

wwPDB X-ray Structure Validation Summary Report (i)

Jan 2, 2024 – 01:28 pm GMT

PDB ID	:	4WCE
Title	:	The crystal structure of the large ribosomal subunit of Staphylococcus aureus
Authors	:	Eyal, Z.; Matzov, D.; Krupkin, M.; Wekselman, I.; Zimmerman, E.; Rozen-
		berg, H.; Bashan, A.; Yonath, A.
Deposited on	:	2014-09-04
Resolution	:	3.53 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.53 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1161 (3.60-3.44)
Clashscore	141614	1244 (3.60-3.44)
Ramachandran outliers	138981	1206 (3.60-3.44)
Sidechain outliers	138945	1207 (3.60-3.44)
RSRZ outliers	127900	1080 (3.60-3.44)
RNA backbone	3102	1003 (4.02-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of a	chain	
1	Х	2923	44%	37%	11% • 7%
2	Y	114	48%	43%	6% •
3	А	277	% 66%	24%	6% •
4	В	220	57%	35%	6% ·

<u>Conti</u> Mol	nued fron	<i>i previous</i>	page Quality of cha	vin	
WIOI	Ullalli	Length	Quality of cha		
5	С	207	55%	34%	7% •
6	D	179	.% 		11% • 7%
7	Е	178	2% 59 %	26%	• 12%
8	G	145	.% • 69%	20	5% 5%
9	Н	122	62%	31%	7%
10	Ι	146	.% • 60%	18%	12% • 10%
11	J	144	2% 56%	38%	
12	K	122	70%	22	% 6% •
13	L	119	71%	17%	• 8%
14	М	116	51%	37%	7% 5%
15	N	118	60%	33%	5%•
16	0	102	70%		27% •
17	Р	117	54%	38%	• •
18	Q	91	.% • 62%	26%	10% •
19	R	105	3% 54%	32%	9% 5%
20	S	217	.% 5 6%	18% •	23%
21	Т	94	3% 56%	18% 5%	20%
22	U	62	31% 47% 24%) •	26%
23	V	69	74%		19% • 6%
24	W	59	41%	49%	8% •
25	Z	58	41% 26%	7%	26%
26	2	45	53%	38%	7% •
27	3	66	62%	26%	• 9%
28	4	37	49%	46%	5%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-

ria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
30	MN	В	303	-	-	-	Х
30	MN	Х	3050	-	-	-	Х
30	MN	Х	3053	-	-	-	Х
30	MN	Х	3308	-	-	-	Х
31	MG	Х	3013	-	-	-	Х
31	MG	Х	3113	-	-	-	Х
31	MG	Х	3173	-	-	-	Х
34	EOH	Х	3317	-	-	-	Х

4WCE

2 Entry composition (i)

There are 34 unique types of molecules in this entry. The entry contains 81909 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms	ZeroOcc	AltConf	Trace		
1	Х	2708	Total 58077	C 25928	N 10647	O 18794	Р 2708	0	0	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		At	toms		ZeroOcc	AltConf	Trace	
2	Y	114	Total 2430	C 1086	N 436	0 794	Р 114	0	0	0

• Molecule 3 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	oms		ZeroOcc	AltConf	Trace	
3	А	269	Total	C 1024	N 333	0	S 5	0	0	0
			1000	1024	ააა	524	5			

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
4	В	215	Total 1558	C 976	N 291	O 286	${S \atop 5}$	0	0	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
5	С	199	Total 1320	C 818	N 249	0 251	${ m S} { m 2}$	0	0	0

• Molecule 6 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
6	D	166	Total 866	C 523	N 166	0 175	${ m S} { m 2}$	0	0	0

• Molecule 7 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	Е	156	Total 970	C 596	N 177	0 195	${ m S} { m 2}$	0	0	0

• Molecule 8 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
8	G	145	Total 1106	C 693	N 204	O 206	${ m S} { m 3}$	0	0	0

• Molecule 9 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
9	Н	122	Total 884	$\begin{array}{c} \mathrm{C} \\ 548 \end{array}$	N 167	0 165	$\frac{S}{4}$	0	0	0

• Molecule 10 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
10	Ι	131	Total 859	C 527	N 170	0 161	S 1	0	0	0

• Molecule 11 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
11	J	141	Total 1068	C 684	N 198	0 183	${ m S} { m 3}$	0	0	0

• Molecule 12 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
12	K	119	Total 908	C 557	N 177	0 173	S 1	0	0	0

• Molecule 13 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
13	L	110	Total 705	C 433	N 137	O 135	0	0	0

• Molecule 14 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	\mathbf{ms}		ZeroOcc	AltConf	Trace
14	М	110	Total 826	C 521	N 164	0 141	0	0	0

• Molecule 15 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
15	Ν	116	Total 932	$\begin{array}{c} \mathrm{C} \\ 587 \end{array}$	N 187	O 154	$\frac{S}{4}$	0	0	0

• Molecule 16 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
16	О	102	Total 751	C 477	N 138	O 135	S 1	0	0	0

• Molecule 17 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
17	Р	112	Total 862	C 537	N 164	0 158	${ m S} { m 3}$	0	0	0

• Molecule 18 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
18	Q	89	Total 626	C 394	N 113	0 116	${ m S} { m 3}$	0	0	0

• Molecule 19 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Atoms					AltConf	Trace
19	R	100	Total 683	C 424	N 127	0 131	S 1	0	0	0

• Molecule 20 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		Atoms					AltConf	Trace
20	S	167	Total 1097	C 690	N 191	0 214	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0	0

• Molecule 21 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms		ZeroOcc	AltConf	Trace
21	Т	75	Total 568	C 352	N 110	O 106	0	0	0

• Molecule 22 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Atoms				AltConf	Trace
22	U	46	Total 300	C 182	N 65	O 53	0	0	0

• Molecule 23 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atoms				AltConf	Trace
23	V	65	Total 486	C 299	N 89	O 98	0	0	0

• Molecule 24 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
24	W	58	Total 449	C 279	N 84	O 85	S 1	0	0	0

• Molecule 25 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
25	Z	43	Total 339	C 208	N 70	O 57	S 4	0	0	0

• Molecule 26 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
26	2	44	Total 362	C 222	N 86	O 53	S 1	0	0	0

• Molecule 27 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace
27	3	60	Total 420	C 260	N 84	0 74	${ m S} { m 2}$	0	0	0

• Molecule 28 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atoms				ZeroOcc	AltConf	Trace
28	4	37	Total 277	C 173	N 58	0 41	${ m S}{ m 5}$	0	0	0

• Molecule 29 is (4S)-2-METHYL-2,4-PENTANEDIOL (three-letter code: MPD) (formula: $C_6H_{14}O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
29	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
29	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
29	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
29	Ζ	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0

• Molecule 30 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
30	Х	223	Total Mn 223 223	0	0
30	Y	2	Total Mn 2 2	0	0
30	В	1	Total Mn 1 1	0	0
30	Ι	2	Total Mn 2 2	0	0
30	J	1	Total Mn 1 1	0	0
30	R	2	Total Mn 2 2	0	0

• Molecule 31 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
31	X	80	Total Mg 80 80	0	0
31	Y	3	Total Mg 3 3	0	0
31	В	2	Total Mg 2 2	0	0
31	С	1	Total Mg 1 1	0	0
31	G	3	Total Mg 3 3	0	0
31	Ι	1	Total Mg 1 1	0	0
31	Ο	1	Total Mg 1 1	0	0

• Molecule 32 is 4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID (three-letter code: EPE) (formula: $C_8H_{18}N_2O_4S$).

Mol	Chain	Residues		Ato	oms		ZeroOcc	AltConf	
32	v	1	Total	С	Ν	0	S	0	0
	Λ	1	15	8	2	4	1	0	0

Mol	Chain	Residues	Atom	s	ZeroOcc	AltConf	
33	x	1	Total C	Ν	0	0	
		Ĩ	10 7	3	0	0	
33	Х	1	Total C	Ν	0	0	
00			10 7	3	0		
22	v	1	Total C	Ν	0	0	
55	Λ	1	10 7	3	0	0	

Continued from previous page...

