

Full wwPDB X-ray Structure Validation Report (i)

Aug 17, 2022 – 12:24 PM EDT

PDB ID	:	3WKN
Title	:	Crystal structure of the artificial protein AFFinger p17 (AF.p17) complexed
		with Fc fragment of human IgG
Authors	:	Watanabe, H.; Honda, S.
Deposited on	:	2013-10-29
Resolution	:	2.90 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.29
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.29

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1957 (2.90-2.90)
Clashscore	141614	2172 (2.90-2.90)
Ramachandran outliers	138981	2115 (2.90-2.90)
Sidechain outliers	138945	2117 (2.90-2.90)
RSRZ outliers	127900	1906 (2.90-2.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	212	66%	30%	
				20,0	
1	В	212	66%	29%	••
1	С	212	67%	29%	••
1	D	212	63%	33%	•••
1	I	919	% •	270/	
			08%	27%	••

Mol	Chain	Length	Quality of chain				
1	J	212	% 61%	31% 6% •			
1	М	212	67%	30% ••			
1	Ν	212	6% 50%	46% ••			
2	Е	54	^{2%} 39% 15%	46%			
2	F	54	<u>6%</u> 50%	28% 7% 15%			
2	G	54	63%	24% 13%			
2	Н	54	6% 33% 24%	41%			
2	K	54	2% 65%	20% 15%			
2	L	54	2% 59%	28% 13%			
2	0	54	2% 50%	33% • 15%			
2	Р	54	46%	31% · 20%			
3	Q	9	100%				
3	R	9	67%	33%			
3	S	9	11% 89%				
3	Т	9	78%	22%			
3	U	9	78%	22%			
3	V	9	11% 67%	22%			
3	W	9	44%	56%			
3	X	9	11% 44%	44%			

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 17052 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	C	200	Total	С	Ν	0	S	0	0	0
	U	209	1668	1061	281	320	6	0	0	0
1	р	210	Total	С	Ν	0	S	0	0	0
	D	210	1675	1066	282	321	6	0	0	0
1	Δ	200	Total	С	Ν	0	S	0	0	0
	A	209	1668	1061	281	320	6	0	0	0
1	П	200	Total	С	Ν	0	S	0	0	0
	D	209	1668	1061	281	320	6	0	0	0
1	т	200	Total	С	Ν	0	S	0	0	0
	1	209	1668	1061	281	320	6	0	0	0
1	т	200	Total	С	Ν	0	S	0	0	0
	J	209	1668	1061	281	320	6	0	0	0
1	М	200	Total	С	Ν	0	S	0	0	0
	111	209	1668	1061	281	320	6	0	0	0
1	N	210	Total	С	Ν	0	S	0	0	0
	IN	210	1675	1066	282	321	6		0	

• Molecule 1 is a protein called Ig gamma-1 chain C region.

• Molecule 2 is a protein called AFFinger p17.

Mol	Chain	Residues		Atc	\mathbf{ms}			ZeroOcc	AltConf	Trace		
2	F	20	Total	С	Ν	Ο	S	0	0	0		
	Ľ	29	250	163	39	47	1	0	0	0		
9	F	46	Total	С	Ν	Ο	\mathbf{S}	0	0	0		
	Ľ	40	381	247	60	73	1	0	0	0		
0	С	47	Total	С	Ν	Ο	S	0	0	0		
	G	47	392	256	61	74	1	0		0		
0	Ц	20	Total	С	Ν	Ο	S	0	0	0		
	11	52	274	180	42	51	1	0	0	0		
0	V	K	V	46	Total	С	Ν	Ο	S	0	0	0
	Γ	40	381	247	60	73	1	0	0	0		
0	<u>о</u> т	L 47	Total	С	Ν	Ο	S	0	0	0		
			392	256	61	74	1	U	U	0		

Mol	Chain	Residues		Ato	\mathbf{ms}			ZeroOcc	AltConf	Trace
9	0	46	Total	С	Ν	Ο	S	0	0	0
	2 0	40	381	247	60	73	1	0	0	0
9	D	12	Total	С	Ν	Ο	S	0	0	0
	40	363	236	57	69	1		U	U	

• Molecule 3 is an oligosaccharide called beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-gluc opyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
3	Q	9	Total C N O 110 62 4 44	0	0	0
3	R	9	Total C N O 110 62 4 44	0	0	0
3	S	9	Total C N O 110 62 4 44	0	0	0
3	Т	9	Total C N O 110 62 4 44	0	0	0
3	U	9	Total C N O 110 62 4 44	0	0	0
3	V	9	Total C N O 110 62 4 44	0	0	0
3	W	9	Total C N O 110 62 4 44	0	0	0
3	Х	9	Total C N O 110 62 4 44	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ig gamma-1 chain C region

$\frac{1}{10} \frac{1}{10} \frac$

• Molecule 1: Ig gamma-1 chain C region

• Molecule 2: AFFinger p17

 $\label{eq:main_optimal_states} \bullet \mbox{Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-gluco$

Chain Q:

100%

NAG1 NAG2 BMA3 MAN4 NAG5 GAL6 MAN7 NAG8 FUC9

 $\label{eq:main_optimal_states} \bullet \mbox{Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-gluco$

Chain R:	67%	33%

NAG1 NAG2 BMA3 BMA3 MAN4 NAG5 GAL6 GAL6 MAN7 NAG8 NAG8 FUC9

 $\label{eq:main_optimal_states} \bullet \mbox{Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-gluco$

Chain S: 11%

89%

PROTEIN DATA BANK

 $\label{eq:solution} \bullet \mbox{ Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-gl$

α · π		and the second
Chain I.	790/	220/
Unam I.	7878	22/0

NAG1 NAG2 BMA3 BMA3 MAN4 NAG5 GAL6 MAN7 NAG8 FUC9

 $\label{eq:solution} \bullet \mbox{Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glu$

Chain II.		
Unam U:	78%	22%

NAG1 NAG2 BMA3 MAN4 NAG5 GAL6 MAN7 NAG8 MAN7 NAG8

 $\label{eq:main_optimal_states} \bullet \mbox{Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-gluco$

Chain V: 11% 67% 22%

NAG1 NAG2 BMA3 BMA3 MAN4 NAG5 GAL6 GAL6 MAN7 NAG8 NAG8

 $\label{eq:main_optimal_states} \bullet \mbox{Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-gluco$

Chain W.		
Cham w:	44%	56%

NAG1 NAG2 BMA3 MAN4 NAG5 GAL6 GAL6 GAL6 MAN7 NAG8 NAG8 NAG8

 $\label{eq:solution} \bullet \mbox{ Molecule 3: beta-D-galactopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose-(1-6)-[2-acetamido-2-deoxy-beta-D-glucopyranose-($

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	104.03Å 153.43Å 170.13Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution(A)	20.00 - 2.90	Depositor
Resolution (A)	49.74 - 2.79	EDS
% Data completeness	100.0 (20.00-2.90)	Depositor
(in resolution range)	99.7 (49.74 - 2.79)	EDS
R_{merge}	0.07	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$6.05 (at 2.81 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
B B.	0.200 , 0.242	Depositor
Λ, Λ_{free}	0.200 , 0.243	DCC
R_{free} test set	3447 reflections $(5.07%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	55.6	Xtriage
Anisotropy	0.101	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.30 , 43.7	EDS
L-test for twinning ²	$ < L >=0.49, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	17052	wwPDB-VP
Average B, all atoms $(Å^2)$	50.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.89% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GAL, FUC, NAG, BMA, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	ol Chain		Bond lengths		Bond angles	
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.02	1/1714~(0.1%)	0.91	1/2335~(0.0%)	
1	В	1.06	4/1722~(0.2%)	0.95	2/2347~(0.1%)	
1	С	1.09	3/1714~(0.2%)	0.93	0/2335	
1	D	0.98	2/1714~(0.1%)	0.89	0/2335	
1	Ι	1.07	2/1714~(0.1%)	0.93	1/2335~(0.0%)	
1	J	1.03	1/1714~(0.1%)	0.96	4/2335~(0.2%)	
1	М	1.23	3/1714~(0.2%)	0.92	1/2335~(0.0%)	
1	Ν	0.89	0/1722	0.84	0/2347	
2	Е	0.88	0/262	0.77	0/362	
2	F	1.06	1/399~(0.3%)	0.82	0/551	
2	G	1.01	0/411	0.79	0/567	
2	Н	0.91	0/287	0.74	0/396	
2	Κ	0.98	0/399	0.88	1/551~(0.2%)	
2	L	1.10	1/411~(0.2%)	0.84	0/567	
2	0	0.90	0/399	0.84	0/551	
2	Р	0.91	0/381	0.75	0/526	
All	All	1.04	18/16677~(0.1%)	0.90	10/22775~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Ι	0	1

All (18) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	М	269	GLU	CD-OE1	24.76	1.52	1.25
1	М	269	GLU	CD-OE2	18.98	1.46	1.25

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	С	269	GLU	CD-OE1	16.57	1.43	1.25
1	D	360	LYS	CE-NZ	10.33	1.74	1.49
1	В	360	LYS	CE-NZ	9.37	1.72	1.49
1	В	272	GLU	CD-OE1	8.27	1.34	1.25
1	В	272	GLU	CD-OE2	7.63	1.34	1.25
1	Ι	269	GLU	CD-OE2	7.08	1.33	1.25
1	Ι	269	GLU	CD-OE1	6.56	1.32	1.25
1	С	355	ARG	CZ-NH1	6.03	1.40	1.33
1	В	271	PRO	C-N	6.02	1.48	1.34
1	D	360	LYS	CD-CE	6.00	1.66	1.51
1	А	425	CYS	CB-SG	-5.83	1.72	1.81
1	С	269	GLU	CD-OE2	5.83	1.32	1.25
2	L	14	GLU	CG-CD	5.64	1.60	1.51
1	М	425	CYS	CB-SG	-5.34	1.73	1.81
1	J	382	GLU	CD-OE1	5.14	1.31	1.25
2	F	42	GLU	CG-CD	5.12	1.59	1.51

All (10) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	271	PRO	C-N-CA	-11.56	92.80	121.70
1	В	271	PRO	CA-C-N	-8.15	99.28	117.20
1	А	265	ASP	CB-CG-OD1	7.08	124.67	118.30
1	J	249	ASP	CB-CG-OD2	-6.52	112.43	118.30
2	K	47	ARG	NE-CZ-NH2	-6.47	117.07	120.30
1	J	443	LEU	CA-CB-CG	6.37	129.95	115.30
1	J	358	LEU	CA-CB-CG	-6.00	101.50	115.30
1	Ι	376	ASP	CB-CG-OD1	-5.96	112.94	118.30
1	J	358	LEU	CB-CG-CD1	5.15	119.75	111.00
1	М	255	ARG	NE-CZ-NH2	-5.02	117.79	120.30

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	Ι	296	TYR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1668	0	1633	45	1
1	В	1675	0	1640	55	0
1	С	1668	0	1633	48	1
1	D	1668	0	1633	55	0
1	Ι	1668	0	1633	46	0
1	J	1668	0	1633	54	0
1	М	1668	0	1633	46	0
1	Ν	1675	0	1639	90	0
2	Е	250	0	211	4	0
2	F	381	0	327	8	0
2	G	392	0	336	10	0
2	Н	274	0	234	10	0
2	Κ	381	0	327	8	0
2	L	392	0	336	11	0
2	0	381	0	327	17	0
2	Р	363	0	309	16	0
3	Q	110	0	94	0	0
3	R	110	0	94	6	0
3	S	110	0	94	0	0
3	Т	110	0	94	4	0
3	U	110	0	94	2	0
3	V	110	0	94	5	0
3	W	110	0	94	4	0
3	Х	110	0	94	10	0
All	All	17052	0	16236	507	1

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 15.

