dehydrogen<br>ase [ubiquinone] iron-sulfur protein 5                                                       |                       |
| Chain h: 98%                                                                                                                           |                       |
| P2<br>F3<br>F4<br>B84<br>K101<br>E102<br>D103                                                                                          |                       |
| • Molecule 32: NADH-ubiquinone oxidoreductase chain 2                                                                                  |                       |
| Chain it                                                                                                                               |                       |
| Onam 1.     99%                                                                                                                        |                       |
|                                                                                                                                        |                       |



• Molecule 33: NADH-ubiquinone oxidoreductase chain 3



• Molecule 34: NADH-ubiquinone oxidoreductase chain 4L



• Molecule 35: NADH-ubiquinone oxidoreductase chain 5





• Molecule 37: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1



• Molecule 38: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4

Chain o: 98%





• Molecule 39: NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9



Chain r: 99%

• Molecule 41: NADH-ubiquinone oxidoreductase chain 1

| $C^{1}$ | ;   | •  |    | 6% | 6  |    |        |    |    |    |        |    |     |   |        |    |    |    |    |   |   |        |   |     |    |    |            |          |      |    |    |    |    |    |    |          |    |    |    |    |
|---------|-----|----|----|----|----|----|--------|----|----|----|--------|----|-----|---|--------|----|----|----|----|---|---|--------|---|-----|----|----|------------|----------|------|----|----|----|----|----|----|----------|----|----|----|----|
| U       | lai | 11 | s. |    |    |    |        |    |    |    |        |    |     |   |        |    |    |    |    |   | 9 | 5%     | ) |     |    |    |            |          |      |    |    |    |    |    |    |          |    |    |    | 5% |
|         |     | •  | •  | •  | •  | •  | •      |    |    | •  | •      | •  | •   |   |        | •  |    | •  | •  |   |   |        | • |     |    |    |            |          |      |    |    |    |    |    |    |          |    | •  | •  |    |
|         | 6   | 0  | ÷. | N  | m  | 4  | ۍ<br>س | ø  | ~  |    | л<br>о | 0  | ÷ ( | N | ,<br>, | 24 | 25 | 26 | 27 | 4 | : | 5      |   | > > | D  | R  | <u>р</u> : |          | 1 12 |    | ш  | N  |    | D  | ж. | A<br>1 7 | 2  | 87 | 18 |    |
| M1      | E5  | P6 | L6 | RG | P6 | A6 | T6     | So | S6 | 16 | S6     | M7 | 5   |   | Ŧ      | IN | S1 | K1 | Υ  | H |   | L<br>L | ł | 3 5 | GL | SE | 19         | LE<br>VA | SE   | 15 | Hd | AS | VA | GL | λI | AL       | AZ | H2 | S3 |    |

• Molecule 42: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8

| Chain u:               | 8%                                                          | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | 40 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                    | Contraction (1988)<br>Contraction (1988)<br>Contra | A154<br>E155<br>D156<br>M172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • Molecule             | 43: Complex I-E<br>27%                                      | 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chain v:               |                                                             | 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| G2<br>A6<br>D12<br>A13 | K15<br>E16<br>P17<br>D18<br>P19<br>L20<br>R21<br>R21<br>T24 | D28<br>F31<br>F31<br>F33<br>F33<br>F33<br>F34<br>F33<br>F33<br>F33<br>F33<br>F33<br>F33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO<br>100<br>110<br>110<br>110<br>110<br>110<br>111<br>111<br>111<br>111<br>111<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>1111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>1 |

• Molecule 44: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial









# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE              | Depositor |
| Imposed symmetry                   | POINT, Not provided          |           |
| Number of particles used           | 24259                        | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TITAN KRIOS              | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 50                           | Depositor |
| Minimum defocus (nm)               | 1300                         | Depositor |
| Maximum defocus (nm)               | 1800                         | Depositor |
| Magnification                      | Not provided                 |           |
| Image detector                     | GATAN K3 $(6k \ge 4k)$       | Depositor |
| Maximum map value                  | 0.226                        | Depositor |
| Minimum map value                  | -0.088                       | Depositor |
| Average map value                  | 0.001                        | Depositor |
| Map value standard deviation       | 0.005                        | Depositor |
| Recommended contour level          | 0.0282                       | Depositor |
| Map size (Å)                       | 333.7616, 333.7616, 333.7616 | wwPDB     |
| Map dimensions                     | 304, 304, 304                | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0             | wwPDB     |
| Pixel spacing (Å)                  | 1.0979, 1.0979, 1.0979       | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NDP, 8Q1, FES, ADP, 2MR, ZN, UQ, CDL, MG, PEE, PLX, NAI, SF4, FMN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond | lengths  | Bo   | ond angles    |
|-----|-------|------|----------|------|---------------|
|     | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5      |
| 1   | А     | 0.25 | 0/3393   | 0.52 | 0/4584        |
| 2   | В     | 0.25 | 0/1443   | 0.52 | 0/1952        |
| 3   | С     | 0.25 | 0/1279   | 0.50 | 0/1730        |
| 4   | Е     | 0.24 | 0/985    | 0.53 | 0/1328        |
| 5   | F     | 0.27 | 0/702    | 0.61 | 1/945~(0.1%)  |
| 6   | G     | 0.24 | 0/705    | 0.46 | 0/956         |
| 6   | Х     | 0.25 | 0/708    | 0.45 | 0/959         |
| 7   | Н     | 0.24 | 0/929    | 0.45 | 0/1258        |
| 8   | Ι     | 0.25 | 0/798    | 0.53 | 0/1079        |
| 9   | J     | 0.24 | 0/2400   | 0.50 | 0/3240        |
| 10  | K     | 0.25 | 0/365    | 0.53 | 0/493         |
| 11  | L     | 0.24 | 0/1039   | 0.49 | 0/1403        |
| 12  | М     | 0.24 | 0/5384   | 0.50 | 0/7295        |
| 13  | N     | 0.25 | 0/1245   | 0.53 | 1/1694~(0.1%) |
| 14  | 0     | 0.25 | 0/1704   | 0.48 | 0/2319        |
| 15  | Р     | 0.25 | 0/1785   | 0.51 | 0/2431        |
| 16  | Q     | 0.26 | 0/3451   | 0.51 | 1/4672~(0.0%) |
| 17  | S     | 0.25 | 0/582    | 0.47 | 0/783         |
| 18  | Т     | 0.23 | 0/755    | 0.50 | 0/1018        |
| 19  | U     | 0.25 | 0/664    | 0.47 | 0/912         |
| 20  | V     | 0.25 | 0/1032   | 0.44 | 0/1399        |
| 21  | W     | 0.26 | 0/1204   | 0.50 | 0/1624        |
| 22  | Y     | 0.26 | 0/623    | 0.51 | 0/853         |
| 23  | Ζ     | 0.24 | 0/695    | 0.48 | 0/939         |
| 24  | a     | 0.25 | 0/1199   | 0.49 | 0/1623        |
| 25  | b     | 0.25 | 0/906    | 0.53 | 0/1232        |
| 26  | с     | 0.24 | 0/1371   | 0.47 | 0/1875        |
| 27  | d     | 0.25 | 0/1494   | 0.50 | 0/2015        |
| 28  | e     | 0.25 | 0/916    | 0.48 | 0/1246        |
| 29  | f     | 0.24 | 0/350    | 0.41 | 0/473         |
| 30  | g     | 0.25 | 0/1031   | 0.46 | 0/1394        |
| 31  | h     | 0.25 | 0/868    | 0.52 | 0/1163        |



| Mal   | Chain | Bond | lengths  | Bo   | ond angles     |
|-------|-------|------|----------|------|----------------|
| 1VIOI | Unam  | RMSZ | # Z  > 5 | RMSZ | # Z  > 5       |
| 32    | i     | 0.25 | 0/2773   | 0.43 | 0/3768         |
| 33    | j     | 0.26 | 0/819    | 0.46 | 0/1117         |
| 34    | k     | 0.26 | 0/759    | 0.45 | 0/1029         |
| 35    | 1     | 0.25 | 0/4910   | 0.45 | 0/6678         |
| 36    | m     | 0.26 | 0/970    | 0.46 | 0/1316         |
| 37    | n     | 0.24 | 0/491    | 0.50 | 0/663          |
| 38    | 0     | 0.25 | 0/1092   | 0.49 | 0/1481         |
| 39    | р     | 0.25 | 0/1576   | 0.50 | 0/2139         |
| 40    | r     | 0.24 | 0/3722   | 0.44 | 0/5077         |
| 41    | s     | 0.26 | 0/2464   | 0.45 | 0/3369         |
| 42    | u     | 0.25 | 0/1424   | 0.52 | 0/1923         |
| 43    | V     | 0.27 | 0/1052   | 0.56 | 0/1411         |
| 44    | W     | 0.25 | 0/2642   | 0.49 | 0/3580         |
| All   | All   | 0.25 | 0/66699  | 0.49 | 3/90438~(0.0%) |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 3   | C     | 0                   | 1                   |

There are no bond length outliers.

All (3) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms     |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 13  | N     | 72  | ASP  | CB-CG-OD1 | 5.56  | 123.30           | 118.30        |
| 16  | Q     | 234 | GLN  | N-CA-C    | 5.26  | 125.21           | 111.00        |
| 5   | F     | 49  | PRO  | CA-N-CD   | -5.05 | 104.43           | 111.50        |

There are no chirality outliers.

All (1) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group   |
|-----|-------|-----|------|---------|
| 3   | С     | 126 | GLU  | Peptide |

## 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.



## 5.3 Torsion angles (i)

### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|----------------|-----------|---------|----------|-------|--------|
| 1   | А     | 429/433~(99%)  | 413 (96%) | 16 (4%) | 0        | 100   | 100    |
| 2   | В     | 174/176~(99%)  | 172 (99%) | 2(1%)   | 0        | 100   | 100    |
| 3   | С     | 154/156~(99%)  | 147 (96%) | 7 (4%)  | 0        | 100   | 100    |
| 4   | Ε     | 113/115~(98%)  | 110 (97%) | 3 (3%)  | 0        | 100   | 100    |
| 5   | F     | 84/86~(98%)    | 79~(94%)  | 5 (6%)  | 0        | 100   | 100    |
| 6   | G     | 86/88~(98%)    | 86 (100%) | 0       | 0        | 100   | 100    |
| 6   | Х     | 86/88~(98%)    | 83 (96%)  | 3 (4%)  | 0        | 100   | 100    |
| 7   | Н     | 110/112~(98%)  | 101 (92%) | 9 (8%)  | 0        | 100   | 100    |
| 8   | Ι     | 93/112~(83%)   | 84 (90%)  | 9 (10%) | 0        | 100   | 100    |
| 9   | J     | 289/342~(84%)  | 275~(95%) | 13 (4%) | 1 (0%)   | 41    | 71     |
| 10  | K     | 40/43~(93%)    | 39 (98%)  | 1 (2%)  | 0        | 100   | 100    |
| 11  | L     | 123/125~(98%)  | 121 (98%) | 2 (2%)  | 0        | 100   | 100    |
| 12  | М     | 688/690~(100%) | 663 (96%) | 25 (4%) | 0        | 100   | 100    |
| 13  | Ν     | 142/144 (99%)  | 137 (96%) | 5 (4%)  | 0        | 100   | 100    |
| 14  | Ο     | 215/217~(99%)  | 206 (96%) | 9 (4%)  | 0        | 100   | 100    |
| 15  | Р     | 206/208~(99%)  | 194 (94%) | 12 (6%) | 0        | 100   | 100    |
| 16  | Q     | 412/430~(96%)  | 398~(97%) | 14 (3%) | 0        | 100   | 100    |
| 17  | S     | 68/70~(97%)    | 66 (97%)  | 2 (3%)  | 0        | 100   | 100    |
| 18  | Т     | 94/96~(98%)    | 93 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 19  | U     | 81/83~(98%)    | 77 (95%)  | 4 (5%)  | 0        | 100   | 100    |
| 20  | V     | 138/140 (99%)  | 129 (94%) | 8 (6%)  | 1 (1%)   | 22    | 54     |
| 21  | W     | 140/142~(99%)  | 136 (97%) | 4 (3%)  | 0        | 100   | 100    |
| 22  | Y     | 68/70~(97%)    | 65~(96%)  | 3 (4%)  | 0        | 100   | 100    |
| 23  | Z     | 82/84~(98%)    | 79 (96%)  | 3 (4%)  | 0        | 100   | 100    |
| 24  | a     | 138/140~(99%)  | 136 (99%) | 2 (1%)  | 0        | 100   | 100    |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | entiles |
|-----|-------|-----------------|------------|----------|----------|-------|---------|
| 25  | b     | 99/126~(79%)    | 92~(93%)   | 7 (7%)   | 0        | 100   | 100     |
| 26  | с     | 154/156~(99%)   | 146 (95%)  | 8 (5%)   | 0        | 100   | 100     |
| 27  | d     | 173/175~(99%)   | 171 (99%)  | 2 (1%)   | 0        | 100   | 100     |
| 28  | е     | 105/107~(98%)   | 100 (95%)  | 5 (5%)   | 0        | 100   | 100     |
| 29  | f     | 40/49~(82%)     | 39~(98%)   | 1 (2%)   | 0        | 100   | 100     |
| 30  | g     | 119/122~(98%)   | 115 (97%)  | 4 (3%)   | 0        | 100   | 100     |
| 31  | h     | 103/105~(98%)   | 101 (98%)  | 2 (2%)   | 0        | 100   | 100     |
| 32  | i     | 345/347~(99%)   | 332 (96%)  | 13 (4%)  | 0        | 100   | 100     |
| 33  | j     | 95/115~(83%)    | 90 (95%)   | 5 (5%)   | 0        | 100   | 100     |
| 34  | k     | 96/98~(98%)     | 90 (94%)   | 6 (6%)   | 0        | 100   | 100     |
| 35  | 1     | 601/603~(100%)  | 574 (96%)  | 27 (4%)  | 0        | 100   | 100     |
| 36  | m     | 125/175~(71%)   | 114 (91%)  | 11 (9%)  | 0        | 100   | 100     |
| 37  | n     | 54/56~(96%)     | 54 (100%)  | 0        | 0        | 100   | 100     |
| 38  | О     | 126/128~(98%)   | 119 (94%)  | 7 (6%)   | 0        | 100   | 100     |
| 39  | р     | 176/178~(99%)   | 170 (97%)  | 6 (3%)   | 0        | 100   | 100     |
| 40  | r     | 457/459~(100%)  | 447 (98%)  | 10 (2%)  | 0        | 100   | 100     |
| 41  | s     | 299/318 (94%)   | 285 (95%)  | 14 (5%)  | 0        | 100   | 100     |
| 42  | u     | 169/171~(99%)   | 164 (97%)  | 5 (3%)   | 0        | 100   | 100     |
| 43  | v     | 122/124~(98%)   | 114 (93%)  | 8 (7%)   | 0        | 100   | 100     |
| 44  | W     | 318/320~(99%)   | 303~(95%)  | 15 (5%)  | 0        | 100   | 100     |
| All | All   | 8029/8322~(96%) | 7709 (96%) | 318 (4%) | 2(0%)    | 100   | 100     |

Continued from previous page...