Mol	Chain	Residues	Ato	oms		ZeroOcc	AltConf
33	Х	1	Total 10	$\begin{array}{c} \mathrm{C} \\ 7 \end{array}$	N 3	0	0

• Molecule 34 is ETHANOL (three-letter code: EOH) (formula: C_2H_6O).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
34	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
34	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
34	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
34	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
34	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
34	Х	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 3 2 1 \end{array}$	0	0
34	Х	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 3 & 2 & 1 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 23S rRNA

A880	A887	0889 0889	G890	U892	<mark>U895</mark>	U896 1007	A 03 / U 89 8		6903	G904	6060 A906	G907	A911	1101 6	OTEO	6922	6924 6924	G925 2	<u>.</u> 9	υ	טט	C	טפ	ס ט	5 5	<mark>6938</mark>	C942	G944	A945 A946	U947 11948		<u>A955</u> A956	C959	C960 C961	U964	G965
C966	C967	07.00 0971	4077		A985	4989 7000	0990	1995	0997 0997	6998	0999 G1000	A1001	A1003	A1004	G1006 G1006	U1007	20010	U1013	01014 C1015	G1016	A1017 A1018	41032	A1024	A1025 C1026	A1027 G1028	C1029		A1034	A1037	C1038 C1039	A1040	G1041 C1042	U1043	A1053	U1056 A1057	U1058
A1059	01060 G1061	01062 01063	A1064	G1066	01067 G1068	G1069	A1071	A1072	U1077	G1078	6 JOIN	G1086	C1088	C1089	G1091	A1092	C1093 A1094	10071	01097 A1098	<mark>G1099</mark>	A	D	• D :	D 0	ల ల	n	> ৰ গ	A	A G	C	4 CD 1	ບບ	A U	C A	: D D	U
A	A A	G A	5	0 10 1		n	A	n	A D	C1144	01145 C1146	A1147	U1149	A1150 C11E1	U1152	C1153	41155 A1155	G1156	01157 G1158	C1167	C116/ C1168	G1169	A1172	U1176	A1177 C1178	C1179	61181	G1183	C1184 U1185	A1186 A1187	A1188	A1195	C1196 C1197	G1198 A1199	A1200	A1208
U1209	C1213	C1214 U1215	U 11017	G1218	61719	A1222	G1225	G1226	0122/ A1228	G1229	61230	U1240	A1242	87611	01249 U1249	G1250	G1257		A1264	C1268		U1272	G1274 G1274	A1275 G1276	C1277 G1278	C1279	U1281	61283	A1284 A1285	G1286	A1289	G1290 A1291	A1292 U1293	G1294 C1295	C1296	G1300
U1301	61302 A1303	G1304 U1305	A1306	G1309	A1310 A1311	A1312	A1314	C1315	61310	A1323	A1324 U1325	C1326	C1328	G1329 111 220	C1331	100 100 100	G1336 G1336	A1337	01338 01339	G1340	G1346	G1347	01349 01349	01350 C1351	C1352 A1353	G1354 A1355	G1356 G1356	41358 A1358	A1359 G1360	111.366	C1367	C1368 G1369	C1370 U1371	C1372 111373	G1374 G1375 G1375	G1376
-	61379 G1380	01381 C1382	G1383	61385	U1389	A1390	61392 G1392	C C T C	61395	C1400	G1401 A1402		007775	G1408	A1410	G1411	G1413	G1414	A1415 U1416	G1417	A1421	A1422	A1424	G1425	G1429 A1430	U1431 A1A33	01433	01 1 35 C1435	C1436 U1437	G1438 111439	A1440	C1441 C1442	C1445	U1446 A 1447	U1448 A1449	A1450
U1451	C1452 G1453	U1454 U	U	A	A1459 U1460	C1461	A1463	U1464	G1465 G1466	G1467	G1468 G1469	G1470	C1472	C1 176	01477 U1477	A1478	A1481	100	G148/ A1488	A1489 71480	G1490 C1491	G1492 111493	G1494	C1495 G1496	A1497 U1498	U1499	G1501	N1503	U1504 G1505	C1506 41507	C1508	G1509 U1510	C1511 U1512	A1513 A1514	G1515 C1516	A1517
G1518	01519 A	A1521 G1522	G1523 C1524	12010 1	61526 A1527	G1528	01529 A1530	n:	U A	5 5	50	Å	А А1539	U1540 C1E41	C1542	G1543	U1545	A1546	C1547 U1548	C1549 C1 560		n	A A	G1555 G1556	C1557 U1558	G1559 A1560	G1561	01563 U1563	G1564 U1565	G1566 A1567	U1568	G1569	G1572 A1573	G1574 A1575	A1576 G1577	A1578
υ·	A U	D 5	A A	, D (ם נ	рc	с G1591	A1592	G1593 U1594	C1595	G1596 U1597	U1598	66075	U1603	A1605		01609 G1610	C1611	C1612 G1613	A1614	A1616 A1616	A1617	U1623	C1624 U1625	A1628	U1629 A1630	G1631	A ACOLA	A A1635	U1636 A1637	G1638	G1639 U1640	C1643	C1644	G1650 C1651	A1652
A1653	G1657	A1658	C1661 A1667	G1663	G1664	U1680 11160	01 001 C1 682	U1683	A1084	G1687	01688 G1689	A1690	C1692	G1693 A1604	G1695		A1698 A1699	C1700	01701 C1702	U1703	A1708	A1710	61/10 61/11	G1718	A1721	1730	G1731 G1731	70/10	U1737 C1738	G1739 G1740		A1744 A1745	G1746 G1747	111 755	U1757 U1757	A1758
G1759	G1760 G1761	U1762 U1763	A1764	C1766	G1/6/ C1768	C1769	C1//U A1771	G1772	G1775	A1776	C1781	A1782	A1787	U1788	G1790	G1791	C1793	C1794	A1795 A1796	4 1000	A 1800	G1803	U1806	A1807 U1808	A1811	A1812 A1813	A1814	01010 A1816	C1817 A1818	G1819	U1823	C1824 U1825	G1826 C1827	U1828 41829	A1830 A1831	C1832
C1833	G1834 U1835	A1836 A1837	11049	G1844	01845 A1846	U1847	010TH	G1851	U1854	G1855	A1856 C1857	2007	C1865	G <mark>r 1087</mark>	U1868	G1869	0/07	A1875	618/6	A1880	G1885	A1886	U1888	G1889 G1890	U1891 U1892	A1893 C1804	C1895	n 060Th	съ	G1900 C1901	G1902	C1906	U1907 A1908	C1909 C1910	A1912 A1912	-
A1916	C1922	A1923 G1924		G1930 61930	G1931 C1932	G1933	Tor D	U t		A ·	U A	n	U	A	4 D	5 5		G	01952 01953	A1954	A1955 G1956	G1957	A1959	61960 C1961	G1962 A1963	A1964 A1965		00610	U1973 C1974	111 QR.2	U1983	C1984 C1985	G1986 A1987	C1988	G1991	<mark>C1</mark> 994
	A1997 A1998	61999	G2007	N2009	G2012	G2013	4707F	U2018	G2019 U2020		A2024	G2027	G2031	A2032	G2036	G2037	A2040	1	A2047 G2048	U2049	A2050 C2051	C2052	20070	G2056 A2057	A2058 G2059	A2060	G2062	A2064	C2070	C2071	C2077	A2078 G2079	G2080 A2081	C2082	G2084	A2087
		_																		W P F	О	R L P EIN	D W		E											-

