

wwPDB EM Validation Summary Report (i)

Mar 19, 2024 – 01:33 PM JST

PDB ID	:	5X8T
EMDB ID	:	EMD-6711
Title	:	Structure of the 50S large subunit of chloroplast ribosome from spinach
Authors	:	Ahmed, T.; Shi, J.; Bhushan, S.
Deposited on	:	2017-03-03
Resolution	:	3.30 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev70
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	EM structures (#Entries)
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality	of chain	
1	1	56	7%	66%	16%	18%
2	2	65	34%	58%	18% •	22%
3	3	61	8%	74%		20% 7%
4	4	73	—	77%		16% <mark>•</mark> 5%
5	5	37	16%	78%		22%
6	6	142	29%	6%	65%	
7	7	116	7% 29%	10%	60%	

Mol	Chain	Length	Quality of	chain	
8	В	121	67%	23%	7% •
9	С	271	14%	21%	9%
10		001	9%		570
10	D	221	22%	21%	•
11	Е	243	65% 58%	21%	14%
12	F	220	62%	17%	20%
13	G	182	40%	189	6 5%
14	Η	155	25% 26% 8%	66%	
15	K	197	21%	20	% ••
16	L	121	26%		17%
17	М	192	81%	109	6 • 8%
18	Ν	135	74%	25	% •
19	0	116	11%	2	23%
20	Р	123	67%	29%	•••
21	Q	156	15%	22% • 2	4%
22	R	127	62%	28%	9%
23	S	201	17%	15% 27	%
24	Т	199	19%	13% • 28	%
25	U	122	60%	15% • 2	25%
26	V	145	28%	26%	14%
27	W	106	6% 50%	37%	9%
28	X	137	12%	15% 27	270
20	V	77	12%	2000	•
29	1	11	65% 37%	30%	
30	Ζ	109	64%	17% •	17%
31	А	2810	61%	32%	6%
32	0	94	57%	9% • 32%	

Continued from previous page...

2 Entry composition (i)

There are 32 unique types of molecules in this entry. The entry contains 91714 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L32, chloroplastic.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	1	46	Total 378	C 250	N 70	O 58	0	0

• Molecule 2 is a protein called 50S ribosomal protein L33, chloroplastic.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	2	51	Total 415	C 258	N 83	O 70	S 4	0	0

• Molecule 3 is a protein called 50S ribosomal protein L34, chloroplastic.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	3	57	Total	С	Ν	0	\mathbf{S}	0	0
5	0	57	445	268	103	71	3	0	0

• Molecule 4 is a protein called 50S ribosomal protein L35, chloroplastic.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	4	69	Total 563	C 353	N 119	O 90	S 1	0	0

• Molecule 5 is a protein called 50S ribosomal protein L36, chloroplastic.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	5	37	Total 304	C 186	N 70	0 44	${S \over 4}$	0	0

• Molecule 6 is a protein called protein cL37.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	6	49	Total 422	C 268	N 92	O 57	${S \atop 5}$	0	0

• Molecule 7 is a protein called protein cL38.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	7	46	Total 368	C 237	N 71	O 59	S 1	0	0

• Molecule 8 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A		AltConf	Trace		
8	В	117	Total 2500	C 1116	N 452	0 815	Р 117	0	0

• Molecule 9 is a protein called 50S ribosomal protein L2, chloroplastic.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	С	247	Total 1904	C 1181	N 390	O 327	S 6	0	0

• Molecule 10 is a protein called protein L3.

Mol	Chain	Residues		At		AltConf	Trace		
10	D	212	Total 1620	C 1025	N 295	O 289	S 11	0	0

• Molecule 11 is a protein called 50S ribosomal protein L4, chloroplastic.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
11	Е	210	Total 1655	C 1052	N 308	O 292	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L5, chloroplastic.

Mol	Chain	Residues		At	oms		AltConf	Trace	
12	F	175	Total 1351	C 862	N 233	0 248	S 8	0	0

• Molecule 13 is a protein called protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	G	173	Total 1353	C 855	N 249	0 245	$\frac{S}{4}$	0	0

• Molecule 14 is a protein called protein L9.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
14	Н	53	Total 423	C 280	N 74	O 68	S 1	0	0

• Molecule 15 is a protein called 50S ribosomal protein L13, chloroplastic.

