

wwPDB EM Validation Summary Report (i)

Mar 13, 2024 – 07:23 PM JST

:	5WSG
:	EMD-6684
:	Cryo-EM structure of the Catalytic Step II spliceosome (C* complex) at 4.0 angstrom resolution
:	Yan, C.; Wan, R.; Bai, R.; Huang, G.; Shi, Y.
:	2010-12-07
:	4.00 Å(reported)
	::

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 70
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${ m EM~structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length			Qua	ity of c	hain	
1	А	2413	8%		77%		•	20%
2	С	1008	—		84%			• 13%
3	J	135	20%				80%	
4	О	451	•		70%		••	25%
5	Р	379	10%	50%		·	47%	
6	Q	364	13%	48%		•	49%	
7	R	339			75%		•	23%
8	S	175	9%	37%	•		61%	

Mol	Chain	Length	Quality of chain	Quality of chain								
9	Т	157	92%		7%							
10	-		36%									
10	Z	577	75%	•	23%							
11	В	13	62%	389	%							
12	Ν	15	73%	27%								
13	D	214	12% 39% 14% •	45%								
14	Е	112	5 6%	36%	8%							
15	L	1175	5% • • • 92%									
16	М	23	65% 35%	65%								
17	с	579	73%	•	25%							
18	d	652	45% 81%		18%							
19	Ι	215	47%	53%								
20	V	858	63%	••	31%							
21	n	455	54% 54% 7% •	35	%							
22	О	503	25% 24% • 75%									
22	р	503	25% 24% • 75%									
22	q	503	77%		23%							
22	r	503	25% 23% • 75%									
23	t	175	89%		6% 11%							
24	F	196	40%	60%								
24	k	196	37%	59%								
25	G	94	80%	5%	20%							
25	i	94	67%	5%	20%							
26	Н	86	81%		19%							
26	h	86	72%		19%							
L		77	90%		1.00/							
27	K	((86%		• • 10%							

Continued from previous page...

Mol	Chain	Length	Quality of chain	
27	j	77	73%	•• 10%
28	U	101	81%	• 19%
28	1	101	48%	• 19%
29	V	146	56% 52% •	44%
29	m	146	52% •	44%
30	W	110	59% 54% · ·	41%
30	g	110	75%	5% • 15%
31	Х	111	68% 5%	27%
32	Y	238	48% 7% ·	43%
33	b	14	71% 14% 86%	
34	е	1071	63% 58% 5% •	37%
35	f	251	55% 58% •	41%

Continued from previous page...

2 Entry composition (i)

There are 38 unique types of molecules in this entry. The entry contains 76730 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Pre-mRNA-splicing factor 8.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	1931	Total 15939	C 10244	N 2739	O 2898	${ m S}{ m 58}$	0	0

• Molecule 2 is a protein called Pre-mRNA-splicing factor SNU114.

Mol	Chain	Residues		Α	AltConf	Trace			
2	С	878	Total	С	Ν	Ο	\mathbf{S}	0	0
	U	010	7019	4529	1166	1295	29	0	0

• Molecule 3 is a protein called Pre-mRNA-splicing factor CWC21.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
3	J	27	Total 190	C 112	N 38	O 40	0	0

• Molecule 4 is a protein called Pre-mRNA-splicing factor PRP46.

Mol	Chain	Residues		At	AltConf	Trace			
4	Ο	337	Total 2646	C 1669	N 466	0 501	S 10	0	0

• Molecule 5 is a protein called Pre-mRNA-processing protein 45.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Р	201	Total 1583	C 988	N 290	O 298	S 7	0	0

• Molecule 6 is a protein called Pre-mRNA-splicing factor SLT11.

Mol	Chain	Residues		At	AltConf	Trace			
6	Q	185	Total 1472	C 930	N 256	0 271	S 15	0	0

• Molecule 7 is a protein called Pre-mRNA-splicing factor CWC2.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	R	261	Total 2089	C 1320	N 369	O 388	S 12	0	0

• Molecule 8 is a protein called Pre-mRNA-splicing factor CWC15.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	S	69	Total 560	C 351	N 112	O 96	S 1	0	0

• Molecule 9 is a protein called Pre-mRNA-splicing factor BUD31.

Mol	Chain	Residues		A	toms			AltConf	Trace
9	Т	157	Total 1291	C 808	N 240	0 232	S 11	0	0

• Molecule 10 is a protein called Pre-mRNA-splicing factor CWC22.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	Ζ	447	Total 3651	C 2343	N 602	O 688	S 18	0	0

• Molecule 11 is a RNA chain called 5'-exon.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
11	В	13	Total 275	C 124	N 47	O 91	Р 13	0	0

• Molecule 12 is a RNA chain called 5'-intron-lariat.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
12	Ν	15	Total 312	C 140	N 45	0 112	Р 15	0	0

• Molecule 13 is a RNA chain called U5 snRNA.