BANK

• Molecule 12: 50S ribosomal protein L17

Chain K:	70%	22%	6% •
	ribacomal proton I 18	L66 R67 R67 R67 R67 C99 C99 C99 C99 C99 C99 C99 C99 C99 C9	1110 6111 0112 0112 112 112 1121 1121
• Molecule 15. 505	noosoniai protein 116		
Chain L:	71%	17%	• 8%
M1 12 83 83 836 131 131 131 131 137 137 137 137 137 137	144 145 146 146 153 153 165 163 173 165 173 189 195 195 195 195 195 195 195	698 799 1100 1100 1100 1100 1100 1100 1100	
• Molecule 14: 50S	ribosomal protein L19		
Chain M:	51%	37%	7% 5%
M1 H4 17 11 115 R15 R15 R15 R15 R23 P24	R29 134 134 135 135 135 135 135 135 135 142 142 142 142 142 142 142 150 150 150	R53 054 054 055 165 162 176 88 88 88 88 88 175 175 175 175	183 887 188 189 189 192 192 195
R96 A97 K98 K99 L99 Y100 Y101 L102 R103 S104 L105 L105 C105 C106 C106 C106 C106 C106			
• Molecule 15: 50S	ribosomal protein L20		
Chain N:	60%	33%	5% •
MET 22 73 73 73 73 72 72 72 72 72 72 72 72	C25 C26 C26 C26 C26 C26 C26 C26 C33 C33 C33 C33 C33 C46 C46 C46 C46 C46 C46 C46 C46 C46 C46	R51 652 R53 R53 R53 R53 R54 165 R61 R65 R65 R65 R65 R70	192 198 198 198 198 198 198 198
896 896 198 198 198 198 198 1190 1113 1113 1113 1113 1113 1113 1113			
• Molecule 16: 50S	ribosomal protein L21		
Chain O:	70%	27%	·
M1 F2 A3 14 T7 T7 T7 T7 T14 E16 E16 E16 C17 C18	E19 E120 F21 V22 V22 F33 F33 F33 F33 F33 F33 F33 F44 C41 V46 V46 V48 V48 V48 V48 V48 V48	P51 152 152 159 161 161 161 175 175 175 175 175 175 175 175 175 17	K86 197 198 198 K99 K99
• Molecule 17: 50S	ribosomal protein L22		
Chain P:	54%	38%	• •
M1 62 63 63 45 45 45 76 79 11 110 112 113 713 713	R18 L19 V20 V20 V20 124 A30 A32 L36 L36 L36 L36 L36 L36 L36 L36 K41 K41	843 843 848 848 848 848 848 848 848 848	495 495
196 196 1100 1105 1105 1105 1105 1106 1100 1109 1109 1109	ALA GLU ALA		

WORLDWIDE PROTEIN DATA BANK

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	P 65 2 2	Depositor	
Cell constants	279.76Å 279.76Å 872.73Å	Deperitor	
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor	
$\mathbf{B}_{\mathrm{ascolution}}(\hat{\mathbf{A}})$	49.74 - 3.53	Depositor	
Resolution (A)	49.74 - 3.53	EDS	
% Data completeness	96.0(49.74-3.53)	Depositor	
(in resolution range)	96.0(49.74-3.53)	EDS	
R_{merge}	0.25	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$3.22 (at 3.48 \text{\AA})$	Xtriage	
Refinement program	PHENIX (phenix.refine: 1.8.2_1309)	Depositor	
B B.	0.202 , 0.246	Depositor	
It, Itfree	0.202 , 0.246	DCC	
R_{free} test set	11858 reflections (5.01%)	wwPDB-VP	
Wilson B-factor (Å ²)	108.0	Xtriage	
Anisotropy	0.275	Xtriage	
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.21 , 41.8	EDS	
L-test for $twinning^2$	$ < L > = 0.46, < L^2 > = 0.29$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
F_o, F_c correlation	0.93	EDS	
Total number of atoms	81909	wwPDB-VP	
Average B, all atoms $(Å^2)$	58.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.29% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MPD, EOH, EPE, MG, SPD, MN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	I	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Х	0.64	12/65032~(0.0%)	1.16	279/101388~(0.3%)
2	Y	0.56	0/2717	1.14	17/4232~(0.4%)
3	А	0.25	0/1717	0.55	0/2361
4	В	0.32	0/1581	0.62	0/2129
5	С	0.48	0/1338	0.72	0/1831
6	D	0.23	0/869	0.48	0/1205
7	Ε	0.27	0/982	0.51	0/1354
8	G	0.37	0/1128	0.58	0/1525
9	Н	0.28	0/891	0.53	0/1203
10	Ι	0.58	0/868	0.91	1/1172~(0.1%)
11	J	0.30	0/1092	0.54	0/1473
12	Κ	0.31	0/911	0.59	0/1219
13	L	0.25	0/711	0.54	0/970
14	М	0.51	0/838	0.76	0/1132
15	Ν	0.38	0/944	0.59	0/1252
16	0	0.30	0/761	0.58	1/1022~(0.1%)
17	Р	0.55	0/870	0.78	0/1171
18	Q	0.40	0/633	0.66	0/859
19	R	0.27	0/688	0.59	0/930
20	S	0.28	0/1109	0.58	0/1522
21	Т	0.26	0/574	0.48	0/763
22	U	0.28	0/305	0.55	0/419
23	V	0.29	0/487	0.53	0/654
24	W	0.54	0/451	0.69	0/607
25	Ζ	0.48	0/345	0.67	0/460
26	2	0.47	0/366	0.65	0/480
27	3	0.32	0/424	0.66	0/566
28	4	0.39	0/280	0.63	0/371
All	All	0.59	$12/\overline{88912}~(0.0\%)$	1.07	298/134270~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if

the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	А	0	1
7	Е	0	1
27	3	0	1
All	All	0	3

The worst 5 of 12 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Х	1289	А	N9-C4	-8.14	1.32	1.37
1	Х	1065	А	N9-C4	-6.85	1.33	1.37
1	Х	350	G	N9-C4	6.79	1.43	1.38
1	Х	2845	G	N9-C4	-6.28	1.32	1.38
1	Х	1186	А	N9-C4	-6.07	1.34	1.37

The worst 5 of 298 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	Х	2845	G	N3-C4-C5	11.31	134.26	128.60
1	Х	955	A	N1-C6-N6	11.28	125.37	118.60
1	Х	350	G	N3-C4-C5	-10.89	123.15	128.60
2	Y	86	С	N3-C2-O2	-10.49	114.56	121.90
1	Х	1065	А	C2-N3-C4	-9.90	105.65	110.60

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
27	3	24	ARG	Peptide
3	А	52	ARG	Peptide
7	Е	119	GLU	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Х	58077	0	29209	849	0
2	Y	2430	0	1229	48	0
3	А	1686	0	1350	48	0
4	В	1558	0	1545	60	0
5	С	1320	0	1171	54	0
6	D	866	0	470	8	0
7	Е	970	0	741	23	0
8	G	1106	0	1072	31	0
9	Н	884	0	902	26	0
10	Ι	859	0	772	37	0
11	J	1068	0	1078	42	0
12	Κ	908	0	935	28	0
13	L	705	0	589	10	0
14	М	826	0	831	41	0
15	Ν	932	0	995	37	0
16	0	751	0	743	14	0
17	Р	862	0	920	37	0
18	Q	626	0	567	21	0
19	R	683	0	661	21	0
20	S	1097	0	956	18	0
21	Т	568	0	575	11	0
22	U	300	0	231	9	0
23	V	486	0	469	6	0
24	W	449	0	490	25	0
25	Ζ	339	0	350	19	0
26	2	362	0	398	14	0
27	3	420	0	405	7	0
28	4	277	0	301	17	0
29	Х	88	0	154	14	0
29	Ζ	8	0	14	0	0
30	В	1	0	0	0	0
30	I	2	0	0	0	0
30	J	1	0	0	0	0
30	R	2	0	0	0	0
30	Х	223	0	0	0	0
30	Y	2	0	0	0	0
31	В	2	0	0	0	0
31	С	1	0	0	0	0
31	G	3	0	0	0	0
31	Ι	1	0	0	0	0
31	0	1	0	0	0	0
31	Х	80	0	0	0	0
31	Y	3	0	0	0	0

001000	continuou from process as pagem									
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes				
32	Х	15	0	17	0	0				
33	Х	40	0	76	0	0				
34	Х	21	0	42	0	0				
All	All	81909	0	50258	1401	0				

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

The worst 5 of 1401 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:X:2231:C:HO2'	1:X:2232:A:H8	1.06	0.97
2:Y:80:A:H61	2:Y:91:C:H42	1.05	0.94
2:Y:79:C:H42	2:Y:92:G:H1	1.06	0.94
1:X:1487:G:H1	1:X:1597:U:H3	1.17	0.93
26:2:36:ARG:HG3	26:2:43:LEU:HD21	1.52	0.90

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	rce	entiles
3	А	267/277~(96%)	222 (83%)	27 (10%)	18 (7%)		1	15
4	В	213/220~(97%)	182 (85%)	18 (8%)	13~(6%)		1	16
5	С	197/207~(95%)	169 (86%)	20 (10%)	8 (4%)	4	3	25
6	D	164/179~(92%)	134 (82%)	19(12%)	11 (7%)		1	15
7	E	154/178~(86%)	112 (73%)	27~(18%)	15 (10%)		0	8
8	G	143/145~(99%)	129 (90%)	12 (8%)	2 (1%)	1	.1	47
9	Н	120/122 (98%)	109 (91%)	8 (7%)	3 (2%)	ļ	5	35