All (2) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 9   | J     | 38  | HIS  |
| 20  | V     | 46  | PRO  |

### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was



| Mol | Chain | Analysod       | Botamoric  | Outliors | Porco | ntilog   |
|-----|-------|----------------|------------|----------|-------|----------|
| 1   |       | 245/246(10007) | 244 (100%) | 1 (0%)   |       |          |
| 1   | A     | 343/340(100%)  | 344 (100%) | 1(070)   | 92    | 90<br>76 |
|     | D     | 151/151 (100%) | 148 (98%)  | 3(270)   | 55    | 70       |
| 3   | С     | 132/132 (100%) | 129 (98%)  | 3 (2%)   | 50    | 73       |
| 4   | Е     | 105/107~(98%)  | 104 (99%)  | 1 (1%)   | 76    | 86       |
| 5   | F     | 76/76~(100%)   | 73 (96%)   | 3~(4%)   | 32    | 62       |
| 6   | G     | 76/81~(94%)    | 72 (95%)   | 4 (5%)   | 22    | 53       |
| 6   | Х     | 77/81~(95%)    | 74 (96%)   | 3 (4%)   | 32    | 62       |
| 7   | Н     | 99/99~(100%)   | 99 (100%)  | 0        | 100   | 100      |
| 8   | Ι     | 87/97~(90%)    | 87 (100%)  | 0        | 100   | 100      |
| 9   | J     | 252/296~(85%)  | 250~(99%)  | 2(1%)    | 81    | 89       |
| 10  | Κ     | 41/42~(98%)    | 41 (100%)  | 0        | 100   | 100      |
| 11  | L     | 113/113~(100%) | 111 (98%)  | 2(2%)    | 59    | 78       |
| 12  | М     | 580/580~(100%) | 570~(98%)  | 10 (2%)  | 60    | 78       |
| 13  | Ν     | 130/130~(100%) | 127 (98%)  | 3 (2%)   | 50    | 73       |
| 14  | О     | 181/183 (99%)  | 180 (99%)  | 1 (1%)   | 86    | 91       |
| 15  | Р     | 189/190~(100%) | 185 (98%)  | 4 (2%)   | 53    | 75       |
| 16  | Q     | 361/370~(98%)  | 357~(99%)  | 4 (1%)   | 73    | 85       |
| 17  | S     | 58/58~(100%)   | 58 (100%)  | 0        | 100   | 100      |
| 18  | Т     | 79/79~(100%)   | 79 (100%)  | 0        | 100   | 100      |
| 19  | U     | 69/69~(100%)   | 66 (96%)   | 3 (4%)   | 29    | 59       |
| 20  | V     | 98/101~(97%)   | 92 (94%)   | 6 (6%)   | 18    | 48       |
| 21  | W     | 123/123~(100%) | 121 (98%)  | 2(2%)    | 62    | 79       |
| 22  | Y     | 62/63~(98%)    | 59~(95%)   | 3(5%)    | 25    | 56       |
| 23  | Ζ     | 65/65~(100%)   | 63~(97%)   | 2(3%)    | 40    | 67       |
| 24  | a     | 122/122~(100%) | 119 (98%)  | 3 (2%)   | 47    | 72       |
| 25  | b     | 98/119~(82%)   | 96 (98%)   | 2 (2%)   | 55    | 76       |
| 26  | с     | 141/141 (100%) | 141 (100%) | 0        | 100   | 100      |
| 27  | d     | 155/155~(100%) | 153 (99%)  | 2 (1%)   | 69    | 82       |
| 28  | е     | 99/99~(100%)   | 98 (99%)   | 1 (1%)   | 76    | 86       |
| 29  | f     | 35/45~(78%)    | 34 (97%)   | 1 (3%)   | 42    | 69       |
| 30  | g     | 108/109~(99%)  | 107 (99%)  | 1 (1%)   | 78    | 87       |

analysed, and the total number of residues.



| Mol | Chain | Analysed        | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|-------|--------|
| 31  | h     | 88/93~(95%)     | 86~(98%)   | 2(2%)    | 50    | 73     |
| 32  | i     | 311/311~(100%)  | 309~(99%)  | 2(1%)    | 86    | 91     |
| 33  | j     | 88/100~(88%)    | 88 (100%)  | 0        | 100   | 100    |
| 34  | k     | 85/85~(100%)    | 84 (99%)   | 1 (1%)   | 71    | 83     |
| 35  | 1     | 535/537~(100%)  | 531 (99%)  | 4 (1%)   | 84    | 90     |
| 36  | m     | 98/141 (70%)    | 95~(97%)   | 3(3%)    | 40    | 67     |
| 37  | n     | 53/53~(100%)    | 53 (100%)  | 0        | 100   | 100    |
| 38  | О     | 113/113~(100%)  | 110 (97%)  | 3(3%)    | 44    | 71     |
| 39  | р     | 156/159~(98%)   | 154 (99%)  | 2(1%)    | 69    | 82     |
| 40  | r     | 409/410~(100%)  | 404 (99%)  | 5 (1%)   | 71    | 83     |
| 41  | s     | 263/275~(96%)   | 262 (100%) | 1 (0%)   | 91    | 95     |
| 42  | u     | 150/153~(98%)   | 142 (95%)  | 8 (5%)   | 22    | 53     |
| 43  | v     | 104/111 (94%)   | 101 (97%)  | 3(3%)    | 42    | 69     |
| 44  | W     | 281/283~(99%)   | 276 (98%)  | 5 (2%)   | 59    | 78     |
| All | All   | 7041/7246~(97%) | 6932 (98%) | 109 (2%) | 66    | 81     |

Continued from previous page...

All (109) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 286 | CYS  |
| 2   | В     | 76  | TYR  |
| 2   | В     | 137 | ASP  |
| 2   | В     | 165 | ASP  |
| 3   | С     | 41  | SER  |
| 3   | С     | 71  | CYS  |
| 3   | С     | 142 | TYR  |
| 4   | Е     | 70  | ASN  |
| 5   | F     | 43  | GLU  |
| 5   | F     | 78  | SER  |
| 5   | F     | 81  | ASN  |
| 6   | G     | 74  | LEU  |
| 6   | G     | 90  | TYR  |
| 6   | G     | 114 | ASP  |
| 6   | G     | 128 | PHE  |
| 9   | J     | 85  | ARG  |
| 9   | J     | 272 | LEU  |
| 11  | L     | 86  | ASN  |



| Mol             | Chain | Res | Type |
|-----------------|-------|-----|------|
| 11              | L     | 151 | LYS  |
| 12              | М     | 224 | ASP  |
| 12              | М     | 255 | ASP  |
| 12              | М     | 288 | ASP  |
| 12              | М     | 347 | ASP  |
| 12              | М     | 362 | ASP  |
| 12              | М     | 437 | ASP  |
| 12              | М     | 636 | TYR  |
| 12              | М     | 640 | ASP  |
| 12              | М     | 650 | SER  |
| 12              | М     | 701 | SER  |
| 13              | Ν     | 59  | HIS  |
| 13              | Ν     | 95  | ASP  |
| 13              | N     | 141 | SER  |
| 14              | 0     | 166 | ASP  |
| 15              | Р     | 50  | ARG  |
| 15              | Р     | 80  | CYS  |
| 15              | Р     | 138 | ASN  |
| 15              | Р     | 231 | ARG  |
| 16              | Q     | 141 | TYR  |
| 16              | Q     | 144 | MET  |
| 16              | Q     | 282 | ASP  |
| 16              | Q     | 308 | TYR  |
| 19              | U     | 11  | ASN  |
| 19              | U     | 52  | ASN  |
| 19              | U     | 68  | SER  |
| 20              | V     | 40  | SER  |
| 20              | V     | 72  | LEU  |
| 20              | V     | 75  | CYS  |
| 20              | V     | 118 | MET  |
| 20              | V     | 120 | LEU  |
| 20              | V     | 121 | THR  |
| 21              | W     | 50  | MET  |
| 21              | W     | 64  | ASP  |
| 6               | Х     | 74  | LEU  |
| 6               | X     | 111 | ASP  |
| 6               | Х     | 129 | GLU  |
| 22              | Y     | 60  | PHE  |
| $\overline{22}$ | Y     | 73  | PHE  |
| 22              | Y     | 94  | ASP  |
| 23              | Ζ     | 20  | LYS  |
| 23              | Ζ     | 42  | ARG  |

Continued from previous page...


| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 24  | a     | 100 | ASP  |
| 24  | a     | 119 | ARG  |
| 24  | a     | 188 | ASP  |
| 25  | b     | 23  | LEU  |
| 25  | b     | 66  | ARG  |
| 27  | d     | 16  | ARG  |
| 27  | d     | 64  | TYR  |
| 28  | е     | 137 | MET  |
| 29  | f     | 60  | LYS  |
| 30  | g     | 106 | LYS  |
| 31  | h     | 3   | PHE  |
| 31  | h     | 97  | HIS  |
| 32  | i     | 98  | MET  |
| 32  | i     | 204 | ASN  |
| 34  | k     | 53  | PHE  |
| 35  | 1     | 1   | MET  |
| 35  | 1     | 151 | SER  |
| 35  | 1     | 336 | LYS  |
| 35  | 1     | 357 | ARG  |
| 36  | m     | 17  | PHE  |
| 36  | m     | 41  | CYS  |
| 36  | m     | 135 | PHE  |
| 38  | 0     | 9   | SER  |
| 38  | 0     | 75  | ASN  |
| 38  | 0     | 128 | SER  |
| 39  | р     | 21  | LYS  |
| 39  | р     | 57  | MET  |
| 40  | r     | 57  | PHE  |
| 40  | r     | 122 | PHE  |
| 40  | r     | 256 | TYR  |
| 40  | r     | 323 | SER  |
| 40  | r     | 400 | MET  |
| 41  | s     | 171 | HIS  |
| 42  | u     | 46  | CYS  |
| 42  | u     | 48  | TRP  |
| 42  | u     | 66  | CYS  |
| 42  | u     | 77  | HIS  |
| 42  | u     | 78  | CYS  |
| 42  | u     | 88  | CYS  |
| 42  | u     | 96  | LEU  |
| 42  | u     | 103 | GLN  |
| 43  | V     | 54  | GLN  |



Continued from previous page...

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 43  | V     | 90  | CYS  |
| 43  | V     | 110 | GLN  |
| 44  | W     | 241 | TYR  |
| 44  | W     | 275 | TYR  |
| 44  | W     | 293 | ARG  |
| 44  | W     | 300 | ASN  |
| 44  | W     | 354 | LEU  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (15) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 44  | ASN  |
| 1   | А     | 456 | GLN  |
| 1   | А     | 457 | HIS  |
| 3   | С     | 123 | GLN  |
| 6   | G     | 103 | HIS  |
| 10  | Κ     | 79  | HIS  |
| 14  | 0     | 131 | HIS  |
| 15  | Р     | 74  | GLN  |
| 15  | Р     | 75  | GLN  |
| 15  | Р     | 123 | GLN  |
| 18  | Т     | 123 | HIS  |
| 20  | V     | 89  | ASN  |
| 30  | g     | 48  | ASN  |
| 30  | g     | 63  | GLN  |
| 43  | v     | 85  | HIS  |

## 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the



expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type | Chain | Dog     | Tink | Bond lengths |          | Bond angles |          |         |             |         |
|----------|-------|---------|------|--------------|----------|-------------|----------|---------|-------------|---------|
|          | туре  | Ullalli | nes  |              | Counts   | RMSZ        | # Z  > 2 | Counts  | RMSZ        | # Z >2  |
| 16       | 2MR   | Q       | 118  | 16           | 10,12,13 | 1.97        | 1 (10%)  | 5,13,15 | <b>5.96</b> | 3 (60%) |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions   | Rings |
|-----|------|-------|-----|------|---------|------------|-------|
| 16  | 2MR  | Q     | 118 | 16   | -       | 2/10/13/15 | -     |

All (1) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|------|-------------|----------|
| 16  | Q     | 118 | 2MR  | CZ-NE | 5.70 | 1.46        | 1.34     |

All (3) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 16  | Q     | 118 | 2MR  | NE-CZ-NH2  | 12.16 | 130.63           | 119.48        |
| 16  | Q     | 118 | 2MR  | CD-NE-CZ   | 4.34  | 131.53           | 123.41        |
| 16  | Q     | 118 | 2MR  | CQ2-NH2-CZ | 3.10  | 130.71           | 123.86        |

There are no chirality outliers.

All (2) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 16  | Q     | 118 | 2MR  | NE-CD-CG-CB |
| 16  | Q     | 118 | 2MR  | CA-CB-CG-CD |

There are no ring outliers.

No monomer is involved in short contacts.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.



## 5.6 Ligand geometry (i)

Of 37 ligands modelled in this entry, 2 are monoatomic - leaving 35 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Type | Chain   | Bos | Link  | B        | ond leng | gths     | Bond angles    |      |         |
|------|------|---------|-----|-------|----------|----------|----------|----------------|------|---------|
| WIOI | Type | Ullalli | nes | LIIIK | Counts   | RMSZ     | # Z  > 2 | Counts         | RMSZ | # Z >2  |
| 46   | FMN  | А       | 502 | -     | 33,33,33 | 1.07     | 2 (6%)   | $48,\!50,\!50$ | 1.21 | 7 (14%) |
| 50   | CDL  | r       | 504 | -     | 99,99,99 | 1.09     | 8 (8%)   | 105,111,111    | 0.86 | 4 (3%)  |
| 50   | CDL  | i       | 401 | -     | 65,65,99 | 1.28     | 8 (12%)  | 71,77,111      | 1.01 | 4 (5%)  |
| 50   | CDL  | Ι       | 201 | -     | 50,50,99 | 1.41     | 8 (16%)  | 56,62,111      | 1.13 | 4 (7%)  |
| 48   | PEE  | s       | 401 | -     | 50,50,50 | 1.16     | 6 (12%)  | 53,55,55       | 0.94 | 2(3%)   |
| 50   | CDL  | a       | 201 | -     | 90,90,99 | 1.14     | 9 (10%)  | 96,102,111     | 0.92 | 4 (4%)  |
| 48   | PEE  | Q       | 501 | -     | 46,46,50 | 1.21     | 6 (13%)  | 49,51,55       | 0.99 | 2 (4%)  |
| 50   | CDL  | 1       | 702 | -     | 99,99,99 | 1.09     | 8 (8%)   | 105,111,111    | 0.84 | 4 (3%)  |
| 51   | NDP  | J       | 401 | -     | 45,52,52 | 4.58     | 20 (44%) | 53,80,80       | 1.95 | 8 (15%) |
| 54   | PLX  | N       | 201 | -     | 51,51,51 | 1.15     | 4 (7%)   | $55,\!59,\!59$ | 0.60 | 1 (1%)  |
| 49   | 8Q1  | Х       | 201 | -     | 31,34,34 | 1.70     | 6 (19%)  | 40,43,43       | 1.53 | 6 (15%) |
| 45   | SF4  | М       | 802 | 12    | 0,12,12  | -        | -        | -              |      |         |
| 45   | SF4  | М       | 801 | 12    | 0,12,12  | -        | -        | -              |      |         |
| 47   | NAI  | А       | 503 | -     | 42,48,48 | 4.94     | 19 (45%) | 47,73,73       | 1.32 | 7 (14%) |
| 54   | PLX  | r       | 503 | -     | 51,51,51 | 1.14     | 4 (7%)   | 55, 59, 59     | 0.59 | 1 (1%)  |
| 45   | SF4  | С       | 301 | 16,3  | 0,12,12  | -        | _        | _              |      |         |
| 48   | PEE  | В       | 303 | -     | 50,50,50 | 1.16     | 6 (12%)  | $53,\!55,\!55$ | 0.96 | 2 (3%)  |
| 48   | PEE  | m       | 201 | -     | 40,40,50 | 1.15     | 5 (12%)  | 43,45,55       | 0.99 | 2 (4%)  |
| 48   | PEE  | 1       | 704 | -     | 45,45,50 | 1.22     | 6 (13%)  | 48,50,55       | 0.98 | 2 (4%)  |
| 54   | PLX  | r       | 502 | -     | 51,51,51 | 1.15     | 5 (9%)   | $55,\!59,\!59$ | 0.62 | 1 (1%)  |
| 45   | SF4  | В       | 301 | 2     | 0,12,12  | -        | _        | -              |      |         |
| 52   | FES  | М       | 803 | 12    | 0,4,4    | -        | -        | -              |      |         |
| 52   | FES  | 0       | 301 | 14    | 0,4,4    | -        | -        | -              |      |         |
| 49   | 8Q1  | G       | 201 | -     | 31,34,34 | 1.70     | 6 (19%)  | 40,43,43       | 1.55 | 6 (15%) |
| 50   | CDL  | 1       | 701 | -     | 98,98,99 | 0.92     | 4 (4%)   | 104,110,111    | 1.15 | 7 (6%)  |
| 48   | PEE  | 1       | 703 | -     | 45,45,50 | 1.22     | 6 (13%)  | 48,50,55       | 0.97 | 2 (4%)  |
| 54   | PLX  | g       | 201 | -     | 51,51,51 | 1.15     | 3 (5%)   | 55,59,59       | 0.58 | 1 (1%)  |