Mol	Chain	Residues		A	AltConf	Trace			
13	D	117	Total 2465	C 1104	N 414	O 830	Р 117	0	0

• Molecule 14 is a RNA chain called Saccharomyces cerevisiae S288c SNR6 snRNA.

Mol	Chain	Residues		Α	toms			AltConf	Trace
14	Е	103	Total 2192	C 982	N 391	O 716	Р 103	0	0

• Molecule 15 is a RNA chain called RNA (91-MER).

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
15	L	91	Total 1909	C 854	N 309	O 655	Р 91	0	0

• Molecule 16 is a RNA chain called 3'-intron-lariat.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
16	М	23	Total 486	C 219	N 86	0 158	Р 23	0	0

• Molecule 17 is a protein called Pre-mRNA-splicing factor CEF1,Pre-mRNA-splicing factor CEF1,Cef1,Pre-mRNA-splicing factor CEF1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
17	с	436	Total 2971	C 1841	N 549	O 573	S 8	0	0

• Molecule 18 is a protein called Pre-mRNA-splicing factor CLF1,Pre-mRNA-splicing factor CLF1,Clf1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
18	d	532	Total 3506	C 2182	N 658	O 658	S 8	0	0

• Molecule 19 is a protein called Pre-mRNA-splicing factor SYF2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	Ι	102	Total 822	C 504	N 152	0 165	S 1	0	0

• Molecule 20 is a protein called Syf1,Pre-mRNA-splicing factor SYF1,Syf1,Pre-mRNA-splicing factor SYF1,Syf1,Pre-mRNA-splicing factor SYF1,Syf1.

Mol	Chain	Residues		At		AltConf	Trace		
20	V	593	Total 3183	C 1953	N 603	O 626	S 1	0	0

• Molecule 21 is a protein called Pre-mRNA-processing factor 17.

Mol	Chain	Residues		Ate	AltConf	Trace			
21	n	296	Total 1870	C 1162	N 337	O 365	S 6	0	0

• Molecule 22 is a protein called Pre-mRNA-processing factor 19.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	0	196	Total	С	Ν	0	\mathbf{S}	0	0
	0	120	830	525	134	169	2	0	0
	n	198	Total	С	Ν	0	S	0	0
	р	120	843	532	136	173	2	0	0
	a	297	Total	С	Ν	0	S	0	0
	q	301	2345	1471	402	464	8	0	0
	r	195	Total	С	Ν	0	S	0	0
	1	120	823	521	133	167	2	0	U

• Molecule 23 is a protein called Pre-mRNA-splicing factor SNT309.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	t	156	Total 926	C 585	N 160	0 180	S 1	0	0

• Molecule 24 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	Ŀ	80	Total	С	Ν	0	\mathbf{S}	0	0
24	K	80	631	403	114	111	3	0	0
24	F	78	Total	С	Ν	0	S	0	0
24	Ľ	10	610	389	110	108	3		

• Molecule 25 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
25	i	75	Total	С	Ν	Ο	S	0	0
20	1	15	575	379	92	101	3	0	0
25	С	75	Total	С	Ν	Ο	\mathbf{S}	0	0
20	G	15	575	379	92	101	3	0	0

• Molecule 26 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
26	h	70	Total	С	Ν	0	\mathbf{S}	0	0
20	11	10	554	355	98	100	1	0	0
26	Ц	70	Total	С	Ν	0	S	0	0
20	11	70	554	355	98	100	1	0	0

• Molecule 27 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
97	÷	60	Total	С	Ν	0	S	0	0
21	J	09	529	337	93	97	2	0	0
97	K	60	Total	С	Ν	0	S	0	0
21	Γ	09	529	337	93	97	2	0	0

• Molecule 28 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
28	1	82	Total 625	C 399	N 109	0 115	${S \over 2}$	0	0
28	U	82	Total 625	C 399	N 109	0 115	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 29 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
29	m	82	Total 644	C 409	N 110	0 123	${ m S} { m 2}$	0	0
29	V	82	Total 644	C 409	N 110	0 123	2	0	0

• Molecule 30 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	۵.	04	Total	С	Ν	Ο	S	0	0
- 50	g	94	741	477	141	119	4	0	0
20	W	65	Total	С	Ν	Ο	S	0	0
- 50	vv	05	528	340	102	84	2	0	0

• Molecule 31 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues		Aton	ıs		AltConf	Trace
31	Х	81	Total 513	C 332	N 89	O 92	0	0

• Molecule 32 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
32	Y	135	Total 841	C 538	N 142	O 161	0	0

• Molecule 33 is a RNA chain called 3'-exon-intron.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
33	b	14	Total 208	C 91	N 13	O 90	Р 14	0	0

• Molecule 34 is a protein called Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
34	е	679	Total 3360	C 2002	N 679	O 679	0	0

• Molecule 35 is a protein called Pre-mRNA-splicing factor 18.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	f	148	Total 1202	C 780	N 204	0 214	$\frac{S}{4}$	0	0