All (507) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:I:390:ASN:HD22	1:I:411:THR:HB	1.19	1.07
3:T:1:NAG:H61	3:T:2:NAG:H82	1.19	1.07
2:O:30:TRP:HA	2:O:48:MET:HE1	1.33	1.07
1:M:246:LYS:HD2	1:M:247:PRO:HD2	1.31	1.05
1:I:242:LEU:HD13	1:I:336:ILE:HG12	1.32	1.04
1:J:276:ASN:HB2	1:J:322:LYS:HB3	1.39	1.03
1:B:350:THR:HB	1:B:441:LEU:HD22	1.45	0.98

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:285:HIS:C	1:B:286:ASN:HD22	1.69	0.95
1:N:322:LYS:HB3	1:N:333:GLU:HB3	1.53	0.91
1:D:346:PRO:HD2	1:D:432:LEU:HD13	1.52	0.91
1:B:241:PHE:CE1	3:R:3:BMA:H2	2.11	0.86
1:I:390:ASN:ND2	1:I:411:THR:HB	1.90	0.85
1:J:279:VAL:HG23	1:J:280:ASP:H	1.42	0.85
1:I:242:LEU:CD1	1:I:336:ILE:HG12	2.06	0.84
1:A:276:ASN:HB2	1:A:322:LYS:HB3	1.62	0.82
1:C:312:ASP:HB3	1:C:317:LYS:HD2	1.61	0.82
2:O:30:TRP:HA	2:O:48:MET:CE	2.11	0.80
2:P:21:ALA:HB2	2:P:31:ALA:HB2	1.62	0.80
2:G:8:ARG:HH11	2:G:8:ARG:HA	1.47	0.79
1:C:311:GLN:HE21	1:C:311:GLN:HA	1.48	0.79
3:T:1:NAG:H61	3:T:2:NAG:C8	2.07	0.79
1:I:262:VAL:HG13	1:I:303:VAL:HG22	1.65	0.79
1:N:346:PRO:HB3	1:N:372:PHE:HB3	1.63	0.79
1:N:311:GLN:HE21	1:N:315:ASN:HD21	1.32	0.77
1:A:320:LYS:HD2	1:A:333:GLU:HG3	1.68	0.75
1:I:240:VAL:HG21	1:I:323:VAL:HG21	1.67	0.75
1:N:253:ILE:HG12	2:P:48:MET:HB3	1.69	0.75
1:J:241:PHE:CZ	3:V:2:NAG:H61	2.21	0.75
1:J:292:ARG:CZ	1:J:292:ARG:HB3	2.16	0.75
1:J:246:LYS:HG3	1:J:247:PRO:HD2	1.67	0.75
1:C:242:LEU:HD13	1:C:336:ILE:HG12	1.70	0.74
1:A:328:LEU:HD21	1:A:332:ILE:HG13	1.68	0.74
3:X:2:NAG:H82	3:X:9:FUC:H4	1.69	0.74
1:N:353:PRO:HD3	1:N:365:LEU:HD23	1.69	0.73
1:A:429:HIS:CD2	1:A:431:ALA:H	2.06	0.73
2:P:21:ALA:HB2	2:P:31:ALA:CB	2.18	0.73
1:B:346:PRO:HB3	1:B:372:PHE:HB3	1.72	0.72
1:B:285:HIS:O	1:B:286:ASN:ND2	2.22	0.72
1:D:277:TRP:CE3	1:D:306:LEU:HD12	2.25	0.72
1:A:297:ASN:OD1	1:A:299:THR:OG1	2.08	0.72
1:J:398:LEU:HD12	1:J:399:ASP:N	2.05	0.72
1:N:272:GLU:HG2	1:N:292:ARG:HH22	1.55	0.71
1:M:274:LYS:HB3	1:M:324:SER:HB2	1.71	0.71
1:A:350:THR:O	1:A:351:LEU:HD23	1.91	0.70
1:N:279:VAL:O	1:N:280:ASP:HB2	1.90	0.70
1:N:428:MET:HG2	1:N:436:TYR:HD2	1.57	0.70
1:N:341:GLY:HA3	1:N:373:TYR:CE1	2.26	0.70
1:N:341:GLY:HA3	1:N:373:TYR:HE1	1.55	0.70

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:N:320:LYS:HG3	1:N:335:THR:HB	1.74	0.70
1:B:311:GLN:HG2	1:B:312:ASP:H	1.58	0.69
1:D:346:PRO:HB3	1:D:372:PHE:HB3	1.74	0.69
1:C:346:PRO:HB3	1:C:372:PHE:HB3	1.73	0.69
1:C:312:ASP:CB	1:C:317:LYS:HD2	2.22	0.69
1:M:246:LYS:O	1:M:249:ASP:HB2	1.93	0.69
1:B:297:ASN:OD1	1:B:299:THR:HB	1.93	0.69
1:N:274:LYS:O	1:N:323:VAL:HG23	1.92	0.68
1:C:390:ASN:ND2	1:C:411:THR:HB	2.08	0.68
1:D:276:ASN:HB2	1:D:322:LYS:HB3	1.75	0.68
1:M:429:HIS:CD2	1:M:431:ALA:H	2.12	0.67
1:N:428:MET:HG2	1:N:436:TYR:CD2	2.29	0.67
1:A:350:THR:HB	1:A:441:LEU:HD13	1.76	0.67
1:N:324:SER:HB2	1:N:331:PRO:HB3	1.76	0.67
1:M:346:PRO:HB3	1:M:372:PHE:HB3	1.76	0.67
2:P:11:TYR:HB2	2:P:18:TRP:CE2	2.30	0.67
1:A:429:HIS:HD2	1:A:431:ALA:H	1.43	0.67
1:B:325:ASN:ND2	1:B:327:ALA:HB3	2.10	0.66
1:A:424:SER:HB3	1:A:440:SER:OG	1.95	0.66
1:I:265:ASP:OD1	3:U:1:NAG:N2	2.28	0.66
1:D:355:ARG:H	1:D:355:ARG:HD3	1.61	0.65
2:K:11:TYR:CE2	2:K:13:PRO:HA	2.32	0.65
1:C:325:ASN:ND2	1:C:327:ALA:H	1.95	0.65
1:D:383:SER:OG	1:D:422:VAL:O	2.10	0.65
2:P:38:THR:HB	2:P:40:THR:HG22	1.78	0.65
1:D:362:GLN:HA	1:D:413:ASP:HA	1.78	0.65
1:N:277:TRP:CE3	1:N:306:LEU:HD23	2.31	0.65
2:O:31:ALA:H	2:O:48:MET:HE3	1.63	0.64
1:A:351:LEU:HB2	1:A:366:THR:HB	1.79	0.64
2:O:31:ALA:H	2:O:48:MET:CE	2.10	0.64
1:B:311:GLN:HG2	1:B:312:ASP:N	2.12	0.64
1:N:257:PRO:HB2	1:N:308:VAL:HG22	1.78	0.64
1:M:253:ILE:HG12	2:O:48:MET:HB3	1.78	0.64
1:I:325:ASN:ND2	1:I:327:ALA:HB3	2.13	0.63
1:D:301:ARG:NE	3:T:2:NAG:H81	2.13	0.63
1:A:417:TRP:O	1:A:443:LEU:HD12	1.99	0.63
1:B:292:ARG:HD2	1:B:300:TYR:CE1	2.34	0.63
1:I:429:HIS:CD2	1:I:431:ALA:H	2.17	0.63
2:L:23:TRP:CZ3	2:L:28:LEU:HB2	2.34	0.62
2:L:33:TYR:C	2:L:33:TYR:CD2	2.71	0.62
1:N:274:LYS:O	1:N:323:VAL:CG2	2.48	0.62

	is as pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:338:LYS:NZ	1:J:338:LYS:HA	2.15	0.62
1:B:259:VAL:HG12	1:B:336:ILE:HD11	1.82	0.62
1:I:311:GLN:HE21	2:K:45:TRP:HZ2	1.45	0.62
1:D:321:CYS:O	1:D:333:GLU:HA	2.00	0.62
1:N:269:GLU:O	1:N:271:PRO:HD3	2.00	0.62
2:L:11:TYR:HB2	2:L:18:TRP:CE2	2.34	0.62
1:M:429:HIS:HD2	1:M:431:ALA:H	1.47	0.61
1:J:318:GLU:HA	1:J:337:SER:OG	2.00	0.61
1:B:241:PHE:CD1	3:R:3:BMA:H2	2.35	0.61
1:J:436:TYR:HE1	1:J:438:GLN:HE21	1.47	0.61
1:N:254:SER:HB2	2:P:27:GLU:OE1	2.00	0.61
1:C:285:HIS:C	1:C:286:ASN:HD22	2.03	0.61
1:M:320:LYS:HG3	1:M:335:THR:HG22	1.83	0.61
1:N:264:VAL:HG11	3:X:1:NAG:O4	2.01	0.61
1:N:428:MET:HA	1:N:435:HIS:O	2.00	0.61
1:I:346:PRO:HB3	1:I:372:PHE:HB3	1.83	0.61
1:N:278:TYR:HD2	1:N:320:LYS:HD3	1.65	0.61
2:H:43:PRO:HB2	2:H:45:TRP:CE2	2.35	0.60
2:F:8:ARG:HD2	2:F:8:ARG:N	2.16	0.60
1:C:429:HIS:HD2	1:C:431:ALA:H	1.50	0.59
1:B:242:LEU:HD21	1:B:336:ILE:HG12	1.83	0.59
1:I:268:HIS:CE1	1:I:294:GLU:OE1	2.56	0.59
1:J:393:THR:HG23	1:J:408:SER:HB2	1.83	0.59
1:N:245:PRO:HD3	1:N:259:VAL:HG12	1.83	0.59
1:N:353:PRO:HD3	1:N:365:LEU:CD2	2.32	0.59
1:D:346:PRO:HD2	1:D:432:LEU:CD1	2.29	0.59
1:J:252:MET:HG2	2:L:29:VAL:HG13	1.84	0.59
1:I:240:VAL:CG2	1:I:323:VAL:HG21	2.32	0.58
1:D:238:PRO:HA	1:D:265:ASP:HB2	1.84	0.58
1:D:393:THR:HG23	1:D:408:SER:HB2	1.85	0.58
1:I:328:LEU:HD11	1:I:332:ILE:HD11	1.85	0.58
2:P:21:ALA:CB	2:P:31:ALA:HB2	2.33	0.58
1:A:242:LEU:HD13	1:A:336:ILE:HG12	1.84	0.58
1:J:264:VAL:HG21	3:V:1:NAG:O4	2.04	0.58
2:O:31:ALA:N	2:O:48:MET:HE3	2.17	0.58
1:D:253:ILE:HD12	1:D:310:HIS:ND1	2.19	0.58
2:F:8:ARG:HD2	2:F:8:ARG:H	1.69	0.58
1:C:238:PRO:HD2	1:C:328:LEU:HD13	1.84	0.58
1:J:326:LYS:C	1:J:328:LEU:H	2.07	0.58
1:C:429:HIS:CD2	1:C:431:ALA:H	2.23	0.57
1:B:292:ARG:NH1	1:B:292:ARG:HG2	2.19	0.57

	jous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:312:ASP:OD1	1:A:317:LYS:HE3	2.04	0.57
1:D:301:ARG:HE	3:T:2:NAG:H81	1.68	0.57
3:X:2:NAG:H83	3:X:2:NAG:H3	1.85	0.57
1:J:241:PHE:N	1:J:241:PHE:CD2	2.72	0.57
1:M:242:LEU:HD13	1:M:336:ILE:HG12	1.86	0.57
1:N:294:GLU:HG2	1:N:295:GLN:H	1.69	0.57
1:C:261:CYS:HB2	1:C:277:TRP:CH2	2.40	0.57
2:G:8:ARG:HA	2:G:8:ARG:NH1	2.17	0.57
1:B:249:ASP:OD1	1:B:255:ARG:HG2	2.05	0.57
1:D:368:LEU:HD13	1:D:407:TYR:CZ	2.40	0.57
1:D:406:LEU:C	1:D:406:LEU:HD12	2.25	0.57
1:C:421:ASN:N	1:C:421:ASN:HD22	2.02	0.57
1.1.365.LEU.HD11	1·I·417·TBP·CE3	2 39	0.57
1:B:295:GLN:O	1:B:297:ASN:N	2.38	0.56
2·K·11·TYR·HB2	2·K·18·TBP·CE2	2 39	0.56
1:J:284:VAL:HG11	1:J:306:LEU:HD11	1.87	0.56
1.D.264.VAL:O	1.D.265.ASP.HB2	2.06	0.56
1.1.365.LEU.HB2	1.1.410.LEU.HD23	1.88	0.56
1:M:351:LEU:HB2	1:M:366:THR:HB	1.87	0.56
1:N:278:TYR:HB2	1:N:320:LYS:HB3	1.87	0.56
2:0:30:TRP:CA	2:O:48:MET:HE1	2.23	0.56
1:J:290:LYS:HB2	1:J:290:LYS:NZ	2.21	0.56
1:M:322:LYS:NZ	1:M:333:GLU:OE2	2.35	0.56
1:I:365:LEU:HD12	1:I:441:LEU:HD21	1.88	0.56
1:M:349:TYR:CZ	1:N:357:GLU:HG3	2.41	0.56
2:K:11:TYR:OH	2:K:16:GLY:HA2	2.06	0.55
1:B:295:GLN:C	1:B:297:ASN:H	2.10	0.55
1:I:399:ASP:OD2	1:I:400:SER:N	2.36	0.55
2:G:34:TYR:OH	2:G:39:GLY:HA2	2.06	0.55
1:B:390:ASN:ND2	1:B:411:THR:HB	2.21	0.55
1:N:264:VAL:HG12	1:N:265:ASP:N	2.22	0.55
1:I:246:LYS:HD3	3:U:6:GAL:O4	2.06	0.55
1:C:280:ASP:OD1	1:C:317:LYS:HG2	2.05	0.55
1:B:242:LEU:CD2	1:B:336:ILE:HG12	2.37	0.55
1:M:246:LYS:CD	1:M:247:PRO:HD2	2.21	0.55
1:B:292:ARG:HG2	1:B:292:ARG:HH11	1.72	0.55
1:M:334:LYS:HZ1	3:W:8:NAG:H83	1.72	0.55
1:N:295:GLN:HG2	3:X:1:NAG:H62	1.89	0.55
1:C:273:VAL:HG11	1:C:302:VAL:HG21	1.89	0.54
1:N:257:PRO:HB2	1:N:308:VAL:CG2	2.37	0.54
1:I:261:CYS:HB2	1:I:277:TRP:CZ2	2.42	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:365:LEU:HD11	1:M:417:TRP:CE3	2.42	0.54
1:A:358:LEU:O	1:A:414:LYS:NZ	2.38	0.54
1:N:264:VAL:HG12	1:N:265:ASP:H	1.73	0.54
1:N:270:ASP:OD2	1:N:326:LYS:HB2	2.08	0.54
1:D:263:VAL:HG21	1:D:323:VAL:HG11	1.90	0.54
2:H:34:TYR:CD2	2:H:35:ASP:N	2.76	0.54
2:L:35:ASP:HB3	2:L:38:THR:HG22	1.90	0.54
1:C:290:LYS:HD2	1:C:303:VAL:CG2	2.38	0.54
1:J:337:SER:O	1:J:338:LYS:O	2.26	0.54
1:N:356:ASP:OD1	1:N:356:ASP:N	2.41	0.54
1:A:365:LEU:HD22	1:A:412:VAL:HG21	1.89	0.54
1:N:358:LEU:HD23	1:N:363:VAL:HG11	1.88	0.53
1:D:312:ASP:O	1:D:317:LYS:HB2	2.07	0.53
2:L:17:THR:HB	2:L:19:TYR:CE2	2.43	0.53
1:B:379:VAL:HG22	1:B:427:VAL:HG22	1.89	0.53
3:R:3:BMA:O2	3:R:7:MAN:H5	2.09	0.53
3:X:2:NAG:C8	3:X:9:FUC:H4	2.38	0.53
1:A:320:LYS:HD2	1:A:333:GLU:CG	2.37	0.53
1:A:372:PHE:HE2	1:A:375:SER:HA	1.74	0.53
1:I:379:VAL:HG22	1:I:427:VAL:HG22	1.89	0.53
1:N:391:TYR:CD1	1:N:391:TYR:C	2.81	0.53
2:O:32:THR:HG1	2:O:41:TRP:HE3	1.57	0.53
2:P:38:THR:CG2	2:P:40:THR:HG22	2.38	0.53
1:J:432:LEU:HD13	1:J:437:THR:HG22	1.90	0.53
1:N:406:LEU:C	1:N:406:LEU:HD12	2.29	0.53
1:A:266:VAL:HB	1:A:300:TYR:HB2	1.90	0.53
1:D:432:LEU:HD21	1:D:437:THR:HG22	1.91	0.53
1:C:274:LYS:HB3	1:C:324:SER:OG	2.10	0.52
1:D:246:LYS:HB2	1:D:249:ASP:OD2	2.09	0.52
1:D:373:TYR:CG	1:D:374:PRO:HA	2.44	0.52
1:I:391:TYR:CD1	1:I:391:TYR:C	2.83	0.52
1:J:367:CYS:HB2	1:J:381:TRP:CZ2	2.44	0.52
1:D:400:SER:C	1:D:402:GLY:H	2.13	0.52
1:J:279:VAL:HG13	1:J:284:VAL:HG22	1.92	0.52
1:J:401:ASP:OD1	1:J:401:ASP:C	2.46	0.52
1:N:361:ASN:OD1	1:N:361:ASN:O	2.26	0.52
1:D:367:CYS:HB2	1:D:381:TRP:CZ2	2.45	0.52
2:G:35:ASP:CG	2:G:38:THR:HG22	2.29	0.52
1:N:334:LYS:NZ	3:X:8:NAG:H81	2.24	0.52
1:J:265:ASP:HB3	3:V:1:NAG:H82	1.91	0.52
1:D:328:LEU:HD13	1:D:332:ILE:HG13	1.92	0.52