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
10	Ι	129/146~(88%)	91 (70%)	25~(19%)	13 (10%)	0	7
11	J	139/144~(96%)	124 (89%)	9~(6%)	6 (4%)	2	23
12	K	117/122~(96%)	101 (86%)	15 (13%)	1 (1%)	17	57
13	L	108/119~(91%)	88 (82%)	15 (14%)	5 (5%)	2	22
14	М	108/116~(93%)	93~(86%)	11 (10%)	4 (4%)	3	28
15	Ν	114/118~(97%)	108 (95%)	6 (5%)	0	100	100
16	Ο	100/102~(98%)	85 (85%)	11 (11%)	4 (4%)	3	25
17	Р	110/117~(94%)	107 (97%)	3(3%)	0	100	100
18	Q	87/91~(96%)	78 (90%)	7 (8%)	2 (2%)	6	37
19	R	98/105~(93%)	76 (78%)	18 (18%)	4 (4%)	3	25
20	S	165/217~(76%)	130 (79%)	19 (12%)	16 (10%)	0	8
21	Т	73/94~(78%)	65~(89%)	7 (10%)	1 (1%)	11	47
22	U	44/62~(71%)	31 (70%)	9 (20%)	4 (9%)	1	9
23	V	63/69~(91%)	58 (92%)	4 (6%)	1 (2%)	9	45
24	W	56/59~(95%)	53~(95%)	3 (5%)	0	100	100
25	Z	41/58~(71%)	38~(93%)	3 (7%)	0	100	100
26	2	42/45~(93%)	38 (90%)	2(5%)	2 (5%)	2	21
27	3	58/66~(88%)	46 (79%)	4 (7%)	8 (14%)	0	4
28	4	35/37~(95%)	32 (91%)	2 (6%)	1 (3%)	4	33
All	All	2945/3215~(92%)	2499 (85%)	304 (10%)	142 (5%)	2	21

Continued from previous page...

5 of 142 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	А	27	THR
3	А	51	VAL
3	А	120	ALA
3	А	126	VAL
3	А	141	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	in Analysed Rotan		Outliers	Perce	entiles
3	А	120/224~(54%)	101 (84%)	19~(16%)	2	16
4	В	153/177~(86%)	136~(89%)	17~(11%)	6	29
5	\mathbf{C}	106/169~(63%)	88~(83%)	18 (17%)	2	12
6	D	18/158~(11%)	17 (94%)	1 (6%)	21	55
7	Ε	67/155~(43%)	58~(87%)	9~(13%)	4	22
8	G	111/123~(90%)	101 (91%)	10 (9%)	9	38
9	Η	91/100~(91%)	78~(86%)	13 (14%)	3	20
10	Ι	67/112~(60%)	52 (78%)	15 (22%)	1	5
11	J	103/119~(87%)	91~(88%)	12 (12%)	5	27
12	Κ	91/102 (89%)	81 (89%)	10 (11%)	6	30
13	L	47/95~(50%)	39~(83%)	8 (17%)	2	12
14	М	80/102~(78%)	66 (82%)	14 (18%)	2	11
15	Ν	93/98~(95%)	79~(85%)	14 (15%)	3	18
16	О	71/86~(83%)	60 (84%)	11 (16%)	2	17
17	Р	91/94~(97%)	84 (92%)	7 (8%)	13	43
18	Q	53/82~(65%)	39 (74%)	14 (26%)	0	3
19	R	63/90~(70%)	46 (73%)	17 (27%)	0	3
20	S	91/190 (48%)	83 (91%)	8 (9%)	10	39
21	Т	56/75~(75%)	48 (86%)	8 (14%)	3	20
22	U	18/52~(35%)	17 (94%)	1 (6%)	21	55
23	V	47/62~(76%)	42 (89%)	5 (11%)	6	31
24	W	52/53~(98%)	40 (77%)	12 (23%)	1	5
25	Ζ	38/51~(74%)	30 (79%)	8 (21%)	1	6
26	2	37/40~(92%)	32 (86%)	5 (14%)	4	21
27	3	37/57~(65%)	33 (89%)	4 (11%)	6	30
28	4	30/35~(86%)	27 (90%)	3 (10%)	7	33
All	All	1831/2701 (68%)	1568 (86%)	263 (14%)	3	19

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

5 of 263 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
24	W	1	MET
24	W	18	THR
28	4	24	MET
10	Ι	89	THR
10	Ι	67	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	Х	2691/2923~(92%)	627~(23%)	18 (0%)
2	Y	113/114~(99%)	13 (11%)	0
All	All	2804/3037~(92%)	640 (22%)	18~(0%)

5 of 640 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	Х	2	А
1	Х	4	U
1	Х	9	U
1	Х	12	U
1	Х	14	А

5 of 18 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	Х	1576	А
1	Х	2823	G
1	Х	2457	А
1	Х	1503	U
1	Х	1575	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 346 ligands modelled in this entry, 322 are monoatomic - leaving 24 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	$_{\rm sths}$	В	ond ang	gles
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
34	EOH	Х	3319	-	2,2,2	0.50	0	$1,\!1,\!1$	0.76	0
29	MPD	Х	3001	-	7,7,7	0.33	0	9,10,10	0.45	0
29	MPD	Х	3004	-	7,7,7	0.58	0	9,10,10	0.19	0
29	MPD	Х	3010	-	7,7,7	0.63	0	9,10,10	0.35	0
33	SPD	Х	3315	-	9,9,9	0.23	0	8,8,8	0.23	0
29	MPD	Х	3009	-	7,7,7	0.66	0	9,10,10	0.25	0
29	MPD	Х	3006	-	7,7,7	0.46	0	9,10,10	0.10	0
34	EOH	Х	3320	-	2,2,2	0.58	0	1,1,1	0.63	0
29	MPD	Ζ	101	-	7,7,7	0.30	0	9,10,10	0.36	0
29	MPD	Х	3011	-	$7,\!7,\!7$	0.88	0	$9,\!10,\!10$	0.45	0
34	EOH	Х	3317	-	2,2,2	0.53	0	1,1,1	0.66	0
29	MPD	Х	3008	-	7,7,7	0.69	0	$9,\!10,\!10$	0.32	0
33	SPD	Х	3312	-	$9,\!9,\!9$	0.28	0	$8,\!8,\!8$	0.34	0
34	EOH	Х	3322	-	2,2,2	0.54	0	1,1,1	0.66	0
34	EOH	Х	3318	-	2,2,2	0.56	0	$1,\!1,\!1$	0.64	0
34	EOH	Х	3321	-	2,2,2	0.58	0	$1,\!1,\!1$	0.62	0
32	EPE	Х	3311	-	$15,\!15,\!15$	1.27	1 (6%)	18,20,20	0.45	0
29	MPD	Х	3002	-	7,7,7	0.96	1 (14%)	$9,\!10,\!10$	0.53	0
33	SPD	Х	3313	-	9,9,9	0.19	0	8,8,8	0.27	0
34	EOH	Х	3316	-	2,2,2	0.67	0	$1,\!1,\!1$	0.41	0
33	SPD	Х	3314	-	9,9,9	0.14	0	8,8,8	0.22	0
29	MPD	Х	3003	-	7,7,7	0.30	0	9,10,10	0.37	0
29	MPD	Х	3005	-	7,7,7	0.67	0	9,10,10	0.23	0
29	MPD	Х	3007	-	7,7,7	0.79	0	9,10,10	0.41	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

4WOE

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
33	SPD	Х	3313	-	-	2/7/7/7	-
29	MPD	Х	3001	-	-	0/5/5/5	-
29	MPD	Х	3004	-	-	0/5/5/5	-
29	MPD	Х	3010	-	-	3/5/5/5	-
33	SPD	Х	3315	-	-	2/7/7/7	-
29	MPD	Х	3008	-	-	1/5/5/5	-
29	MPD	Х	3009	-	-	1/5/5/5	-
29	MPD	Х	3006	-	-	1/5/5/5	-
33	SPD	Х	3312	-	-	1/7/7/7	-
29	MPD	Z	101	-	-	3/5/5/5	-
29	MPD	Х	3011	-	-	2/5/5/5	-
32	EPE	Х	3311	-	-	6/9/19/19	0/1/1/1
33	SPD	Х	3314	-	-	2/7/7/7	-
29	MPD	Х	3003	-	-	3/5/5/5	-
29	MPD	Х	3005	-	-	3/5/5/5	-
29	MPD	Х	3007	-	-	5/5/5/5	-
29	MPD	Х	3002	-	-	2/5/5/5	-

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
32	Х	3311	EPE	C10-S	-4.67	1.70	1.77
29	Х	3002	MPD	C3-C2	2.32	1.60	1.53

There are no bond angle outliers.

