

wwPDB X-ray Structure Validation Summary Report (i)

Jul 16, 2024 – 04:27 PM JST

PDB ID	:	8W8O
Title	:	Thermus thermophilus initiation complex in the half-translocated state
Authors	:	Li, L.; Zhang, Y.
Deposited on	:	2023-09-04
Resolution	:	2.51 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.51 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{llllllllllllllllllllllllllllllllllll$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA})$
R_{free}	130704	$5743 \ (2.54-2.50)$
Clashscore	141614	6463 (2.54-2.50)
Ramachandran outliers	138981	6335(2.54-2.50)
Sidechain outliers	138945	6337 (2.54-2.50)
RSRZ outliers	127900	5630 (2.54-2.50)
RNA backbone	3102	1020(2.86-2.18)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality	of chain			
1	А	315	% 58%	13%	•	28%	
1	В	315	^{2%} 54%	17%	•	29%	
2	С	1119	4% 81%			17%	••
3	D	1524	7%78%			19%	• •

Continued on next page...

Continued from previous page...

Mol	Chain	Length		Qual	ity of chain			
4	Е	99	3%	92	2%			• • •
5	F	443	6%	62%		15%	•	22%
6	G	21	10%	43%		33%		14%
7	Н	27	33%		56%			11%
8	Ι	3		67%			33	3%

8W8O

2 Entry composition (i)

There are 11 unique types of molecules in this entry. The entry contains 29261 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA-directed RNA polymerase subunit alpha.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	Δ	228	Total	С	Ν	Ο	S	0	0	0
	Л	220	1792	1144	312	334	2	0	0	
1	В	224	Total	С	Ν	Ο	S	0	0	0
	D	224	1767	1130	307	328	2	0	U	0

• Molecule 2 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues		A	toms			ZeroOcc	AltConf	Trace
2	С	1107	Total 8728	C 5523	N 1560	O 1621	$\begin{array}{c} \mathrm{S} \\ \mathrm{24} \end{array}$	0	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase subunit beta'.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
3	D	1481	Total 11682	С 7412	N 2056	0 2178	S 36	0	3	0

• Molecule 4 is a protein called DNA-directed RNA polymerase subunit omega.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	E	96	Total 781	C 497	N 137	0 143	$\frac{S}{4}$	0	0	0

• Molecule 5 is a protein called RNA polymerase sigma factor SigA.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
5	F	346	Total 2804	C 1767	N 509	0 524	${S \atop 4}$	0	0	0

There are 20 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	-19	MET	-	expression tag	UNP Q5SKW1
F	-18	GLY	-	expression tag	UNP Q5SKW1
F	-17	SER	-	expression tag	UNP Q5SKW1
F	-16	SER	-	expression tag	UNP Q5SKW1
F	-15	HIS	-	expression tag	UNP Q5SKW1
F	-14	HIS	-	expression tag	UNP Q5SKW1
F	-13	HIS	-	expression tag	UNP Q5SKW1
F	-12	HIS	-	expression tag	UNP Q5SKW1
F	-11	HIS	-	expression tag	UNP Q5SKW1
F	-10	HIS	-	expression tag	UNP Q5SKW1
F	-9	SER	-	expression tag	UNP Q5SKW1
F	-8	SER	-	expression tag	UNP Q5SKW1
F	-7	GLY	-	expression tag	UNP Q5SKW1
F	-6	LEU	-	expression tag	UNP Q5SKW1
F	-5	VAL	-	expression tag	UNP Q5SKW1
F	-4	PRO	-	expression tag	UNP Q5SKW1
F	-3	ARG	-	expression tag	UNP Q5SKW1
F	-2	GLY	-	expression tag	UNP Q5SKW1
F	-1	SER	-	expression tag	UNP Q5SKW1
F	0	HIS	-	expression tag	UNP Q5SKW1

• Molecule 6 is a DNA chain called DNA (21-MER).

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
6	G	18	Total 369	C 175	N 71	O 106	Р 17	0	0	0

• Molecule 7 is a DNA chain called DNA (27-MER).

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
7	Н	24	Total 495	C 236	N 94	0 142	Р 23	0	0	0

• Molecule 8 is a RNA chain called RNA (5'-(GTP)GA-3').