Mol	Chain	Residues		Ate		AltConf	Trace		
15	K	193	Total 1568	C 1000	N 289	0 274	${ m S}{ m 5}$	0	0

• Molecule 16 is a protein called 50S ribosomal protein L14, chloroplastic.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	L	121	Total 942	C 588	N 179	0 170	${f S}{5}$	0	0

• Molecule 17 is a protein called protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	М	177	Total 1342	C 836	N 264	O 236	S 6	0	0

• Molecule 18 is a protein called 50S ribosomal protein L16, chloroplastic.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Ν	134	Total 1067	C 672	N 217	0 173	${ m S}{ m 5}$	0	0

• Molecule 19 is a protein called protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Ο	116	Total 944	C 592	N 193	0 155	${S \atop 4}$	0	0

• Molecule 20 is a protein called protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Р	120	Total 947	C 589	N 183	0 170	${S \atop 5}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L19, chloroplastic.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Q	118	Total 953	C 610	N 186	O 156	S 1	0	0

• Molecule 22 is a protein called 50S ribosomal protein L20, chloroplastic.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	R	115	Total 996	C 633	N 208	0 153	${S \over 2}$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L21, chloroplastic.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	S	147	Total 1171	C 759	N 202	O 210	0	0

• Molecule 24 is a protein called 50S ribosomal protein L22, chloroplastic.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	Т	144	Total 1149	C 731	N 210	O 200	S 8	0	0

• Molecule 25 is a protein called 50S ribosomal protein L23, chloroplastic.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	U	92	Total 740	C 477	N 129	0 132	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L24, chloroplastic.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
26	V	124	Total 993	C 624	N 187	0 180	${ m S} { m 2}$	0	0

• Molecule 27 is a RNA chain called 4.8S rRNA.

Mol	Chain	Residues		Α	toms			AltConf	Trace
27	W	102	Total 2187	C 977	N 403	O 705	Р 102	0	0

• Molecule 28 is a protein called protein L27.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
28	Х	100	Total 810	C 511	N 159	O 140	0	0

• Molecule 29 is a protein called protein L28.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
29	Y	74	Total 605	$\begin{array}{c} \mathrm{C} \\ \mathrm{385} \end{array}$	N 121	O 98	S 1	0	0

• Molecule 30 is a protein called protein L29.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	Ζ	90	Total 754	C 470	N 150	0 131	${f S}\ 3$	0	0

• Molecule 31 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
31	А	2809	Total 60324	C 26912	N 11166	O 19437	Р 2809	0	0

• Molecule 32 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues	Atoms				AltConf	Trace	
32	0	64	Total 521	C 330	N 89	O 100	${S \over 2}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L32, chloroplastic