	to do pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:428:MET:HA	1:A:435:HIS:O	2.10	0.52
1:N:414:LYS:O	1:N:418:GLN:HG3	2.10	0.52
1:B:242:LEU:HD23	1:B:336:ILE:HG23	1.91	0.52
2:E:33:TYR:HD1	2:E:44:ASP:HB2	1.74	0.52
1:J:279:VAL:HG23	1:J:280:ASP:N	2.18	0.52
1:A:271:PRO:O	1:A:273:VAL:HG23	2.09	0.51
1:J:264:VAL:HG13	1:J:265:ASP:OD1	2.10	0.51
1:I:271:PRO:O	1:I:272:GLU:C	2.49	0.51
1:M:373:TYR:CD1	1:M:374:PRO:HA	2.45	0.51
1:N:429:HIS:N	1:N:432:LEU:HD12	2.26	0.51
1:M:367:CYS:HB2	1:M:381:TRP:CZ2	2.45	0.51
1:B:246:LYS:HG3	3:R:6:GAL:O4	2.10	0.51
1:J:330:ALA:HB1	1:J:331:PRO:HD2	1.92	0.51
2:K:11:TYR:HB2	2:K:18:TRP:CZ2	2.46	0.51
1:B:290:LYS:HD2	1:B:303:VAL:CG2	2.41	0.51
1:I:240:VAL:HG21	1:I:323:VAL:CG2	2.40	0.51
1:J:323:VAL:O	1:J:332:ILE:HG22	2.11	0.51
1:C:262:VAL:HG13	1:C:303:VAL:HG12	1.92	0.50
1:I:345:GLU:HA	1:I:431:ALA:HB3	1.93	0.50
1:N:240:VAL:HG12	1:N:241:PHE:N	2.26	0.50
1:B:248:LYS:O	1:B:252:MET:HG3	2.11	0.50
2:G:35:ASP:HB3	2:G:38:THR:HG22	1.94	0.50
1:C:421:ASN:N	1:C:421:ASN:ND2	2.60	0.50
2:F:23:TRP:CE2	2:F:28:LEU:HD23	2.46	0.50
1:D:365:LEU:HD21	1:D:412:VAL:CG1	2.42	0.50
1:B:325:ASN:HD22	1:B:327:ALA:HB3	1.77	0.50
1:J:417:TRP:CZ3	1:J:442:SER:HA	2.46	0.50
2:L:11:TYR:HB2	2:L:18:TRP:CD2	2.46	0.50
1:M:276:ASN:HB2	1:M:322:LYS:HB3	1.94	0.50
2:O:23:TRP:CH2	2:O:28:LEU:HD23	2.47	0.50
1:M:357:GLU:O	1:M:359:THR:N	2.45	0.49
1:N:311:GLN:HE21	1:N:315:ASN:ND2	2.06	0.49
1:A:293:GLU:HG3	2:K:23:TRP:CE2	2.48	0.49
2:L:48:MET:O	2:L:49:LEU:HD23	2.11	0.49
1:N:422:VAL:HA	1:N:442:SER:HB3	1.93	0.49
1:C:390:ASN:HD21	1:C:411:THR:HB	1.73	0.49
2:E:35:ASP:OD2	1:A:360:LYS:HE2	2.12	0.49
1:C:344:ARG:O	1:C:372:PHE:HA	2.12	0.49
1:B:375:SER:HB3	1:B:404:PHE:CE1	2.47	0.49
1:M:373:TYR:CD1	1:M:374:PRO:CA	2.95	0.49
1:C:381:TRP:CE3	1:C:410:LEU:HD22	2.48	0.49

	lo us puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:263:VAL:HG11	1:M:273:VAL:HG11	1.93	0.49
2:P:34:TYR:OH	2:P:39:GLY:HA2	2.13	0.49
1:C:270:ASP:CG	1:C:326:LYS:HD2	2.33	0.49
1:B:267:SER:HB2	1:B:269:GLU:HG2	1.94	0.49
1:D:346:PRO:CD	1:D:432:LEU:HD13	2.32	0.49
1:N:368:LEU:HD13	1:N:407:TYR:CZ	2.47	0.49
1:A:293:GLU:HG3	2:K:23:TRP:CD2	2.48	0.49
1:A:393:THR:HG23	1:A:408:SER:HB2	1.95	0.49
1:I:388:GLU:HG3	1:I:410:LEU:HD11	1.94	0.49
2:P:38:THR:CB	2:P:40:THR:HG22	2.42	0.49
1:J:338:LYS:HA	1:J:338:LYS:HZ2	1.77	0.49
1:M:349:TYR:CE2	1:N:357:GLU:HG3	2.47	0.49
2:0:44:ASP:0	2:O:48:MET:HG3	2.12	0.49
1:D:320:LYS:HB2	1:D:335:THR:HG22	1.94	0.48
1:M:320:LYS:HG3	1:M:335:THR:CG2	2.43	0.48
1:N:334:LYS:HZ1	3:X:8:NAG:H81	1.77	0.48
1:B:348:VAL:HG12	1:B:439:LYS:HG3	1.95	0.48
1:I:328:LEU:HD21	1:I:332:ILE:HD12	1.95	0.48
1:I:374:PRO:O	1:I:429:HIS:HE1	1.95	0.48
1:B:428:MET:HA	1:B:435:HIS:O	2.13	0.48
1:I:309:LEU:HD12	1:I:309:LEU:H	1.78	0.48
1:B:295:GLN:C	1:B:297:ASN:N	2.67	0.48
1:J:265:ASP:HB3	3:V:1:NAG:C8	2.43	0.48
2:G:11:TYR:CE2	2:G:13:PRO:HA	2.48	0.48
1:D:379:VAL:HG22	1:D:427:VAL:HG22	1.95	0.48
1:J:279:VAL:O	1:J:318:GLU:O	2.32	0.48
1:J:346:PRO:HB3	1:J:372:PHE:HB3	1.96	0.48
2:H:19:TYR:CD1	2:H:33:TYR:HB3	2.49	0.48
1:J:398:LEU:HD12	1:J:398:LEU:C	2.32	0.48
2:0:15:THR:O	2:O:17:THR:HG23	2.14	0.48
1:B:246:LYS:HE2	3:R:6:GAL:O4	2.15	0.47
1:D:278:TYR:N	1:D:278:TYR:CD1	2.82	0.47
1:D:263:VAL:CG2	1:D:323:VAL:HG11	2.44	0.47
1:J:406:LEU:C	1:J:406:LEU:HD12	2.35	0.47
1:C:393:THR:HG22	1:C:394:THR:N	2.29	0.47
2:F:44:ASP:OD2	2:F:44:ASP:C	2.52	0.47
1:D:344:ARG:O	1:D:372:PHE:HA	2.15	0.47
2:P:11:TYR:HE2	2:P:16:GLY:HA2	1.79	0.47
1:A:328:LEU:CD2	1:A:332:ILE:HG13	2.40	0.47
1:M:321:CYS:O	1:M:333:GLU:HA	2.14	0.47
2:F:48:MET:C	2:F:50:GLY:H	2.18	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:354:SER:CB	1:N:349:TYR:HB3	2.45	0.47
1:N:255:ARG:HG2	1:N:255:ARG:HH11	1.80	0.47
1:J:297:ASN:OD1	1:J:299:THR:OG1	2.26	0.47
1:A:405:PHE:CZ	1:D:392:LYS:HB3	2.50	0.47
1:A:415:SER:O	1:A:416:ARG:HB2	2.15	0.47
1:I:384:ASN:N	1:I:384:ASN:ND2	2.62	0.47
1:M:347:GLN:HB2	1:M:370:LYS:HG2	1.96	0.47
1:N:261:CYS:HB2	1:N:277:TRP:CZ2	2.49	0.47
1:B:373:TYR:CG	1:B:374:PRO:HA	2.49	0.46
1:I:265:ASP:HA	1:I:299:THR:HG21	1.95	0.46
1:N:277:TRP:CE3	1:N:306:LEU:CD2	2.98	0.46
1:B:257:PRO:HB2	1:B:308:VAL:HG22	1.97	0.46
1:I:268:HIS:HE1	1:I:294:GLU:OE1	1.97	0.46
1:J:417:TRP:CH2	1:J:442:SER:HA	2.50	0.46
2:P:21:ALA:HB1	2:P:30:TRP:O	2.15	0.46
1:M:371:GLY:HA2	1:M:403:SER:OG	2.15	0.46
1:N:240:VAL:HG22	1:N:263:VAL:HG22	1.98	0.46
1:N:323:VAL:HG22	1:N:324:SER:N	2.31	0.46
1:C:373:TYR:CG	1:C:374:PRO:HA	2.51	0.46
2:E:33:TYR:CD1	2:E:44:ASP:HB2	2.50	0.46
2:H:23:TRP:CZ2	2:H:28:LEU:HD12	2.51	0.46
1:N:429:HIS:H	1:N:432:LEU:HD12	1.81	0.46
1:N:265:ASP:OD1	3:X:1:NAG:H82	2.15	0.46
1:N:294:GLU:HG2	1:N:295:GLN:N	2.29	0.46
1:M:377:ILE:HG21	1:M:406:LEU:HD21	1.98	0.46
2:P:42:GLU:HG3	2:P:43:PRO:HD2	1.98	0.46
1:B:278:TYR:CD2	1:B:283:GLU:HB2	2.51	0.46
2:L:11:TYR:CZ	2:L:16:GLY:HA2	2.50	0.46
2:P:6:PRO:HG3	2:P:34:TYR:CD2	2.51	0.46
1:C:365:LEU:HD11	1:C:417:TRP:CE3	2.50	0.46
1:A:346:PRO:HB3	1:A:372:PHE:HB3	1.97	0.46
1:N:346:PRO:CB	1:N:372:PHE:HB3	2.39	0.46
1:N:443:LEU:HG	1:N:445:PRO:HD3	1.97	0.46
1:A:350:THR:C	1:A:351:LEU:HD23	2.36	0.45
2:H:44:ASP:OD2	2:H:46:GLN:HB3	2.17	0.45
1:I:325:ASN:HB3	1:I:328:LEU:HB2	1.98	0.45
1:N:413:ASP:HB2	1:N:416:ARG:HG3	1.98	0.45
1:A:253:ILE:HG12	2:G:48:MET:HB3	1.98	0.45
1:M:380:GLU:OE2	2:O:24:HIS:NE2	2.49	0.45
1:C:311:GLN:HA	1:C:311:GLN:NE2	2.25	0.45
2:H:34:TYR:HD2	2:H:35:ASP:H	1.62	0.45