| Mal   | Turne | Chain | nain Ros Link |   | B        | ond leng          | gths     | Bond angles    |      |          |
|-------|-------|-------|---------------|---|----------|-------------------|----------|----------------|------|----------|
| INIOI | туре  | Unam  | nes           |   | Counts   | RMSZ              | # Z  > 2 | Counts         | RMSZ | # Z  > 2 |
| 57    | ADP   | W     | 401           | - | 24,29,29 | 3.12              | 6 (25%)  | $29,\!45,\!45$ | 1.43 | 4 (13%)  |
| 45    | SF4   | А     | 501           | 1 | 0,12,12  | -                 | -        | -              |      |          |
| 48    | PEE   | r     | 501           | - | 50,50,50 | 1.16              | 6 (12%)  | $53,\!55,\!55$ | 0.94 | 2 (3%)   |
| 54    | PLX   | j     | 201           | - | 51,51,51 | 1.15              | 4 (7%)   | $55,\!59,\!59$ | 0.58 | 1 (1%)   |
| 45    | SF4   | В     | 302           | 2 | 0,12,12  | -                 | -        | -              |      |          |
| 56    | UQ    | s     | 402           | - | 28,28,63 | <mark>3.30</mark> | 6 (21%)  | 34,37,79       | 2.72 | 9 (26%)  |
| 54    | PLX   | a     | 202           | - | 51,51,51 | 1.14              | 4 (7%)   | $55,\!59,\!59$ | 0.60 | 1 (1%)   |
| 48    | PEE   | С     | 302           | - | 46,46,50 | 1.21              | 6 (13%)  | 49,51,55       | 0.99 | 2 (4%)   |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions       | Rings   |
|-----|------|-------|-----|------|---------|----------------|---------|
| 46  | FMN  | А     | 502 | -    | -       | 6/18/18/18     | 0/3/3/3 |
| 50  | CDL  | i     | 401 | -    | -       | 35/76/76/110   | -       |
| 50  | CDL  | Ι     | 201 | -    | -       | 39/61/61/110   | -       |
| 48  | PEE  | s     | 401 | -    | -       | 25/54/54/54    | -       |
| 50  | CDL  | a     | 201 | -    | -       | 53/101/101/110 | -       |
| 48  | PEE  | Q     | 501 | -    | -       | 19/50/50/54    | -       |
| 50  | CDL  | 1     | 702 | -    | -       | 51/110/110/110 | -       |
| 51  | NDP  | J     | 401 | -    | -       | 6/30/77/77     | 0/4/5/5 |
| 54  | PLX  | Ν     | 201 | -    | -       | 26/55/55/55    | -       |
| 49  | 8Q1  | Х     | 201 | -    | -       | 22/41/41/41    | -       |
| 45  | SF4  | М     | 802 | 12   | -       | -              | 0/6/5/5 |
| 47  | NAI  | А     | 503 | -    | -       | 7/25/72/72     | 0/5/5/5 |
| 45  | SF4  | М     | 801 | 12   | -       | -              | 0/6/5/5 |
| 54  | PLX  | r     | 503 | -    | -       | 34/55/55/55    | -       |
| 45  | SF4  | С     | 301 | 16,3 | -       | -              | 0/6/5/5 |
| 48  | PEE  | В     | 303 | -    | -       | 24/54/54/54    | -       |
| 48  | PEE  | m     | 201 | -    | -       | 21/44/44/54    | -       |
| 48  | PEE  | 1     | 704 | -    | -       | 22/49/49/54    | -       |
| 54  | PLX  | r     | 502 | -    | -       | 28/55/55/55    | -       |
| 45  | SF4  | В     | 301 | 2    | -       | -              | 0/6/5/5 |
| 52  | FES  | М     | 803 | 12   | -       | -              | 0/1/1/1 |
| 52  | FES  | 0     | 301 | 14   | -       | -              | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions       | Rings   |
|-----|------|-------|-----|------|---------|----------------|---------|
| 49  | 8Q1  | G     | 201 | -    | -       | 19/41/41/41    | -       |
| 50  | CDL  | 1     | 701 | -    | -       | 33/109/109/110 | -       |
| 48  | PEE  | 1     | 703 | -    | -       | 27/49/49/54    | -       |
| 54  | PLX  | g     | 201 | -    | -       | 21/55/55/55    | -       |
| 57  | ADP  | W     | 401 | -    | -       | 3/12/32/32     | 0/3/3/3 |
| 45  | SF4  | А     | 501 | 1    | -       | -              | 0/6/5/5 |
| 48  | PEE  | r     | 501 | -    | -       | 20/54/54/54    | -       |
| 54  | PLX  | j     | 201 | -    | -       | 28/55/55/55    | -       |
| 45  | SF4  | В     | 302 | 2    | -       | -              | 0/6/5/5 |
| 48  | PEE  | С     | 302 | -    | -       | 28/50/50/54    | -       |
| 56  | UQ   | S     | 402 | -    | -       | 9/21/45/87     | 0/1/1/1 |
| 54  | PLX  | a     | 202 | -    | -       | 22/55/55/55    | -       |
| 50  | CDL  | r     | 504 | -    | -       | 64/110/110/110 | -       |

All (181) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Z      | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|--------|-------------|----------|
| 47  | А     | 503 | NAI  | O4B-C1B | 16.20  | 1.63        | 1.41     |
| 47  | А     | 503 | NAI  | C2B-C1B | -15.38 | 1.30        | 1.53     |
| 51  | J     | 401 | NDP  | C3B-C2B | -12.87 | 1.24        | 1.52     |
| 51  | J     | 401 | NDP  | C6N-C5N | 12.49  | 1.55        | 1.33     |
| 51  | J     | 401 | NDP  | O4D-C4D | 10.71  | 1.68        | 1.45     |
| 47  | А     | 503 | NAI  | C3D-C4D | -10.26 | 1.26        | 1.53     |
| 51  | J     | 401 | NDP  | C3D-C4D | -9.82  | 1.27        | 1.53     |
| 56  | s     | 402 | UQ   | C13-C14 | 9.37   | 1.55        | 1.33     |
| 56  | s     | 402 | UQ   | C8-C9   | 9.02   | 1.54        | 1.33     |
| 57  | W     | 401 | ADP  | C3'-C4' | -8.84  | 1.30        | 1.53     |
| 51  | J     | 401 | NDP  | O4B-C1B | 8.58   | 1.53        | 1.41     |
| 47  | А     | 503 | NAI  | O4B-C4B | -8.21  | 1.26        | 1.45     |
| 56  | s     | 402 | UQ   | C18-C19 | 8.20   | 1.55        | 1.32     |
| 51  | J     | 401 | NDP  | O4B-C4B | -7.83  | 1.27        | 1.45     |
| 57  | W     | 401 | ADP  | O4'-C4' | 7.77   | 1.62        | 1.45     |
| 47  | А     | 503 | NAI  | C2D-C1D | -7.45  | 1.29        | 1.53     |
| 51  | J     | 401 | NDP  | C2N-C3N | 7.44   | 1.55        | 1.34     |
| 47  | А     | 503 | NAI  | O4D-C4D | 6.94   | 1.60        | 1.45     |
| 57  | W     | 401 | ADP  | O4'-C1' | -6.85  | 1.31        | 1.41     |
| 47  | А     | 503 | NAI  | C2D-C3D | 5.99   | 1.69        | 1.53     |
| 51  | J     | 401 | NDP  | P2B-O2B | 5.80   | 1.70        | 1.59     |
| 47  | А     | 503 | NAI  | C7N-N7N | 5.78   | 1.48        | 1.33     |
| 49  | Х     | 201 | 8Q1  | C34-N36 | 5.50   | 1.45        | 1.33     |



| 001000 | Juaca ji on | " P'CON | ous puye | • • •   |       |             |          |
|--------|-------------|---------|----------|---------|-------|-------------|----------|
| Mol    | Chain       | Res     | Type     | Atoms   | Z     | Observed(Å) | Ideal(Å) |
| 47     | А           | 503     | NAI      | O4D-C1D | 5.49  | 1.55        | 1.42     |
| 49     | G           | 201     | 8Q1      | C34-N36 | 5.46  | 1.45        | 1.33     |
| 51     | J           | 401     | NDP      | C3B-C4B | 5.45  | 1.66        | 1.53     |
| 49     | Х           | 201     | 8Q1      | C39-N41 | 5.39  | 1.45        | 1.33     |
| 49     | G           | 201     | 8Q1      | C39-N41 | 5.35  | 1.45        | 1.33     |
| 47     | А           | 503     | NAI      | C4N-C3N | -4.95 | 1.40        | 1.49     |
| 51     | J           | 401     | NDP      | C6N-N1N | 4.92  | 1.49        | 1.37     |
| 51     | J           | 401     | NDP      | O4D-C1D | -4.90 | 1.30        | 1.42     |
| 47     | А           | 503     | NAI      | O2B-C2B | 4.51  | 1.53        | 1.43     |
| 50     | 1           | 701     | CDL      | OA8-CA7 | 4.37  | 1.46        | 1.33     |
| 50     | 1           | 701     | CDL      | OB8-CB7 | 4.23  | 1.45        | 1.33     |
| 51     | J           | 401     | NDP      | C7N-N7N | 4.22  | 1.44        | 1.33     |
| 51     | J           | 401     | NDP      | O2D-C2D | -4.12 | 1.33        | 1.43     |
| 51     | J           | 401     | NDP      | C6A-N6A | 4.12  | 1.49        | 1.34     |
| 47     | А           | 503     | NAI      | C6N-C5N | 4.12  | 1.40        | 1.33     |
| 50     | 1           | 701     | CDL      | OB6-CB5 | 4.06  | 1.45        | 1.34     |
| 50     | 1           | 701     | CDL      | OA6-CA5 | 3.96  | 1.45        | 1.34     |
| 46     | А           | 502     | FMN      | C4A-N5  | 3.85  | 1.38        | 1.30     |
| 57     | W           | 401     | ADP      | C6-N6   | 3.84  | 1.48        | 1.34     |
| 48     | С           | 302     | PEE      | C18-C19 | 3.75  | 1.53        | 1.31     |
| 48     | В           | 303     | PEE      | C18-C19 | 3.74  | 1.53        | 1.31     |
| 48     | 1           | 703     | PEE      | C18-C19 | 3.73  | 1.53        | 1.31     |
| 48     | s           | 401     | PEE      | C18-C19 | 3.73  | 1.53        | 1.31     |
| 48     | r           | 501     | PEE      | C18-C19 | 3.73  | 1.53        | 1.31     |
| 48     | 1           | 704     | PEE      | C18-C19 | 3.72  | 1.53        | 1.31     |
| 48     | m           | 201     | PEE      | C18-C19 | 3.72  | 1.53        | 1.31     |
| 48     | Q           | 501     | PEE      | C18-C19 | 3.72  | 1.53        | 1.31     |
| 48     | 1           | 704     | PEE      | C39-C38 | 3.67  | 1.53        | 1.31     |
| 48     | С           | 302     | PEE      | C39-C38 | 3.67  | 1.53        | 1.31     |
| 48     | Q           | 501     | PEE      | C39-C38 | 3.66  | 1.53        | 1.31     |
| 48     | S           | 401     | PEE      | C39-C38 | 3.66  | 1.53        | 1.31     |
| 48     | r           | 501     | PEE      | C39-C38 | 3.66  | 1.53        | 1.31     |
| 48     | 1           | 703     | PEE      | C39-C38 | 3.65  | 1.52        | 1.31     |
| 48     | В           | 303     | PEE      | C39-C38 | 3.64  | 1.52        | 1.31     |
| 47     | А           | 503     | NAI      | C7N-C3N | 3.60  | 1.56        | 1.48     |
| 47     | А           | 503     | NAI      | C6A-N6A | 3.59  | 1.47        | 1.34     |
| 50     | Ι           | 201     | CDL      | OA8-CA7 | 3.46  | 1.43        | 1.33     |
| 50     | r           | 504     | CDL      | OA8-CA7 | 3.46  | 1.43        | 1.33     |
| 50     | a           | 201     | CDL      | OA8-CA7 | 3.45  | 1.43        | 1.33     |
| 50     | 1           | 702     | CDL      | OA8-CA7 | 3.44  | 1.43        | 1.33     |
| 50     | i           | 401     | CDL      | OA8-CA7 | 3.44  | 1.43        | 1.33     |
| 57     | W           | 401     | ADP      | O2'-C2' | -3.35 | 1.35        | 1.43     |



| 001000 | naca jion | " pree | ious page |         |       |             |          |
|--------|-----------|--------|-----------|---------|-------|-------------|----------|
| Mol    | Chain     | Res    | Type      | Atoms   | Z     | Observed(A) | Ideal(Å) |
| 47     | А         | 503    | NAI       | C4N-C5N | -3.24 | 1.40        | 1.48     |
| 57     | W         | 401    | ADP       | O3'-C3' | 3.11  | 1.50        | 1.43     |
| 51     | J         | 401    | NDP       | O3D-C3D | 3.10  | 1.50        | 1.43     |
| 50     | Ι         | 201    | CDL       | OB6-CB5 | 3.05  | 1.42        | 1.34     |
| 51     | J         | 401    | NDP       | C7N-C3N | 3.05  | 1.55        | 1.48     |
| 50     | a         | 201    | CDL       | OB6-CB5 | 3.05  | 1.42        | 1.34     |
| 50     | r         | 504    | CDL       | OB8-CB7 | 3.04  | 1.42        | 1.33     |
| 50     | 1         | 702    | CDL       | OB8-CB7 | 3.04  | 1.42        | 1.33     |
| 50     | a         | 201    | CDL       | OA6-CA5 | 3.04  | 1.42        | 1.34     |
| 50     | Ι         | 201    | CDL       | OB8-CB7 | 3.03  | 1.42        | 1.33     |
| 50     | i         | 401    | CDL       | OB6-CB5 | 3.03  | 1.42        | 1.34     |
| 50     | 1         | 702    | CDL       | OB6-CB5 | 3.02  | 1.42        | 1.34     |
| 50     | 1         | 702    | CDL       | OA6-CA5 | 3.02  | 1.42        | 1.34     |
| 50     | r         | 504    | CDL       | OB6-CB5 | 3.01  | 1.42        | 1.34     |
| 50     | i         | 401    | CDL       | OB8-CB7 | 3.00  | 1.42        | 1.33     |
| 50     | a         | 201    | CDL       | OB8-CB7 | 2.99  | 1.42        | 1.33     |
| 50     | i         | 401    | CDL       | OA6-CA5 | 2.95  | 1.42        | 1.34     |
| 50     | r         | 504    | CDL       | OA6-CA5 | 2.94  | 1.42        | 1.34     |
| 50     | Ι         | 201    | CDL       | OA6-CA5 | 2.93  | 1.42        | 1.34     |
| 54     | N         | 201    | PLX       | O6-C4   | -2.76 | 1.40        | 1.44     |
| 54     | g         | 201    | PLX       | O6-C4   | -2.76 | 1.40        | 1.44     |
| 56     | s         | 402    | UQ        | C6-C1   | 2.74  | 1.54        | 1.46     |
| 54     | r         | 503    | PLX       | O6-C4   | -2.67 | 1.41        | 1.44     |
| 54     | a         | 202    | PLX       | O6-C4   | -2.61 | 1.41        | 1.44     |
| 54     | j         | 201    | PLX       | O6-C4   | -2.55 | 1.41        | 1.44     |
| 46     | А         | 502    | FMN       | C10-N1  | 2.51  | 1.38        | 1.33     |
| 51     | J         | 401    | NDP       | O2B-C2B | 2.50  | 1.53        | 1.44     |
| 48     | 1         | 704    | PEE       | O3-C30  | 2.49  | 1.40        | 1.33     |
| 48     | Q         | 501    | PEE       | O3-C30  | 2.49  | 1.40        | 1.33     |
| 47     | A         | 503    | NAI       | PN-O5D  | 2.49  | 1.69        | 1.59     |
| 48     | s         | 401    | PEE       | O3-C30  | 2.46  | 1.40        | 1.33     |
| 47     | А         | 503    | NAI       | O3B-C3B | -2.46 | 1.37        | 1.43     |
| 48     | m         | 201    | PEE       | O3-C30  | 2.46  | 1.40        | 1.33     |
| 48     | С         | 302    | PEE       | O3-C30  | 2.46  | 1.40        | 1.33     |
| 49     | G         | 201    | 8Q1       | C1-S44  | 2.44  | 1.82        | 1.76     |
| 48     | r         | 501    | PEE       | O3-C30  | 2.44  | 1.40        | 1.33     |
| 48     | В         | 303    | PEE       | O3-C30  | 2.44  | 1.40        | 1.33     |
| 50     | Ι         | 201    | CDL       | OA6-CA4 | -2.43 | 1.40        | 1.46     |
| 48     | 1         | 703    | PEE       | O3-C30  | 2.43  | 1.40        | 1.33     |
| 49     | Х         | 201    | 8Q1       | C1-S44  | 2.42  | 1.82        | 1.76     |
| 48     | r         | 501    | PEE       | O2-C2   | -2.42 | 1.40        | 1.46     |
| 51     | J         | 401    | NDP       | C2D-C3D | 2.42  | 1.60        | 1.53     |