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
8	Ι	3	Total 77	C 30	N 15	O 27	Р 5	0	0	0

• Molecule 9 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	В	1	Total Mg 1 1	0	0
9	D	3	Total Mg 3 3	0	0
9	F	1	Total Mg 1 1	0	0
9	Ι	2	Total Mg 2 2	0	0

• Molecule 10 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
10	D	2	TotalZn22	0	0

• Molecule 11 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
11	А	44	Total O 44 44	0	0
11	В	29	TotalO2929	0	0
11	С	270	Total O 270 270	0	0
11	D	304	Total O 304 304	0	0
11	Е	32	TotalO3232	0	0
11	F	37	Total O 37 37	0	0
11	G	14	Total O 14 14	0	0
11	Н	5	Total O 5 5	0	0
11	Ι	22	TotalO2222	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA-directed RNA polymerase subunit alpha

• Molecule 3: DNA-directed RNA polymerase subunit beta'

• Molecule 7: DNA (27-MER)								
Chain H:	33%	56%		11%				
T1 T6 G9 G11 T13 T13 C11 T13 C14	T15 C16 C16 C16 C26 C24 D2 D2 D2 D2 D2 D2 D2 D2 D3							
• Molecule 8: RNA $(5'-(GTP)GA-3')$								
Chain I:	(57%	33%					
<mark>G6</mark> A7								

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	C 1 2 1	Depositor	
Cell constants	183.40Å 103.80Å 295.04Å	Deperitor	
a, b, c, α , β , γ	90.00° 99.19° 90.00°	Depositor	
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	39.88 - 2.51	Depositor	
Resolution (A)	39.88 - 2.51	EDS	
% Data completeness	99.0 (39.88-2.51)	Depositor	
(in resolution range)	99.0(39.88-2.51)	EDS	
R_{merge}	0.18	Depositor	
R _{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.79 (at 2.51 \text{\AA})$	Xtriage	
Refinement program	PHENIX (1.12_2829: ???)	Depositor	
P. P.	0.187 , 0.226	Depositor	
Π, Π_{free}	0.187 , 0.226	DCC	
R_{free} test set	9212 reflections (4.99%)	wwPDB-VP	
Wilson B-factor (Å ²)	51.4	Xtriage	
Anisotropy	0.345	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 45.6	EDS	
L-test for $twinning^2$	$< L >=0.49, < L^2>=0.32$	Xtriage	
	0.012 for 1/2 *h-3/2 *k,-1/2 *h-1/2 *k,-1/2 *h		
Estimated twinning fraction	$+1/2^{*}k$ -l	Xtriage	
	0.012 for $1/2^{h+3}/2^{k}, 1/2^{h-1}/2^{k}, -1/2^{h-1}/2^{h-$	0-	
E.E. completion	1/2*K-1	EDG	
F_o, F_c correlation	0.90		
I otal number of atoms	29201	WWPDB-VP	
Average B, all atoms (A^2)	65.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.93% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG, GTP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.46	0/1824	0.63	0/2480
1	В	0.43	0/1799	0.60	0/2446
2	С	0.47	0/8892	0.63	0/12022
3	D	0.45	0/11895	0.62	0/16084
4	Ε	0.47	0/795	0.63	0/1071
5	F	0.41	0/2849	0.56	0/3833
6	G	0.93	0/414	1.39	8/638~(1.3%)
7	Н	0.96	0/556	1.05	0/858
8	Ι	0.64	0/50	1.23	$1/76\ (1.3\%)$
All	All	0.48	0/29074	0.65	9/39508~(0.0%)

There are no bond length outliers.

The worst 5 of 9 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
6	G	19	DG	P-O3'-C3'	-9.45	108.36	119.70
6	G	6	DA	P-O3'-C3'	-9.17	108.69	119.70
6	G	18	DA	P-O3'-C3'	-9.04	108.86	119.70
6	G	15	DT	P-O3'-C3'	-8.73	109.23	119.70
6	G	17	DC	P-O3'-C3'	-8.40	109.62	119.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1792	0	1844	30	0
1	В	1767	0	1821	39	0
2	С	8728	0	8834	135	0
3	D	11682	0	11899	189	0
4	Е	781	0	797	4	0
5	F	2804	0	2873	49	0
6	G	369	0	203	22	0
7	Н	495	0	272	14	0
8	Ι	77	0	33	0	0
9	В	1	0	0	0	0
9	D	3	0	0	0	0
9	F	1	0	0	0	0
9	Ι	2	0	0	0	0
10	D	2	0	0	0	0
11	А	44	0	0	4	0
11	В	29	0	0	0	0
11	С	270	0	0	9	0
11	D	304	0	0	17	0
11	Е	32	0	0	1	0
11	F	37	0	0	3	0
11	G	14	0	0	1	0
11	Н	5	0	0	0	0
11	Ι	22	0	0	0	0
All	All	29261	0	28576	431	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