	to do pago	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:N:346:PRO:HB3	1:N:372:PHE:CB	2.41	0.45
1:N:426:SER:HB3	1:N:436:TYR:OH	2.17	0.45
1:C:278:TYR:CD1	1:C:320:LYS:HD2	2.51	0.45
1:C:350:THR:CG2	1:C:439:LYS:HB3	2.46	0.45
1:D:382:GLU:HB2	1:D:386:GLN:O	2.17	0.45
1:C:381:TRP:HA	1:C:424:SER:O	2.17	0.45
1:D:377:ILE:HG13	1:D:428:MET:O	2.16	0.45
1:D:414:LYS:O	1:D:418:GLN:HG2	2.17	0.45
1:A:328:LEU:HA	1:A:329:PRO:HD2	1.72	0.45
1:N:432:LEU:HD22	1:N:437:THR:HB	1.99	0.45
1:N:432:LEU:HD22	1:N:437:THR:CG2	2.47	0.45
1:B:296:TYR:CD2	1:J:274:LYS:HB2	2.52	0.45
1:A:353:PRO:HD3	1:A:365:LEU:HD12	1.99	0.45
1:D:258:GLU:HB3	1:D:305:VAL:HG23	1.98	0.45
1:M:238:PRO:HD2	1:M:328:LEU:HD13	1.98	0.45
1:N:435:HIS:N	1:N:435:HIS:CD2	2.84	0.45
1:D:382:GLU:O	1:D:424:SER:N	2.45	0.45
1:N:264:VAL:HG21	3:X:2:NAG:H2	1.98	0.45
1:C:272:GLU:H	1:C:272:GLU:CD	2.18	0.44
1:C:374:PRO:O	1:C:429:HIS:HE1	1.99	0.44
1:B:270:ASP:C	1:B:272:GLU:H	2.21	0.44
1:B:373:TYR:CD1	1:B:374:PRO:HA	2.52	0.44
1:I:365:LEU:HD11	1:I:417:TRP:CZ3	2.52	0.44
1:N:253:ILE:HG12	2:P:48:MET:CB	2.43	0.44
2:O:33:TYR:CD2	2:O:33:TYR:C	2.91	0.44
1:A:270:ASP:OD2	1:A:327:ALA:HB2	2.18	0.44
1:I:277:TRP:O	1:I:283:GLU:HG3	2.17	0.44
1:C:328:LEU:O	1:C:330:ALA:N	2.51	0.44
1:C:383:SER:HB3	1:C:388:GLU:OE2	2.18	0.44
1:B:306:LEU:HD23	1:B:306:LEU:HA	1.62	0.44
1:A:365:LEU:HG	1:A:441:LEU:HD21	1.99	0.44
1:I:325:ASN:HD22	1:I:327:ALA:HB3	1.83	0.44
1:J:362:GLN:HB3	1:J:411:THR:CG2	2.47	0.44
3:W:1:NAG:H62	3:W:9:FUC:H2	1.76	0.44
1:C:277:TRP:O	1:C:283:GLU:HA	2.17	0.44
1:D:392:LYS:HD2	1:D:392:LYS:HA	1.75	0.44
1:J:311:GLN:HG2	1:J:315:ASN:HD21	1.81	0.44
1:J:391:TYR:HB3	1:J:410:LEU:HD12	1.98	0.44
3:W:5:NAG:H61	3:W:6:GAL:C1	2.48	0.44
1:B:436:TYR:CE2	2:F:24:HIS:HB2	2.52	0.44
1:M:277:TRP:CD1	1:M:287:ALA:CB	3.01	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:433:HIS:HE1	2:0:20:ASP:OD1	2.01	0.44
1:A:405:PHE:HZ	1:D:392:LYS:HB3	1.82	0.44
1:M:273:VAL:CG1	1:M:323:VAL:HG13	2.48	0.44
1:N:247:PRO:O	1:N:251:LEU:HG	2.18	0.44
1:B:238:PRO:HG2	1:B:328:LEU:HD21	1.99	0.44
2:H:41:TRP:N	2:H:41:TRP:CD1	2.85	0.44
1:J:261:CYS:HB2	1:J:277:TRP:CH2	2.52	0.44
1:J:338:LYS:O	1:J:339:ALA:HB3	2.17	0.44
1:J:415:SER:O	1:J:419:GLN:HG3	2.18	0.44
2:K:11:TYR:HE2	2:K:13:PRO:HA	1.77	0.44
2:O:38:THR:O	2:O:40:THR:HG23	2.17	0.44
1:I:429:HIS:HD2	1:I:431:ALA:H	1.63	0.44
1:J:237:GLY:HA2	1:J:327:ALA:O	2.18	0.44
1:M:373:TYR:CG	1:M:374:PRO:HA	2.53	0.43
1:B:270:ASP:C	1:B:272:GLU:N	2.71	0.43
1:A:383:SER:HB2	1:A:423:PHE:CD2	2.52	0.43
2:G:18:TRP:HB2	2:G:34:TYR:HB3	2.00	0.43
1:J:268:HIS:O	1:J:271:PRO:HD3	2.17	0.43
1:N:424:SER:HA	1:N:440:SER:HA	2.00	0.43
1:C:367:CYS:HB2	1:C:381:TRP:CZ2	2.53	0.43
1:B:292:ARG:HH11	1:B:292:ARG:CG	2.30	0.43
1:D:345:GLU:HG2	1:D:432:LEU:HD12	2.01	0.43
1:N:249:ASP:OD2	1:N:255:ARG:HD2	2.19	0.43
1:N:358:LEU:HD23	1:N:358:LEU:HA	1.92	0.43
2:0:43:PRO:HB2	2:O:45:TRP:NE1	2.33	0.43
1:A:261:CYS:HB2	1:A:277:TRP:CZ2	2.53	0.43
1:C:288:LYS:HE2	1:C:288:LYS:HB3	1.88	0.43
1:B:257:PRO:HB2	1:B:308:VAL:CG2	2.48	0.43
1:B:348:VAL:CG1	1:B:439:LYS:HG3	2.49	0.43
1:A:416:ARG:HA	1:A:419:GLN:HB3	2.01	0.43
1:I:320:LYS:HD3	1:I:333:GLU:OE2	2.19	0.43
1:D:253:ILE:HA	1:D:310:HIS:CE1	2.53	0.43
1:I:245:PRO:HB2	1:I:250:THR:HG22	2.01	0.43
1:J:253:ILE:HG12	2:L:48:MET:HB3	2.01	0.43
1:N:434:ASN:O	1:N:435:HIS:HB2	2.19	0.43
1:C:274:LYS:HD2	1:C:276:ASN:ND2	2.34	0.43
2:F:29:VAL:O	2:F:30:TRP:HB2	2.18	0.43
1:D:248:LYS:HZ1	1:D:255:ARG:HH21	1.67	0.43
1:J:326:LYS:C	1:J:328:LEU:N	2.70	0.43
1:N:328:LEU:HD21	1:N:332:ILE:HG12	2.00	0.43
1:M:271:PRO:HG2	1:M:272:GLU:OE2	2.18	0.43

	is as pagetti	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:N:381:TRP:CE2	1:N:410:LEU:HB2	2.54	0.43
1:N:393:THR:HG22	1:N:394:THR:O	2.19	0.43
2:P:40:THR:HG23	2:P:40:THR:O	2.19	0.43
1:C:326:LYS:O	1:C:326:LYS:HD3	2.19	0.42
1:C:346:PRO:HD2	1:C:432:LEU:HG	2.01	0.42
1:N:361:ASN:OD1	1:N:361:ASN:C	2.57	0.42
1:B:392:LYS:HA	1:B:392:LYS:HD3	1.85	0.42
2:E:42:GLU:OE1	1:A:359:THR:HB	2.20	0.42
1:D:342:GLN:HA	1:D:343:PRO:HD2	1.91	0.42
1:J:241:PHE:HZ	3:V:2:NAG:H61	1.79	0.42
1:M:443:LEU:HD12	1:M:444:SER:N	2.34	0.42
1:N:238:PRO:HB2	1:N:328:LEU:HD13	2.01	0.42
1:C:328:LEU:C	1:C:330:ALA:H	2.23	0.42
1:J:314:LEU:HD23	1:J:314:LEU:HA	1.87	0.42
1:N:259:VAL:HG13	1:N:308:VAL:HG11	2.01	0.42
1:N:360:LYS:O	1:N:414:LYS:HE2	2.18	0.42
1:N:433:HIS:O	1:N:434:ASN:HB2	2.19	0.42
1:I:261:CYS:HB2	1:I:277:TRP:CH2	2.55	0.42
1:C:350:THR:HB	1:C:441:LEU:HD22	2.01	0.42
1:N:406:LEU:HD12	1:N:406:LEU:O	2.19	0.42
1:B:262:VAL:HG22	1:B:303:VAL:HG12	2.02	0.42
1:I:265:ASP:HA	1:I:299:THR:CG2	2.48	0.42
1:I:384:ASN:N	1:I:384:ASN:HD22	2.18	0.42
1:J:329:PRO:HB2	1:J:330:ALA:H	1.61	0.42
1:M:263:VAL:CG1	1:M:302:VAL:HB	2.49	0.42
1:M:358:LEU:HD23	1:M:363:VAL:HG11	2.02	0.42
1:N:240:VAL:CG1	1:N:241:PHE:N	2.81	0.42
1:D:248:LYS:NZ	1:D:255:ARG:HH21	2.17	0.42
1:D:345:GLU:CG	1:D:432:LEU:HD12	2.50	0.42
1:D:355:ARG:H	1:D:355:ARG:CD	2.31	0.42
1:M:246:LYS:HD2	1:M:247:PRO:CD	2.23	0.42
2:O:12:ASP:HA	2:O:13:PRO:HD3	1.87	0.42
1:B:358:LEU:HD23	1:B:363:VAL:HG11	2.01	0.42
2:F:35:ASP:OD2	2:F:37:GLU:HB3	2.20	0.42
1:D:365:LEU:HD21	1:D:412:VAL:HG12	2.02	0.42
1:I:354:SER:HB2	1:J:349:TYR:HB3	2.00	0.42
1:C:379:VAL:O	1:C:380:GLU:HG3	2.21	0.41
1:D:277:TRP:CD2	1:D:306:LEU:HD12	2.54	0.41
1:D:368:LEU:HD13	1:D:407:TYR:CE1	2.55	0.41
1:D:413:ASP:OD1	1:D:416:ARG:HG3	2.20	0.41
2:H:23:TRP:CE3	2:H:26:GLY:O	2.73	0.41

	i a se pageini	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:M:272:GLU:O	1:M:325:ASN:ND2	2.53	0.41
1:C:290:LYS:HD2	1:C:303:VAL:HG21	2.01	0.41
1:I:328:LEU:HA	1:I:329:PRO:HD2	1.80	0.41
1:N:409:LYS:HZ3	1:N:411:THR:CG2	2.33	0.41
1:I:423:PHE:N	1:I:423:PHE:CD1	2.87	0.41
1:N:320:LYS:HE2	1:N:333:GLU:HB2	2.02	0.41
1:A:253:ILE:HG21	2:G:28:LEU:HD23	2.03	0.41
1:A:367:CYS:HB2	1:A:381:TRP:CZ2	2.54	0.41
1:D:365:LEU:HD23	1:D:410:LEU:HD23	2.01	0.41
2:G:35:ASP:CB	2:G:38:THR:HG22	2.50	0.41
1:M:347:GLN:HB3	1:M:349:TYR:CZ	2.55	0.41
1:B:332:ILE:HG22	1:B:333:GLU:N	2.36	0.41
2:L:11:TYR:HB2	2:L:18:TRP:CZ2	2.55	0.41
1:N:260:THR:HG22	1:N:262:VAL:HG23	2.02	0.41
1:N:269:GLU:CD	1:N:269:GLU:H	2.23	0.41
1:C:325:ASN:HB3	1:C:328:LEU:HB2	2.02	0.41
1:N:260:THR:HG21	3:X:5:NAG:H62	2.03	0.41
1:B:264:VAL:HG11	3:R:2:NAG:H2	2.03	0.41
1:B:292:ARG:HD2	1:B:300:TYR:CD1	2.54	0.41
1:A:358:LEU:HD21	1:A:417:TRP:HD1	1.86	0.41
1:C:391:TYR:CD1	1:C:391:TYR:C	2.93	0.41
1:C:421:ASN:ND2	1:C:421:ASN:H	2.17	0.41
1:J:346:PRO:HG2	1:J:432:LEU:HG	2.02	0.41
1:N:442:SER:O	1:N:444:SER:N	2.54	0.41
1:D:261:CYS:HB2	1:D:277:TRP:CH2	2.56	0.41
1:D:365:LEU:HD21	1:D:412:VAL:HG11	2.02	0.41
2:H:23:TRP:CZ3	2:H:28:LEU:HB2	2.56	0.41
1:J:278:TYR:HA	1:J:282:VAL:O	2.20	0.41
1:C:278:TYR:CE2	1:C:283:GLU:HB2	2.55	0.41
1:B:311:GLN:CG	1:B:312:ASP:N	2.82	0.41
1:M:334:LYS:NZ	3:W:8:NAG:H83	2.34	0.41
1:M:373:TYR:CD1	1:M:374:PRO:N	2.89	0.41
1:N:414:LYS:O	1:N:414:LYS:HG2	2.20	0.41
1:B:259:VAL:CG1	1:B:336:ILE:HD11	2.50	0.40
1:B:429:HIS:O	1:B:435:HIS:HA	2.21	0.40
1:D:297:ASN:O	1:D:298:SER:HB2	2.21	0.40
2:H:43:PRO:O	2:H:45:TRP:N	2.54	0.40
1:M:398:LEU:O	1:N:392:LYS:HE2	2.21	0.40
1:A:277:TRP:O	1:A:283:GLU:HG3	2.21	0.40
1:A:346:PRO:HG2	1:A:432:LEU:HD21	2.04	0.40
1:N:297:ASN:O	1:N:299:THR:N	2.54	0.40

3WM	3WKN
-----	------

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:414:LYS:HE2	1:B:414:LYS:HB3	1.85	0.40
1:A:344:ARG:HG3	1:A:373:TYR:HB3	2.03	0.40
1:I:341:GLY:O	1:I:342:GLN:C	2.60	0.40
1:J:345:GLU:HA	1:J:431:ALA:HB3	2.03	0.40
1:M:328:LEU:HD12	1:M:328:LEU:HA	1.99	0.40
1:M:434:ASN:HD22	1:M:434:ASN:HA	1.63	0.40
1:N:268:HIS:O	1:N:271:PRO:HG3	2.21	0.40
1:J:290:LYS:HD3	1:J:293:GLU:OE1	2.22	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-1 Atom-2		Clash overlap (Å)	
1:C:355:ARG:NH2	1:A:287:ALA:O[2_454]	2.05	0.15	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	207/212~(98%)	192~(93%)	12 (6%)	3~(1%)	11	36
1	В	208/212~(98%)	191 (92%)	14 (7%)	3(1%)	11	36
1	С	207/212~(98%)	196 (95%)	10 (5%)	1 (0%)	29	61
1	D	207/212~(98%)	200 (97%)	7 (3%)	0	100	100
1	Ι	207/212~(98%)	191 (92%)	13 (6%)	3(1%)	11	36
1	J	207/212~(98%)	181 (87%)	17 (8%)	9 (4%)	2	10
1	М	207/212~(98%)	196 (95%)	9 (4%)	2(1%)	15	45
1	Ν	208/212~(98%)	181 (87%)	23 (11%)	4 (2%)	8	28
2	Е	27/54~(50%)	25 (93%)	1 (4%)	1 (4%)	3	13
2	F	44/54~(82%)	34 (77%)	6 (14%)	4 (9%)	1	1

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	G	45/54~(83%)	42 (93%)	3~(7%)	0	100	100
2	Н	30/54~(56%)	22~(73%)	7(23%)	1 (3%)	4	15
2	Κ	44/54 (82%)	40 (91%)	3 (7%)	1 (2%)	6	23
2	L	45/54~(83%)	41 (91%)	4 (9%)	0	100	100
2	Ο	44/54 (82%)	39~(89%)	5 (11%)	0	100	100
2	Р	41/54~(76%)	33 (80%)	6 (15%)	2(5%)	2	8
All	All	1978/2128~(93%)	1804 (91%)	140 (7%)	34 (2%)	9	31

Continued from previous page...