• Molecule 36 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
36	С	1	Total	С	Ν	Ο	Р	0
50	U	1	32	10	5	14	3	0

• Molecule 37 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
37	С	1	Total Mg 1 1	0
37	В	1	Total Mg 1 1	0
37	Е	4	Total Mg 4 4	0

• Molecule 38 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
38	Q	2	Total Zn 2 2	0
38	R	1	Total Zn 1 1	0
38	Т	3	Total Zn 3 3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pre-mRNA-splicing factor 8

L473 L473 L473 L481 L481 L481 L481 L483 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	CLU CLYS CLYS CLYS ARG ARG ARG ARG CLN FTR PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	GLN LYS ASP ASP ASP GLU ASN SER
ARG SER SER SER SER PRO PRO VAL THR THR THR ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	ARG ARG THR ARG PRO PRO ARG CIN ARG CIN ARG ARG ARG ARG	
• Molecule 11: 5'-exon		
Chain B: 62%	38%	_
A87 U88 A80 A80 U94 U94 C99		
• Molecule 12: 5'-intron-lariat		
Chain N: 73%	27%	
1000 1100 1100 1100 1110 1110 1110		
• Molecule 13: U5 snRNA		
Chain D: 39%	14% · 45%	_
8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	G31 G32 G33 G33 G43 A45 A45 A45 A45 A45 A45 C54 0 U U U U 0 C54 0 C54 0 C54 0 C54 0 C54 0 C54 0 C54 0 C54 0 C53 0 C53 0 C54 0 C53 0 C54 0 C53 0 C54 0 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	477 478 679 680 681 881 882 683 884
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	165 A165 A165 A165 A165 A165	U166 A167 U168 U169 U170 U171 U172 U173
6174 6175 6175 6175 6175 6178 01180 0181 0181 0181 0182 0183 0182 0183 0182 0183 0183 0183 0183 0183 0183 0183 0183	り 3 4 5 7 4 4 5 6 4 5 6 6 6 7 7 7	
• Molecule 14: Saccharomyces cerevisi	iae S288c SNR6 snRNA	
Chain E: 56%	36% 89	%
G1 A12 A12 A13 A13 A13 C16 C16 C15 C16 C33 C33 G50 G33 G51 G52 G52 G53 G53 C33 G54 G55 G55 G55 G55 C43 G55 C43 G55 C43 G55 C55 G55 C55 G55 C43 G55 C43 G55 C43 G55 C55 G55 C55 G55 C55 G55 C43 G55	455 459 460 460 461 463 463 463 463 475 475 475 475 475 475 475 681 881 988 988 988 988	U90 A91 C92 U102 A103
• Molecule 15: RNA (91-MER)		
Chain L:	92%	_

• Molecule 17: Pre-mRNA-splicing factor CEF1,Pre-mRNA-splicing factor CEF1,Cef1,Pre-mRN A-splicing factor CEF1

• Molecule 23: Pre-mRNA-splicing factor SNT309

• Molecule 27: Small nuclear ribonucleoprotein G 90% Chain K: 10% 86% 146 ASN GLY GLU GLU ASP ASP ASP ALA ALA ALA N53 A43 • Molecule 28: Small nuclear ribonucleoprotein Sm D3 48% Chain l: 77% 19% R45 D46 V47 148 A49 D60 V64 R65 G66 G66 S67 S67 S67 S67 I69 I69 K70 G31 K32 L33 V34 V34 E35 S36 140 S39 K85 LYS ASN SER SER ASN PRO PRO PRO GLY PRO CLY PRO CLY ARG ARG • Molecule 28: Small nuclear ribonucleoprotein Sm D3 81% Chain U: 77% 19% MET
 733

 735

 735

 735

 735

 735

 735

 735

 735

 735

 735

 735

 735

 736

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737

 737
 </ 33 • Molecule 29: Small nuclear ribonucleoprotein Sm D1 52% Chain m: 44% 52% N21 G22 T23 T24 P48 GLN GLN PRO ASN LYS LEU ASN ASN SER ASN SER ASN L3 V4 N5 F6 L7 K8 K8 r16 117 E18 L19 K20 128 128 128 146 147 R11 125 ALA MET ALA SER LEU TYR LEU THR GLY GLY GLN THR ALA GLN LYS GLN GLN ASN SER LEU ARG ARG SER SER GLY GLN <u>9</u> • Molecule 29: Small nuclear ribonucleoprotein Sm D1 56% Chain V: 52% 44%