There are no chirality outliers.

5 of 37 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
29	Х	3002	MPD	C2-C3-C4-O4
29	Х	3003	MPD	C2-C3-C4-C5
29	Х	3006	MPD	C2-C3-C4-C5
29	Х	3007	MPD	C2-C3-C4-O4
29	Х	3009	MPD	C2-C3-C4-C5

There are no ring outliers.

5 monomers are involved in 14 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
29	Х	3011	MPD	1	0
29	Х	3008	MPD	1	0
29	Х	3003	MPD	4	0
29	Х	3005	MPD	4	0
29	Х	3007	MPD	4	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	X	2708/2923~(92%)	-0.47	9 (0%) 94 89	11, 51, 139, 230	0
2	Y	114/114~(100%)	-0.66	0 100 100	22,67,115,151	0
3	А	269/277~(97%)	-0.24	4 (1%) 73 61	43, 74, 106, 136	0
4	В	215/220~(97%)	-0.32	0 100 100	12, 28, 66, 97	0
5	C	199/207~(96%)	-0.53	1 (0%) 91 84	12, 35, 71, 107	0
6	D	166/179~(92%)	-0.41	2 (1%) 79 67	80, 102, 132, 150	0
7	E	156/178~(87%)	-0.26	3 (1%) 66 53	61, 86, 120, 131	0
8	G	145/145~(100%)	-0.28	1 (0%) 87 79	9, 26, 58, 114	0
9	Н	122/122~(100%)	-0.39	0 100 100	17, 41, 74, 102	0
10	Ι	131/146 (89%)	-0.11	2 (1%) 73 61	14, 47, 91, 108	0
11	J	141/144~(97%)	-0.04	3 (2%) 63 50	25, 43, 97, 121	0
12	K	119/122~(97%)	-0.44	0 100 100	14, 37, 86, 97	0
13	L	110/119 (92%)	-0.50	0 100 100	39, 62, 92, 111	0
14	М	110/116 (94%)	-0.48	1 (0%) 84 73	23, 43, 89, 115	0
15	N	116/118 (98%)	-0.54	0 100 100	6, 21, 59, 69	0
16	Ο	102/102~(100%)	-0.57	0 100 100	7, 35, 75, 92	0
17	Р	112/117~(95%)	-0.35	0 100 100	7, 21, 86, 125	0
18	Q	89/91~(97%)	-0.22	1 (1%) 80 69	39, 60, 93, 108	0
19	R	100/105~(95%)	0.18	3 (3%) 50 37	43, 66, 122, 142	0
20	S	167/217~(76%)	-0.19	2 (1%) 79 67	42, 61, 120, 130	0
21	Т	75/94~(79%)	0.20	3 (4%) 38 28	21, 39, 81, 102	0
22	U	46/62~(74%)	1.90	19 (41%) 0 0	60, 91, 122, 130	0
23	V	65/69~(94%)	-0.29	0 100 100	48, 71, 105, 119	0
24	W	58/59 (98%)	-0.11	0 100 100	12, 24, 72, 108	0

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# RSRZ > 2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
25	Z	43/58~(74%)	-0.39	0 100 100	11, 20, 99, 127	0
26	2	44/45~(97%)	0.01	1 (2%) 60 46	19,41,73,93	0
27	3	60/66~(90%)	-0.43	0 100 100	10, 32, 69, 83	0
28	4	37/37~(100%)	1.54	10 (27%) 0 0	39,60,89,103	0
All	All	5819/6252~(93%)	-0.35	65 (1%) 80 69	6, 51, 123, 230	0

The worst 5 of 65 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
22	U	13	SER	6.3
22	U	12	ALA	6.1
22	U	14	THR	5.3
22	U	11	LYS	5.1
20	S	146	THR	4.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
30	MN	Х	3308	1/1	0.39	0.74	92,92,92,92	0
31	MG	G	203	1/1	0.47	0.33	17,17,17,17	0
30	MN	Х	3055	1/1	0.62	0.21	94,94,94,94	0
30	MN	Х	3053	1/1	0.63	0.54	89,89,89,89	0
31	MG	Х	3113	1/1	0.66	1.07	45,45,45,45	0
30	MN	Х	3132	1/1	0.67	0.16	97,97,97,97	0
31	MG	Х	3083	1/1	0.70	0.34	37,37,37,37	0