 \bullet Molecule 31: 23S rRNA

G1079 C1081 C1081 A1085 G1084 A1085 G1086 G1087 A1086 G1087 G1086 G1087 G1086 G1086 G1086 G1086 G1086 G1086 G1086 G1086 G1096 A1113 A1116 G1116 G1116 A1114 A1114 A1114 A1115 G1116 A1115 A1114 A1115 A1116 G1117 A1116 G1117 A1116 G1117 A1116 G1117 A1116 G1128 A1126 A1126 A1126 A1127 A1126 A131
A1133 A1134 G1141 G1142 G1143 G1144 G1145 G1146 G1147 G1148 G1156 G1156 G1156 G1156 G1156 G1156 G1156 A1156 G1156 A1161 A1166 A1167 G1176 G1176 A1161 A1161 A1163 A1164 A1165 A1166 A1177 G1178 A1163 A1193 A1194 A1197 G1178 A1197 G1178 A1197 G1177 G1178 G1177 G1211 U1227 U1228 G128 G128 G128 G129 G128
U 245 0 1248 0 1255 0 1255 0 1255 0 1255 0 1255 0 1255 0 1255 0 1255 0 1275 0 1277 0 1275 0 1277 0 1275 0 1277 0 1275 0 1277 0 1270 0 1277 0 1270 0 1228 0 1277 0 1228 0 1277 0 1277 0 1277 0 1270 0 1270 0 1277 0 1270 0 12700 0 12700 0 12700 0 12700 0 12700 0 12700 0 12700 0 12700 0
U1 333 U1 334 U1 334 U1 334 U1 345 U1 346 U1 346 U1 346 U1 371 U1 372 U1 373 U1 373 U1 373 U1 405 U1 405 U1 401 U1 403 U1 405 U1 403 U1 406 U1 401 U1 413 U1 406 U1 403 U1 406 U1 401 U1 413 U1 406 U1 403 U1 406 U1 401 U1 413 U1 406 U1 403 U1 406 U1 401 U1 408 U1 408 U
U1436 01445 01445 01445 01445 01445 01445 01445 01455 01550 015000 015000 015000 015000 015000 0150000000000
A1514 + A1514 + A1515 + A1515 + A1515 + A1515 + A1515 + A1515 + A1523 + A1533 + A1556
M604 M605 A1605 A1605 A1612 A1612 A1612 A1614 C1614 C1614 C1614 C1614 A1612 A1646 A1646 A1644 A1646 A1644 A1644 A1644 A1644 A1644 A1644 A1646 C1633 C1703 C1633 C1703 C1633 C1703 C17703 C1703
A1726 A1726 G1732 G1733 G1733 G1734 G1734 G1740 C1746 C1746 G1746 G1746 G1765 G1765 G1765 G1765 G1765 G1765 G1765 G1765 G1768 G1768 G1768 G17778 G1778 G1778 G17778 G17778 G1778 G1778 G1778 G1778 G1778 G17
A1820 A1820 A1825 A1825 A1825 A1825 A1826 C1838 A1829 C1836 A1836 C1836 A1836 C1836 A1886 C1843 A1836 C1843 A1887 C1843 A1886 C1843 A1886 C1865 A1886 C1865 A1886 C1865 A1886 C1865 A1886 C1865 A1886 C1885
(1985 (1985 (1985 (1985 (1984) (1987) (1987) (1987) (1986
42046 42047 42047 42050 42051 42055 42051 42055 42056 42056 42056 42056 42056 42056 42077 42076 42077 42076 42077 42082 42083 42084 42085 42085 42086 42087 42086 42087 42086 42086 42087 42086 42086 42086 42086 42086 42086 42086 42086 42086 42087 42086 42086 42086 42086 42086 42086 42086 42086 42086 42086
C2129 C2130 U2132 U2132 U2132 A2133 A2134 C2134 C2135 C2134 C2135 C2135 C2134 C2135 C2144 C2145 C2145 C2146 C2145 C2145 C2145 C2145 C2145 C2145 C2145 C2146 C2147 A2149 C2145 C2145 C2155 C2164 C2165 C2166 C2167 C2167 C2167 C2176 C2176 C2177 C2176 C2177 C2176 C2176 C2180 C2181 C2184 C2185 C2184<
C2189 A2190 C2191 C2195 C2195 C2195 C2195 C2195 C2195 C2195 C2196 A2196 A2200 C2201 C2205 A2200 C2201 C2205 C2201 C2205 C2201 C2205 C2201 C2205 C2

WORLDWIDE PROTEIN DATA BANK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	81305	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.5	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	3700	Depositor
Magnification	133333	Depositor
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.644	Depositor
Minimum map value	-0.445	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.018	Depositor
Recommended contour level	0.09	Depositor
Map size (Å)	403.19998, 403.19998, 403.19998	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.05, 1.05, 1.05	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.27	0/387	0.51	0/513	
2	2	0.32	0/422	0.75	1/564~(0.2%)	
3	3	0.27	0/447	0.66	1/588~(0.2%)	
4	4	0.30	0/569	0.66	1/752~(0.1%)	
5	5	0.30	0/306	0.67	0/403	
6	6	0.25	0/425	0.46	0/551	
7	7	0.28	0/382	0.54	0/520	
8	В	0.31	0/2796	1.05	12/4357~(0.3%)	
9	С	0.29	0/1938	0.64	0/2603	
10	D	0.31	0/1646	0.65	0/2201	
11	Ε	0.31	0/1687	0.65	1/2271~(0.0%)	
12	F	0.28	0/1372	0.61	0/1848	
13	G	0.26	0/1374	0.55	1/1849~(0.1%)	
14	Н	0.26	0/427	0.59	0/568	
15	Κ	0.28	0/1608	0.57	2/2174~(0.1%)	
16	L	0.31	0/951	0.59	0/1282	
17	М	0.28	0/1361	0.53	0/1806	
18	Ν	0.31	0/1089	0.61	0/1461	
19	0	0.28	0/959	0.61	0/1280	
20	Р	0.26	0/963	0.55	1/1293~(0.1%)	
21	Q	0.31	0/967	0.71	2/1300~(0.2%)	
22	R	0.33	0/1013	0.61	0/1351	
23	\mathbf{S}	0.31	0/1199	0.61	0/1633	
24	Т	0.29	0/1168	0.60	1/1566~(0.1%)	
25	U	0.27	0/749	0.58	0/1006	
26	V	0.27	0/1006	0.64	1/1343~(0.1%)	
27	W	0.35	0/2449	1.07	$\overline{9/3817}~(0.2\%)$	
28	Х	0.30	0/825	0.57	0/1099	
29	Y	0.28	$0/\overline{615}$	0.65	2/819 (0.2%)	
30	Ζ	0.27	$0/\overline{762}$	0.57	0/1012	
31	A	0.35	1/67572~(0.0%)	1.05	$303/1054\overline{21}~(0.3\%)$	
32	0	0.29	0/533	0.66	$1\overline{/718}~(0.1\%)$	
All	All	0.33	1/99967~(0.0%)	0.96	$339/1499\overline{69}~(0.2\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
17	М	0	1
21	Q	0	1
23	S	0	1
32	0	0	1
All	All	0	4