0 0	NE1 NG2 DG3 DG4 L64 L64 NG6 D69 D69 L70 R73 R73 R73 D74 D75 D75 H77 H77	T78 L80 L81 L81 C82 C82 C82 C83 C82 C83 C83 C83 C83 C83 C83 C83 C83 C83 C83	L103 S104 S105 N106 S107 E103 R1109 R1109 R1114 C1114 C1114 C1114 R1116 R1115 R1116 R1116 R1116 R1116 R1116 R1116
$ \begin{array}{c} \text{Molecule 33: 3'-exon-intron} \\ \hline \\ \text{Chain b:} \\ \hline \\ 14\% \\ 86\% \\ \hline \\ 12\% \\ 86\% \\ \hline \\ 8$	PR0 ARG THR L124 K125 N126 L127 L129 C131 C132 C135 C135 C135 C135 C135 C135 C135 C135	N139 Y140 E142 E142 E143 H143 H143 H146 V148 P149 P149 P149 F151 E152 E152 F156 P156	E162 AGU ARG LYS CLU ASE ASE PHE PHE PHE ALA ASP CLN ASP ASP CLN ASP CLV CLU CLU CLU
Molecule 33: 3'-exon-intron	PRO VAL ASN THR ALA ALA ALA ARG ASN ASP ASP ASP CLY SER ASP CLY SER ASP CLY SER ASP CLY SER ASN ASP ASN ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	VAL VAL LYS LYS ABR ABR ABR ABR ABR ABR ABR ABR ABR ABR	LLEU GLY VAL
Chain b: 14% 86% • Molecule 34: Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 63% Chain e: 58% 5% 37% 1555555555555555555555555555555555555	• Molecule 33: 3'-exon-intron		
Chain e: 58% 5% 5% 37% Molecule 34: Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 63% Chain e: 58% 5% 5% 37% Molecule 34: Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 63% Chain e: 58% 5% 5% 5% 37% Molecule 34: Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 63% Chain e: 58% 5%	Chain b: 14%	71% 86%	<u> </u>
Molecule 34: Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16	<mark>И - 6</mark>		
63% Chain e: 58% 5% • 37% 14 58% 5% • 37% 14 158% 111 111 111 158% 111 111 111 111 111 158% 111 111 111 111 111 111 151 111 111 111 111 111 111 111 151 111	• Molecule 34: Pre-mRNA-sp	licing factor ATP-dependent RNA helica	se PRP16
TTA PHE TLE MET ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN PRO LEU ASN ASN ASN PRO LEU ASN ASN ASN CLU LEU ASN ASN ASN CLU TAN LEU ASN ASN CLU TAN ASN ASN ASN CLU TAN ASN ASN ASN ALA LEU TAN ASN ASN ALA TAN TAN ASN ASN ALN TAN TAN TAN ALN TAN TAN TAN <	63 Chain e: 58%	۶% • 37%	
TTR PHE PHE 1118 LEU TTR PHE 1118 ASP 2011 FRO LEU ASP 2011 CLU LEU ASP 2011 LEU ASP 2011 LEU ASP 2011 LEU ASP 2011 LEU CLN A	MET GLY GLY SER SER AGC AGC GLU AGU CLYS CLVS CLVS CLVS SER SER SER CLU	THR GLY GLY LLEU LLEU LLEU LLEU LLEU LLEU LLEU LL	LYS LEU SER SER ASN ASN ILE ILE
TTR THE THE THE ASP THE ASP TEE ASP TATE ASP TEE ASP TATE ASP TEE ASP TATE	玉田別の刀刀刀刀刀を放きたりの手放手のつち	玉山田政王附谷はちち田ちまれ刀中刀中中以刀中丸刀中攻山山水ち	○ 2 4 5 年 5 年 2
TYR TYR THE ASN TYR THE ASN TASP PRO LEU PRO LU CRN TYS CLU CLU CLU CLU CLU CLU CLN CLU CLU CLN CLU CLU CLN CLU CLU CLN CLU CLU CLN CLU CLN TTR CLU CLN CLN CLU CLN CLN CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	TL ASS ASS ASS ASS ASS ASS ASS ASS ASS AS	TI PAR PAR PAR PAR PAR AS PAR AS AS AS AS AS AS AS AS AS AS AS AS AS	LY PR PR TH TH TH TH TH
TYR AGY AGY AGY AGY AGY AGU CLEU CLEU CLU CLU CLU CLEU CLU CLEU CLU CLEU CLE	PHE LYS ARC TLF ARP ARP LYS LLFU LEU ALA CLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	SER PRO ASN GLU GLU GLU GLU GLU HIS ASN HIS ASN HIS ASP CLU THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLU TYRP ASP ASN ASP ASP ASP ASP
	TYR GLY GLY LEU VAL LEU PRO PRO PRO PRO GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	ARG ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	LEU SER PHE ALA ALA ALA ASN ASN
2. 上 2. 我 6. 9. 9. 9. 7. 8. 9. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	2. 山口政政法 地名大政马政力政政政法 山政 4. 刀族		N N N N N N N N N N N N N N N N N N N
U		思い * * * * * * * * * * * * * * * * * * *	11 H H H H H H H H H H H H H H H H H H
SN 305 305 305 305 305 305 305 311 311 311 311 311 311 311 311 311 31	SN HH HH 3305 305 305 305 305 305 311 311 311 311 311 315 315 315 315 31	3319 322 322 322 322 332 332 332 332 332 33	342 343 345 346 346 347 355 355 355 355 355 355 355 355 355 35
, , , , , , , , , , , , , , , , , , ,	**# L C C B C Z P H V L C H H P		$\Box \rightarrow Z \rightarrow $
3 3 3 6 1 3 3 6 1 3 3 6 5 3 3 6 5 3 3 6 5 3 3 6 5 3 3 7 5 4 4 0 1 4 4 0 1 4 4 0 1 3 3 9 5 3 3 8 5 4 4 4 5 4	361 362 363 363 365 365 365 365 371 371 372 375 375 375 375 375 375 375 375 375 375	373 379 385 388 388 388 388 388 388 388 388 388	401 402 403 404 405 405 405 405 405 410 411 411 413 415 415 415 415 415 415 415 415 415 415
<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	>>+ & & & & & & & & & & & & & & & & & &
1421 1422 1423 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1425 1433 1445 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1455 1456 1457 1456 1455 1455 1455 1455 1455 1456 1456 1455 1456 1456 1456 1456 1457 1456 1457 1456 1457 1456 1457 1456 1457 1457 1457 <td>4421 4422 423 424 425 425 425 432 432 433 433 433 433 433 433 433 433</td> <td>438 440 441 441 441 444 445 445 445 445 445 445</td> <td>4461 4462 4463 4463 4464 4464 4465 4471 4471 4471 4470 4470 4476 4476 4476 4476 4478 4478 4478 4478</td>	4421 4422 423 424 425 425 425 432 432 433 433 433 433 433 433 433 433	438 440 441 441 441 444 445 445 445 445 445 445	4461 4462 4463 4463 4464 4464 4465 4471 4471 4471 4470 4470 4476 4476 4476 4476 4478 4478 4478 4478
<u>, , , , , , , , , , , , , , , , , , , </u>		<u>, , , , , , , , , , , , , , , , , , , </u>	
1481 1482 1482 1484 1485 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1489 1491 1492 1493 1493 1493 1494 1495 1495 1496 1493 1493 1493 1493 1494 1494 1495 1495 1496 1493 1503 1514 1513 1514 1514 1515 1515 1516 1517 1518 1519 1521 1522 1532 1535 1535 1536 1537 1538 1538 1536 1537 1538 <td>V481 1482 0483 0483 0483 1484 1486 1486 1486 1489 1491 1492 1493 1494 1495 1495 1495 1495 1495 1495 1495</td> <td>0498 0488 0489 0489 0489 0489 0489 0489</td> <td> P521 P523 P523 P523 P524 P531 P531 P531 P531 P533 P534 P540 P540 P540 </td>	V481 1482 0483 0483 0483 1484 1486 1486 1486 1489 1491 1492 1493 1494 1495 1495 1495 1495 1495 1495 1495	0498 0488 0489 0489 0489 0489 0489 0489	 P521 P523 P523 P523 P524 P531 P531 P531 P531 P533 P534 P540 P540 P540
V541 V542 D543 D544 V544 V544 V544 A547 A547 A547 A547 A547 A544 A544 A544 A544 A544 A544 A544 A544 A555	V541 0642 0642 1643 1644 1644 1644 1646 1646 1646 1646	A558 A159 D560 C661 C661 C661 C661 C661 C662 C664 C664 D565 D565 D565 D565 D565 D565 D575 C677 C677 C677 C677 C677 C672 C672 C672	D581 1582 L583 C584 6584 F587 F587 F587 F587 F587 F587 F583 K593 K593 K593 K593 K593 K593 K593 K59

