

wwPDB X-ray Structure Validation Summary Report (i)

Dec 4, 2023 - 05:04 am GMT

PDB ID : 2WLS

Title : Crystal structure of Mus musculus Acetylcholinesterase in complex with

AMTS13

Authors: Pang, Y.P.; Ekstrom, F.; Polsinelli, G.A.; Gao, Y.; Rana, S.; Hua, D.H.;

Andersson, B.; Andersson, P.O.; Peng, L.; Singh, S.K.; Mishra, R.K.; Zhu,

K.Y.; Fallon, A.M.; Ragsdale, D.W.; Brimijoin, S.

Deposited on : 2009-06-25

Resolution : 2.60 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

Mol Probity : 4.02b-467

Mogul : NOT EXECUTED

Xtriage (Phenix) : 1.13

EDS : FAILED

buster-report : NOT EXECUTED
Percentile statistics : NOT EXECUTED
Ideal geometry (proteins) : Engh & Huber (2001)

Ideal geometry (DNA, RNA) : Parkinson et al. (1996)

Validation Pipeline (wwPDB-VP) : 2.36

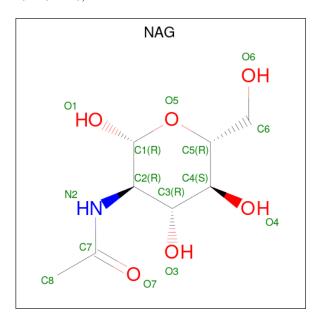
1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\ DIFFRACTION$

The reported resolution of this entry is 2.60 Å.

There are no overall percentile quality scores available for this entry.

2 Entry composition (i)


There are 6 unique types of molecules in this entry. The entry contains 8783 atoms, of which 0 are hydrogens and 0 are deuteriums.

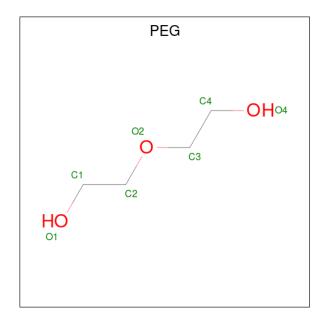
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called ACETYLCHOLINESTERASE.

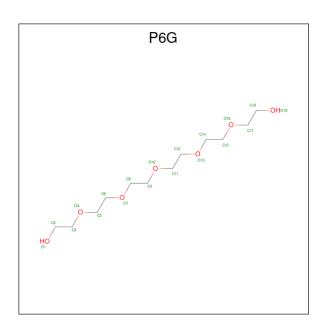
\mathbf{Mol}	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Λ	535	Total	С	N	O S	2	0		
1	Λ	955	4185	2687	727	757	14	0	3	0
1	D	533	Total	С	N	О	S	0	0	0
1	Ъ	999	4159	2670	718	757	14	0	0	U

• Molecule 2 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
2	A	1	Total (0	0
2	A	1	Total (N 8 1	O 5	0	0


• Molecule 3 is N,N,N-trimethyl-13-[(methylsulfonyl)sulfanyl]tridecan-1-aminium (three-letter code: X13) (formula: $C_{17}H_{38}NO_2S_2$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
2	Λ	1	Total	otal C N S		0		
3	A	1	18	16	1	1	U	U
2	D	1	Total	С	N	S	0	0
3	Б	1	18	16	1	1	U	


 $\bullet \ \ Molecule\ 4 \ is\ DI(HYDROXYETHYL)ETHER\ (three-letter\ code:\ PEG)\ (formula:\ C_4H_{10}O_3).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	Total C O 7 4 3	0	0

 \bullet Molecule 5 is HEXAETHYLENE GLYCOL (three-letter code: P6G) (formula: $\mathrm{C_{12}H_{26}O_{7}}).$

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
5	В	1	Total 19	C 12	O 7	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	183	Total O 183 183	0	0
6	В	166	Total O 166 166	0	0

 ${\tt SEQUENCE-PLOTS\ INFO missing INFO}$

3 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source	
Space group	P 21 21 21	Depositor	
Cell constants	78.48Å 110.31Å 227.60Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor	
Resolution (Å)	29.04 - 2.60	Depositor	
% Data completeness	99.5 (29.04-2.60)	Depositor	
(in resolution range)	, , ,	Depositor	
R_{merge}	0.08	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	4.40 (at 2.61Å)	Xtriage	
Refinement program	PHENIX (PHENIX.REFINE)	Depositor	
R, R_{free}	0.185 , 0.226	Depositor	
Wilson B-factor (A^2)	60.7	Xtriage	
Anisotropy	0.043	Xtriage	
L-test for twinning ²	$ < L > = 0.50, < L^2> = 0.34$	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	8783	wwPDB-VP	
Average B, all atoms (\mathring{A}^2)	58.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.02% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $< L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

4 Model quality (i)

4.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, P6G, X13, PEG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.41	0/4318	0.57	0/5901	
1	В	0.39	0/4282	0.56	0/5851	
All	All	0.40	0/8600	0.57	0/11752	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

4.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	4185	0	4072	85	0
1	В	4159	0	4047	99	0
2	A	28	0	26	0	0
3	A	18	0	35	4	0
3	В	18	0	35	0	0
4	В	7	0	10	0	0
5	В	19	0	24	3	0
6	A	183	0	0	6	0
6	В	166	0	0	1	0
All	All	8783	0	8249	184	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including

hydrogen atoms). The all-atom clashscore for this structure is 11.

The worst 5 of 184 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$egin{aligned} & ext{Interatomic} \ & ext{distance} \ & ext{(Å)} \end{aligned}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
1:B:197:VAL:H	1:B:223:HIS:CD2	1.74	1.05
1:B:497:SER:H	1:B:498:PRO:HA	1.19	1.04
1:B:197:VAL:N	1:B:223:HIS:HD2	1.73	0.86
1:B:197:VAL:H	1:B:223:HIS:HD2	0.88	0.85
1:A:4:GLU:OE2	1:A:18:ARG:HD3	1.75	0.85

There are no symmetry-related clashes.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percei	ntiles
1	A	534/543 (98%)	509 (95%)	25 (5%)	0	100	100
1	В	529/543 (97%)	501 (95%)	22 (4%)	6 (1%)	14	30
All	All	1063/1086 (98%)	1010 (95%)	47 (4%)	6 (1%)	25	47

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	497	SER
1	В	542	ALA
1	В	494	ASP
1	В	496	LYS
1	В	322	GLN

4.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	439/443 (99%)	419 (95%)	20 (5%)	27 51
1	В	438/443 (99%)	416 (95%)	22 (5%)	24 47
All	All	877/886 (99%)	835 (95%)	42 (5%)	25 49

5 of 42 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	265	ASN
1	В	424	ARG
1	В	281	LEU
1	В	296	ARG
1	В	496	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 8 such sidechains are listed below:

Mol	Chain	Res	Type
1	В	291	GLN
1	В	228	GLN
1	A	509	GLN
1	A	474	GLN
1	В	223	HIS

4.3.3 RNA (i)

There are no RNA molecules in this entry.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

Mogul was not executed - this section is therefore empty.

4.5 Carbohydrates (i)

Mogul was not executed - this section is therefore empty.

4.6 Ligand geometry (i)

Mogul was not executed - this section is therefore empty.

4.7 Other polymers (i)

Mogul was not executed - this section is therefore empty.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Fit of model and data (i)

5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