| OOnu |       | i preuv | ous puye | • • •   |       |             |          |
|------|-------|---------|----------|---------|-------|-------------|----------|
| Mol  | Chain | Res     | Type     | Atoms   | Z     | Observed(Å) | Ideal(Å) |
| 48   | 1     | 704     | PEE      | O2-C2   | -2.39 | 1.40        | 1.46     |
| 54   | r     | 502     | PLX      | C7-C6   | 2.39  | 1.55        | 1.50     |
| 50   | r     | 504     | CDL      | OA6-CA4 | -2.39 | 1.40        | 1.46     |
| 48   | С     | 302     | PEE      | O2-C2   | -2.39 | 1.40        | 1.46     |
| 48   | s     | 401     | PEE      | O2-C2   | -2.39 | 1.40        | 1.46     |
| 48   | Q     | 501     | PEE      | O2-C2   | -2.38 | 1.40        | 1.46     |
| 56   | S     | 402     | UQ       | C7-C8   | 2.38  | 1.54        | 1.50     |
| 54   | j     | 201     | PLX      | C7-C6   | 2.38  | 1.55        | 1.50     |
| 48   | В     | 303     | PEE      | O2-C2   | -2.37 | 1.40        | 1.46     |
| 48   | 1     | 703     | PEE      | O2-C2   | -2.35 | 1.40        | 1.46     |
| 48   | m     | 201     | PEE      | O2-C10  | 2.35  | 1.40        | 1.34     |
| 50   | i     | 401     | CDL      | OA6-CA4 | -2.35 | 1.40        | 1.46     |
| 50   | a     | 201     | CDL      | OA6-CA4 | -2.34 | 1.40        | 1.46     |
| 48   | 1     | 703     | PEE      | O2-C10  | 2.33  | 1.40        | 1.34     |
| 54   | r     | 503     | PLX      | C7-C6   | 2.33  | 1.55        | 1.50     |
| 48   | С     | 302     | PEE      | O2-C10  | 2.32  | 1.40        | 1.34     |
| 47   | А     | 503     | NAI      | C5B-C4B | 2.31  | 1.58        | 1.51     |
| 48   | S     | 401     | PEE      | O2-C10  | 2.30  | 1.40        | 1.34     |
| 50   | 1     | 702     | CDL      | OA6-CA4 | -2.30 | 1.40        | 1.46     |
| 54   | Ν     | 201     | PLX      | C7-C6   | 2.29  | 1.55        | 1.50     |
| 48   | Q     | 501     | PEE      | O2-C10  | 2.29  | 1.40        | 1.34     |
| 48   | 1     | 704     | PEE      | O2-C10  | 2.28  | 1.40        | 1.34     |
| 54   | a     | 202     | PLX      | C7-C6   | 2.28  | 1.55        | 1.50     |
| 48   | В     | 303     | PEE      | O2-C10  | 2.27  | 1.40        | 1.34     |
| 54   | g     | 201     | PLX      | C7-C6   | 2.27  | 1.55        | 1.50     |
| 48   | m     | 201     | PEE      | O2-C2   | -2.26 | 1.41        | 1.46     |
| 56   | s     | 402     | UQ       | O4-C4   | -2.25 | 1.18        | 1.23     |
| 49   | G     | 201     | 8Q1      | C6-C1   | 2.25  | 1.53        | 1.50     |
| 50   | i     | 401     | CDL      | PB2-OB2 | 2.25  | 1.68        | 1.59     |
| 49   | Х     | 201     | 8Q1      | C6-C1   | 2.24  | 1.53        | 1.50     |
| 49   | G     | 201     | 8Q1      | O35-C34 | -2.24 | 1.18        | 1.23     |
| 54   | r     | 502     | PLX      | O6-C4   | -2.24 | 1.41        | 1.44     |
| 49   | Х     | 201     | 8Q1      | O35-C34 | -2.22 | 1.19        | 1.23     |
| 50   | 1     | 702     | CDL      | PB2-OB2 | 2.21  | 1.68        | 1.59     |
| 48   | r     | 501     | PEE      | O2-C10  | 2.21  | 1.40        | 1.34     |
| 50   | i     | 401     | CDL      | PB2-OB5 | 2.21  | 1.68        | 1.59     |
| 50   | r     | 504     | CDL      | PB2-OB2 | 2.20  | 1.68        | 1.59     |
| 50   | r     | 504     | CDL      | PB2-OB5 | 2.20  | 1.68        | 1.59     |
| 50   | I     | 201     | CDL      | PB2-OB2 | 2.20  | 1.68        | 1.59     |
| 50   | a     | 201     | CDL      | PB2-OB2 | 2.19  | 1.68        | 1.59     |
| 49   | G     | 201     | 8Q1      | O40-C39 | -2.19 | 1.18        | 1.23     |
| 50   | a     | 201     | CDL      | PB2-OB5 | 2.18  | 1.68        | 1.59     |



| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 50  | Ι     | 201 | CDL  | PB2-OB5 | 2.18  | 1.68        | 1.59     |
| 49  | Х     | 201 | 8Q1  | O40-C39 | -2.18 | 1.18        | 1.23     |
| 54  | N     | 201 | PLX  | P1-O4   | 2.17  | 1.68        | 1.59     |
| 54  | j     | 201 | PLX  | P1-O4   | 2.17  | 1.68        | 1.59     |
| 50  | 1     | 702 | CDL  | PB2-OB5 | 2.16  | 1.68        | 1.59     |
| 51  | J     | 401 | NDP  | PA-O5B  | 2.16  | 1.68        | 1.59     |
| 54  | r     | 502 | PLX  | P1-O4   | 2.15  | 1.68        | 1.59     |
| 50  | i     | 401 | CDL  | OB6-CB4 | -2.14 | 1.41        | 1.46     |
| 50  | 1     | 702 | CDL  | OB6-CB4 | -2.14 | 1.41        | 1.46     |
| 54  | a     | 202 | PLX  | P1-O4   | 2.14  | 1.68        | 1.59     |
| 50  | Ι     | 201 | CDL  | OB6-CB4 | -2.13 | 1.41        | 1.46     |
| 50  | r     | 504 | CDL  | OB6-CB4 | -2.13 | 1.41        | 1.46     |
| 50  | a     | 201 | CDL  | OB6-CB4 | -2.13 | 1.41        | 1.46     |
| 51  | J     | 401 | NDP  | O7N-C7N | -2.12 | 1.19        | 1.24     |
| 54  | r     | 503 | PLX  | P1-O4   | 2.10  | 1.67        | 1.59     |
| 48  | В     | 303 | PEE  | O3-C3   | -2.10 | 1.40        | 1.45     |
| 48  | s     | 401 | PEE  | O3-C3   | -2.09 | 1.40        | 1.45     |
| 48  | 1     | 703 | PEE  | O3-C3   | -2.08 | 1.40        | 1.45     |
| 54  | g     | 201 | PLX  | P1-O4   | 2.08  | 1.67        | 1.59     |
| 48  | m     | 201 | PEE  | O3-C3   | -2.07 | 1.40        | 1.45     |
| 54  | r     | 502 | PLX  | P1-01   | 2.07  | 1.67        | 1.59     |
| 54  | j     | 201 | PLX  | P1-01   | 2.06  | 1.67        | 1.59     |
| 48  | Q     | 501 | PEE  | O3-C3   | -2.05 | 1.40        | 1.45     |
| 54  | r     | 503 | PLX  | P1-O1   | 2.04  | 1.67        | 1.59     |
| 48  | r     | 501 | PEE  | O3-C3   | -2.04 | 1.40        | 1.45     |
| 54  | N     | 201 | PLX  | P1-O1   | 2.04  | 1.67        | 1.59     |
| 47  | А     | 503 | NAI  | C2N-C3N | 2.03  | 1.40        | 1.34     |
| 54  | a     | 202 | PLX  | P1-01   | 2.03  | 1.67        | 1.59     |
| 48  | 1     | 704 | PEE  | O3-C3   | -2.02 | 1.40        | 1.45     |
| 54  | r     | 502 | PLX  | C25-C24 | 2.01  | 1.55        | 1.50     |
| 50  | a     | 201 | CDL  | C11-CA5 | 2.01  | 1.56        | 1.50     |
| 48  | С     | 302 | PEE  | O3-C3   | -2.01 | 1.40        | 1.45     |

All (96) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Ζ     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|---------------------------|---------------|
| 56  | s     | 402 | UQ   | C7-C8-C9    | -9.16 | 111.53                    | 126.79        |
| 51  | J     | 401 | NDP  | C3N-C2N-N1N | -7.52 | 112.37                    | 123.10        |
| 51  | J     | 401 | NDP  | C1D-N1N-C2N | -7.28 | 109.00                    | 121.11        |
| 56  | s     | 402 | UQ   | C12-C13-C14 | -6.17 | 112.81                    | 127.66        |
| 49  | Х     | 201 | 8Q1  | C6-C1-S44   | 5.98  | 120.42                    | 113.46        |
| 49  | G     | 201 | 8Q1  | C6-C1-S44   | 5.82  | 120.23                    | 113.46        |



| $\alpha$ $\cdot \cdot$ $\cdot$ | C    |          |      |
|--------------------------------|------|----------|------|
| Continued                      | trom | previous | page |
|                                | J    | 1        | I J  |

| Mol | Chain | Res | Type             | Atoms Z     |       | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|-----|------------------|-------------|-------|---------------------|---------------|
| 51  | J     | 401 | NDP              | C1D-N1N-C6N | -5.12 | 109.79              | 120.83        |
| 50  | 1     | 701 | CDL              | OA6-CA5-C11 | 4.66  | 121.54              | 111.50        |
| 56  | s     | 402 | UQ               | C10-C9-C8   | -4.57 | 111.96              | 123.68        |
| 57  | W     | 401 | ADP              | N3-C2-N1    | -4.51 | 121.63              | 128.68        |
| 56  | s     | 402 | UQ               | C11-C9-C8   | -4.47 | 112.06              | 121.12        |
| 47  | А     | 503 | NAI              | N3A-C2A-N1A | -4.32 | 121.93              | 128.68        |
| 50  | 1     | 701 | CDL              | OB6-CB5-C51 | 4.30  | 120.77              | 111.50        |
| 50  | a     | 201 | CDL              | OA6-CA5-C11 | 4.24  | 120.64              | 111.50        |
| 56  | s     | 402 | UQ               | C15-C14-C13 | -4.19 | 112.94              | 123.68        |
| 48  | В     | 303 | PEE              | O2-C10-C11  | 4.10  | 120.34              | 111.50        |
| 50  | 1     | 702 | CDL              | OA6-CA5-C11 | 4.10  | 120.34              | 111.50        |
| 51  | J     | 401 | NDP              | N3A-C2A-N1A | -4.09 | 122.29              | 128.68        |
| 56  | s     | 402 | UQ               | C17-C18-C19 | -4.07 | 113.83              | 127.75        |
| 50  | Ι     | 201 | CDL              | OB6-CB5-C51 | 4.05  | 120.23              | 111.50        |
| 50  | i     | 401 | CDL              | OA6-CA5-C11 | 4.04  | 120.21              | 111.50        |
| 50  | a     | 201 | CDL              | OB6-CB5-C51 | 4.03  | 120.19              | 111.50        |
| 48  | m     | 201 | PEE              | O2-C10-C11  | 4.02  | 120.16              | 111.50        |
| 50  | r     | 504 | CDL              | OA6-CA5-C11 | 3.98  | 120.08              | 111.50        |
| 48  | Q     | 501 | PEE              | O2-C10-C11  | 3.97  | 120.06              | 111.50        |
| 48  | С     | 302 | PEE              | O2-C10-C11  | 3.93  | 119.97              | 111.50        |
| 50  | r     | 504 | CDL              | OB6-CB5-C51 | 3.92  | 119.94              | 111.50        |
| 50  | Ι     | 201 | CDL              | OA6-CA5-C11 | 3.91  | 119.94              | 111.50        |
| 48  | s     | 401 | PEE              | O2-C10-C11  | 3.88  | 119.86              | 111.50        |
| 50  | i     | 401 | CDL              | OB6-CB5-C51 | 3.86  | 119.81              | 111.50        |
| 48  | 1     | 704 | PEE              | O2-C10-C11  | 3.85  | 119.80              | 111.50        |
| 48  | r     | 501 | PEE              | O2-C10-C11  | 3.84  | 119.78              | 111.50        |
| 48  | 1     | 703 | PEE              | O2-C10-C11  | 3.78  | 119.64              | 111.50        |
| 56  | s     | 402 | UQ               | C16-C14-C13 | -3.71 | 113.61              | 121.12        |
| 56  | s     | 402 | UQ               | C21-C19-C18 | -3.71 | 111.93              | 122.65        |
| 50  | l     | 702 | CDL              | OB6-CB5-C51 | 3.63  | 119.33              | 111.50        |
| 49  | Х     | 201 | 8Q1              | O4-C1-C6    | -3.48 | 119.88              | 123.99        |
| 49  | G     | 201 | 8Q1              | O4-C1-C6    | -3.43 | 119.94              | 123.99        |
| 47  | А     | 503 | NAI              | C3D-C2D-C1D | 3.17  | 107.45              | 101.43        |
| 50  | 1     | 701 | CDL              | CA4-OA6-CA5 | -3.16 | 110.02              | 117.79        |
| 47  | А     | 503 | NAI              | C4D-O4D-C1D | -3.13 | 102.57              | 109.47        |
| 46  | А     | 502 | FMN              | C4-N3-C2    | -3.11 | 119.90              | 125.64        |
| 56  | S     | 402 | UQ               | C20-C19-C18 | -3.05 | 113.83              | 122.65        |
| 49  | G     | 201 | 8Q1              | C37-C38-C39 | 3.04  | $117.4\overline{2}$ | 112.36        |
| 50  | l     | 701 | CDL              | OA8-CA7-C31 | 2.94  | 121.14              | 111.91        |
| 50  | 1     | 701 | CDL              | OB8-CB7-C71 | 2.91  | 121.03              | 111.91        |
| 50  | 1     | 701 | $\overline{CDL}$ | CB4-OB6-CB5 | -2.74 | 111.05              | 117.79        |
| 47  | А     | 503 | NAI              | C4A-C5A-N7A | -2.70 | 106.59              | 109.40        |



| $\alpha + 1$ | C    |          |      |
|--------------|------|----------|------|
| Continued    | from | previous | page |