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	27558	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.6	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.191	Depositor
Minimum map value	-0.094	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.0297	Depositor
Map size (Å)	522.4, 522.4, 522.4	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.3060001, 1.3060001, 1.3060001	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, GTP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.81	5/16346~(0.0%)	0.81	19/22154~(0.1%)
2	С	0.79	1/7168~(0.0%)	0.80	7/9707~(0.1%)
3	J	0.70	0/191	0.80	0/254
4	0	0.98	3/2704~(0.1%)	0.89	5/3676~(0.1%)
5	Р	0.66	0/1604	0.78	1/2160~(0.0%)
6	Q	0.64	0/1496	0.76	1/2014~(0.0%)
7	R	0.72	0/2135	0.76	2/2871~(0.1%)
8	S	0.70	0/574	0.85	0/766
9	Т	0.81	3/1315~(0.2%)	0.79	0/1759
10	Ζ	0.55	0/3712	0.75	5/5004~(0.1%)
11	В	0.68	0/307	0.90	0/475
12	Ν	0.68	0/346	0.86	0/535
13	D	0.73	0/2747	0.92	3/4267~(0.1%)
14	Е	0.72	0/2452	0.95	3/3817~(0.1%)
15	L	0.75	13/2123~(0.6%)	1.12	18/3295~(0.5%)
16	М	0.29	0/543	0.72	0/842
17	с	0.38	0/2405	0.54	0/3218
18	d	0.42	0/2107	0.54	0/2852
19	Ι	0.35	0/826	0.53	0/1097
20	V	1.05	8/905~(0.9%)	0.76	6/1214~(0.5%)
21	n	1.47	17/1878~(0.9%)	0.89	15/2503~(0.6%)
22	0	0.40	0/835	0.53	0/1126
22	р	0.40	0/848	0.55	0/1143
22	q	0.44	0/2342	0.65	0/3139
22	r	0.39	0/828	0.54	1/1117~(0.1%)
23	\mathbf{t}	0.42	0/924	0.56	2/1244~(0.2%)
24	F	0.37	0/615	0.61	0/829
24	k	0.37	0/636	0.61	0/856
25	G	0.42	0/585	0.62	0/795
25	i	0.42	$0/\overline{585}$	0.62	$0/\overline{795}$
26	Н	0.44	0/564	0.66	$1\overline{/761}~(0.1\%)$
26	h	0.44	0/564	0.65	1/761~(0.1%)