All (34) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	327	ALA
2	Е	37	GLU
1	J	279	VAL
1	J	329	PRO
1	J	338	LYS
2	K	37	GLU
1	N	298	SER
1	N	299	THR
1	N	329	PRO
1	В	296	TYR
2	F	6	PRO
2	F	46	GLN
1	А	416	ARG
1	Ι	271	PRO
1	Ι	272	GLU
1	J	271	PRO
1	J	272	GLU
1	М	358	LEU
2	F	17	THR
2	F	49	LEU
1	А	385	GLY
1	J	339	ALA
2	Н	49	LEU
1	J	401	ASP
1	М	385	GLY
1	N	271	PRO
1	С	443	LEU
1	А	271	PRO
2	Р	13	PRO

Continued from previous page...

	5	1	1 5
Mol	Chain	\mathbf{Res}	Type
2	Р	16	GLY
1	Ι	329	PRO
1	J	281	GLY
1	J	237	GLY
1	В	281	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	194/196~(99%)	182 (94%)	12 (6%)	18	47
1	В	195/196~(100%)	181 (93%)	14 (7%)	14	39
1	С	194/196~(99%)	185~(95%)	9~(5%)	27	60
1	D	194/196~(99%)	180 (93%)	14 (7%)	14	39
1	Ι	194/196~(99%)	177 (91%)	17 (9%)	10	30
1	J	194/196~(99%)	180 (93%)	14 (7%)	14	39
1	М	194/196~(99%)	186 (96%)	8 (4%)	30	64
1	Ν	195/196~(100%)	179 (92%)	16 (8%)	11	32
2	Ε	24/42~(57%)	21 (88%)	3~(12%)	4	14
2	F	37/42~(88%)	30 (81%)	7~(19%)	1	4
2	G	38/42~(90%)	35~(92%)	3~(8%)	12	34
2	Н	26/42~(62%)	24 (92%)	2(8%)	13	35
2	Κ	37/42~(88%)	34 (92%)	3 (8%)	11	33
2	L	38/42~(90%)	37~(97%)	1 (3%)	46	77
2	Ο	37/42~(88%)	36~(97%)	1 (3%)	44	77
2	Р	35/42~(83%)	33 (94%)	2(6%)	20	51
All	All	1826/1904 (96%)	1700 (93%)	126 (7%)	15	41

All (126) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	С	242	LEU
1	С	307	THR
1	С	311	GLN
1	С	334	LYS
1	С	335	THR
1	С	347	GLN
1	С	365	LEU
1	С	384	ASN
1	С	413	ASP
1	В	255	ARG
1	В	285	HIS
1	В	286	ASN
1	В	292	ARG
1	В	299	THR
1	В	306	LEU
1	В	334	LYS
1	В	335	THR
1	В	340	LYS
1	В	364	SER
1	В	399	ASP
1	В	400	SER
1	В	419	GLN
1	В	437	THR
2	Е	34	TYR
2	Е	40	THR
2	Е	46	GLN
2	F	8	ARG
2	F	14	GLU
2	F	28	LEU
2	F	33	TYR
2	F	44	ASP
2	F	45	TRP
2	F	46	GLN
1	А	242	LEU
1	А	255	ARG
1	А	272	GLU
1	А	280	ASP
1	А	292	ARG
1	А	296	TYR
1	А	299	THR
1	A	337	SER
1	A	340	LYS
1	А	365	LEU

Mol	Chain	Res	Type
1	А	441	LEU
1	А	443	LEU
1	D	280	ASP
1	D	292	ARG
1	D	305	VAL
1	D	306	LEU
1	D	347	GLN
1	D	355	ARG
1	D	360	LYS
1	D	361	ASN
1	D	365	LEU
1	D	389	ASN
1	D	392	LYS
1	D	419	GLN
1	D	432	LEU
1	D	444	SER
2	G	5	SER
2	G	40	THR
2	G	46	GLN
2	Н	35	ASP
2	Н	37	GLU
1	Ι	239	SER
1	Ι	242	LEU
1	Ι	282	VAL
1	Ι	295	GLN
1	Ι	299	THR
1	Ι	334	LYS
1	Ι	363	VAL
1	Ι	370	LYS
1	Ι	383	SER
1	Ι	391	TYR
1	Ι	410	LEU
1	Ι	413	ASP
1	Ι	415	SER
1	Ι	418	GLN
1	Ι	439	LYS
1	Ι	441	LEU
1	Ι	444	SER
1	J	264	VAL
1	J	268	HIS
1	J	272	GLU
1	J	285	HIS

Mol	Chain	Res	Type
1	J	292	ARG
1	J	337	SER
1	J	338	LYS
1	J	354	SER
1	J	355	ARG
1	J	375	SER
1	J	398	LEU
1	J	400	SER
1	J	416	ARG
1	J	424	SER
2	K	28	LEU
2	K	38	THR
2	Κ	46	GLN
2	L	4	PHE
1	М	292	ARG
1	М	307	THR
1	М	314	LEU
1	М	328	LEU
1	М	413	ASP
1	М	414	LYS
1	М	419	GLN
1	М	434	ASN
1	Ν	270	ASP
1	Ν	272	GLU
1	Ν	284	VAL
1	Ν	292	ARG
1	Ν	303	VAL
1	Ν	309	LEU
1	N	312	ASP
1	Ν	314	LEU
1	N	322	LYS
1	N	333	GLU
1	N	338	LYS
1	Ν	342	GLN
1	Ν	343	PRO
1	N	355	ARG
1	Ν	359	THR
1	N	430	GLU
2	0	28	LEU
2	Р	17	THR
2	Р	47	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (56)

such sidechains are listed below:

Mol	Chain	Res	Type
1	С	276	ASN
1	С	286	ASN
1	С	311	GLN
1	С	315	ASN
1	С	325	ASN
1	С	390	ASN
1	С	419	GLN
1	С	421	ASN
1	С	429	HIS
1	В	286	ASN
1	В	295	GLN
1	В	325	ASN
1	В	390	ASN
1	В	421	ASN
1	В	435	HIS
2	Е	46	GLN
2	F	24	HIS
2	F	46	GLN
1	А	286	ASN
1	А	311	GLN
1	А	315	ASN
1	А	384	ASN
1	А	429	HIS
1	D	295	GLN
1	D	315	ASN
1	D	325	ASN
1	D	389	ASN
1	D	390	ASN
1	D	419	GLN
2	Н	46	GLN
1	Ι	276	ASN
1	Ι	295	GLN
1	Ι	315	ASN
1	Ι	325	ASN
1	Ι	342	GLN
1	Ι	384	ASN
1	Ι	390	ASN
1	Ι	419	GLN
1	I	429	HIS
1	Ι	433	HIS
1	J	285	HIS
1	J	295	GLN

Mol	Chain	Res	Type
1	J	311	GLN
1	J	315	ASN
1	J	419	GLN
1	J	438	GLN
2	Κ	46	GLN
2	L	46	GLN
1	М	310	HIS
1	М	325	ASN
1	М	384	ASN
1	М	429	HIS
1	М	434	ASN
1	Ν	315	ASN
1	Ν	325	ASN
1	Ν	386	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

72 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Tuna Chain D		Dec	Timle	Bond lengths			Bond angles				
IVIOI	Moi Type Chain	nes	nes	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	Q	1	3,1	14,14,15	0.66	0	17,19,21	1.40	3 (17%)	
3	NAG	Q	2	3	14,14,15	0.65	0	17,19,21	1.47	2 (11%)	
3	BMA	Q	3	3	11,11,12	0.74	0	$15,\!15,\!17$	1.07	1 (6%)	
3	MAN	Q	4	3	11,11,12	0.71	0	$15,\!15,\!17$	1.61	3 (20%)	

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	NAG	Q	5	3	14, 14, 15	0.54	0	$17,\!19,\!21$	1.35	2 (11%)
3	GAL	Q	6	3	$11,\!11,\!12$	0.96	0	$15,\!15,\!17$	2.47	5 (33%)
3	MAN	Q	7	3	11,11,12	0.78	0	$15,\!15,\!17$	1.83	3 (20%)
3	NAG	Q	8	3	14,14,15	0.49	0	17,19,21	2.12	3 (17%)
3	FUC	Q	9	3	10,10,11	0.85	0	14,14,16	1.38	2 (14%)
3	NAG	R	1	3,1	14,14,15	0.97	1 (7%)	17,19,21	1.56	5 (29%)
3	NAG	R	2	3	14,14,15	0.71	0	17,19,21	1.42	3 (17%)
3	BMA	R	3	3	11,11,12	0.87	0	$15,\!15,\!17$	1.81	3 (20%)
3	MAN	R	4	3	11,11,12	0.55	0	$15,\!15,\!17$	1.40	2 (13%)
3	NAG	R	5	3	14,14,15	0.62	0	17,19,21	1.73	3 (17%)
3	GAL	R	6	3	11,11,12	1.03	1 (9%)	15,15,17	1.66	5 (33%)
3	MAN	R	7	3	11,11,12	0.70	0	15,15,17	0.90	0
3	NAG	R	8	3	14,14,15	0.65	0	17,19,21	1.66	3 (17%)
3	FUC	R	9	3	10,10,11	0.95	0	14,14,16	1.29	2 (14%)
3	NAG	S	1	3,1	14,14,15	0.83	0	17,19,21	1.42	1 (5%)
3	NAG	S	2	3	14,14,15	0.70	0	17,19,21	1.33	3 (17%)
3	BMA	S	3	3	11,11,12	0.48	0	$15,\!15,\!17$	1.71	2 (13%)
3	MAN	S	4	3	11,11,12	0.72	0	$15,\!15,\!17$	2.17	6 (40%)
3	NAG	S	5	3	14,14,15	0.97	0	17,19,21	1.59	3 (17%)
3	GAL	S	6	3	11,11,12	1.22	1 (9%)	15,15,17	2.07	5 (33%)
3	MAN	S	7	3	11,11,12	0.71	0	$15,\!15,\!17$	0.91	0
3	NAG	S	8	3	14,14,15	0.76	0	17,19,21	1.39	3 (17%)
3	FUC	S	9	3	10,10,11	1.03	0	14,14,16	1.58	2 (14%)
3	NAG	Т	1	3,1	14,14,15	0.87	0	17,19,21	1.49	4 (23%)
3	NAG	Т	2	3	14,14,15	0.76	0	17,19,21	1.80	3 (17%)
3	BMA	Т	3	3	11,11,12	1.24	1 (9%)	$15,\!15,\!17$	1.45	3 (20%)
3	MAN	Т	4	3	11,11,12	0.83	0	$15,\!15,\!17$	1.72	4 (26%)
3	NAG	Т	5	3	14,14,15	0.74	0	17,19,21	1.53	5 (29%)
3	GAL	Т	6	3	11,11,12	0.70	0	15,15,17	1.87	5 (33%)
3	MAN	Т	7	3	11,11,12	0.74	0	15,15,17	1.12	1 (6%)
3	NAG	Т	8	3	14,14,15	0.70	0	17,19,21	1.45	2 (11%)
3	FUC	Т	9	3	10,10,11	0.87	0	14,14,16	1.09	1 (7%)
3	NAG	U	1	3,1	14,14,15	0.75	0	17,19,21	1.51	3 (17%)
3	NAG	U	2	3	14,14,15	0.79	0	17,19,21	1.61	2 (11%)
3	BMA	U	3	3	11,11,12	0.76	0	15,15,17	1.08	2 (13%)