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
31	A	2447	A	N9-C4	5.09	1.41	1.37

The worst 5 of 339 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	А	2077	C	N1-C2-O2	11.06	125.54	118.90
31	А	2077	С	C2-N1-C1'	10.63	130.49	118.80
31	А	1747	С	N3-C2-O2	-9.95	114.94	121.90
31	А	2314	С	C2-N1-C1'	9.82	129.60	118.80
31	А	2314	С	N1-C2-O2	9.47	124.58	118.90

There are no chirality outliers.

All (4) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
32	0	73	TRP	Peptide
17	М	143	LEU	Peptide
21	Q	190	VAL	Peptide
23	S	174	THR	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1	378	0	415	8	0
2	2	415	0	434	7	0
3	3	445	0	501	11	0
4	4	563	0	623	9	0
5	5	304	0	345	7	0
6	6	422	0	508	9	0
7	7	368	0	386	7	0
8	В	2500	0	1263	13	0
9	С	1904	0	1985	41	0
10	D	1620	0	1699	34	0
11	Е	1655	0	1725	40	0
12	F	1351	0	1407	28	0
13	G	1353	0	1416	18	0
14	Н	423	0	490	7	0
15	Κ	1568	0	1595	25	0
16	L	942	0	996	16	0
17	М	1342	0	1417	16	0
18	Ν	1067	0	1122	28	0
19	0	944	0	1004	25	0
20	Р	947	0	966	30	0
21	Q	953	0	1045	25	0
22	R	996	0	1062	35	0
23	S	1171	0	1216	22	0
24	Т	1149	0	1220	21	0
25	U	740	0	795	14	0
26	V	993	0	1055	25	0
27	W	2187	0	1102	17	0
28	Х	810	0	847	14	0
29	Y	605	0	652	17	0
30	Ζ	754	0	808	13	0
31	А	60324	0	30377	432	0
32	0	521	0	499	4	0
All	All	91714	0	60975	829	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 829 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1 Atom-2		Interatomic distance (Å)	Clash overlap (Å)	
31:A:63:A:H61	31:A:89:A:N6	1.59	1.01	
31:A:2118:U:H3	31:A:2199:G:H1	1.08	0.99	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
31:A:293:G:H21	31:A:365:A:N6	1.61	0.98
31:A:293:G:N2	31:A:365:A:H62	1.61	0.98
31:A:1505:C:H42	31:A:1515:G:H1	1.09	0.98

Continued from previous page...

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1	44/56~(79%)	39~(89%)	5 (11%)	0	100	100
2	2	49/65~(75%)	39~(80%)	10 (20%)	0	100	100
3	3	55/61~(90%)	49 (89%)	6 (11%)	0	100	100
4	4	67/73~(92%)	59~(88%)	8 (12%)	0	100	100
5	5	35/37~(95%)	31~(89%)	4 (11%)	0	100	100
6	6	47/142~(33%)	46 (98%)	1 (2%)	0	100	100
7	7	44/116~(38%)	41 (93%)	3~(7%)	0	100	100
9	С	245/271~(90%)	213~(87%)	32 (13%)	0	100	100
10	D	210/221~(95%)	188 (90%)	22 (10%)	0	100	100
11	Ε	208/243~(86%)	180 (86%)	28 (14%)	0	100	100
12	F	173/220~(79%)	161 (93%)	12 (7%)	0	100	100
13	G	171/182~(94%)	161 (94%)	10 (6%)	0	100	100
14	Η	51/155~(33%)	47 (92%)	4 (8%)	0	100	100
15	Κ	191/197~(97%)	178~(93%)	13~(7%)	0	100	100
16	L	$11\overline{9/121}~(98\%)$	103 (87%)	16 (13%)	0	100	100
17	М	175/192~(91%)	163 (93%)	11 (6%)	1 (1%)	25	57
18	Ν	$13\overline{2}/135~(98\%)$	111 (84%)	21 (16%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
19	Ο	114/116~(98%)	104 (91%)	10 (9%)	0	100	100
20	Р	118/123~(96%)	116 (98%)	2 (2%)	0	100	100
21	Q	116/156~(74%)	100 (86%)	16 (14%)	0	100	100
22	R	113/127~(89%)	105 (93%)	8 (7%)	0	100	100
23	S	145/201 (72%)	118 (81%)	27 (19%)	0	100	100
24	Т	142/199~(71%)	126 (89%)	16 (11%)	0	100	100
25	U	90/122~(74%)	86 (96%)	4 (4%)	0	100	100
26	V	122/145~(84%)	109 (89%)	13 (11%)	0	100	100
28	Х	98/137~(72%)	87~(89%)	11 (11%)	0	100	100
29	Y	72/77~(94%)	66 (92%)	6 (8%)	0	100	100
30	Z	88/109~(81%)	87~(99%)	1 (1%)	0	100	100
32	0	$\overline{62/94}$ (66%)	54 (87%)	6 (10%)	2 (3%)	4	22
All	All	3296/4093 (80%)	2967 (90%)	326 (10%)	3 (0%)	54	81