Mal	Chain	Bo	ond lengths	I	Bond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
27	K	0.37	0/532	0.60	0/715
27	j	0.37	0/532	0.60	0/715
28	U	0.40	0/634	0.70	0/859
28	1	0.40	0/634	0.70	0/859
29	V	0.41	0/649	0.61	0/880
29	m	0.41	0/649	0.61	0/880
30	W	0.43	0/535	0.66	2/717~(0.3%)
30	g	0.45	0/753	0.69	2/1013~(0.2%)
31	Х	0.82	4/514~(0.8%)	1.32	2/686~(0.3%)
32	Y	1.03	9/839~(1.1%)	1.65	11/1127~(1.0%)
33	b	0.20	0/227	0.73	0/346
34	е	0.48	0/3357	1.09	4/4674~(0.1%)
35	f	0.29	0/1227	0.50	0/1665
All	All	0.71	63/74292~(0.1%)	0.81	111/102182~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	24
2	С	0	10
4	0	0	10
5	Р	0	5
6	Q	0	6
7	R	0	3
8	S	0	1
9	Т	0	5
10	Ζ	0	2
17	с	0	2
18	d	0	1
21	n	0	4
27	Κ	0	1
27	j	0	1
28	U	0	2
28	l	0	2
30	W	0	2
30	g	0	2
34	е	0	32
All	All	0	115

The worst 5 of 63 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
21	n	399	CYS	CB-SG	-24.14	1.41	1.82
21	n	444	CYS	CB-SG	-22.91	1.43	1.82
21	n	454	CYS	CB-SG	-19.93	1.48	1.82
21	n	218	CYS	CB-SG	-19.55	1.49	1.82
21	n	352	CYS	CB-SG	-18.81	1.50	1.82

The worst 5 of 111 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
15	L	1110	U	C5-C4-O4	11.94	133.07	125.90
15	L	1107	С	N1-C2-O2	-10.12	112.83	118.90
32	Y	44	PRO	N-CA-CB	8.85	113.92	103.30
15	L	1109	С	O4'-C1'-N1	8.79	115.23	108.20
2	С	656	LEU	CA-CB-CG	-8.46	95.84	115.30

There are no chirality outliers.