Mal Turna Ch		Chain	Dog	Link	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	MAN	U	4	3	11,11,12	0.72	0	$15,\!15,\!17$	1.55	3 (20%)
3	NAG	U	5	3	14,14,15	0.74	0	$17,\!19,\!21$	1.70	3 (17%)
3	GAL	U	6	3	11,11,12	0.99	1 (9%)	$15,\!15,\!17$	1.85	3 (20%)
3	MAN	U	7	3	11,11,12	0.73	0	$15,\!15,\!17$	1.46	3 (20%)
3	NAG	U	8	3	14,14,15	0.60	0	17,19,21	1.08	1 (5%)
3	FUC	U	9	3	10,10,11	0.78	0	14,14,16	1.21	2 (14%)
3	NAG	V	1	3,1	14,14,15	0.86	1 (7%)	17,19,21	1.48	4 (23%)
3	NAG	V	2	3	14,14,15	0.70	0	17,19,21	1.99	4 (23%)
3	BMA	V	3	3	11,11,12	0.59	0	$15,\!15,\!17$	1.10	1 (6%)
3	MAN	V	4	3	11,11,12	0.76	0	$15,\!15,\!17$	1.61	4 (26%)
3	NAG	V	5	3	14,14,15	0.68	0	17,19,21	1.75	3 (17%)
3	GAL	V	6	3	11,11,12	0.92	1 (9%)	$15,\!15,\!17$	1.62	4 (26%)
3	MAN	V	7	3	11,11,12	0.70	0	$15,\!15,\!17$	0.86	0
3	NAG	V	8	3	14,14,15	0.60	0	$17,\!19,\!21$	1.12	1 (5%)
3	FUC	V	9	3	10,10,11	0.98	0	$14,\!14,\!16$	1.53	4 (28%)
3	NAG	W	1	3,1	14,14,15	0.55	0	17,19,21	1.30	3 (17%)
3	NAG	W	2	3	14,14,15	0.53	0	17,19,21	1.49	2 (11%)
3	BMA	W	3	3	11,11,12	0.70	0	$15,\!15,\!17$	1.45	1 (6%)
3	MAN	W	4	3	11,11,12	0.96	0	$15,\!15,\!17$	2.50	6 (40%)
3	NAG	W	5	3	14,14,15	0.96	0	17,19,21	1.49	3 (17%)
3	GAL	W	6	3	11,11,12	0.98	1 (9%)	$15,\!15,\!17$	1.79	3 (20%)
3	MAN	W	7	3	11,11,12	0.64	0	$15,\!15,\!17$	1.33	1 (6%)
3	NAG	W	8	3	14,14,15	0.81	0	17,19,21	1.94	3 (17%)
3	FUC	W	9	3	10,10,11	0.99	0	14,14,16	1.83	6 (42%)
3	NAG	Х	1	3,1	14,14,15	0.54	0	17,19,21	1.45	2 (11%)
3	NAG	Х	2	3	14,14,15	0.73	0	17,19,21	1.36	3 (17%)
3	BMA	Х	3	3	11,11,12	0.68	0	$15,\!15,\!17$	0.77	0
3	MAN	X	4	3	11,11,12	0.72	0	$15,\!15,\!17$	1.45	2 (13%)
3	NAG	X	5	3	14,14,15	0.94	1 (7%)	17,19,21	1.30	2 (11%)
3	GAL	Х	6	3	11,11,12	1.07	1 (9%)	$15,\!15,\!17$	1.63	5 (33%)
3	MAN	Х	7	3	11,11,12	0.75	0	15, 15, 17	1.34	3 (20%)
3	NAG	Х	8	3	14,14,15	0.50	0	17,19,21	0.91	0
3	FUC	Х	9	3	10,10,11	0.76	0	$14,\!14,\!16$	1.02	1 (7%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	Q	1	3,1	-	0/6/23/26	0/1/1/1
3	NAG	Q	2	3	-	2/6/23/26	0/1/1/1
3	BMA	Q	3	3	-	0/2/19/22	0/1/1/1
3	MAN	Q	4	3	-	2/2/19/22	0/1/1/1
3	NAG	Q	5	3	-	4/6/23/26	0/1/1/1
3	GAL	Q	6	3	-	2/2/19/22	0/1/1/1
3	MAN	Q	7	3	-	1/2/19/22	0/1/1/1
3	NAG	Q	8	3	-	4/6/23/26	0/1/1/1
3	FUC	Q	9	3	-	-	0/1/1/1
3	NAG	R	1	3,1	-	5/6/23/26	0/1/1/1
3	NAG	R	2	3	-	2/6/23/26	0/1/1/1
3	BMA	R	3	3	-	0/2/19/22	0/1/1/1
3	MAN	R	4	3	-	1/2/19/22	0/1/1/1
3	NAG	R	5	3	-	4/6/23/26	0/1/1/1
3	GAL	R	6	3	-	2/2/19/22	0/1/1/1
3	MAN	R	7	3	-	1/2/19/22	0/1/1/1
3	NAG	R	8	3	-	4/6/23/26	0/1/1/1
3	FUC	R	9	3	-	-	0/1/1/1
3	NAG	S	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	S	2	3	-	0/6/23/26	0/1/1/1
3	BMA	S	3	3	-	0/2/19/22	0/1/1/1
3	MAN	S	4	3	-	2/2/19/22	0/1/1/1
3	NAG	S	5	3	-	2/6/23/26	0/1/1/1
3	GAL	S	6	3	-	2/2/19/22	0/1/1/1
3	MAN	S	7	3	-	2/2/19/22	0/1/1/1
3	NAG	S	8	3	-	2/6/23/26	0/1/1/1
3	FUC	S	9	3	-	-	0/1/1/1
3	NAG	Т	1	3,1	-	2/6/23/26	0/1/1/1
3	NAG	Т	2	3	-	4/6/23/26	0/1/1/1
3	BMA	Т	3	3	-	0/2/19/22	0/1/1/1
3	MAN	Т	4	3	-	0/2/19/22	0/1/1/1
3	NAG	Т	5	3	-	2/6/23/26	0/1/1/1
3	GAL	Т	6	3	-	0/2/19/22	0/1/1/1
3	MAN	Т	7	3	-	$0/2/19/2\overline{2}$	0/1/1/1
3	NAG	Т	8	3	-	0/6/23/26	0/1/1/1
3	FUC	Т	9	3	-	-	0/1/1/1

Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	U	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	U	2	3	-	2/6/23/26	0/1/1/1
3	BMA	U	3	3	_	1/2/19/22	0/1/1/1
3	MAN	U	4	3	-	2/2/19/22	0/1/1/1
3	NAG	U	5	3	-	2/6/23/26	0/1/1/1
3	GAL	U	6	3	_	2/2/19/22	0/1/1/1
3	MAN	U	7	3	_	2/2/19/22	0/1/1/1
3	NAG	U	8	3	_	4/6/23/26	0/1/1/1
3	FUC	U	9	3	_	-	0/1/1/1
3	NAG	V	1	3,1	_	3/6/23/26	0/1/1/1
3	NAG	V	2	3	_	0/6/23/26	0/1/1/1
3	BMA	V	3	3	-	1/2/19/22	0/1/1/1
3	MAN	V	4	3	-	1/2/19/22	0/1/1/1
3	NAG	V	5	3	-	3/6/23/26	0/1/1/1
3	GAL	V	6	3	-	0/2/19/22	0/1/1/1
3	MAN	V	7	3	-	2/2/19/22	0/1/1/1
3	NAG	V	8	3	-	3/6/23/26	0/1/1/1
3	FUC	V	9	3	-	-	0/1/1/1
3	NAG	W	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	W	2	3	-	0/6/23/26	0/1/1/1
3	BMA	W	3	3	-	0/2/19/22	0/1/1/1
3	MAN	W	4	3	-	1/2/19/22	0/1/1/1
3	NAG	W	5	3	-	0/6/23/26	0/1/1/1
3	GAL	W	6	3	-	2/2/19/22	0/1/1/1
3	MAN	W	7	3	-	0/2/19/22	0/1/1/1
3	NAG	W	8	3	-	4/6/23/26	0/1/1/1
3	FUC	W	9	3	-	-	0/1/1/1
3	NAG	Х	1	3,1	-	4/6/23/26	0/1/1/1
3	NAG	Х	2	3	-	5/6/23/26	0/1/1/1
3	BMA	Х	3	3	_	0/2/19/22	0/1/1/1
3	MAN	Х	4	3	-	2/2/19/22	0/1/1/1
3	NAG	Х	5	3	-	4/6/23/26	0/1/1/1
3	GAL	Х	6	3	-	2/2/19/22	0/1/1/1
3	MAN	Х	7	3	-	2/2/19/22	0/1/1/1
3	NAG	Х	8	3	-	2/6/23/26	0/1/1/1
3	FUC	Х	9	3	-	-	0/1/1/1

All (10) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	S	6	GAL	C2-C3	2.54	1.56	1.52
3	Т	3	BMA	C2-C3	-2.38	1.49	1.52
3	R	1	NAG	C1-C2	2.29	1.55	1.52
3	Х	5	NAG	O5-C1	-2.28	1.40	1.43
3	W	6	GAL	C2-C3	2.22	1.55	1.52
3	Х	6	GAL	C4-C5	2.20	1.57	1.53
3	V	6	GAL	C2-C3	2.20	1.55	1.52
3	R	6	GAL	C2-C3	2.14	1.55	1.52
3	V	1	NAG	O5-C1	-2.03	1.40	1.43
3	U	6	GAL	C2-C3	2.00	1.55	1.52

All (196) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Q	6	GAL	C1-O5-C5	6.49	120.98	112.19
3	W	8	NAG	C1-O5-C5	6.22	120.62	112.19
3	W	4	MAN	C1-O5-C5	-6.21	103.77	112.19
3	V	2	NAG	C2-N2-C7	-5.56	114.98	122.90
3	Q	8	NAG	C1-O5-C5	5.38	119.49	112.19
3	S	4	MAN	C1-O5-C5	5.09	119.09	112.19
3	V	5	NAG	C1-O5-C5	-5.03	105.38	112.19
3	S	3	BMA	C1-O5-C5	4.97	118.93	112.19
3	Т	2	NAG	C1-O5-C5	4.73	118.60	112.19
3	U	6	GAL	O5-C5-C6	4.67	114.53	107.20
3	U	2	NAG	C1-O5-C5	4.58	118.40	112.19
3	R	3	BMA	C1-C2-C3	4.55	115.26	109.67
3	Q	6	GAL	O5-C1-C2	4.35	117.49	110.77
3	S	1	NAG	O5-C1-C2	-4.33	104.45	111.29
3	Q	7	MAN	O5-C1-C2	4.25	117.33	110.77
3	Т	6	GAL	C1-O5-C5	4.24	117.94	112.19
3	Т	4	MAN	C1-O5-C5	4.17	117.84	112.19
3	Q	5	NAG	C1-O5-C5	4.14	117.81	112.19
3	S	6	GAL	C1-C2-C3	4.14	114.75	109.67
3	W	4	MAN	C6-C5-C4	4.08	122.55	113.00
3	Q	7	MAN	C1-O5-C5	4.05	117.67	112.19
3	Q	8	NAG	C3-C4-C5	-4.04	103.04	110.24
3	W	7	MAN	C1-O5-C5	4.02	117.64	112.19
3	U	1	NAG	C2-N2-C7	-4.01	117.20	122.90
3	Q	2	NAG	O5-C5-C6	3.97	113.43	107.20
3	R	5	NAG	C4-C3-C2	-3.94	105.24	111.02
3	Т	8	NAG	C2-N2-C7	-3.94	117.30	122.90
3	W	2	NAG	C1-O5-C5	3.92	117.50	112.19
3	W	6	GAL	C1-C2-C3	3.91	114.48	109.67