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 48  | 1     | 704 | PEE  | O3-C30-C31  | 2.68  | 120.31           | 111.91        |
| 46  | А     | 502 | FMN  | C4A-C4-N3   | 2.67  | 119.97           | 113.19        |
| 51  | J     | 401 | NDP  | PN-O3-PA    | -2.67 | 123.67           | 132.83        |
| 50  | i     | 401 | CDL  | OB8-CB7-C71 | 2.65  | 120.24           | 111.91        |
| 48  | r     | 501 | PEE  | O3-C30-C31  | 2.65  | 120.23           | 111.91        |
| 50  | a     | 201 | CDL  | OB8-CB7-C71 | 2.65  | 120.23           | 111.91        |
| 50  | i     | 401 | CDL  | OA8-CA7-C31 | 2.64  | 120.21           | 111.91        |
| 48  | 1     | 703 | PEE  | O3-C30-C31  | 2.63  | 120.17           | 111.91        |
| 50  | Ι     | 201 | CDL  | OA8-CA7-C31 | 2.61  | 120.11           | 111.91        |
| 48  | С     | 302 | PEE  | O3-C30-C31  | 2.61  | 120.08           | 111.91        |
| 48  | s     | 401 | PEE  | O3-C30-C31  | 2.59  | 120.05           | 111.91        |
| 50  | r     | 504 | CDL  | OB8-CB7-C71 | 2.59  | 120.02           | 111.91        |
| 48  | В     | 303 | PEE  | O3-C30-C31  | 2.57  | 119.97           | 111.91        |
| 48  | Q     | 501 | PEE  | O3-C30-C31  | 2.56  | 119.95           | 111.91        |
| 50  | 1     | 702 | CDL  | OB8-CB7-C71 | 2.56  | 119.94           | 111.91        |
| 47  | А     | 503 | NAI  | PN-O3-PA    | -2.55 | 124.07           | 132.83        |
| 50  | r     | 504 | CDL  | OA8-CA7-C31 | 2.54  | 119.89           | 111.91        |
| 50  | Ι     | 201 | CDL  | OB8-CB7-C71 | 2.54  | 119.88           | 111.91        |
| 50  | a     | 201 | CDL  | OA8-CA7-C31 | 2.54  | 119.86           | 111.91        |
| 50  | 1     | 702 | CDL  | OA8-CA7-C31 | 2.52  | 119.81           | 111.91        |
| 48  | m     | 201 | PEE  | O3-C30-C31  | 2.51  | 119.79           | 111.91        |
| 49  | Х     | 201 | 8Q1  | C37-C38-C39 | 2.51  | 116.54           | 112.36        |
| 46  | А     | 502 | FMN  | O4-C4-C4A   | -2.49 | 120.00           | 126.60        |
| 49  | G     | 201 | 8Q1  | C38-C39-N41 | 2.48  | 120.59           | 116.42        |
| 57  | W     | 401 | ADP  | O4'-C1'-C2' | -2.47 | 103.32           | 106.93        |
| 54  | r     | 503 | PLX  | C1A-N1-C1   | 2.44  | 119.89           | 109.92        |
| 51  | J     | 401 | NDP  | C4A-C5A-N7A | -2.44 | 106.86           | 109.40        |
| 54  | a     | 202 | PLX  | C1A-N1-C1   | 2.43  | 119.86           | 109.92        |
| 57  | W     | 401 | ADP  | PA-O3A-PB   | -2.43 | 124.50           | 132.83        |
| 54  | r     | 502 | PLX  | C1A-N1-C1   | 2.43  | 119.84           | 109.92        |
| 54  | g     | 201 | PLX  | C1A-N1-C1   | 2.37  | 119.62           | 109.92        |
| 49  | G     | 201 | 8Q1  | C43-S44-C1  | 2.37  | 109.24           | 101.87        |
| 51  | J     | 401 | NDP  | C2B-C3B-C4B | 2.36  | 107.12           | 101.99        |
| 46  | А     | 502 | FMN  | C4A-C10-N10 | 2.34  | 119.91           | 116.48        |
| 54  | j     | 201 | PLX  | C1A-N1-C1   | 2.32  | 119.42           | 109.92        |
| 47  | А     | 503 | NAI  | C2D-C3D-C4D | 2.31  | 107.12           | 102.64        |
| 54  | Ν     | 201 | PLX  | C1A-N1-C1   | 2.29  | 119.30           | 109.92        |
| 49  | X     | 201 | 8Q1  | C38-C39-N41 | 2.27  | 120.25           | 116.42        |
| 46  | A     | 502 | FMN  | C9A-C5A-N5  | -2.27 | 119.97           | 122.43        |
| 50  | 1     | 701 | CDL  | OA6-CA5-OA7 | -2.26 | 118.25           | 123.70        |
| 46  | A     | 502 | FMN  | C4A-C10-N1  | -2.25 | 119.51           | 124.73        |
| 49  | Х     | 201 | 8Q1  | O4-C1-S44   | -2.25 | 119.69           | 122.61        |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 49  | Х     | 201 | 8Q1  | C43-S44-C1  | 2.24  | 108.84           | 101.87        |
| 46  | А     | 502 | FMN  | C10-C4A-N5  | -2.22 | 120.14           | 124.86        |
| 47  | А     | 503 | NAI  | C3B-C2B-C1B | 2.14  | 104.20           | 100.98        |
| 49  | G     | 201 | 8Q1  | O4-C1-S44   | -2.14 | 119.83           | 122.61        |
| 51  | J     | 401 | NDP  | C2D-C3D-C4D | 2.09  | 106.69           | 102.64        |
| 57  | W     | 401 | ADP  | C4-C5-N7    | -2.07 | 107.24           | 109.40        |

There are no chirality outliers.

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 46  | А     | 502 | FMN  | N10-C1'-C2'-O2' |
| 46  | А     | 502 | FMN  | N10-C1'-C2'-C3' |
| 46  | А     | 502 | FMN  | C1'-C2'-C3'-O3' |
| 47  | А     | 503 | NAI  | C5B-O5B-PA-O1A  |
| 47  | А     | 503 | NAI  | C5B-O5B-PA-O3   |
| 48  | В     | 303 | PEE  | C1-O3P-P-O1P    |
| 48  | С     | 302 | PEE  | C11-C10-O2-C2   |
| 48  | С     | 302 | PEE  | C1-O3P-P-O1P    |
| 48  | С     | 302 | PEE  | C4-O4P-P-O1P    |
| 48  | Q     | 501 | PEE  | C11-C10-O2-C2   |
| 48  | 1     | 704 | PEE  | C1-O3P-P-O1P    |
| 48  | m     | 201 | PEE  | C11-C10-O2-C2   |
| 48  | m     | 201 | PEE  | O4P-C4-C5-N     |
| 48  | s     | 401 | PEE  | C1-O3P-P-O2P    |
| 48  | s     | 401 | PEE  | C1-O3P-P-O1P    |
| 49  | G     | 201 | 8Q1  | C1-C6-C7-C8     |
| 49  | G     | 201 | 8Q1  | O4-C1-S44-C43   |
| 49  | G     | 201 | 8Q1  | C6-C1-S44-C43   |
| 49  | G     | 201 | 8Q1  | C28-C29-C32-C34 |
| 49  | G     | 201 | 8Q1  | C28-C29-C32-O33 |
| 49  | G     | 201 | 8Q1  | C31-C29-C32-O33 |
| 49  | G     | 201 | 8Q1  | N36-C37-C38-C39 |
| 49  | G     | 201 | 8Q1  | N41-C42-C43-S44 |
| 49  | G     | 201 | 8Q1  | C28-O27-P24-O3  |
| 49  | G     | 201 | 8Q1  | C28-O27-P24-O2  |
| 49  | G     | 201 | 8Q1  | C28-O27-P24-O1  |
| 49  | Х     | 201 | 8Q1  | C1-C6-C7-C8     |
| 49  | Х     | 201 | 8Q1  | C6-C1-S44-C43   |
| 49  | X     | 201 | 8Q1  | C28-C29-C32-C34 |
| 49  | Х     | 201 | 8Q1  | C28-C29-C32-O33 |
| 49  | Х     | 201 | 8Q1  | C30-C29-C32-C34 |

All (692) torsion outliers are listed below:



| 00.000 | naca ji on | Proces |      |                 |
|--------|------------|--------|------|-----------------|
| Mol    | Chain      | Res    | Type | Atoms           |
| 49     | Х          | 201    | 8Q1  | C30-C29-C32-O33 |
| 49     | Х          | 201    | 8Q1  | C31-C29-C32-C34 |
| 49     | Х          | 201    | 8Q1  | C31-C29-C32-O33 |
| 49     | Х          | 201    | 8Q1  | C29-C32-C34-O35 |
| 49     | Х          | 201    | 8Q1  | N36-C37-C38-C39 |
| 49     | Х          | 201    | 8Q1  | C42-C43-S44-C1  |
| 49     | Х          | 201    | 8Q1  | C28-O27-P24-O2  |
| 49     | Х          | 201    | 8Q1  | C28-O27-P24-O1  |
| 50     | Ι          | 201    | CDL  | O1-C1-CA2-OA2   |
| 50     | Ι          | 201    | CDL  | CB2-C1-CA2-OA2  |
| 50     | Ι          | 201    | CDL  | OA5-CA3-CA4-OA6 |
| 50     | Ι          | 201    | CDL  | CB2-OB2-PB2-OB3 |
| 50     | Ι          | 201    | CDL  | CB3-OB5-PB2-OB3 |
| 50     | a          | 201    | CDL  | CA2-OA2-PA1-OA3 |
| 50     | a          | 201    | CDL  | CA2-OA2-PA1-OA4 |
| 50     | a          | 201    | CDL  | OA5-CA3-CA4-OA6 |
| 50     | a          | 201    | CDL  | CB2-OB2-PB2-OB3 |
| 50     | i          | 401    | CDL  | CA2-OA2-PA1-OA5 |
| 50     | i          | 401    | CDL  | CA3-OA5-PA1-OA2 |
| 50     | i          | 401    | CDL  | CA3-OA5-PA1-OA3 |
| 50     | i          | 401    | CDL  | CA3-OA5-PA1-OA4 |
| 50     | i          | 401    | CDL  | CB2-OB2-PB2-OB3 |
| 50     | i          | 401    | CDL  | CB2-OB2-PB2-OB4 |
| 50     | 1          | 701    | CDL  | O1-C1-CB2-OB2   |
| 50     | 1          | 701    | CDL  | CA3-OA5-PA1-OA3 |
| 50     | 1          | 701    | CDL  | CB2-OB2-PB2-OB3 |
| 50     | 1          | 701    | CDL  | CB2-OB2-PB2-OB4 |
| 50     | 1          | 702    | CDL  | O1-C1-CA2-OA2   |
| 50     | l          | 702    | CDL  | CA3-OA5-PA1-OA4 |
| 50     | 1          | 702    | CDL  | OA6-CA4-CA6-OA8 |
| 50     | 1          | 702    | CDL  | CB2-OB2-PB2-OB3 |
| 50     | 1          | 702    | CDL  | CB2-OB2-PB2-OB4 |
| 50     | 1          | 702    | CDL  | CB2-OB2-PB2-OB5 |
| 50     | 1          | 702    | CDL  | CB3-OB5-PB2-OB3 |
| 50     | r          | 504    | CDL  | CA2-OA2-PA1-OA3 |
| 50     | r          | 504    | CDL  | CA2-OA2-PA1-OA4 |
| 50     | r          | 504    | CDL  | CA3-OA5-PA1-OA3 |
| 50     | r          | 504    | CDL  | CA3-OA5-PA1-OA4 |
| 50     | r          | 504    | CDL  | OA6-CA4-CA6-OA8 |
| 50     | r          | 504    | CDL  | CB2-OB2-PB2-OB3 |
| 50     | r          | 504    | CDL  | CB3-OB5-PB2-OB3 |
| 50     | r          | 504    | CDL  | C51-CB5-OB6-CB4 |

Continued from previous page...



| EMD-32312, | 7W4Q |
|------------|------|
|------------|------|

| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 51  | J     | 401 | NDP  | C2B-O2B-P2B-O1X |
| 54  | N     | 201 | PLX  | O7-C6-C7-C8     |
| 54  | N     | 201 | PLX  | O4-C3-C4-O6     |
| 54  | N     | 201 | PLX  | C3-O4-P1-O1     |
| 54  | N     | 201 | PLX  | C3-O4-P1-O2     |
| 54  | N     | 201 | PLX  | C3-O4-P1-O3     |
| 54  | N     | 201 | PLX  | N1-C1-C2-O1     |
| 54  | g     | 201 | PLX  | O7-C6-O6-C4     |
| 54  | g     | 201 | PLX  | O9-C24-O8-C5    |
| 54  | j     | 201 | PLX  | O7-C6-C7-C8     |
| 54  | j     | 201 | PLX  | O9-C24-O8-C5    |
| 54  | j     | 201 | PLX  | C25-C24-O8-C5   |
| 54  | r     | 502 | PLX  | O7-C6-O6-C4     |
| 54  | r     | 502 | PLX  | C5-C4-O6-C6     |
| 54  | r     | 502 | PLX  | C3-O4-P1-O2     |
| 54  | r     | 502 | PLX  | C2-O1-P1-O2     |
| 54  | r     | 502 | PLX  | O9-C24-O8-C5    |
| 54  | r     | 502 | PLX  | O9-C24-C25-C26  |
| 54  | r     | 503 | PLX  | C5-C4-O6-C6     |
| 54  | r     | 503 | PLX  | C2-O1-P1-O4     |
| 54  | r     | 503 | PLX  | C2-O1-P1-O2     |
| 54  | r     | 503 | PLX  | C2-O1-P1-O3     |
| 54  | r     | 503 | PLX  | O9-C24-O8-C5    |
| 56  | s     | 402 | UQ   | C7-C8-C9-C11    |
| 56  | s     | 402 | UQ   | C12-C11-C9-C8   |
| 56  | s     | 402 | UQ   | C12-C11-C9-C10  |
| 56  | s     | 402 | UQ   | C12-C13-C14-C16 |
| 56  | s     | 402 | UQ   | C14-C16-C17-C18 |
| 56  | s     | 402 | UQ   | C17-C18-C19-C21 |
| 57  | W     | 401 | ADP  | C5'-O5'-PA-O2A  |
| 57  | W     | 401 | ADP  | C5'-O5'-PA-O3A  |
| 50  | i     | 401 | CDL  | OA9-CA7-OA8-CA6 |
| 48  | С     | 302 | PEE  | O4-C10-O2-C2    |
| 48  | Q     | 501 | PEE  | O4-C10-O2-C2    |
| 48  | 1     | 703 | PEE  | O4-C10-O2-C2    |
| 48  | m     | 201 | PEE  | O4-C10-O2-C2    |
| 50  | i     | 401 | CDL  | C31-CA7-OA8-CA6 |
| 48  | 1     | 703 | PEE  | C11-C10-O2-C2   |
| 48  | 1     | 703 | PEE  | C31-C30-O3-C3   |
| 48  | 1     | 704 | PEE  | C31-C30-O3-C3   |
| 48  | В     | 303 | PEE  | C37-C38-C39-C40 |
| 48  | Q     | 501 | PEE  | C37-C38-C39-C40 |

Continued from previous page...



| Mol | Chain        | Res | Type             | Atoms           |
|-----|--------------|-----|------------------|-----------------|
| 48  | 1            | 704 | PEE              | C37-C38-C39-C40 |
| 48  | r            | 501 | PEE              | C17-C18-C19-C20 |
| 48  | s            | 401 | PEE              | C17-C18-C19-C20 |
| 56  | s            | 402 | UQ               | C7-C8-C9-C10    |
| 50  | r            | 504 | CDL              | OB7-CB5-OB6-CB4 |
| 48  | 1            | 703 | PEE              | O5-C30-O3-C3    |
| 48  | 1            | 704 | PEE              | O5-C30-O3-C3    |
| 50  | a            | 201 | CDL              | O1-C1-CB2-OB2   |
| 48  | m            | 201 | PEE              | C31-C30-O3-C3   |
| 50  | l            | 702 | CDL              | C59-C60-C61-C62 |
| 54  | Ν            | 201 | PLX              | C28-C29-C30-C31 |
| 54  | r            | 502 | PLX              | C9-C10-C11-C12  |
| 54  | r            | 503 | PLX              | C12-C13-C14-C15 |
| 54  | a            | 202 | PLX              | C33-C34-C35-C36 |
| 56  | s            | 402 | UQ               | C13-C14-C16-C17 |
| 48  | m            | 201 | PEE              | O5-C30-O3-C3    |
| 54  | g            | 201 | PLX              | C7-C8-C9-C10    |
| 54  | j            | 201 | PLX              | C28-C29-C30-C31 |
| 50  | a            | 201 | CDL              | CA2-C1-CB2-OB2  |
| 50  | 1            | 701 | CDL              | CA2-C1-CB2-OB2  |
| 50  | r            | 504 | CDL              | CB2-C1-CA2-OA2  |
| 54  | r            | 502 | PLX              | C30-C31-C32-C33 |
| 50  | a            | 201 | CDL              | C71-CB7-OB8-CB6 |
| 50  | 1            | 701 | CDL              | C31-CA7-OA8-CA6 |
| 50  | 1            | 702 | CDL              | C71-CB7-OB8-CB6 |
| 50  | r            | 504 | CDL              | C71-CB7-OB8-CB6 |
| 48  | Q            | 501 | PEE              | C10-C11-C12-C13 |
| 50  | a            | 201 | CDL              | CA7-C31-C32-C33 |
| 50  | r            | 504 | CDL              | C74-C75-C76-C77 |
| 50  | 1            | 702 | CDL              | C35-C36-C37-C38 |
| 48  | m            | 201 | PEE              | C33-C34-C35-C36 |
| 50  | Ι            | 201 | CDL              | O1-C1-CB2-OB2   |
| 50  | i            | 401 | CDL              | O1-C1-CA2-OA2   |
| 50  | 1            | 702 | CDL              | O1-C1-CB2-OB2   |
| 50  | i            | 401 | CDL              | OB6-CB4-CB6-OB8 |
| 48  | $\mathbf{S}$ | 401 | PEE              | C31-C30-O3-C3   |
| 50  | r            | 504 | CDL              | OB9-CB7-OB8-CB6 |
| 50  | i            | 401 | $\overline{CDL}$ | C31-C32-C33-C34 |
| 50  | 1            | 701 | CDL              | CB5-C51-C52-C53 |
| 51  | J            | 401 | NDP              | C2D-C1D-N1N-C6N |
| 50  | 1            | 701 | CDL              | OA9-CA7-OA8-CA6 |
| 50  | 1            | 702 | CDL              | OB9-CB7-OB8-CB6 |