		Chain	Bes	 Atoms	BSCC	RSR	B -factors (\mathbf{A}^2)	0<0.9
30	MN	V V	3044	1/1	0.70	0.24		Q < 0.5
30	MN	B	3044	1/1	0.10	0.24	102 102 102 102	0
30	MN	X D	3213	1/1	0.70	0.14	05 05 05 05	0
31	MC	X V	$\frac{5210}{3173}$	1/1	0.71	0.20	26,26,26,26	0
30	MN		3057	1/1	0.71	0.20	$\begin{array}{c} 20,20,20,20\\ \hline 71\ 71\ 71\ 71\ 71 \end{array}$	0
34	FOH	X	3317	2/2	$\begin{array}{c} 0.71 \\ 0.71 \end{array}$	0.20	16 46 46 46	0
30	MN		3133	1/1	$\begin{array}{c} 0.71 \\ 0.72 \end{array}$	0.31		0
31	MC	X	3034	1/1	0.72	0.31	18 18 18 18	0
30	MN		3168	1/1	0.73	0.39 0.21	74 74 74 74	0
30	MN		3222	1/1	0.73	0.21 0.35		0
30	MN	X	3015	1/1	0.73	0.30	75 75 75 75	0
30	MN	X	3050	1/1	0.74	0.30		0
31	MG		3016	1/1	0.74	0.47	<u> </u>	0
30	MN		31/8	1/1	0.74	0.05	70 70 70 70 70	0
31	MC	X	3013	1/1	0.10	0.20	30 30 30 30	0
31	MG		3013	1/1	0.70	0.00	14 14 14 14	0
33	SPD	X	3312	10/10	0.70	0.14		0
30	MN	X	3182	10/10	0.77	0.25	107 107 107 107	0
30	MN	X	3121	1/1	0.77	0.00	88 88 88 88	0
31	MG	X	3023	1/1	0.78	0.01	37 37 37 37	0
29	MPD	X	3008	8/8	0.70	0.25	70 70 70 70	0
30	MN	X	3143	1/1	0.79	0.00	94 94 94 94	0
30	MN	X	3128	1/1	0.79	0.16	84 84 84 84	0
30	MN	X	3066	1/1	0.79	0.12	56.56.56.56	0
31	MG	X	3175	1/1	0.80	0.30	0.0.0.0	0
30	MN	X	3111	1/1	0.80	0.13	99,99,99,99	0
31	MG	X	3137	1/1	0.80	0.92	17,17,17,17	0
30	MN	J	201	1/1	0.80	0.20	78,78,78,78	0
30	MN	Х	3124	1/1	0.81	0.11	77,77,77,77	0
30	MN	Х	3220	1/1	0.81	0.43	68,68,68,68	0
30	MN	Х	3126	1/1	0.81	0.24	77,77,77,77	0
30	MN	Х	3293	1/1	0.81	0.19	70,70,70,70	0
29	MPD	Х	3010	8/8	0.81	0.33	87,87,87,87	0
31	MG	Х	3298	1/1	0.82	1.02	23,23,23,23	0
30	MN	Х	3130	1/1	0.82	0.13	102,102,102,102	0
30	MN	Х	3140	1/1	0.82	0.17	71,71,71,71	0
31	MG	Х	3114	1/1	0.82	0.57	36,36,36,36	0
30	MN	Х	3052	1/1	0.83	0.21	71,71,71,71	0
30	MN	Х	3123	1/1	0.83	0.42	97,97,97,97	0
30	MN	X	3254	1/1	0.83	0.23	48,48,48,48	0
30	MN	X	3076	1/1	0.83	0.09	74,74,74,74	0
29	MPD	Х	3002	8/8	0.83	0.32	45,45,45,45	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
30	MN	Х	3135	1/1	0.83	0.14	94,94,94,94	0
31	MG	Х	3109	1/1	0.83	0.70	24,24,24,24	0
30	MN	Х	3138	1/1	0.83	0.10	112,112,112,112	0
34	EOH	Х	3318	3/3	0.83	0.27	47,47,47,47	0
30	MN	Х	3122	1/1	0.84	0.50	89,89,89,89	0
31	MG	Х	3093	1/1	0.84	0.27	21,21,21,21	0
31	MG	Х	3095	1/1	0.84	0.34	26,26,26,26	0
30	MN	Х	3090	1/1	0.84	0.35	96,96,96,96	0
30	MN	Х	3042	1/1	0.84	0.11	104,104,104,104	0
33	SPD	Х	3315	10/10	0.84	0.31	46,46,46,46	0
31	MG	Х	3079	1/1	0.84	0.74	$27,\!27,\!27,\!27$	0
30	MN	Х	3059	1/1	0.84	0.10	$61,\!61,\!61,\!61$	0
29	MPD	Х	3006	8/8	0.85	0.18	88,88,88,88	0
31	MG	Х	3106	1/1	0.85	0.22	$37,\!37,\!37,\!37$	0
30	MN	Х	3125	1/1	0.85	0.32	$79,\!79,\!79,\!79$	0
30	MN	Ι	202	1/1	0.85	0.25	64,64,64,64	0
30	MN	Х	3158	1/1	0.85	0.22	$62,\!62,\!62,\!62$	0
34	EOH	Х	3316	3/3	0.85	0.40	10,10,10,10	0
30	MN	Х	3131	1/1	0.85	0.48	89,89,89,89	0
29	MPD	Х	3011	8/8	0.85	0.24	39,39,39,39	0
31	MG	G	201	1/1	0.86	0.20	$19,\!19,\!19,\!19$	0
31	MG	Х	3294	1/1	0.86	0.34	37,37,37,37	0
30	MN	Х	3268	1/1	0.86	0.29	27,27,27,27	0
33	SPD	Х	3313	10/10	0.86	0.29	30,30,30,30	0
31	MG	Х	3302	1/1	0.87	0.30	20,20,20,20	0
33	SPD	Х	3314	10/10	0.87	0.48	26,26,26,26	0
31	MG	Y	203	1/1	0.87	0.76	21,21,21,21	0
30	MN	Х	3068	1/1	0.87	0.21	70,70,70,70	0
31	MG	Х	3172	1/1	0.87	0.79	27,27,27,27	0
30	MN	X	3118	1/1	0.87	0.31	101,101,101,101	0
30	MN	Y	202	1/1	0.88	0.14	57,57,57,57	0
31	MG	X	3174	1/1	0.88	0.31	5,5,5,5	0
31	MG	X	3082	1/1	0.88	0.17	31,31,31,31	0
30	MN	X	3276	1/1	0.88	0.17	42,42,42,42	0
30	MN	X	3183	1/1	0.88	0.15	41,41,41,41	0
30	MN	Х	3073	1/1	0.88	0.14	86,86,86,86	0
31	MG	Y	201	1/1	0.88	0.11	34,34,34,34	0
31	MG	X	3039	1/1	0.88	0.30	7,7,7,7	0
31	MG	Y	205	1/1	0.88	0.14	12,12,12,12	0
34	EOH	X	3320	3/3	0.88	0.28	28,28,28,28	0
34	EOH	X	3321	3/3	0.88	0.30	18,18,18,18	0
31	MG	Х	3031	1/1	0.89	0.33	11,11,11,11	0

Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
30	MN	Х	3074	1/1	0.89	0.06	78,78,78,78	0
31	MG	Х	3035	1/1	0.89	0.34	23,23,23,23	0
30	MN	Х	3223	1/1	0.89	0.24	60,60,60,60	0
31	MG	В	301	1/1	0.89	0.14	0,0,0,0	0
30	MN	Х	3216	1/1	0.89	0.19	54,54,54,54	0
30	MN	Х	3169	1/1	0.89	0.67	78,78,78,78	0
30	MN	Х	3273	1/1	0.89	0.27	41,41,41,41	0
30	MN	Х	3127	1/1	0.90	0.13	44,44,44,44	0
31	MG	Х	3097	1/1	0.90	0.23	14,14,14,14	0
30	MN	Х	3155	1/1	0.90	0.38	87,87,87,87	0
29	MPD	Ζ	101	8/8	0.90	0.35	48,48,48,48	0
30	MN	Х	3290	1/1	0.90	0.18	89,89,89,89	0
31	MG	Х	3305	1/1	0.90	0.91	$15,\!15,\!15,\!15$	0
30	MN	Х	3192	1/1	0.90	0.32	84,84,84,84	0
30	MN	Х	3244	1/1	0.90	0.18	$57,\!57,\!57,\!57$	0
31	MG	Х	3028	1/1	0.90	0.30	34,34,34,34	0
34	EOH	Х	3319	3/3	0.90	0.19	$47,\!47,\!47,\!47$	0
30	MN	Х	3146	1/1	0.90	0.23	101,101,101,101	0
31	MG	С	301	1/1	0.90	0.25	2,2,2,2	0
31	MG	Х	3115	1/1	0.91	0.72	1,1,1,1	1
31	MG	Х	3022	1/1	0.91	0.60	25,25,25,25	0
30	MN	Х	3178	1/1	0.91	0.46	78,78,78,78	0
31	MG	Х	3026	1/1	0.91	0.61	18,18,18,18	0
31	MG	Х	3085	1/1	0.91	0.21	9,9,9,9	0
30	MN	Х	3041	1/1	0.91	0.22	84,84,84,84	0
30	MN	Х	3134	1/1	0.91	0.18	58,58,58,58	0
30	MN	Х	3058	1/1	0.91	0.14	64,64,64,64	0
31	MG	Х	3300	1/1	0.91	0.16	11,11,11,11	0
31	MG	X	3098	1/1	0.91	0.33	14,14,14,14	0
30	MN	X	3288	1/1	0.91	0.11	55,55,55,55	0
31	MG	X	3038	1/1	0.91	0.29	23,23,23,23	0
30	MN	X	3067	1/1	0.91	0.19	51,51,51,51	0
30	MN	X	3250	1/1	0.91	0.27	80,80,80,80	0
34	EOH	X	3322	3/3	0.91	0.47	34,34,34,34	0
30	MN	X	3230	1/1	0.92	0.28	65,65,65,65	0
30	MN	X	3233	1/1	0.92	0.26	63,63,63,63	0
30	MN	<u>X</u>	3063	1/1	0.92	0.13	60,60,60,60	0
30	MN	X	3199	1/1	0.92	0.36	51,51,51,51	
30	MN	X	3207	1/1	0.92	0.44	62,62,62,62	
31	MG	1	201	1/1	0.92	0.26	0,0,0,0	0
31	MG		201	1/1	0.92	0.28	1,1,7,7	0
30	MN	Х	3255	1/1	0.92	0.56	$35,\!35,\!35,\!35$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
30	MN	Х	3065	1/1	0.92	0.10	60,60,60,60	0
30	MN	Х	3117	1/1	0.92	0.25	80,80,80,80	0
29	MPD	Х	3004	8/8	0.92	0.34	73,73,73,73	0
31	MG	Х	3297	1/1	0.92	0.31	5, 5, 5, 5	0
29	MPD	Х	3009	8/8	0.92	0.15	76,76,76,76	0
30	MN	Х	3186	1/1	0.92	0.29	51,51,51,51	0
31	MG	Х	3103	1/1	0.92	0.45	3,3,3,3	0
30	MN	Х	3226	1/1	0.92	0.33	89,89,89,89	0
31	MG	Х	3107	1/1	0.92	0.59	18,18,18,18	0
30	MN	Х	3227	1/1	0.92	0.17	57,57,57,57	0
31	MG	Х	3018	1/1	0.93	0.47	$15,\!15,\!15,\!15$	0
31	MG	Х	3136	1/1	0.93	0.34	27,27,27,27	0
31	MG	Х	3019	1/1	0.93	0.25	$15,\!15,\!15,\!15$	0
30	MN	Х	3231	1/1	0.93	0.24	74,74,74,74	0
30	MN	Х	3072	1/1	0.93	0.17	80,80,80,80	0
30	MN	Х	3291	1/1	0.93	0.52	94,94,94,94	0
30	MN	Х	3061	1/1	0.93	0.12	$63,\!63,\!63,\!63$	0
30	MN	Х	3149	1/1	0.93	0.27	94,94,94,94	0
31	MG	Х	3100	1/1	0.93	0.21	17,17,17,17	0
30	MN	Х	3202	1/1	0.93	0.23	54,54,54,54	0
31	MG	Х	3299	1/1	0.93	0.26	5,5,5,5	0
30	MN	Х	3119	1/1	0.93	0.15	63,63,63,63	0
30	MN	Х	3211	1/1	0.93	0.20	60,60,60,60	0
31	MG	Х	3304	1/1	0.93	0.78	15,15,15,15	0
30	MN	Х	3269	1/1	0.93	0.24	36,36,36,36	0
31	MG	Х	3309	1/1	0.93	0.24	20,20,20,20	0
30	MN	Х	3229	1/1	0.93	0.13	79,79,79,79	0
30	MN	X	3046	1/1	0.93	0.30	94,94,94,94	0
30	MN	X	3162	1/1	0.94	0.31	43,43,43,43	0
30	MN	X	3218	1/1	0.94	0.31	65,65,65,65	0
31	MG	X	3303	1/1	0.94	0.25	4,4,4,4	0
30	MN	<u>X</u>	3261	1/1	0.94	0.16	30,30,30,30	0
30	MN	X	3263	1/1	0.94	0.33	52,52,52,52	0
31	MG	X	3099	1/1	0.94	0.14	26,26,26,26	0
31	MG	X	3310	1/1	0.94	0.13	15,15,15,15	0
31	MG	X	3021	1/1	0.94	0.18	21,21,21,21	0
30	MN	X	3267	1/1	0.94	0.31	48,48,48,48	0
30	MN	X	3187		0.94	0.28		
30	MN	X	3221		0.94	0.12	40,40,40,46	
31	MG	X	3108		0.94	0.10	12,12,12,12	
31	MG	X	3027		0.94	0.19	29,29,29,29	
31	MG	G	202	1/1	0.94	0.37	12,12,12,12	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
30	MN	Х	3188	1/1	0.94	0.45	87,87,87,87	0
30	MN	Х	3191	1/1	0.94	0.15	51,51,51,51	0
31	MG	Х	3032	1/1	0.94	0.25	21,21,21,21	0
30	MN	Х	3224	1/1	0.94	0.25	53,53,53,53	0
30	MN	Х	3054	1/1	0.94	0.28	86,86,86,86	0
30	MN	Х	3069	1/1	0.94	0.14	68,68,68,68	0
30	MN	Х	3157	1/1	0.94	0.22	68,68,68,68	0
29	MPD	Х	3001	8/8	0.94	0.14	33,33,33,33	0
30	MN	Х	3208	1/1	0.94	0.25	37,37,37,37	0
30	MN	Х	3209	1/1	0.94	0.20	24,24,24,24	0
31	MG	Х	3295	1/1	0.94	0.68	18,18,18,18	0
30	MN	Х	3160	1/1	0.94	0.18	45,45,45,45	0
30	MN	Х	3184	1/1	0.94	0.36	88,88,88,88	0
31	MG	Х	3089	1/1	0.94	0.15	13,13,13,13	0
30	MN	Х	3142	1/1	0.95	0.39	72,72,72,72	0
29	MPD	Х	3005	8/8	0.95	0.17	$65,\!65,\!65,\!65$	0
31	MG	Х	3176	1/1	0.95	0.16	14,14,14,14	0
30	MN	Х	3040	1/1	0.95	0.19	74,74,74,74	0
30	MN	Х	3265	1/1	0.95	0.24	43,43,43,43	0
31	MG	Х	3036	1/1	0.95	0.14	8,8,8,8	0
31	MG	Х	3105	1/1	0.95	0.24	$35,\!35,\!35,\!35$	0
32	EPE	Х	3311	15/15	0.95	0.18	$57,\!57,\!57,\!57$	0
30	MN	Х	3048	1/1	0.95	0.10	59, 59, 59, 59	0
30	MN	Х	3171	1/1	0.95	0.15	86,86,86,86	0
30	MN	Х	3177	1/1	0.95	0.21	82,82,82,82	0
30	MN	Х	3070	1/1	0.95	0.10	78,78,78,78	0
30	MN	Х	3179	1/1	0.95	0.21	83,83,83,83	0
30	MN	Х	3153	1/1	0.95	0.29	95,95,95,95	0
30	MN	Х	3110	1/1	0.95	0.13	96,96,96,96	0
31	MG	Х	3087	1/1	0.95	0.32	51,51,51,51	0
30	MN	Х	3156	1/1	0.95	0.22	53,53,53,53	0
30	MN	Х	3129	1/1	0.95	0.07	73,73,73,73	0
30	MN	Х	3049	1/1	0.95	0.39	82,82,82,82	0
30	MN	Х	3196	1/1	0.96	0.33	51,51,51,51	0
30	MN	Х	3071	1/1	0.96	0.08	69,69,69,69	0
30	MN	Х	3025	1/1	0.96	0.21	52,52,52,52	0
30	MN	Х	3206	1/1	0.96	0.45	57,57,57,57	0
30	MN	X	3240	1/1	0.96	0.19	28,28,28,28	0
31	MG	Х	3307	1/1	0.96	0.04	21,21,21,21	0
31	MG	Х	3102	1/1	0.96	0.34	6,6,6,6	0
30	MN	Х	3281	1/1	0.96	0.17	40,40,40,40	0
31	MG	Х	3104	1/1	0.96	0.32	28,28,28,28	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
30	MN	Х	3120	1/1	0.96	0.17	$55,\!55,\!55,\!55$	0
30	MN	Х	3180	1/1	0.96	0.54	76,76,76,76	0
30	MN	Х	3252	1/1	0.96	0.30	17,17,17,17	0