5 of 115 planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
1	А	259	GLU	Peptide
1	А	288	GLU	Peptide
1	А	356	TYR	Peptide
1	А	460	PRO	Peptide
1	А	539	PRO	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	1925/2413~(80%)	1569~(82%)	339~(18%)	17~(1%)	17	55
2	С	872/1008~(86%)	735~(84%)	129~(15%)	8 (1%)	17	55
3	J	25/135~(18%)	21 (84%)	4 (16%)	0	100	100
4	О	335/451~(74%)	281 (84%)	49 (15%)	5 (2%)	10	45
5	Р	193/379~(51%)	160 (83%)	27~(14%)	6 (3%)	4	31
6	Q	177/364~(49%)	145 (82%)	30~(17%)	2 (1%)	14	51
7	R	259/339~(76%)	218 (84%)	40 (15%)	1 (0%)	34	71
8	S	63/175~(36%)	49 (78%)	12 (19%)	2 (3%)	4	31
9	Т	155/157~(99%)	123 (79%)	28 (18%)	4 (3%)	5	34
10	Z	443/577~(77%)	369~(83%)	68 (15%)	6 (1%)	11	46
17	с	312/579~(54%)	273 (88%)	35 (11%)	4 (1%)	12	48
18	d	238/652~(36%)	201 (84%)	35 (15%)	2 (1%)	19	58
19	Ι	98/215~(46%)	85 (87%)	13 (13%)	0	100	100
20	v	121/858~(14%)	110 (91%)	7~(6%)	4 (3%)	4	30
21	n	272/455~(60%)	234 (86%)	28 (10%)	10 (4%)	3	28
22	0	120/503~(24%)	115 (96%)	4 (3%)	1 (1%)	19	58
22	р	122/503~(24%)	116 (95%)	6(5%)	0	100	100
22	q	355/503~(71%)	327 (92%)	16 (4%)	12 (3%)	3	30
22	r	119/503~(24%)	111 (93%)	5 (4%)	3 (2%)	5	35
23	t	150/175~(86%)	134 (89%)	13 (9%)	3 (2%)	7	40
24	F	74/196~(38%)	67~(90%)	7 (10%)	0	100	100
24	k	76/196~(39%)	69 (91%)	7 (9%)	0	100	100
25	G	71/94~(76%)	65~(92%)	6 (8%)	0	100	100
25	i	71/94~(76%)	65~(92%)	6 (8%)	0	100	100
26	Н	66/86~(77%)	61 (92%)	4 (6%)	1 (2%)	10	45
26	h	66/86~(77%)	61 (92%)	4 (6%)	1 (2%)	10	45
27	K	65/77~(84%)	64 (98%)	1 (2%)	0	100	100
27	j	65/77~(84%)	64 (98%)	1 (2%)	0	100	100
28	U	80/101~(79%)	70~(88%)	9 (11%)	1 (1%)	12	48
28	1	80/101~(79%)	70 (88%)	9 (11%)	1 (1%)	12	48
29	V	78/146~(53%)	74 (95%)	4(5%)	0	100	100
29	m	78/146~(53%)	74 (95%)	4 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
30	W	63/110~(57%)	58~(92%)	4~(6%)	1 (2%)	9	44
30	g	92/110~(84%)	85~(92%)	6~(6%)	1 (1%)	14	51
31	Х	77/111~(69%)	75~(97%)	2 (3%)	0	100	100
32	Y	125/238~(52%)	111 (89%)	12~(10%)	2 (2%)	9	44
34	е	673/1071~(63%)	563~(84%)	75~(11%)	35~(5%)	2	21
35	f	144/251~(57%)	140 (97%)	4 (3%)	0	100	100
All	All	8398/14235 (59%)	7212 (86%)	1053 (12%)	133 (2%)	13	44

Continued from previous page...

5 of 133 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	С	364	PHE
6	Q	99	VAL
10	Ζ	213	PHE
20	V	616	PRO
21	n	245	HIS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	1753/2182~(80%)	1745 (100%)	8~(0%)	88	93
2	\mathbf{C}	794/910~(87%)	791 (100%)	3(0%)	91	94
3	J	21/121~(17%)	21 (100%)	0	100	100
4	Ο	295/397~(74%)	294 (100%)	1 (0%)	92	95
5	Р	173/328~(53%)	173~(100%)	0	100	100
6	Q	171/332~(52%)	170~(99%)	1 (1%)	86	92
7	R	224/296~(76%)	222~(99%)	2(1%)	78	88
8	S	56/151~(37%)	54~(96%)	2(4%)	35	61
9	Т	141/141~(100%)	140 (99%)	1 (1%)	84	90
10	Ζ	417/538 (78%)	417 (100%)	0	100	100

Continued	from	previous	page
-----------	------	----------	------

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
17	с	212/308~(69%)	206~(97%)	6 (3%)	43	65
18	d	219/219~(100%)	219~(100%)	0	100	100
19	Ι	92/193~(48%)	92~(100%)	0	100	100
20	V	57/152~(38%)	47 (82%)	10 (18%)	2	12
21	n	122/413~(30%)	100~(82%)	22~(18%)	1	11
22	0	59/451~(13%)	52 (88%)	7(12%)	5	24
22	р	62/451~(14%)	54 (87%)	8 (13%)	4	22
22	q	119/451~(26%)	102~(86%)	17 (14%)	3	19
22	r	60/451~(13%)	55~(92%)	5 (8%)	11	38
23	t	37/165~(22%)	27~(73%)	10 (27%)	0	3
24	F	67/176~(38%)	67~(100%)	0	100	100
24	k	70/176~(40%)	70 (100%)	0	100	100
25	G	65/83~(78%)	60~(92%)	5 (8%)	13	40
25	i	65/83~(78%)	60~(92%)	5 (8%)	13	40
26	Н	61/77~(79%)	60~(98%)	1 (2%)	62	79
26	h	61/77~(79%)	60~(98%)	1 (2%)	62	79
27	К	58/66~(88%)	55~(95%)	3~(5%)	23	51
27	j	58/66~(88%)	55~(95%)	3~(5%)	23	51
28	U	69/89~(78%)	67~(97%)	2(3%)	42	65
28	1	69/89~(78%)	67~(97%)	2(3%)	42	65
29	V	77/129~(60%)	71~(92%)	6 (8%)	12	39
29	m	77/129~(60%)	71~(92%)	6 (8%)	12	39
30	W	59/103~(57%)	55~(93%)	4 (7%)	16	44
30	g	79/103~(77%)	74 (94%)	5 (6%)	18	46
31	Х	26/100~(26%)	25~(96%)	1 (4%)	33	59
32	Y	47/219~(22%)	44 (94%)	3~(6%)	17	45
35	f	134/225~(60%)	131 (98%)	3 (2%)	52	71
All	All	6226/10640~(58%)	6073~(98%)	153 (2%)	50	68

 $5~{\rm of}~153$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
29	m	26	TRP
	a r.	1	

Continued from previous page...