Continued from previous page...



|     | J     | 1   | 1.5  |                 |
|-----|-------|-----|------|-----------------|
| Mol | Chain | Res | Type | Atoms           |
| 48  | В     | 303 | PEE  | C31-C30-O3-C3   |
| 50  | Ι     | 201 | CDL  | CB5-C51-C52-C53 |
| 50  | r     | 504 | CDL  | CB5-C51-C52-C53 |
| 48  | В     | 303 | PEE  | C17-C18-C19-C20 |
| 54  | r     | 502 | PLX  | C11-C12-C13-C14 |
| 50  | i     | 401 | CDL  | CA7-C31-C32-C33 |
| 50  | i     | 401 | CDL  | CB7-C71-C72-C73 |
| 50  | 1     | 702 | CDL  | CB5-C51-C52-C53 |
| 50  | r     | 504 | CDL  | CB7-C71-C72-C73 |
| 50  | 1     | 702 | CDL  | C11-C12-C13-C14 |
| 54  | r     | 503 | PLX  | C2-C1-N1-C1A    |
| 48  | В     | 303 | PEE  | C10-C11-C12-C13 |
| 48  | 1     | 703 | PEE  | C30-C31-C32-C33 |
| 48  | r     | 501 | PEE  | C10-C11-C12-C13 |
| 50  | a     | 201 | CDL  | C76-C77-C78-C79 |
| 50  | a     | 201 | CDL  | C31-C32-C33-C34 |
| 54  | a     | 202 | PLX  | C29-C30-C31-C32 |
| 50  | a     | 201 | CDL  | OB9-CB7-OB8-CB6 |
| 50  | r     | 504 | CDL  | C78-C79-C80-C81 |
| 50  | a     | 201 | CDL  | O1-C1-CA2-OA2   |
| 50  | r     | 504 | CDL  | O1-C1-CA2-OA2   |
| 48  | В     | 303 | PEE  | O5-C30-O3-C3    |
| 48  | s     | 401 | PEE  | O5-C30-O3-C3    |
| 48  | s     | 401 | PEE  | C11-C10-O2-C2   |
| 48  | С     | 302 | PEE  | C4-O4P-P-O3P    |
| 48  | 1     | 703 | PEE  | C4-O4P-P-O3P    |
| 48  | m     | 201 | PEE  | C4-O4P-P-O3P    |
| 48  | s     | 401 | PEE  | C1-O3P-P-O4P    |
| 50  | Ι     | 201 | CDL  | CA2-OA2-PA1-OA5 |
| 50  | Ι     | 201 | CDL  | CB2-OB2-PB2-OB5 |
| 50  | a     | 201 | CDL  | CA2-OA2-PA1-OA5 |
| 50  | a     | 201 | CDL  | CA3-OA5-PA1-OA2 |
| 50  | a     | 201 | CDL  | CB3-OB5-PB2-OB2 |
| 50  | i     | 401 | CDL  | CB2-OB2-PB2-OB5 |
| 50  | 1     | 701 | CDL  | CA2-OA2-PA1-OA5 |
| 50  | 1     | 701 | CDL  | CA3-OA5-PA1-OA2 |
| 50  | 1     | 701 | CDL  | CB2-OB2-PB2-OB5 |
| 50  | 1     | 702 | CDL  | CA2-OA2-PA1-OA5 |
| 50  | 1     | 702 | CDL  | CA3-OA5-PA1-OA2 |
| 50  | 1     | 702 | CDL  | CB3-OB5-PB2-OB2 |
| 50  | r     | 504 | CDL  | CA2-OA2-PA1-OA5 |
| 50  | r     | 504 | CDL  | CA3-OA5-PA1-OA2 |



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 50  | r     | 504 | CDL  | CB2-OB2-PB2-OB5 |
| 54  | r     | 502 | PLX  | C3-O4-P1-O1     |
| 48  | m     | 201 | PEE  | C12-C13-C14-C15 |
| 50  | a     | 201 | CDL  | CB2-C1-CA2-OA2  |
| 50  | i     | 401 | CDL  | CB2-C1-CA2-OA2  |
| 50  | l     | 702 | CDL  | CB2-C1-CA2-OA2  |
| 48  | s     | 401 | PEE  | O4-C10-O2-C2    |
| 54  | j     | 201 | PLX  | C15-C16-C17-C18 |
| 48  | Q     | 501 | PEE  | C19-C20-C21-C22 |
| 50  | r     | 504 | CDL  | CA7-C31-C32-C33 |
| 54  | g     | 201 | PLX  | C33-C34-C35-C36 |
| 48  | r     | 501 | PEE  | C31-C32-C33-C34 |
| 50  | r     | 504 | CDL  | C71-C72-C73-C74 |
| 54  | a     | 202 | PLX  | C28-C29-C30-C31 |
| 54  | j     | 201 | PLX  | C27-C28-C29-C30 |
| 50  | a     | 201 | CDL  | C32-C33-C34-C35 |
| 50  | a     | 201 | CDL  | C52-C53-C54-C55 |
| 50  | 1     | 702 | CDL  | C55-C56-C57-C58 |
| 54  | Ν     | 201 | PLX  | C11-C12-C13-C14 |
| 54  | Ν     | 201 | PLX  | C7-C8-C9-C10    |
| 54  | g     | 201 | PLX  | C11-C10-C9-C8   |
| 54  | r     | 502 | PLX  | C27-C28-C29-C30 |
| 54  | r     | 503 | PLX  | C13-C14-C15-C16 |
| 50  | 1     | 701 | CDL  | C35-C36-C37-C38 |
| 50  | r     | 504 | CDL  | C55-C56-C57-C58 |
| 54  | a     | 202 | PLX  | C26-C27-C28-C29 |
| 50  | a     | 201 | CDL  | C37-C38-C39-C40 |
| 50  | 1     | 702 | CDL  | C75-C76-C77-C78 |
| 50  | r     | 504 | CDL  | C73-C74-C75-C76 |
| 54  | Ν     | 201 | PLX  | C16-C17-C18-C19 |
| 54  | g     | 201 | PLX  | C14-C15-C16-C17 |
| 54  | j     | 201 | PLX  | C7-C8-C9-C10    |
| 54  | j     | 201 | PLX  | C25-C26-C27-C28 |
| 54  | r     | 503 | PLX  | C27-C28-C29-C30 |
| 54  | g     | 201 | PLX  | C27-C28-C29-C30 |
| 48  | Q     | 501 | PEE  | C23-C24-C25-C26 |
| 48  | 1     | 704 | PEE  | C31-C32-C33-C34 |
| 50  | a     | 201 | CDL  | C11-C12-C13-C14 |
| 50  | a     | 201 | CDL  | C73-C74-C75-C76 |
| 50  | a     | 201 | CDL  | C75-C76-C77-C78 |
| 54  | g     | 201 | PLX  | C28-C29-C30-C31 |
| 54  | g     | 201 | PLX  | C32-C33-C34-C35 |



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 48  | r     | 501 | PEE  | C12-C13-C14-C15 |
| 54  | N     | 201 | PLX  | C17-C18-C19-C20 |
| 54  | g     | 201 | PLX  | C9-C10-C11-C12  |
| 49  | G     | 201 | 8Q1  | C11-C12-C13-C14 |
| 50  | i     | 401 | CDL  | C32-C33-C34-C35 |
| 50  | r     | 504 | CDL  | C52-C53-C54-C55 |
| 50  | r     | 504 | CDL  | C56-C57-C58-C59 |
| 54  | a     | 202 | PLX  | C16-C17-C18-C19 |
| 54  | j     | 201 | PLX  | C10-C11-C12-C13 |
| 48  | Q     | 501 | PEE  | C12-C13-C14-C15 |
| 50  | i     | 401 | CDL  | C73-C74-C75-C76 |
| 54  | r     | 503 | PLX  | C26-C27-C28-C29 |
| 50  | Ι     | 201 | CDL  | C51-CB5-OB6-CB4 |
| 50  | r     | 504 | CDL  | C75-C76-C77-C78 |
| 50  | Ι     | 201 | CDL  | CA7-C31-C32-C33 |
| 56  | s     | 402 | UQ   | C17-C18-C19-C20 |
| 48  | l     | 704 | PEE  | C22-C23-C24-C25 |
| 48  | s     | 401 | PEE  | C21-C22-C23-C24 |
| 50  | Ι     | 201 | CDL  | C11-C12-C13-C14 |
| 50  | a     | 201 | CDL  | C17-C18-C19-C20 |
| 50  | i     | 401 | CDL  | C71-C72-C73-C74 |
| 54  | a     | 202 | PLX  | C18-C19-C20-C21 |
| 54  | a     | 202 | PLX  | С11-С10-С9-С8   |
| 54  | r     | 503 | PLX  | C14-C15-C16-C17 |
| 54  | r     | 503 | PLX  | C2-C1-N1-C1C    |
| 48  | r     | 501 | PEE  | C41-C42-C43-C44 |
| 50  | i     | 401 | CDL  | C37-C38-C39-C40 |
| 50  | l     | 702 | CDL  | C60-C61-C62-C63 |
| 48  | 1     | 704 | PEE  | O4P-C4-C5-N     |
| 49  | G     | 201 | 8Q1  | C7-C8-C9-C10    |
| 50  | 1     | 702 | CDL  | C73-C74-C75-C76 |
| 54  | r     | 502 | PLX  | C33-C34-C35-C36 |
| 48  | В     | 303 | PEE  | C33-C34-C35-C36 |
| 50  | i     | 401 | CDL  | C52-C53-C54-C55 |
| 50  | r     | 504 | CDL  | C15-C16-C17-C18 |
| 54  | Ν     | 201 | PLX  | C9-C10-C11-C12  |
| 54  | a     | 202 | PLX  | C25-C26-C27-C28 |
| 54  | g     | 201 | PLX  | C10-C11-C12-C13 |
| 54  | r     | 502 | PLX  | C31-C32-C33-C34 |
| 48  | 1     | 704 | PEE  | C33-C34-C35-C36 |
| 50  | a     | 201 | CDL  | C71-C72-C73-C74 |
| 50  | 1     | 702 | CDL  | C58-C59-C60-C61 |

Continued from previous page...



|     | <i>J</i> | 1                    | - are party |                 |
|-----|----------|----------------------|-------------|-----------------|
| Mol | Chain    | $\operatorname{Res}$ | Type        | Atoms           |
| 54  | Ν        | 201                  | PLX         | C14-C15-C16-C17 |
| 49  | Х        | 201                  | 8Q1         | C9-C10-C11-C12  |
| 54  | r        | 503                  | PLX         | C10-C11-C12-C13 |
| 48  | s        | 401                  | PEE         | C43-C44-C45-C46 |
| 54  | N        | 201                  | PLX         | C25-C26-C27-C28 |
| 54  | a        | 202                  | PLX         | C10-C11-C12-C13 |
| 54  | r        | 502                  | PLX         | C16-C17-C18-C19 |
| 48  | 1        | 704                  | PEE         | C17-C18-C19-C20 |
| 50  | 1        | 702                  | CDL         | C52-C53-C54-C55 |
| 50  | r        | 504                  | CDL         | C59-C60-C61-C62 |
| 54  | a        | 202                  | PLX         | O7-C6-C7-C8     |
| 54  | j        | 201                  | PLX         | O9-C24-C25-C26  |
| 50  | r        | 504                  | CDL         | C43-C44-C45-C46 |
| 54  | r        | 502                  | PLX         | C7-C8-C9-C10    |
| 50  | Ι        | 201                  | CDL         | CB7-C71-C72-C73 |
| 50  | Ι        | 201                  | CDL         | C71-C72-C73-C74 |
| 50  | r        | 504                  | CDL         | C82-C83-C84-C85 |
| 54  | r        | 503                  | PLX         | C25-C26-C27-C28 |
| 50  | Ι        | 201                  | CDL         | OB7-CB5-OB6-CB4 |
| 54  | r        | 502                  | PLX         | C13-C14-C15-C16 |
| 48  | 1        | 703                  | PEE         | C11-C12-C13-C14 |
| 54  | N        | 201                  | PLX         | C35-C36-C37-C38 |
| 48  | r        | 501                  | PEE         | C11-C10-O2-C2   |
| 48  | 1        | 703                  | PEE         | C31-C32-C33-C34 |
| 49  | Х        | 201                  | 8Q1         | C7-C8-C9-C10    |
| 50  | 1        | 702                  | CDL         | C18-C19-C20-C21 |
| 50  | r        | 504                  | CDL         | C41-C42-C43-C44 |
| 54  | j        | 201                  | PLX         | C12-C13-C14-C15 |
| 48  | 1        | 704                  | PEE         | C32-C33-C34-C35 |
| 54  | r        | 502                  | PLX         | C14-C15-C16-C17 |
| 48  | С        | 302                  | PEE         | C37-C38-C39-C40 |
| 48  | Q        | 501                  | PEE         | C17-C18-C19-C20 |
| 50  | r        | 504                  | CDL         | C13-C14-C15-C16 |
| 48  | С        | 302                  | PEE         | C15-C16-C17-C18 |
| 48  | S        | 401                  | PEE         | C19-C20-C21-C22 |
| 50  | Ι        | 201                  | CDL         | OA7-CA5-OA6-CA4 |
| 50  | i        | 401                  | CDL         | C71-CB7-OB8-CB6 |
| 54  | N        | 201                  | PLX         | C26-C27-C28-C29 |
| 54  | r        | 502                  | PLX         | C28-C29-C30-C31 |
| 50  | i        | 401                  | CDL         | C36-C37-C38-C39 |
| 54  | r        | 503                  | PLX         | C28-C29-C30-C31 |
| 50  | r        | 504                  | CDL         | C51-C52-C53-C54 |

Continued from previous page...



