

Full wwPDB X-ray Structure Validation Report (i)

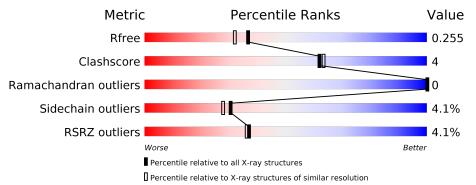
May 21, 2020 - 04:09 am BST

PDB ID	:	3WI0
Title	:	P453H/I471T mutant of PB2 middle domain from influenza virus A/Puerto
		m Rico/8/34(H1N1)
Authors	:	Tsurumura, T.; Yoshida, T.; Tsuge, H.
Deposited on		
Resolution	:	2.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	$7.0.044 (\mathrm{Gargrove})$
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	8085 (2.00-2.00)
Clashscore	141614	9178 (2.00-2.00)
Ramachandran outliers	138981	9054 (2.00-2.00)
Sidechain outliers	138945	9053 (2.00-2.00)
RSRZ outliers	127900	7900 (2.00-2.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			4%		
1	A	174	86%	9%	•••

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 1529 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

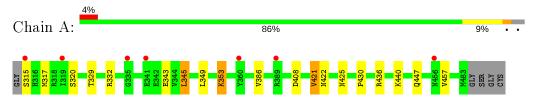
• Molecule 1 is a protein called Polymerase basic protein 2.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	169	Total 1344	C 839	N 251	O 242	S 12	0	0	0

There are 9 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	314	GLY	-	EXPRESSION TAG	UNP P03428
A	315	SER	-	EXPRESSION TAG	UNP P03428
А	316	HIS	-	EXPRESSION TAG	UNP P03428
А	317	MET	-	EXPRESSION TAG	UNP P03428
А	453	HIS	PRO	ENGINEERED MUTATION	UNP P03428
А	471	THR	ILE	ENGINEERED MUTATION	UNP P03428
A	485	SER	-	EXPRESSION TAG	UNP P03428
А	486	GLY	-	EXPRESSION TAG	UNP P03428
А	487	CYS	-	EXPRESSION TAG	UNP P03428

• Molecule 2 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	185	Total O 185 185	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Polymerase basic protein 2

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	H 3 2	Depositor	
Cell constants	107.82Å 107.82Å 136.62Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 120.00°		
Resolution (Å)	20.98 - 2.00	Depositor	
	20.98 - 2.00	EDS	
% Data completeness	$99.8\ (20.98‐2.00)$	Depositor	
(in resolution range)	$99.8 \ (20.98-2.00)$	EDS	
R_{merge}	(Not available)	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.69 ({\rm at} 1.99{\rm \AA})$	Xtriage	
Refinement program	PHENIX (phenix.refine: 1.8.2_1309)	Depositor	
D D	0.182 , 0.229	Depositor	
R, R_{free}	0.181 , 0.255	DCC	
R_{free} test set	1509 reflections (7.23%)	wwPDB-VP	
Wilson B-factor $(Å^2)$	33.6	Xtriage	
Anisotropy	0.018	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36 , 58.8	EDS	
L-test for twinning ²	$< L > = 0.49, < L^2 > = 0.32$	Xtriage	
	$0.028 \text{ for } -2/3^{*}h-1/3^{*}k+2/3^{*}l, -1/3^{*}h-2/3^{*}k-2$		
	2/3*l,2/3*h-2/3*k+1/3*l		
Estimated twinning fraction	0.016 for $-\dot{h}, 1/3*\dot{h}-1/3*\dot{k}+2/3*\dot{l}, 2/3*\dot{h}+4/3*$ $k+1/3*\dot{l}$	Xtriage	
	$0.012 \text{ for } -1/3^{*}\text{h}+1/3^{*}\text{k}-2/3^{*}\text{l},-\text{k},-4/3^{*}\text{h}-2/3$		
	(1.012 tot 1/5 tr 1/5 k 2/5 tr, k, 4/5 tr 2/5 k 2/5 k)		
F_o, F_c correlation	0.96	EDS	
Total number of atoms	1529	wwPDB-VP	
Average B, all atoms $(Å^2)$	39.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.69% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

 $^{^1 {\}rm Intensities}$ estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.35	0/1363	0.52	0/1824

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1344	0	1373	12	0
2	А	185	0	0	4	0
All	All	1529	0	1373	12	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (12) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:317:MET:O	1:A:332:ARG:NH2	2.43	0.52
1:A:343:GLU:HG2	1:A:353:LYS:HG3	1.94	0.49
1:A:408:ASP:OD1	2:A:562:HOH:O	2.20	0.48
1:A:447:GLN:NE2	2:A:655:HOH:O	2.39	0.47

Continued on next page...

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:343:GLU:OE2	1:A:353:LYS:HE2	2.14	0.46
1:A:329:THR:OG1	2:A:670:HOH:O	2.21	0.45
1:A:421:VAL:HG13	1:A:425:ASN:HA	1.99	0.44
1:A:320:SER:HB2	2:A:683:HOH:O	2.18	0.43
1:A:353:LYS:O	1:A:430:PRO:HG2	2.19	0.43
1:A:436:ARG:O	1:A:440:LYS:HG2	2.20	0.41
1:A:345:LEU:HD22	1:A:349:LEU:HA	2.03	0.41
1:A:421:VAL:HG13	1:A:422:ASN:O	2.21	0.41

Continued from previous page...

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	167/174~(96%)	163~(98%)	4 (2%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	148/150~(99%)	142 (96%)	6 (4%)	30 28

All (6) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	315	SER
1	А	345	LEU
1	А	353	LYS
1	А	386	VAL
1	А	421	VAL
1	А	457	VAL

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$ $ $<$ $\mathbf{RSRZ}>$	# RSRZ $>$	>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q<0.9
1	А	169/174~(97%)	0.20	7 (4%) 37	36	22, 35, 64, 77	0

All (7) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	360	TYR	4.5
1	А	315	SER	2.7
1	А	341	GLU	2.7
1	А	456	ASN	2.6
1	А	389	ARG	2.5
1	А	335	GLY	2.2
1	А	319	ILE	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