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	U	5	NAG	C1-O5-C5	3.83	117.39	112.19
3	R	5	NAG	C2-N2-C7	-3.73	117.59	122.90
3	W	3	BMA	C1-O5-C5	3.63	117.11	112.19
3	U	5	NAG	O5-C5-C6	3.62	112.87	107.20
3	Q	8	NAG	C4-C3-C2	-3.61	105.72	111.02
3	W	6	GAL	O5-C5-C6	3.58	112.81	107.20
3	S	5	NAG	C4-C3-C2	-3.55	105.82	111.02
3	Х	4	MAN	O3-C3-C2	-3.54	103.22	109.99
3	R	6	GAL	C1-O5-C5	3.52	116.96	112.19
3	V	6	GAL	C1-C2-C3	3.49	113.95	109.67
3	Х	1	NAG	C1-O5-C5	3.37	116.75	112.19
3	Q	4	MAN	C3-C4-C5	-3.30	104.34	110.24
3	R	4	MAN	C1-O5-C5	3.30	116.67	112.19
3	W	4	MAN	O5-C1-C2	-3.30	105.68	110.77
3	R	2	NAG	C4-C3-C2	-3.28	106.20	111.02
3	S	4	MAN	O4-C4-C5	3.25	117.38	109.30
3	Х	2	NAG	C8-C7-N2	3.23	121.57	116.10
3	R	2	NAG	C1-O5-C5	3.21	116.54	112.19
3	Q	1	NAG	C2-N2-C7	3.18	127.43	122.90
3	R	8	NAG	C1-O5-C5	3.18	116.50	112.19
3	V	5	NAG	O5-C5-C6	3.17	112.17	107.20
3	R	8	NAG	C4-C3-C2	-3.15	106.40	111.02
3	U	4	MAN	O4-C4-C5	3.14	117.09	109.30
3	R	8	NAG	C2-N2-C7	-3.14	118.44	122.90
3	S	5	NAG	C2-N2-C7	-3.13	118.45	122.90
3	Т	2	NAG	C2-N2-C7	3.12	127.35	122.90
3	V	2	NAG	O5-C1-C2	-3.12	106.36	111.29
3	V	6	GAL	C1-O5-C5	3.09	116.38	112.19
3	S	9	FUC	C6-C5-C4	3.06	118.72	113.07
3	W	9	FUC	O5-C1-C2	3.04	115.46	110.77
3	W	9	FUC	C3-C4-C5	3.01	$114.4\overline{6}$	109.77
3	W	6	GAL	O5-C1-C2	3.01	115.42	110.77
3	R	1	NAG	O5-C5-C6	3.00	111.90	107.20
3	X	1	NAG	O5-C5-C6	2.98	111.87	107.20
3	Q	4	MAN	O5-C1-C2	-2.97	106.19	110.77
3	R	1	NAG	C3-C4-C5	-2.96	$1\overline{04.95}$	110.24
3	W	5	NAG	O5-C1-C2	-2.96	106.62	111.29
3	U	1	NAG	O5-C1-C2	-2.95	106.64	111.29
3	Q	1	NAG	C3-C4-C5	-2.91	105.05	110.24
3	U	9	FUC	O5-C5-C6	2.91	113.58	107.33
3	R	3	BMA	O5-C5-C6	2.90	111.74	107.20
3	U	7	MAN	O5-C5-C6	2.89	$111.7\overline{4}$	107.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	R	3	BMA	C2-C3-C4	2.89	115.89	110.89
3	R	5	NAG	O5-C1-C2	-2.89	106.73	111.29
3	Q	7	MAN	C1-C2-C3	2.87	113.20	109.67
3	U	6	GAL	C1-C2-C3	2.86	113.18	109.67
3	R	9	FUC	O5-C5-C6	2.85	113.47	107.33
3	Т	5	NAG	C1-O5-C5	2.85	116.06	112.19
3	Q	6	GAL	C1-C2-C3	2.84	113.16	109.67
3	Х	5	NAG	C2-N2-C7	-2.84	118.86	122.90
3	V	4	MAN	O2-C2-C3	-2.83	104.46	110.14
3	V	5	NAG	C2-N2-C7	-2.83	118.88	122.90
3	S	6	GAL	O5-C5-C6	2.82	111.63	107.20
3	Т	1	NAG	C1-O5-C5	2.82	116.01	112.19
3	W	9	FUC	O5-C5-C6	2.81	113.38	107.33
3	W	5	NAG	C2-N2-C7	-2.81	118.90	122.90
3	Q	2	NAG	C1-O5-C5	2.80	115.99	112.19
3	Т	4	MAN	C3-C4-C5	-2.78	105.28	110.24
3	V	4	MAN	O2-C2-C1	2.78	114.83	109.15
3	S	4	MAN	O5-C1-C2	2.78	115.06	110.77
3	S	4	MAN	O3-C3-C4	-2.76	103.96	110.35
3	Т	5	NAG	O5-C5-C6	2.76	111.53	107.20
3	Т	3	BMA	O2-C2-C3	-2.74	104.64	110.14
3	V	8	NAG	C1-O5-C5	2.71	115.86	112.19
3	V	2	NAG	C1-O5-C5	2.70	115.85	112.19
3	Х	6	GAL	C1-O5-C5	2.70	115.85	112.19
3	V	9	FUC	O4-C4-C5	2.70	115.64	109.67
3	V	4	MAN	C2-C3-C4	-2.70	106.23	110.89
3	S	5	NAG	O4-C4-C5	2.69	115.97	109.30
3	Х	7	MAN	O5-C1-C2	-2.68	106.63	110.77
3	V	1	NAG	O3-C3-C2	-2.68	103.93	109.47
3	Т	4	MAN	O3-C3-C2	2.67	115.11	109.99
3	Q	4	MAN	O3-C3-C2	-2.65	104.91	109.99
3	U	4	MAN	O5-C1-C2	2.65	114.86	110.77
3	S	8	NAG	C3-C4-C5	2.65	114.97	110.24
3	Q	5	NAG	O5-C5-C6	2.64	111.34	107.20
3	T	5	NAG	O5-C1-C2	-2.63	107.13	111.29
3	Т	6	GAL	C1-C2-C3	2.63	112.90	109.67
3	S	8	NAG	C2-N2-C7	2.62	126.64	122.90
3	W	9	FUC	C1-O5-C5	2.61	118.69	112.78
3	S	4	MAN	O4-C4-C3	-2.60	104.34	110.35
3	Х	6	GAL	C3-C4-C5	2.58	114.84	110.24
3	U	6	GAL	O5-C5-C4	-2.58	104.55	110.83
3	Q	9	FUC	C1-C2-C3	-2.57	106.51	109.67

Conti	Continued from previous page										
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$				
3	Т	4	MAN	C1-C2-C3	-2.56	106.52	109.67				
3	U	9	FUC	C3-C4-C5	2.56	113.76	109.77				
3	S	8	NAG	C4-C3-C2	2.55	114.75	111.02				
3	R	6	GAL	O4-C4-C5	2.54	115.61	109.30				
3	Т	6	GAL	O5-C5-C6	2.54	111.19	107.20				
3	Т	3	BMA	C1-O5-C5	2.54	115.63	112.19				
3	Т	6	GAL	C3-C4-C5	2.54	114.76	110.24				
3	Т	1	NAG	O5-C1-C2	-2.53	107.29	111.29				
3	S	6	GAL	O3-C3-C2	2.52	114.83	109.99				
3	W	1	NAG	O3-C3-C2	-2.51	104.27	109.47				
3	Т	9	FUC	O5-C5-C6	2.49	112.69	107.33				
3	S	6	GAL	O4-C4-C3	2.49	116.11	110.35				
3	S	6	GAL	C3-C4-C5	2.49	114.67	110.24				
3	Т	7	MAN	O6-C6-C5	-2.49	102.76	111.29				
3	V	6	GAL	O5-C5-C6	2.48	111.09	107.20				
3	W	1	NAG	C8-C7-N2	2.44	120.24	116.10				
3	U	2	NAG	C1-C2-N2	2.44	114.65	110.49				
3	Т	3	BMA	O3-C3-C2	-2.43	105.34	109.99				
3	V	3	BMA	C1-O5-C5	2.41	115.46	112.19				
3	S	9	FUC	C2-C3-C4	-2.41	106.73	110.89				
3	W	1	NAG	C3-C4-C5	-2.40	105.95	110.24				
3	U	7	MAN	C1-C2-C3	2.40	112.62	109.67				
3	S	2	NAG	O5-C1-C2	-2.39	107.52	111.29				
3	V	9	FUC	C1-O5-C5	2.39	118.19	112.78				
3	Q	1	NAG	C1-C2-N2	-2.38	106.42	110.49				
3	U	8	NAG	C4-C3-C2	-2.37	107.55	111.02				
3	R	1	NAG	C1-C2-N2	2.37	114.53	110.49				
3	V	4	MAN	O6-C6-C5	-2.36	103.19	111.29				
3	S	2	NAG	O3-C3-C4	-2.36	104.89	110.35				
3	Х	2	NAG	07-C7-N2	-2.36	117.62	121.95				
3	Т	2	NAG	C4-C3-C2	-2.34	107.58	111.02				
3	Х	6	GAL	C1-C2-C3	2.32	112.52	109.67				
3	S	4	MAN	O2-C2-C1	2.31	113.89	109.15				
3	W	9	FUC	O5-C5-C4	2.31	113.66	109.52				
3	Q	9	FUC	C3-C4-C5	2.31	113.36	109.77				
3	U	3	BMA	O5-C5-C6	2.29	110.79	107.20				
3	W	4	MAN	O4-C4-C3	-2.28	105.07	110.35				
3	V	9	FUC	C1-C2-C3	2.28	112.47	109.67				
3	V	6	GAL	O5-C1-C2	2.27	114.27	110.77				
3	W	8	NAG	C2-N2-C7	2.26	126.13	122.90				
3	S	3	BMA	C6-C5-C4	-2.25	107.72	113.00				
3	W	2	NAG	O5-C1-C2	-2.25	107.73	111.29				

Cntin d fa

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	Т	1	NAG	O5-C5-C6	2.25	110.73	107.20
3	R	1	NAG	C1-O5-C5	-2.24	109.16	112.19
3	R	4	MAN	O2-C2-C1	2.23	113.71	109.15
3	Х	9	FUC	O4-C4-C5	2.23	114.60	109.67
3	R	6	GAL	O4-C4-C3	-2.21	105.23	110.35
3	Т	5	NAG	C2-N2-C7	-2.21	119.75	122.90
3	Х	5	NAG	C6-C5-C4	-2.21	107.83	113.00
3	W	4	MAN	C3-C4-C5	-2.21	106.30	110.24
3	Х	7	MAN	O3-C3-C4	2.21	115.45	110.35
3	Х	7	MAN	C1-O5-C5	-2.20	109.21	112.19
3	U	5	NAG	O7-C7-N2	-2.19	117.92	121.95
3	R	1	NAG	O5-C1-C2	-2.19	107.83	111.29
3	U	3	BMA	O4-C4-C3	-2.18	105.31	110.35
3	V	1	NAG	C8-C7-N2	2.17	119.78	116.10
3	U	7	MAN	O5-C1-C2	-2.17	107.43	110.77
3	U	1	NAG	C1-C2-N2	2.16	114.18	110.49
3	W	9	FUC	C1-C2-C3	2.16	112.32	109.67
3	Q	6	GAL	C3-C4-C5	2.15	114.08	110.24
3	Х	6	GAL	C2-C3-C4	2.15	114.61	110.89
3	U	4	MAN	C1-C2-C3	2.14	112.30	109.67
3	R	9	FUC	C3-C4-C5	2.14	113.10	109.77
3	R	2	NAG	O5-C1-C2	-2.11	107.95	111.29
3	V	1	NAG	O5-C5-C6	-2.11	103.89	107.20
3	W	8	NAG	O7-C7-C8	-2.10	118.15	122.06
3	Х	6	GAL	O4-C4-C5	2.10	114.51	109.30
3	R	6	GAL	O3-C3-C2	2.09	113.99	109.99
3	Т	6	GAL	C6-C5-C4	-2.08	108.12	113.00
3	Q	3	BMA	O3-C3-C2	-2.08	106.00	109.99
3	W	5	NAG	O5-C5-C6	2.08	110.46	107.20
3	V	1	NAG	O7-C7-N2	-2.07	118.14	121.95
3	Х	4	MAN	O3-C3-C4	2.06	115.12	110.35
3	Т	5	NAG	O4-C4-C5	-2.06	104.19	109.30
3	Х	2	NAG	O5-C1-C2	-2.05	108.05	111.29
3	V	9	FUC	O5-C5-C4	2.03	113.16	109.52
3	R	6	GAL	C1-C2-C3	2.03	112.16	109.67
3	Q	6	GAL	O5-C5-C6	2.02	110.38	107.20
3	W	4	MAN	O6-C6-C5	-2.01	104.38	111.29
3	V	2	NAG	C1-C2-N2	2.01	113.92	110.49
3	S	2	NAG	C1-O5-C5	2.01	114.91	112.19
3	Т	1	NAG	O6-C6-C5	2.01	118.18	111.29
3	Т	8	NAG	C1-O5-C5	2.00	114.91	112.19

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
3	Q	5	NAG	C8-C7-N2-C2
3	Q	5	NAG	O7-C7-N2-C2
3	Q	8	NAG	C8-C7-N2-C2
3	Q	8	NAG	O7-C7-N2-C2
3	R	5	NAG	C8-C7-N2-C2
3	R	5	NAG	O7-C7-N2-C2
3	R	8	NAG	C8-C7-N2-C2
3	R	8	NAG	O7-C7-N2-C2
3	S	8	NAG	C8-C7-N2-C2
3	S	8	NAG	O7-C7-N2-C2
3	Т	1	NAG	C8-C7-N2-C2
3	Т	1	NAG	O7-C7-N2-C2
3	Т	2	NAG	C8-C7-N2-C2
3	Т	2	NAG	O7-C7-N2-C2
3	U	1	NAG	C8-C7-N2-C2
3	U	1	NAG	O7-C7-N2-C2
3	U	8	NAG	C8-C7-N2-C2
3	U	8	NAG	O7-C7-N2-C2
3	V	1	NAG	C8-C7-N2-C2
3	V	1	NAG	O7-C7-N2-C2
3	V	8	NAG	C8-C7-N2-C2
3	V	8	NAG	O7-C7-N2-C2
3	W	1	NAG	C8-C7-N2-C2
3	W	1	NAG	O7-C7-N2-C2
3	W	8	NAG	C8-C7-N2-C2
3	W	8	NAG	O7-C7-N2-C2
3	Х	1	NAG	C8-C7-N2-C2
3	Х	1	NAG	O7-C7-N2-C2
3	Х	2	NAG	C3-C2-N2-C7
3	Х	2	NAG	C8-C7-N2-C2
3	Х	2	NAG	O7-C7-N2-C2
3	Х	5	NAG	C8-C7-N2-C2
3	Х	5	NAG	O7-C7-N2-C2
3	X	8	NAG	C8-C7-N2-C2
3	X	8	NAG	07-C7-N2-C2
3	R	5	NAG	O5-C5-C6-O6
3	U	1	NAG	C4-C5-C6-O6
3	R	1	NAG	C8-C7-N2-C2
3	R	1	NAG	07-C7-N2-C2
3	Х	5	NAG	O5-C5-C6-O6
3	W	8	NAG	C4-C5-C6-O6
3	S	7	MAN	O5-C5-C6-O6

All (118) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	R	6	GAL	O5-C5-C6-O6
3	S	4	MAN	O5-C5-C6-O6
3	U	6	GAL	O5-C5-C6-O6
3	W	6	GAL	O5-C5-C6-O6
3	Q	4	MAN	C4-C5-C6-O6
3	Х	6	GAL	C4-C5-C6-O6
3	Q	2	NAG	O5-C5-C6-O6
3	U	1	NAG	O5-C5-C6-O6
3	R	5	NAG	C4-C5-C6-O6
3	Q	6	GAL	C4-C5-C6-O6
3	S	7	MAN	C4-C5-C6-O6
3	Х	5	NAG	C4-C5-C6-O6
3	W	8	NAG	O5-C5-C6-O6
3	R	2	NAG	C8-C7-N2-C2
3	Х	6	GAL	O5-C5-C6-O6
3	U	6	GAL	C4-C5-C6-O6
3	W	6	GAL	C4-C5-C6-O6
3	Q	4	MAN	O5-C5-C6-O6
3	S	4	MAN	C4-C5-C6-O6
3	Q	2	NAG	C4-C5-C6-O6
3	R	2	NAG	O7-C7-N2-C2
3	R	6	GAL	C4-C5-C6-O6
3	W	1	NAG	C4-C5-C6-O6
3	S	6	GAL	O5-C5-C6-O6
3	Х	4	MAN	O5-C5-C6-O6
3	R	8	NAG	O5-C5-C6-O6
3	Х	2	NAG	O5-C5-C6-O6
3	Q	5	NAG	C4-C5-C6-O6
3	Q	5	NAG	O5-C5-C6-O6
3	U	7	MAN	O5-C5-C6-O6
3	U	8	NAG	O5-C5-C6-O6
3	U	7	MAN	C4-C5-C6-O6
3	Т	2	NAG	C4-C5-C6-O6
3	Q	6	GAL	O5-C5-C6-O6
3	U	2	NAG	O5-C5-C6-O6
3	S	6	GAL	C4-C5-C6-O6
3	S	1	NAG	C4-C5-C6-O6
3	U	5	NAG	O5-C5-C6-O6
3	U	4	MAN	O5-C5-C6-O6
3	W	1	NAG	O5-C5-C6-O6
3	Q	7	MAN	O5-C5-C6-O6
3	V	7	MAN	C4-C5-C6-O6

Continued from previous page...