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 50  | 1     | 702 | CDL  | C37-C38-C39-C40 |
| 54  | r     | 503 | PLX  | C15-C16-C17-C18 |
| 48  | 1     | 704 | PEE  | C10-C11-C12-C13 |
| 48  | 1     | 704 | PEE  | C11-C10-O2-C2   |
| 50  | I     | 201 | CDL  | C11-CA5-OA6-CA4 |
| 50  | 1     | 701 | CDL  | C11-CA5-OA6-CA4 |
| 48  | В     | 303 | PEE  | C21-C22-C23-C24 |
| 54  | i     | 201 | PLX  | C13-C14-C15-C16 |
| 54  | a     | 202 | PLX  | C12-C13-C14-C15 |
| 48  | 1     | 704 | PEE  | O4-C10-O2-C2    |
| 48  | r     | 501 | PEE  | O4-C10-O2-C2    |
| 50  | 1     | 701 | CDL  | OA7-CA5-OA6-CA4 |
| 50  | i     | 401 | CDL  | C14-C15-C16-C17 |
| 50  | 1     | 702 | CDL  | C32-C33-C34-C35 |
| 54  | N     | 201 | PLX  | C30-C31-C32-C33 |
| 54  | r     | 503 | PLX  | C2-C1-N1-C1B    |
| 48  | s     | 401 | PEE  | C22-C23-C24-C25 |
| 54  | i     | 201 | PLX  | C31-C32-C33-C34 |
| 48  | B     | 303 | PEE  | C22-C23-C24-C25 |
| 54  | i     | 201 | PLX  | C9-C10-C11-C12  |
| 50  | i     | 401 | CDL  | OB9-CB7-OB8-CB6 |
| 50  | a     | 201 | CDL  | C16-C17-C18-C19 |
| 48  | S     | 401 | PEE  | C36-C37-C38-C39 |
| 46  | A     | 502 | FMN  | O2'-C2'-C3'-C4' |
| 48  | С     | 302 | PEE  | C1-O3P-P-O4P    |
| 54  | r     | 502 | PLX  | C2-O1-P1-O4     |
| 50  | Ι     | 201 | CDL  | OA5-CA3-CA4-CA6 |
| 50  | Ι     | 201 | CDL  | OB5-CB3-CB4-CB6 |
| 54  | N     | 201 | PLX  | O4-C3-C4-C5     |
| 54  | r     | 503 | PLX  | C16-C17-C18-C19 |
| 50  | 1     | 701 | CDL  | C20-C21-C22-C23 |
| 54  | N     | 201 | PLX  | C27-C28-C29-C30 |
| 54  | g     | 201 | PLX  | C25-C26-C27-C28 |
| 50  | a     | 201 | CDL  | C21-C22-C23-C24 |
| 50  | 1     | 702 | CDL  | C56-C57-C58-C59 |
| 54  | r     | 503 | PLX  | C7-C8-C9-C10    |
| 50  | i     | 401 | CDL  | CB3-CB4-CB6-OB8 |
| 54  | j     | 201 | PLX  | C3-C4-C5-O8     |
| 54  | r     | 502 | PLX  | C3-C4-C5-O8     |
| 54  | r     | 503 | PLX  | C3-C4-C5-O8     |
| 54  | r     | 502 | PLX  | C12-C13-C14-C15 |
| 50  | Ι     | 201 | CDL  | C72-C73-C74-C75 |



| Mol | Chain | Res | Type             | Atoms           |
|-----|-------|-----|------------------|-----------------|
| 48  | m     | 201 | PEE              | C11-C12-C13-C14 |
| 50  | i     | 401 | CDL              | CB5-C51-C52-C53 |
| 50  | Ι     | 201 | CDL              | C52-C53-C54-C55 |
| 50  | r     | 504 | CDL              | C81-C82-C83-C84 |
| 48  | Q     | 501 | PEE              | C24-C25-C26-C27 |
| 48  | l     | 703 | PEE              | C32-C33-C34-C35 |
| 50  | r     | 504 | CDL              | C60-C61-C62-C63 |
| 50  | r     | 504 | CDL              | C62-C63-C64-C65 |
| 48  | В     | 303 | PEE              | C39-C40-C41-C42 |
| 48  | С     | 302 | PEE              | C35-C36-C37-C38 |
| 50  | 1     | 702 | CDL              | C64-C65-C66-C67 |
| 54  | g     | 201 | PLX              | C30-C31-C32-C33 |
| 50  | r     | 504 | CDL              | C84-C85-C86-C87 |
| 49  | Х     | 201 | 8Q1              | C13-C14-C15-C16 |
| 54  | j     | 201 | PLX              | C30-C31-C32-C33 |
| 48  | r     | 501 | PEE              | C44-C45-C46-C47 |
| 54  | g     | 201 | PLX              | C13-C14-C15-C16 |
| 49  | X     | 201 | 8Q1              | C28-O27-P24-O3  |
| 54  | N     | 201 | PLX              | C33-C34-C35-C36 |
| 54  | a     | 202 | PLX              | C30-C31-C32-C33 |
| 48  | l     | 703 | PEE              | O3P-C1-C2-O2    |
| 54  | j     | 201 | PLX              | C26-C27-C28-C29 |
| 54  | r     | 503 | PLX              | C31-C32-C33-C34 |
| 48  | 1     | 703 | PEE              | C15-C16-C17-C18 |
| 48  | r     | 501 | PEE              | C36-C37-C38-C39 |
| 50  | a     | 201 | CDL              | C35-C36-C37-C38 |
| 54  | r     | 503 | PLX              | C33-C34-C35-C36 |
| 48  | С     | 302 | PEE              | C11-C12-C13-C14 |
| 54  | j     | 201 | PLX              | C14-C15-C16-C17 |
| 50  | Ι     | 201 | CDL              | C31-C32-C33-C34 |
| 48  | С     | 302 | PEE              | C31-C30-O3-C3   |
| 48  | m     | 201 | PEE              | C13-C14-C15-C16 |
| 48  | l     | 703 | PEE              | C19-C20-C21-C22 |
| 50  | i     | 401 | CDL              | C75-C76-C77-C78 |
| 50  | a     | 201 | CDL              | OA5-CA3-CA4-CA6 |
| 50  | a     | 201 | CDL              | CB5-C51-C52-C53 |
| 48  | В     | 303 | PEE              | O4P-C4-C5-N     |
| 50  | a     | 201 | $\overline{CDL}$ | C60-C61-C62-C63 |
| 54  | g     | 201 | PLX              | C12-C13-C14-C15 |
| 50  | r     | 504 | CDL              | C11-CA5-OA6-CA4 |
| 50  | r     | 504 | CDL              | C42-C43-C44-C45 |
| 48  | r     | 501 | PEE              | C13-C14-C15-C16 |



| Mol | Chain | Res | Type             | Atoms           |
|-----|-------|-----|------------------|-----------------|
| 48  | 1     | 704 | PEE              | C1-C2-C3-O3     |
| 50  | Ι     | 201 | CDL              | CA3-CA4-CA6-OA8 |
| 50  | 1     | 702 | CDL              | CA3-CA4-CA6-OA8 |
| 50  | 1     | 702 | CDL              | CB3-CB4-CB6-OB8 |
| 54  | g     | 201 | PLX              | C3-C4-C5-O8     |
| 48  | m     | 201 | PEE              | C24-C25-C26-C27 |
| 49  | Х     | 201 | 8Q1              | C29-C32-C34-N36 |
| 50  | Ι     | 201 | CDL              | CB3-OB5-PB2-OB2 |
| 50  | a     | 201 | CDL              | CB2-OB2-PB2-OB5 |
| 50  | l     | 702 | CDL              | C39-C40-C41-C42 |
| 50  | l     | 702 | CDL              | OA5-CA3-CA4-OA6 |
| 54  | j     | 201 | PLX              | O4-C3-C4-O6     |
| 50  | r     | 504 | CDL              | C54-C55-C56-C57 |
| 50  | l     | 702 | CDL              | OB6-CB4-CB6-OB8 |
| 54  | r     | 502 | PLX              | O6-C4-C5-O8     |
| 54  | r     | 503 | PLX              | O6-C4-C5-O8     |
| 50  | 1     | 701 | CDL              | C51-CB5-OB6-CB4 |
| 50  | 1     | 701 | CDL              | CB7-C71-C72-C73 |
| 48  | s     | 401 | PEE              | C34-C35-C36-C37 |
| 54  | a     | 202 | PLX              | C11-C12-C13-C14 |
| 50  | 1     | 701 | CDL              | CA4-CA3-OA5-PA1 |
| 54  | a     | 202 | PLX              | C13-C14-C15-C16 |
| 48  | Q     | 501 | PEE              | C18-C19-C20-C21 |
| 49  | Х     | 201 | 8Q1              | O4-C1-S44-C43   |
| 54  | a     | 202 | PLX              | C7-C8-C9-C10    |
| 50  | 1     | 702 | CDL              | C71-C72-C73-C74 |
| 48  | С     | 302 | PEE              | C10-C11-C12-C13 |
| 54  | Ν     | 201 | PLX              | O6-C6-C7-C8     |
| 54  | a     | 202 | PLX              | O6-C6-C7-C8     |
| 48  | r     | 501 | PEE              | O3P-C1-C2-C3    |
| 50  | a     | 201 | CDL              | OB5-CB3-CB4-CB6 |
| 50  | 1     | 702 | CDL              | OA5-CA3-CA4-CA6 |
| 54  | g     | 201 | PLX              | O4-C3-C4-C5     |
| 48  | 1     | 703 | PEE              | C37-C38-C39-C40 |
| 48  | s     | 401 | PEE              | C38-C39-C40-C41 |
| 50  | 1     | 702 | CDL              | C74-C75-C76-C77 |
| 54  | r     | 503 | PLX              | C11-C12-C13-C14 |
| 48  | С     | 302 | PEE              | C33-C34-C35-C36 |
| 49  | X     | 201 | 8Q1              | O33-C32-C34-N36 |
| 50  | a     | 201 | CDL              | C58-C59-C60-C61 |
| 49  | X     | 201 | $8Q\overline{1}$ | O27-C28-C29-C30 |
| 49  | X     | 201 | 801              | O27-C28-C29-C31 |



|     |       | Prese | r ng r ng r |                 |
|-----|-------|-------|-------------|-----------------|
| Mol | Chain | Res   | Type        | Atoms           |
| 50  | a     | 201   | CDL         | C59-C60-C61-C62 |
| 54  | a     | 202   | PLX         | C9-C10-C11-C12  |
| 50  | a     | 201   | CDL         | C55-C56-C57-C58 |
| 50  | r     | 504   | CDL         | C72-C73-C74-C75 |
| 48  | 1     | 703   | PEE         | C20-C21-C22-C23 |
| 50  | 1     | 701   | CDL         | C24-C25-C26-C27 |
| 48  | m     | 201   | PEE         | C3-C2-O2-C10    |
| 50  | r     | 504   | CDL         | OA7-CA5-OA6-CA4 |
| 54  | Ν     | 201   | PLX         | C13-C14-C15-C16 |
| 48  | r     | 501   | PEE         | C1-C2-C3-O3     |
| 50  | r     | 504   | CDL         | CA3-CA4-CA6-OA8 |
| 48  | С     | 302   | PEE         | O5-C30-O3-C3    |
| 48  | 1     | 704   | PEE         | C12-C13-C14-C15 |
| 48  | В     | 303   | PEE         | O3P-C1-C2-O2    |
| 48  | r     | 501   | PEE         | O3P-C1-C2-O2    |
| 50  | a     | 201   | CDL         | OB5-CB3-CB4-OB6 |
| 50  | Ι     | 201   | CDL         | C31-CA7-OA8-CA6 |
| 48  | Q     | 501   | PEE         | C16-C17-C18-C19 |
| 48  | Q     | 501   | PEE         | C32-C33-C34-C35 |
| 50  | 1     | 701   | CDL         | O1-C1-CA2-OA2   |
| 50  | 1     | 701   | CDL         | OB7-CB5-OB6-CB4 |
| 49  | G     | 201   | 8Q1         | C31-C29-C32-C34 |
| 50  | 1     | 701   | CDL         | C36-C37-C38-C39 |
| 48  | 1     | 704   | PEE         | O2-C2-C3-O3     |
| 48  | r     | 501   | PEE         | O2-C2-C3-O3     |
| 50  | Ι     | 201   | CDL         | OA6-CA4-CA6-OA8 |
| 50  | i     | 401   | CDL         | C33-C34-C35-C36 |
| 50  | i     | 401   | CDL         | C15-C16-C17-C18 |
| 48  | В     | 303   | PEE         | C15-C16-C17-C18 |
| 48  | 1     | 703   | PEE         | C22-C23-C24-C25 |
| 48  | 1     | 704   | PEE         | C23-C24-C25-C26 |
| 48  | r     | 501   | PEE         | C24-C25-C26-C27 |
| 50  | r     | 504   | CDL         | C39-C40-C41-C42 |
| 48  | l     | 703   | PEE         | C23-C24-C25-C26 |
| 50  | 1     | 701   | CDL         | C75-C76-C77-C78 |
| 50  | a     | 201   | CDL         | C15-C16-C17-C18 |
| 54  | j     | 201   | PLX         | C11-C12-C13-C14 |
| 54  | j     | 201   | PLX         | C33-C34-C35-C36 |
| 50  | r     | 504   | CDL         | CB3-OB5-PB2-OB2 |
| 47  | А     | 503   | NAI         | C2D-C1D-N1N-C2N |
| 48  | С     | 302   | PEE         | C42-C43-C44-C45 |
| 48  | С     | 302   | PEE         | C1-O3P-P-O2P    |



| Mol   | Chain    | Res |            | Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|----------|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10101 | С        | 302 | PEE        | $C_{4} O_{4} P P O_{2} P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40    |          | 703 | DFF        | $\begin{array}{c} 04-041-1-021 \\ \hline 04-04P P O2P \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 40    | 1<br>m   | 201 | DFF        | $\begin{array}{c} C4 - O41 - 1 - O21 \\ \hline C4 - O4P - P - O2P \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40    |          | 201 |            | C4-O4F-F-O2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 48    | III      | 201 | PEE<br>CDI | $\begin{array}{c} 0.4 - 0.4P - P - 0.1P \\ \hline 0.4P - 0.4P - 0.4A \\ \hline 0.4P - 0.4A \\ \hline 0.4P - 0.4A \\ \hline 0.4A $ |
| 50    | I        | 201 | CDL        | CA2-OA2-PAI-OA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | l        | 201 | CDL        | CB2-OB2-PB2-OB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | 1        | 201 | CDL        | CB3-OB5-PB2-OB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | a        | 201 | CDL        | CA3-OA5-PA1-OA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | a        | 201 | CDL        | CB2-OB2-PB2-OB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | a        | 201 | CDL        | CB3-OB5-PB2-OB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | <u>l</u> | 701 | CDL        | CA2-OA2-PA1-OA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | <u>l</u> | 701 | CDL        | CA3-OA5-PA1-OA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | 1        | 702 | CDL        | CA2-OA2-PA1-OA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | 1        | 702 | CDL        | CA2-OA2-PA1-OA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | r        | 504 | CDL        | CB2-OB2-PB2-OB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54    | Ν        | 201 | PLX        | C2-O1-P1-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 54    | r        | 502 | PLX        | C2-O1-P1-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 57    | W        | 401 | ADP        | C5'-O5'-PA-O1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 48    | s        | 401 | PEE        | C30-C31-C32-C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48    | В        | 303 | PEE        | O3P-C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 48    | 1        | 703 | PEE        | O3P-C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 54    | j        | 201 | PLX        | O4-C3-C4-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50    | r        | 504 | CDL        | C64-C65-C66-C67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48    | С        | 302 | PEE        | C13-C14-C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48    | В        | 303 | PEE        | C19-C20-C21-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48    | m        | 201 | PEE        | C15-C16-C17-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | r        | 504 | CDL        | C44-C45-C46-C47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | Ι        | 201 | CDL        | CA2-C1-CB2-OB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50    | 1        | 702 | CDL        | CA2-C1-CB2-OB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50    | 1        | 702 | CDL        | C40-C41-C42-C43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | r        | 504 | CDL        | OB5-CB3-CB4-OB6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54    | g        | 201 | PLX        | O4-C3-C4-O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50    | a        | 201 | CDL        | C22-C23-C24-C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | i        | 401 | CDL        | C35-C36-C37-C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | r        | 504 | CDL        | C14-C15-C16-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50    | Ι        | 201 | CDL        | OA9-CA7-OA8-CA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 46    | А        | 502 | FMN        | C1'-C2'-C3'-C4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48    | Q        | 501 | PEE        | O2-C2-C3-O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 54    | er<br>g  | 201 | PLX        | O6-C4-C5-O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 54    | i        | 201 | PLX        | <u>06-C4-C5-08</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 54    | J<br>A   | 202 | PLX        | C19-C20-C21-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 54    | a        | 202 | PLX        | C27-C28-C29-C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Continuea from previous page |       |     |      |                 |  |  |
|------------------------------|-------|-----|------|-----------------|--|--|
| Mol                          | Chain | Res | Type | Atoms           |  |  |
| 54                           | r     | 503 | PLX  | O9-C24-C25-C26  |  |  |
| 50                           | 1     | 702 | CDL  | C33-C34-C35-C36 |  |  |
| 47                           | A     | 503 | NAI  | O4D-C1D-N1N-C2N |  |  |
| 48                           | В     | 303 | PEE  | C32-C33-C34-C35 |  |  |
| 48                           | r     | 501 | PEE  | C33-C34-C35-C36 |  |  |
| 50                           | r     | 504 | CDL  | C80-C81-C82-C83 |  |  |
| 54                           | r     | 503 | PLX  | C20-C21-C22-C23 |  |  |
| 50                           | r     | 504 | CDL  | CB4-CB3-OB5-PB2 |  |  |
| 50                           | r     | 504 | CDL  | C11-C12-C13-C14 |  |  |
| 50                           | Ι     | 201 | CDL  | OB5-CB3-CB4-OB6 |  |  |
| 50                           | 1     | 701 | CDL  | OA5-CA3-CA4-OA6 |  |  |
| 50                           | 1     | 702 | CDL  | C20-C21-C22-C23 |  |  |
| 50                           | a     | 201 | CDL  | C36-C37-C38-C39 |  |  |
| 48                           | m     | 201 | PEE  | O3-C30-C31-C32  |  |  |
| 50                           | a     | 201 | CDL  | C44-C45-C46-C47 |  |  |
| 46                           | А     | 502 | FMN  | O2'-C2'-C3'-O3' |  |  |
| 48                           | 1     | 703 | PEE  | C13-C14-C15-C16 |  |  |
| 48                           | В     | 303 | PEE  | C1-O3P-P-O4P    |  |  |
| 50                           | i     | 401 | CDL  | CB3-OB5-PB2-OB2 |  |  |
| 50                           | 1     | 701 | CDL  | CB3-OB5-PB2-OB2 |  |  |
| 54                           | a     | 202 | PLX  | C2-O1-P1-O4     |  |  |
| 54                           | g     | 201 | PLX  | C3-O4-P1-O1     |  |  |
| 54                           | r     | 503 | PLX  | C3-O4-P1-O1     |  |  |
| 54                           | r     | 502 | PLX  | C15-C16-C17-C18 |  |  |
| 49                           | G     | 201 | 8Q1  | C6-C7-C8-C9     |  |  |
| 49                           | G     | 201 | 8Q1  | C30-C29-C32-O33 |  |  |
| 50                           | 1     | 702 | CDL  | C12-C13-C14-C15 |  |  |
| 48                           | С     | 302 | PEE  | C38-C39-C40-C41 |  |  |
| 48                           | 1     | 704 | PEE  | C18-C19-C20-C21 |  |  |
| 54                           | N     | 201 | PLX  | C11-C10-C9-C8   |  |  |
| 54                           | r     | 503 | PLX  | C9-C10-C11-C12  |  |  |
| 54                           | r     | 503 | PLX  | C29-C30-C31-C32 |  |  |
| 50                           | r     | 504 | CDL  | C31-C32-C33-C34 |  |  |
| 48                           | S     | 401 | PEE  | C12-C13-C14-C15 |  |  |
| 48                           | 1     | 703 | PEE  | C33-C34-C35-C36 |  |  |
| 48                           | r     | 501 | PEE  | C31-C30-O3-C3   |  |  |
| 50                           | r     | 504 | CDL  | C20-C21-C22-C23 |  |  |
| 48                           | r     | 501 | PEE  | C38-C39-C40-C41 |  |  |
| 54                           | j     | 201 | PLX  | C34-C35-C36-C37 |  |  |
| 48                           | r     | 501 | PEE  | O5-C30-O3-C3    |  |  |
| 48                           | С     | 302 | PEE  | C39-C40-C41-C42 |  |  |
| 48                           | m     | 201 | PEE  | C14-C15-C16-C17 |  |  |
| L                            | 1     | 1   | -    | 1               |  |  |