30	MN	Х	3112	1/1	0.96	0.06	54,54,54,54	0
30	MN	Х	3225	1/1	0.96	0.41	41,41,41,41	0
30	MN	Х	3324	1/1	0.96	0.18	12,12,12,12	0
31	MG	Х	3037	1/1	0.96	0.12	11,11,11,11	0
30	MN	Х	3325	1/1	0.96	0.22	59,59,59,59	0
30	MN	Х	3258	1/1	0.96	0.22	$35,\!35,\!35,\!35$	0
30	MN	Х	3259	1/1	0.96	0.15	13,13,13,13	0
30	MN	Х	3260	1/1	0.96	0.30	40,40,40,40	0
29	MPD	Х	3007	8/8	0.96	0.28	9,9,9,9	0
30	MN	R	201	1/1	0.96	0.10	63,63,63,63	0
30	MN	R	202	1/1	0.96	0.23	58, 58, 58, 58	0
31	MG	Х	3086	1/1	0.96	0.10	26,26,26,26	0
30	MN	Х	3262	1/1	0.96	0.22	50,50,50,50	0
30	MN	Х	3194	1/1	0.96	0.17	31,31,31,31	0
31	MG	Х	3296	1/1	0.96	0.47	9,9,9,9	0
31	MG	Х	3091	1/1	0.96	0.43	30,30,30,30	0
31	MG	Х	3092	1/1	0.96	0.15	20,20,20,20	0
30	MN	Х	3228	1/1	0.96	0.34	85,85,85,85	0
29	MPD	Х	3003	8/8	0.97	0.19	21,21,21,21	0
30	MN	Х	3278	1/1	0.97	0.30	$35,\!35,\!35,\!35$	0
30	MN	Х	3024	1/1	0.97	0.43	107,107,107,107	0
30	MN	Х	3282	1/1	0.97	0.21	49,49,49,49	0
30	MN	Х	3287	1/1	0.97	0.31	78,78,78,78	0
30	MN	Х	3141	1/1	0.97	0.35	69,69,69,69	0
30	MN	Х	3289	1/1	0.97	0.28	$57,\!57,\!57,\!57$	0
30	MN	Х	3236	1/1	0.97	0.15	36,36,36,36	0
31	MG	Х	3080	1/1	0.97	0.19	33,33,33,33	0
30	MN	Х	3239	1/1	0.97	0.36	$15,\!15,\!15,\!15$	0
30	MN	Х	3292	1/1	0.97	0.28	$99,\!99,\!99,\!99$	0
30	MN	Х	3181	1/1	0.97	0.19	39, 39, 39, 39, 39	0
30	MN	Х	3241	1/1	0.97	0.28	20,20,20,20	0
30	MN	Х	3323	1/1	0.97	0.15	42,42,42,42	0
30	MN	Х	3242	1/1	0.97	0.30	22,22,22,22	0
31	MG	X	3306	1/1	0.97	$0.0\overline{6}$	29,29,29,29	0
31	MG	Х	3088	1/1	0.97	0.13	36,36,36,36	0
30	MN	Х	3075	1/1	0.97	0.11	76,76,76,76	0
30	MN	Х	3212	1/1	0.97	0.27	56,56,56,56	0
30	MN	Y	204	1/1	0.97	0.11	63,63,63,63	0
30	MN	X	3012	1/1	0.97	0.31	$19,\!19,\!\overline{19,\!19}$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B-factors(Å ²)	Q<0.9
30	MN	Х	3253	1/1	0.97	0.34	26,26,26,26	0
30	MN	Ι	203	1/1	0.97	0.22	33,33,33,33	0
30	MN	Х	3159	1/1	0.97	0.15	42,42,42,42	0
30	MN	Х	3078	1/1	0.97	0.19	78,78,78,78	0
30	MN	Х	3219	1/1	0.97	0.31	53,53,53,53	0
30	MN	Х	3147	1/1	0.97	0.12	82,82,82,82	0
30	MN	Х	3165	1/1	0.97	0.16	63,63,63,63	0
30	MN	Х	3166	1/1	0.97	0.23	62,62,62,62	0
30	MN	Х	3014	1/1	0.97	0.20	12,12,12,12	0
31	MG	Х	3020	1/1	0.97	0.25	20,20,20,20	0
30	MN	Х	3193	1/1	0.97	0.18	33,33,33,33	0
30	MN	Х	3047	1/1	0.97	0.20	69,69,69,69	0
30	MN	Х	3266	1/1	0.97	0.18	22,22,22,22	0
30	MN	Х	3170	1/1	0.97	0.10	54,54,54,54	0
30	MN	Х	3151	1/1	0.97	0.17	44,44,44,44	0
30	MN	Х	3152	1/1	0.97	0.29	$68,\!68,\!68,\!68$	0
31	MG	Х	3029	1/1	0.97	0.39	19,19,19,19	0
31	MG	Х	3030	1/1	0.97	0.21	$15,\!15,\!15,\!15$	0
31	MG	Х	3144	1/1	0.97	0.18	8,8,8,8	0
30	MN	Х	3204	1/1	0.97	0.16	21,21,21,21	0
30	MN	Х	3256	1/1	0.98	0.22	13,13,13,13	0
30	MN	Х	3197	1/1	0.98	0.24	34,34,34,34	0
30	MN	Х	3214	1/1	0.98	0.11	81,81,81,81	0
31	MG	Х	3101	1/1	0.98	0.35	9,9,9,9	0
30	MN	Х	3163	1/1	0.98	0.16	$61,\!61,\!61,\!61$	0
30	MN	Х	3232	1/1	0.98	0.30	$55,\!55,\!55,\!55$	0
31	MG	Х	3033	1/1	0.98	0.19	$19,\!19,\!19,\!19$	0
30	MN	Х	3217	1/1	0.98	0.27	38,38,38,38	0
30	MN	Х	3235	1/1	0.98	0.39	40,40,40,40	0
30	MN	Х	3164	1/1	0.98	0.23	48,48,48,48	0
30	MN	Х	3238	1/1	0.98	0.22	34,34,34,34	0
30	MN	Х	3203	1/1	0.98	0.37	27,27,27,27	0
31	MG	В	302	1/1	0.98	0.11	4,4,4,4	0
30	MN	Х	3051	1/1	0.98	0.18	67,67,67,67	0
30	MN	Х	3205	1/1	0.98	0.27	61,61,61,61	0
30	MN	Х	3272	1/1	0.98	0.36	44,44,44	0
31	MG	Х	3081	1/1	0.98	0.07	36,36,36,36	0
30	MN	Х	3077	1/1	0.98	0.20	78,78,78,78	0
30	MN	Х	3274	1/1	0.98	0.10	36,36,36,36	0
30	MN	Х	3017	1/1	0.98	0.36	$103,\!103,\!103,\!103$	0
30	MN	Х	3277	1/1	0.98	0.17	35,35,35,35	0
30	MN	Х	3060	1/1	0.98	0.15	$51,\!51,\!51,\!51$	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
30	MN	Х	3280	1/1	0.98	0.27	39,39,39,39	0
30	MN	Х	3251	1/1	0.98	0.19	8,8,8,8	0
30	MN	Х	3161	1/1	0.98	0.23	46,46,46,46	0
30	MN	Х	3283	1/1	0.98	0.34	14,14,14,14	0
30	MN	Х	3285	1/1	0.98	0.21	85,85,85,85	0
30	MN	Х	3210	1/1	0.98	0.20	57,57,57,57	0
30	MN	Х	3195	1/1	0.98	0.21	30,30,30,30	0
31	MG	Х	3096	1/1	0.98	0.24	9,9,9,9	0
30	MN	Х	3043	1/1	0.98	0.11	61,61,61,61	0
30	MN	Х	3245	1/1	0.99	0.21	28,28,28,28	0
30	MN	Х	3246	1/1	0.99	0.19	$13,\!13,\!13,\!13$	0
30	MN	Х	3275	1/1	0.99	0.18	30,30,30,30	0
30	MN	Х	3247	1/1	0.99	0.25	$25,\!25,\!25,\!25$	0
31	MG	Х	3301	1/1	0.99	0.13	8,8,8,8	0
31	MG	Х	3094	1/1	0.99	0.16	5, 5, 5, 5	0
30	MN	Х	3248	1/1	0.99	0.28	37,37,37,37	0
30	MN	Х	3249	1/1	0.99	0.21	51,51,51,51	0
30	MN	Х	3279	1/1	0.99	0.25	25,25,25,25	0
30	MN	Х	3145	1/1	0.99	0.16	51,51,51,51	0
30	MN	Х	3139	1/1	0.99	0.29	$97,\!97,\!97,\!97$	0
30	MN	Х	3185	1/1	0.99	0.21	28,28,28,28	0
30	MN	Х	3198	1/1	0.99	0.20	64,64,64,64	0
30	MN	Х	3284	1/1	0.99	0.15	21,21,21,21	0
30	MN	Х	3154	1/1	0.99	0.22	40,40,40,40	0
30	MN	Х	3286	1/1	0.99	0.31	57,57,57,57	0
30	MN	Х	3215	1/1	0.99	0.28	26,26,26,26	0
30	MN	Х	3200	1/1	0.99	0.26	37,37,37,37	0
30	MN	Х	3257	1/1	0.99	0.23	25,25,25,25	0
30	MN	X	3201	1/1	0.99	0.20	40,40,40,40	0
30	MN	X	3234	1/1	0.99	0.18	17,17,17,17	0
30	MN	X	3056	1/1	0.99	0.19	61,61,61,61	0
30	MN	X	3064	1/1	0.99	0.14	68,68,68,68	0
30	MN	X	3237	1/1	0.99	0.23	47,47,47,47	0
31	MG	X	3116	1/1	0.99	0.13	20,20,20,20	0
30	MN	X	3189	1/1	0.99	0.30	64,64,64,64	0
30	MN	X	3264	1/1	0.99	0.33	52,52,52,52	0
30	MN	X	3190	1/1	0.99	0.41	59,59,59,59	0
30	MN	X	3326	1/1	0.99	0.17	57,57,57,57	0
30	MN	X	3045		0.99	0.28	3,3,3,3	
30	MN	X	3150	1/1	0.99	0.13	50,50,50,50	0
30	MN	X	3167	1/1	0.99	0.20	57,57,57,57	0
30	MN	Х	3243	1/1	0.99	0.42	28,28,28,28	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
30	MN	Х	3270	1/1	0.99	0.16	30,30,30,30	0
30	MN	Х	3271	1/1	0.99	0.25	17,17,17,17	0
30	MN	Х	3062	1/1	0.99	0.16	42,42,42,42	0

6.5 Other polymers (i)

There are no such residues in this entry.