Mol	Chain	Res	Type
30	W	77	THR
29	m	104	ASP
26	Н	79	LEU
35	f	81	ILE

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 109 such side chains are listed below:

Mol	Chain	Res	Type
3	J	4	ASN
7	R	91	HIS
25	G	34	GLN
4	0	223	HIS
5	Р	103	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	В	12/13~(92%)	5 (41%)	0
12	Ν	14/15~(93%)	4 (28%)	1 (7%)
13	D	114/214~(53%)	31 (27%)	3(2%)
14	Е	102/112~(91%)	33~(32%)	6(5%)
15	L	88/1175~(7%)	30 (34%)	8 (9%)
16	М	22/23~(95%)	13~(59%)	3 (13%)
33	b	12/14~(85%)	12 (100%)	0
All	All	364/1566~(23%)	128 (35%)	21 (5%)

5 of 128 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
11	В	88	U
11	В	89	А
11	В	90	А
11	В	93	U
11	В	94	U

5 of 21 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
15	L	41	С
15	L	1111	U

Continued from previous page...

Mol	Chain	Res	Type
16	М	499	U
16	М	483	U
15	L	1107	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 13 ligands modelled in this entry, 12 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	B	ond ang	gles
	туре	Ullalli	nes	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
36	GTP	С	1500	37	26,34,34	1.67	4 (15%)	32,54,54	2.18	10 (31%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
36	GTP	С	1500	37	-	5/18/38/38	0/3/3/3

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
36	С	1500	GTP	C5-C6	-5.41	1.36	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
36	С	1500	GTP	C5-C4	-2.27	1.37	1.43
36	С	1500	GTP	O4'-C4'	-2.16	1.40	1.45
36	С	1500	GTP	C2'-C1'	-2.15	1.50	1.53

Continued from previous page...

The worst 5 of 10 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
36	С	1500	GTP	PA-O3A-PB	-6.36	111.02	132.83
36	С	1500	GTP	PB-O3B-PG	-6.30	111.20	132.83
36	С	1500	GTP	O3G-PG-O3B	3.08	114.95	104.64
36	С	1500	GTP	C2-N1-C6	-3.00	119.57	125.10
36	С	1500	GTP	C8-N7-C5	2.75	108.23	102.99

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
36	С	1500	GTP	C5'-O5'-PA-O3A
36	С	1500	GTP	O4'-C4'-C5'-O5'
36	С	1500	GTP	C3'-C4'-C5'-O5'
36	С	1500	GTP	C5'-O5'-PA-O1A
36	С	1500	GTP	C5'-O5'-PA-O2A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-6684. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

Central slices (i) 6.2

6.2.1Primary map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 206

Y Index: 231

Z Index: 208

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0297. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 445 $\rm nm^3;$ this corresponds to an approximate mass of 402 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.250 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-6684 and PDB model 5WSG. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0297 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0297).

9.4 Atom inclusion (i)

At the recommended contour level, 50% of all backbone atoms, 47% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0297) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.4730	0.2740
А	0.7330	0.4410
В	0.7390	0.3930
С	0.8060	0.4510
D	0.7220	0.3140
Е	0.8230	0.3420
F	0.0020	0.0070
G	0.0040	0.0080
Н	0.0000	-0.0050
Ι	0.6190	0.3700
J	0.7540	0.4820
Κ	0.0000	-0.0030
L	0.3220	0.1470
М	0.2550	0.1390
Ν	0.7080	0.3270
Ο	0.8350	0.4860
Р	0.6520	0.4210
Q	0.6310	0.4150
R	0.7640	0.4190
S	0.6410	0.4670
Т	0.7980	0.4470
U	0.0020	-0.0170
V	0.0020	-0.0300
W	0.0040	0.0200
Х	0.0020	0.0070
Y	0.0000	-0.0230
Z	0.4450	0.3510
b	0.2600	0.3130
С	0.4110	0.2380
d	0.4710	0.2350
е	0.0370	0.0300
f	0.1000	0.1370
g	0.1550	0.1070
h	0.1620	0.0520
i	0.1910	0.1150

 $Continued \ on \ next \ page...$

Continued from previous page...

Chain	Atom inclusion	Q-score
j	0.2110	0.1460
k	0.2060	0.1700
1	0.3380	0.2630
m	0.1410	0.0830
n	0.1980	0.0690
0	0.0120	0.0030
р	0.0060	-0.0080
q	0.0020	0.0120
r	0.0280	0.0490
t	0.0080	0.0200
V	0.1270	0.0360