 $\alpha$ itin d fa



| Continueu from previous page |     |       |     |      |                 |  |
|------------------------------|-----|-------|-----|------|-----------------|--|
|                              | Mol | Chain | Res | Type | Atoms           |  |
|                              | 48  | 1     | 703 | PEE  | C39-C40-C41-C42 |  |
|                              | 54  | r     | 503 | PLX  | C24-C25-C26-C27 |  |
|                              | 50  | a     | 201 | CDL  | C43-C44-C45-C46 |  |
|                              | 54  | j     | 201 | PLX  | O6-C6-C7-C8     |  |
|                              | 54  | r     | 502 | PLX  | O8-C24-C25-C26  |  |
|                              | 50  | r     | 504 | CDL  | C37-C38-C39-C40 |  |
|                              | 50  | i     | 401 | CDL  | CA4-CA3-OA5-PA1 |  |
|                              | 51  | J     | 401 | NDP  | O4D-C1D-N1N-C6N |  |
|                              | 48  | В     | 303 | PEE  | C30-C31-C32-C33 |  |
|                              | 50  | a     | 201 | CDL  | C34-C35-C36-C37 |  |
|                              | 48  | С     | 302 | PEE  | C1-C2-C3-O3     |  |
|                              | 50  | a     | 201 | CDL  | C53-C54-C55-C56 |  |
|                              | 54  | a     | 202 | PLX  | C14-C15-C16-C17 |  |
|                              | 54  | r     | 503 | PLX  | C30-C31-C32-C33 |  |
|                              | 48  | 1     | 703 | PEE  | C3-C2-O2-C10    |  |
|                              | 54  | r     | 503 | PLX  | C19-C20-C21-C22 |  |
|                              | 50  | a     | 201 | CDL  | C32-C31-CA7-OA8 |  |
|                              | 47  | А     | 503 | NAI  | C2D-C1D-N1N-C6N |  |
|                              | 50  | r     | 504 | CDL  | C1-CB2-OB2-PB2  |  |
|                              | 50  | a     | 201 | CDL  | C14-C15-C16-C17 |  |
|                              | 50  | 1     | 701 | CDL  | OA5-CA3-CA4-CA6 |  |
|                              | 50  | r     | 504 | CDL  | OB5-CB3-CB4-CB6 |  |
|                              | 48  | В     | 303 | PEE  | C16-C17-C18-C19 |  |
|                              | 48  | m     | 201 | PEE  | C18-C19-C20-C21 |  |
|                              | 54  | Ν     | 201 | PLX  | C31-C32-C33-C34 |  |
|                              | 48  | В     | 303 | PEE  | C13-C14-C15-C16 |  |
|                              | 49  | G     | 201 | 8Q1  | C42-C43-S44-C1  |  |
|                              | 50  | Ι     | 201 | CDL  | OB6-CB4-CB6-OB8 |  |
|                              | 50  | 1     | 702 | CDL  | C43-C44-C45-C46 |  |
|                              | 50  | a     | 201 | CDL  | C18-C19-C20-C21 |  |
|                              | 50  | a     | 201 | CDL  | C23-C24-C25-C26 |  |
|                              | 50  | i     | 401 | CDL  | C12-C13-C14-C15 |  |
|                              | 48  | m     | 201 | PEE  | C16-C17-C18-C19 |  |
|                              | 49  | G     | 201 | 8Q1  | C10-C11-C12-C13 |  |
|                              | 54  | j     | 201 | PLX  | C18-C19-C20-C21 |  |
|                              | 48  | Č     | 302 | PEE  | C20-C21-C22-C23 |  |
|                              | 54  | r     | 502 | PLX  | C26-C27-C28-C29 |  |
|                              | 48  | s     | 401 | PEE  | C15-C16-C17-C18 |  |
|                              | 48  | 1     | 703 | PEE  | C36-C37-C38-C39 |  |
|                              | 54  | a     | 202 | PLX  | O8-C24-C25-C26  |  |
|                              | 54  | r     | 503 | PLX  | O8-C24-C25-C26  |  |
|                              | 48  | s     | 401 | PEE  | O4P-C4-C5-N     |  |
| ļ                            |     |       |     |      |                 |  |

Continued from previous page...



|     |       | I P · · · · ·        | F    |                 |
|-----|-------|----------------------|------|-----------------|
| Mol | Chain | $\operatorname{Res}$ | Type | Atoms           |
| 48  | Q     | 501                  | PEE  | C2-C1-O3P-P     |
| 50  | 1     | 702                  | CDL  | C76-C77-C78-C79 |
| 48  | 1     | 704                  | PEE  | C34-C35-C36-C37 |
| 48  | С     | 302                  | PEE  | C14-C15-C16-C17 |
| 48  | С     | 302                  | PEE  | C17-C18-C19-C20 |
| 48  | r     | 501                  | PEE  | C39-C40-C41-C42 |
| 48  | s     | 401                  | PEE  | C44-C45-C46-C47 |
| 48  | Q     | 501                  | PEE  | C36-C37-C38-C39 |
| 48  | Q     | 501                  | PEE  | C38-C39-C40-C41 |
| 48  | 1     | 703                  | PEE  | C1-C2-O2-C10    |
| 47  | А     | 503                  | NAI  | O4D-C1D-N1N-C6N |
| 48  | 1     | 703                  | PEE  | C10-C11-C12-C13 |
| 54  | Ν     | 201                  | PLX  | C18-C19-C20-C21 |
| 50  | a     | 201                  | CDL  | C74-C75-C76-C77 |
| 48  | В     | 303                  | PEE  | C18-C19-C20-C21 |
| 48  | s     | 401                  | PEE  | C16-C17-C18-C19 |
| 48  | С     | 302                  | PEE  | C19-C20-C21-C22 |
| 48  | Q     | 501                  | PEE  | C1-C2-C3-O3     |
| 54  | g     | 201                  | PLX  | C7-C6-O6-C4     |
| 54  | j     | 201                  | PLX  | C7-C6-O6-C4     |
| 50  | r     | 504                  | CDL  | OA9-CA7-OA8-CA6 |
| 54  | r     | 502                  | PLX  | C10-C11-C12-C13 |
| 48  | s     | 401                  | PEE  | O2-C10-C11-C12  |
| 48  | S     | 401                  | PEE  | C31-C32-C33-C34 |
| 50  | r     | 504                  | CDL  | C31-CA7-OA8-CA6 |
| 48  | В     | 303                  | PEE  | C12-C13-C14-C15 |
| 54  | r     | 503                  | PLX  | C35-C36-C37-C38 |
| 48  | С     | 302                  | PEE  | O3-C30-C31-C32  |
| 48  | С     | 302                  | PEE  | C36-C37-C38-C39 |
| 50  | Ι     | 201                  | CDL  | C12-C11-CA5-OA6 |
| 50  | r     | 504                  | CDL  | C52-C51-CB5-OB6 |
| 51  | J     | 401                  | NDP  | C2B-O2B-P2B-O2X |
| 50  | Ι     | 201                  | CDL  | C12-C13-C14-C15 |
| 49  | G     | 201                  | 8Q1  | C9-C10-C11-C12  |
| 50  | 1     | 701                  | CDL  | C51-C52-C53-C54 |
| 48  | В     | 303                  | PEE  | C36-C37-C38-C39 |
| 48  | s     | 401                  | PEE  | O4-C10-C11-C12  |
| 50  | 1     | 702                  | CDL  | C38-C39-C40-C41 |
| 48  | 1     | 703                  | PEE  | C18-C19-C20-C21 |
| 48  | 1     | 704                  | PEE  | C16-C17-C18-C19 |
| 50  | i     | 401                  | CDL  | CA3-CA4-CA6-OA8 |
| 50  | a     | 201                  | CDL  | C13-C14-C15-C16 |



|     | 5     | 1   | 1 5  |                 |
|-----|-------|-----|------|-----------------|
| Mol | Chain | Res | Type | Atoms           |
| 50  | 1     | 701 | CDL  | C23-C24-C25-C26 |
| 48  | m     | 201 | PEE  | C23-C24-C25-C26 |
| 47  | А     | 503 | NAI  | C2N-C3N-C7N-N7N |
| 48  | Q     | 501 | PEE  | C1-O3P-P-O1P    |
| 48  | m     | 201 | PEE  | C1-O3P-P-O1P    |
| 50  | Ι     | 201 | CDL  | CA3-OA5-PA1-OA3 |
| 50  | i     | 401 | CDL  | CB3-OB5-PB2-OB3 |
| 50  | 1     | 701 | CDL  | CB3-OB5-PB2-OB3 |
| 51  | J     | 401 | NDP  | C5B-O5B-PA-O1A  |
| 51  | J     | 401 | NDP  | O4B-C4B-C5B-O5B |
| 50  | Ι     | 201 | CDL  | C12-C11-CA5-OA7 |
| 50  | Ι     | 201 | CDL  | C72-C71-CB7-OB8 |
| 54  | r     | 502 | PLX  | C25-C24-O8-C5   |
| 48  | 1     | 704 | PEE  | O3-C30-C31-C32  |
| 50  | Ι     | 201 | CDL  | C52-C51-CB5-OB6 |
| 50  | 1     | 701 | CDL  | C12-C11-CA5-OA6 |
| 48  | s     | 401 | PEE  | C23-C24-C25-C26 |
| 54  | j     | 201 | PLX  | C24-C25-C26-C27 |
| 48  | Q     | 501 | PEE  | C30-C31-C32-C33 |
| 48  | С     | 302 | PEE  | O5-C30-C31-C32  |
| 50  | 1     | 701 | CDL  | C12-C11-CA5-OA7 |
| 50  | 1     | 702 | CDL  | C72-C71-CB7-OB8 |
| 48  | В     | 303 | PEE  | C43-C44-C45-C46 |
| 50  | 1     | 702 | CDL  | C32-C31-CA7-OA8 |
| 48  | 1     | 704 | PEE  | O5-C30-C31-C32  |
| 50  | 1     | 702 | CDL  | С72-С71-СВ7-ОВ9 |
| 50  | r     | 504 | CDL  | C52-C51-CB5-OB7 |
| 50  | 1     | 702 | CDL  | C44-C45-C46-C47 |
| 50  | r     | 504 | CDL  | С72-С71-СВ7-ОВ8 |
| 48  | 1     | 703 | PEE  | C16-C17-C18-C19 |
| 50  | a     | 201 | CDL  | C72-C71-CB7-OB8 |

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the



average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.











![](_page_67_Picture_4.jpeg)

![](_page_68_Figure_3.jpeg)

![](_page_68_Picture_4.jpeg)

![](_page_69_Figure_3.jpeg)

![](_page_69_Picture_4.jpeg)

![](_page_70_Figure_3.jpeg)

![](_page_70_Picture_4.jpeg)

![](_page_71_Figure_3.jpeg)






























# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



## 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-32312. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

### Orthogonal projections (i) 6.1

#### 6.1.1Primary map



The images above show the map projected in three orthogonal directions.

### Central slices (i) 6.2

#### 6.2.1Primary map



X Index: 152

Y Index: 152



The images above show central slices of the map in three orthogonal directions.

### Largest variance slices (i) 6.3

#### 6.3.1Primary map



X Index: 104

Y Index: 98

Z Index: 127

The images above show the largest variance slices of the map in three orthogonal directions.

### Orthogonal standard-deviation projections (False-color) (i) 6.4

#### 6.4.1**Primary** map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



## 6.5 Orthogonal surface views (i)

6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.0282. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

## 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is 291  $\rm nm^3;$  this corresponds to an approximate mass of 263 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



## 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.303  $\text{\AA}^{-1}$ 



# 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-32312 and PDB model 7W4Q. Per-residue inclusion information can be found in section 3 on page 20.

## 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.0282 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



## 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

## 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0282).



## 9.4 Atom inclusion (i)



At the recommended contour level, 75% of all backbone atoms, 68% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0282) and Q-score for the entire model and for each chain.

| $\operatorname{Chain}$ | Atom inclusion | Q-score |
|------------------------|----------------|---------|
| All                    | 0.6760         | 0.5260  |
| А                      | 0.5470         | 0.4760  |
| В                      | 0.8180         | 0.5740  |
| С                      | 0.7590         | 0.5560  |
| Ε                      | 0.6140         | 0.5170  |
| F                      | 0.4110         | 0.4050  |
| G                      | 0.3060         | 0.3630  |
| Н                      | 0.5890         | 0.4780  |
| Ι                      | 0.6570         | 0.5270  |
| J                      | 0.5560         | 0.4770  |
| Κ                      | 0.4830         | 0.4680  |
| L                      | 0.7210         | 0.5510  |
| Μ                      | 0.6840         | 0.5280  |
| Ν                      | 0.6940         | 0.5380  |
| О                      | 0.5420         | 0.4750  |
| Р                      | 0.7820         | 0.5640  |
| Q                      | 0.7820         | 0.5660  |
| S                      | 0.7560         | 0.5440  |
| Т                      | 0.6730         | 0.5330  |
| U                      | 0.6710         | 0.5210  |
| V                      | 0.4990         | 0.4730  |
| W                      | 0.7060         | 0.5330  |
| Х                      | 0.6630         | 0.5100  |
| Y                      | 0.6080         | 0.4940  |
| Z                      | 0.5550         | 0.4620  |
| a                      | 0.7200         | 0.5510  |
| b                      | 0.6200         | 0.4970  |
| с                      | 0.7150         | 0.5420  |
| d                      | 0.6870         | 0.5230  |
| e                      | 0.6370         | 0.5200  |
| f                      | 0.5780         | 0.4850  |
| g                      | 0.7470         | 0.5560  |
| h                      | 0.6980         | 0.5320  |
| i                      | 0.7790         | 0.5690  |
| j                      | 0.5840         | 0.4970  |

Continued on next page...



Continued from previous page...

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| k     | 0.6510         | 0.5230  |
| l     | 0.7370         | 0.5570  |
| m     | 0.6250         | 0.5170  |
| n     | 0.6230         | 0.5090  |
| 0     | 0.7020         | 0.5330  |
| р     | 0.7320         | 0.5410  |
| r     | 0.7840         | 0.5680  |
| s     | 0.7210         | 0.5370  |
| u     | 0.6960         | 0.5300  |
| V     | 0.5850         | 0.4860  |
| W     | 0.5840         | 0.4930  |