7 MAN C4-C5-C6-O6 Continued on next page...

Mol	Chain	Res	Type	Atoms
3	V	5	NAG	C8-C7-N2-C2
3	U	5	NAG	C4-C5-C6-O6
3	S	5	NAG	C4-C5-C6-O6
3	Х	7	MAN	C4-C5-C6-O6
3	Т	5	NAG	C8-C7-N2-C2
3	R	8	NAG	C4-C5-C6-O6
3	R	1	NAG	O5-C5-C6-O6
3	Q	8	NAG	C4-C5-C6-O6
3	S	1	NAG	O5-C5-C6-O6
3	Х	4	MAN	C4-C5-C6-O6
3	Х	2	NAG	C4-C5-C6-O6
3	S	5	NAG	O5-C5-C6-O6
3	V	3	BMA	C4-C5-C6-O6
3	Q	8	NAG	O5-C5-C6-O6
3	R	1	NAG	C4-C5-C6-O6
3	R	7	MAN	O5-C5-C6-O6
3	V	5	NAG	O7-C7-N2-C2
3	Х	7	MAN	O5-C5-C6-O6
3	R	4	MAN	C4-C5-C6-O6
3	U	8	NAG	C4-C5-C6-O6
3	V	1	NAG	C1-C2-N2-C7
3	Т	5	NAG	O7-C7-N2-C2
3	Т	2	NAG	O5-C5-C6-O6
3	U	3	BMA	C4-C5-C6-O6
3	Х	1	NAG	O5-C5-C6-O6
3	V	5	NAG	C4-C5-C6-O6
3	R	1	NAG	C3-C2-N2-C7
3	Х	1	NAG	C4-C5-C6-O6
3	U	4	MAN	C4-C5-C6-O6
3	V	7	MAN	O5-C5-C6-O6
3	V	4	MAN	O5-C5-C6-O6
3	U	2	NAG	C4-C5-C6-O6
3	W	4	MAN	C4-C5-C6-O6
3	V	8	NAG	O5-C5-C6-O6

Continued from previous page...

There are no ring outliers.

20 monomers are involved in 31 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Х	2	NAG	4	0
3	R	3	BMA	3	0
3	U	6	GAL	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	R	7	MAN	1	0
3	Т	1	NAG	2	0
3	V	2	NAG	2	0
3	W	6	GAL	1	0
3	Х	8	NAG	2	0
3	Х	9	FUC	2	0
3	Х	1	NAG	3	0
3	R	6	GAL	2	0
3	U	1	NAG	1	0
3	Х	5	NAG	1	0
3	W	1	NAG	1	0
3	W	8	NAG	2	0
3	R	2	NAG	1	0
3	V	1	NAG	3	0
3	W	5	NAG	1	0
3	W	9	FUC	1	0
3	Т	2	NAG	4	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{A}^2)$	Q < 0.9
1	А	209/212~(98%)	-0.42	1 (0%) 91 91	20, 39, 61, 69	7 (3%)
1	В	210/212~(99%)	-0.32	0 100 100	21, 40, 72, 77	7 (3%)
1	С	209/212~(98%)	-0.39	0 100 100	16, 39, 68, 74	7 (3%)
1	D	209/212~(98%)	-0.37	0 100 100	24, 43, 57, 67	7 (3%)
1	Ι	209/212~(98%)	-0.30	3 (1%) 75 75	20, 40, 68, 79	7 (3%)
1	J	209/212~(98%)	-0.18	3 (1%) 75 75	22, 45, 86, 94	4 (1%)
1	М	209/212~(98%)	-0.39	0 100 100	25, 44, 60, 64	7 (3%)
1	Ν	210/212~(99%)	0.08	12 (5%) 23 19	27, 58, 105, 108	7 (3%)
2	E	29/54~(53%)	0.22	1 (3%) 45 40	36, 64, 96, 101	0
2	F	46/54~(85%)	0.25	3 (6%) 18 14	36, 62, 98, 101	0
2	G	47/54~(87%)	0.21	4 (8%) 10 8	28, 50, 88, 100	0
2	Η	32/54~(59%)	0.79	3 (9%) 8 6	55, 82, 98, 102	0
2	K	46/54~(85%)	-0.02	1 (2%) 62 59	25, 47, 80, 82	0
2	L	47/54~(87%)	-0.18	1 (2%) 63 61	31, 47, 74, 87	0
2	Ο	46/54~(85%)	-0.15	1 (2%) 62 59	44, 53, 74, 84	0
2	Р	43/54~(79%)	0.48	4 (9%) 8 6	43, 75, 108, 114	0
All	All	2010/2128 (94%)	-0.21	37 (1%) 68 67	16, 45, 88, 114	53 (2%)

All (37) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	236	GLY	4.7
2	F	17	THR	4.1
2	F	15	THR	4.0
1	Ι	330	ALA	3.8
1	Ν	445	PRO	3.6

Mol	Chain	Res	Type	RSRZ
2	Н	36	PRO	3.3
2	G	4	PHE	3.2
2	Н	37	GLU	3.2
2	Р	6	PRO	2.9
2	Р	14	GLU	2.9
1	J	242	LEU	2.8
1	Ν	327	ALA	2.8
2	F	16	GLY	2.8
2	0	5	SER	2.8
2	K	36	PRO	2.7
2	G	36	PRO	2.7
1	Ι	329	PRO	2.6
1	N	444	SER	2.6
2	Н	38	THR	2.5
1	J	269	GLU	2.5
2	Р	7	GLY	2.5
1	Ι	326	LYS	2.3
1	N	326	LYS	2.3
1	N	273	VAL	2.3
2	L	4	PHE	2.2
1	Ν	328	LEU	2.2
1	N	266	VAL	2.1
1	Ν	271	PRO	2.1
2	Е	35	ASP	2.1
1	N	267	SER	2.1
2	Р	8	ARG	2.1
2	G	10	VAL	2.1
1	J	280	ASP	2.1
1	N	323	VAL	2.0
1	Ν	314	LEU	2.0
2	G	5	SER	2.0
1	N	265	ASP	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum,

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	NAG	W	8	14/15	0.73	0.31	102,106,108,108	0
3	NAG	R	8	14/15	0.75	0.21	103,108,110,111	0
3	FUC	R	9	10/11	0.81	0.23	94,97,99,102	0
3	NAG	V	8	14/15	0.82	0.22	107,111,113,113	0
3	FUC	Х	9	10/11	0.83	0.31	103,106,108,108	0
3	NAG	Т	8	14/15	0.84	0.18	72,81,86,89	0
3	MAN	Х	7	11/12	0.85	0.14	97,100,101,104	0
3	FUC	S	9	10/11	0.86	0.18	82,87,89,89	0
3	GAL	R	6	11/12	0.86	0.32	80,86,88,88	0
3	NAG	S	8	14/15	0.87	0.12	78,89,90,91	0
3	BMA	V	3	11/12	0.87	0.12	72,82,85,92	0
3	NAG	Q	8	14/15	0.87	0.19	97,100,102,105	0
3	GAL	W	6	11/12	0.88	0.30	75,79,81,82	0
3	NAG	Х	8	14/15	0.88	0.14	106,108,109,110	0
3	NAG	Х	1	14/15	0.88	0.25	94,98,100,101	0
3	GAL	Х	6	11/12	0.89	0.28	74,79,81,82	0
3	GAL	V	6	11/12	0.89	0.30	88,92,93,93	0
3	MAN	V	7	11/12	0.89	0.18	97,101,104,107	0
3	GAL	S	6	11/12	0.89	0.28	53,58,62,63	0
3	FUC	Т	9	10/11	0.90	0.14	79,85,86,86	0
3	NAG	Х	2	14/15	0.90	0.14	83,89,91,92	0
3	FUC	V	9	10/11	0.90	0.24	86,89,91,92	0
3	NAG	R	1	14/15	0.91	0.15	68,72,77,81	0
3	GAL	Q	6	11/12	0.91	0.20	66,69,72,72	0
3	MAN	W	7	11/12	0.91	0.14	78,83,84,90	0
3	MAN	Q	4	11/12	0.91	0.17	74,77,84,86	0
3	GAL	U	6	11/12	0.91	0.22	$50,\!57,\!59,\!61$	0
3	NAG	U	8	14/15	0.92	0.18	89,94,95,95	0
3	BMA	Х	3	11/12	0.92	0.10	$79,\!86,\!89,\!93$	0
3	MAN	R	7	11/12	0.92	0.14	84,86,88,95	0
3	MAN	Q	7	11/12	0.92	0.15	90,92,93,95	0
3	FUC	Q	9	10/11	0.92	0.22	80,84,88,90	0
3	MAN	U	7	11/12	0.92	0.12	$71,\!74,\!77,\!83$	0
3	NAG	V	2	14/15	0.93	0.16	62,70,74,74	0
3	NAG	S	1	14/15	0.93	0.14	54,58,68,69	0
3	BMA	Q	3	11/12	0.93	0.12	$68, \overline{71, 74}, \overline{79}$	0
3	NAG	U	1	14/15	0.93	0.17	64,66,70,70	0
3	NAG	R	5	14/15	0.93	0.18	78,81,91,94	0
3	NAG	Q	5	14/15	0.93	0.13	64,74,79,80	0
3	GAL	Т	6	11/12	0.93	0.14	66,70,72,75	0
3	FUC	U	9	10/11	0.93	0.21	75,79,81,83	0

median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	FUC	W	9	10/11	0.94	0.17	77,79,82,82	0
3	MAN	U	4	11/12	0.94	0.12	49,50,53,54	0
3	NAG	V	1	14/15	0.94	0.11	66,69,72,77	0
3	MAN	R	4	11/12	0.94	0.11	80,82,85,88	0
3	MAN	W	4	11/12	0.94	0.15	54,56,62,63	0
3	MAN	S	4	11/12	0.94	0.16	48,54,55,56	0
3	NAG	V	5	14/15	0.94	0.12	60,62,64,72	0
3	BMA	R	3	11/12	0.94	0.11	71,74,77,78	0
3	NAG	U	5	14/15	0.95	0.14	47,51,52,54	0
3	BMA	W	3	11/12	0.95	0.11	53,57,59,62	0
3	NAG	Т	1	14/15	0.95	0.19	49,52,58,65	0
3	NAG	Q	1	14/15	0.95	0.18	62,64,67,74	0
3	NAG	U	2	14/15	0.95	0.16	52,60,62,62	0
3	BMA	U	3	11/12	0.95	0.12	62,63,64,68	0
3	MAN	S	7	11/12	0.95	0.12	63,64,66,72	0
3	MAN	Т	7	11/12	0.96	0.12	55,57,58,66	0
3	NAG	Q	2	14/15	0.96	0.12	56,63,65,67	0
3	NAG	S	5	14/15	0.96	0.14	40,44,48,51	0
3	NAG	R	2	14/15	0.96	0.12	61,64,67,67	0
3	NAG	Т	2	14/15	0.96	0.14	42,46,51,54	0
3	MAN	Х	4	11/12	0.96	0.12	65,67,70,71	0
3	BMA	Т	3	11/12	0.96	0.11	45,46,48,52	0
3	NAG	W	5	14/15	0.96	0.13	$42,\!53,\!57,\!61$	0
3	MAN	Т	4	11/12	0.96	0.11	40,45,48,49	0
3	NAG	S	2	14/15	0.96	0.14	$47,\!51,\!53,\!54$	0
3	NAG	Х	5	14/15	0.97	0.12	68,69,74,74	0
3	NAG	W	1	14/15	0.97	0.12	$57,\!59,\!62,\!68$	0
3	MAN	V	4	11/12	0.97	0.12	$65,\!68,\!69,\!70$	0
3	BMA	S	3	11/12	0.97	0.10	$50,\!53,\!53,\!58$	0
3	NAG	Т	5	14/15	0.97	0.13	47,51,53,53	0
3	NAG	W	2	14/15	0.98	0.12	52,56,57,58	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