The worst 5 of 431 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance} \ (\text{\AA}) \end{array}$	Clash overlap (Å)
3:D:1380:GLU:HB3	3:D:1418:LYS:HD3	1.56	0.87
6:G:9:DC:H2'	6:G:10:DG:C8	2.13	0.84
1:A:39:PRO:HG3	1:B:39:PRO:HG3	1.65	0.79
3:D:238:PRO:HD3	3:D:318:ARG:HG3	1.63	0.78
2:C:628:PHE:H	2:C:638:ASP:HB3	1.48	0.78

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured Allowed		Outliers	Perce	Percentiles		
1	А	226/315~(72%)	225 (100%)	1 (0%)	0	100	100		
1	В	222/315~(70%)	214 (96%)	8 (4%)	0	100	100		
2	С	1099/1119~(98%)	1066 (97%)	33~(3%)	0	100	100		
3	D	1476/1524~(97%)	1440 (98%)	36 (2%)	0	100	100		
4	Е	94/99~(95%)	92 (98%)	2(2%)	0	100	100		
5	F	344/443~(78%)	336~(98%)	8 (2%)	0	100	100		
All	All	3461/3815~(91%)	3373 (98%)	88 (2%)	0	100	100		

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	199/273~(73%)	191~(96%)	8 (4%)	31	54
1	В	197/273~(72%)	191~(97%)	6 (3%)	41	66
2	С	929/941~(99%)	893~(96%)	36 (4%)	32	55
3	D	1242/1279~(97%)	1190 (96%)	52~(4%)	30	51
4	Е	85/88~(97%)	83~(98%)	2(2%)	49	73
5	F	300/388~(77%)	286~(95%)	14 (5%)	26	46
All	All	2952/3242~(91%)	2834 (96%)	118 (4%)	32	54

5 of 118 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
3	D	335	LEU
5	F	152	ASP
3	D	894	LYS
5	F	150	THR
3	D	1468	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
8	Ι	1/3~(33%)	0	0

There are no RNA backbone outliers to report.

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 9 ligands modelled in this entry, 9 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	228/315~(72%)	-0.24	3 (1%) 77 79	43, 58, 81, 99	0
1	В	224/315~(71%)	0.10	7 (3%) 49 53	46, 68, 95, 116	0
2	С	1107/1119 (98%)	0.06	42 (3%) 40 44	31, 52, 109, 134	0
3	D	1481/1524~(97%)	0.31	104 (7%) 16 17	31, 59, 116, 142	0
4	Е	96/99~(96%)	-0.12	3 (3%) 49 53	36, 52, 98, 110	0
5	F	346/443~(78%)	0.28	27 (7%) 13 13	42, 71, 111, 128	0
6	G	18/21~(85%)	0.07	2(11%) 5 5	50, 77, 165, 166	0
7	Н	24/27~(88%)	-0.28	0 100 100	70, 85, 134, 166	0
8	Ι	2/3~(66%)	-0.96	0 100 100	43, 43, 43, 43	0
All	All	3526/3866~(91%)	0.16	188 (5%) 26 28	31, 59, 112, 166	0

The worst 5 of 188 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
3	D	1499	ARG	4.8
3	D	173	PRO	4.8
3	D	310	LEU	4.7
3	D	422	ALA	4.6
3	D	1283	ILE	4.5

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
9	MG	В	2001	1/1	0.90	0.14	73,73,73,73	0
9	MG	D	1605	1/1	0.90	0.10	56, 56, 56, 56	0
9	MG	Ι	102	1/1	0.92	0.10	44,44,44,44	0
9	MG	D	1604	1/1	0.95	0.09	64,64,64,64	0
9	MG	F	501	1/1	0.96	0.07	56, 56, 56, 56	0
9	MG	Ι	101	1/1	0.98	0.11	43,43,43,43	0
9	MG	D	1603	1/1	0.99	0.16	33,33,33,33	0
10	ZN	D	1602	1/1	0.99	0.09	76,76,76,76	0
10	ZN	D	1601	1/1	1.00	0.14	37,37,37,37	0

6.5 Other polymers (i)

There are no such residues in this entry.