Continued from previous page...

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
32	0	72	VAL
17	М	197	PRO
32	0	73	TRP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1	39/49~(80%)	39 (100%)	0	100 100
2	2	48/59~(81%)	46 (96%)	2(4%)	30 60
3	3	47/50~(94%)	47 (100%)	0	100 100
4	4	59/62~(95%)	58 (98%)	1 (2%)	60 78
5	5	34/34~(100%)	34 (100%)	0	100 100

0	£		
Continuea	Jrom	previous	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
6	6	46/124~(37%)	46 (100%)	0	100	100
7	7	40/96~(42%)	40 (100%)	0	100	100
9	С	195/216~(90%)	194 (100%)	1 (0%)	88	93
10	D	174/182~(96%)	174 (100%)	0	100	100
11	Ε	176/205~(86%)	173~(98%)	3~(2%)	60	78
12	F	148/183~(81%)	148 (100%)	0	100	100
13	G	147/154~(96%)	147~(100%)	0	100	100
14	Η	47/134~(35%)	47 (100%)	0	100	100
15	Κ	167/171~(98%)	165~(99%)	2(1%)	71	83
16	L	101/101 (100%)	101 (100%)	0	100	100
17	М	135/144~(94%)	133~(98%)	2(2%)	65	81
18	Ν	107/108~(99%)	107 (100%)	0	100	100
19	Ο	96/96~(100%)	96 (100%)	0	100	100
20	Р	99/100~(99%)	99 (100%)	0	100	100
21	Q	104/135~(77%)	103~(99%)	1 (1%)	76	86
22	R	102/114~(90%)	102 (100%)	0	100	100
23	S	129/174~(74%)	129 (100%)	0	100	100
24	Т	126/176~(72%)	126 (100%)	0	100	100
25	U	81/103~(79%)	80~(99%)	1 (1%)	71	83
26	V	112/129~(87%)	111 (99%)	1 (1%)	78	87
28	Х	85/111~(77%)	84 (99%)	1 (1%)	71	83
29	Y	64/67~(96%)	63~(98%)	1 (2%)	62	79
30	Ζ	$\overline{83/97}\ (86\%)$	82 (99%)	1 (1%)	71	83
32	0	56/83~(68%)	55 (98%)	1 (2%)	59	78
All	All	2847/3457~(82%)	2829 (99%)	18 (1%)	86	91

5 of 18 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
28	Х	73	LYS
32	0	76	ASN
30	Ζ	107	ARG
15	Κ	174	ARG
26	V	64	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 36 such sidechains are listed below:

Mol	Chain	Res	Type
22	R	99	GLN
32	0	76	ASN
23	S	145	GLN
24	Т	52	GLN
12	F	77	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
27	W	101/106~(95%)	30~(29%)	4(3%)
31	А	2808/2810 (99%)	592 (21%)	3(0%)
8	В	116/121~(95%)	21 (18%)	1 (0%)
All	All	3025/3037~(99%)	643~(21%)	8~(0%)

5 of 643 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
8	В	4	U
8	В	10	G
8	В	14	U
8	В	15	А
8	В	16	G

5 of 8 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
31	А	556	С
31	А	514	А
27	W	97	А
27	W	33	А
31	А	97	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-6711. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 163

Y Index: 221

Z Index: 195

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.09. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 450 $\rm nm^3;$ this corresponds to an approximate mass of 407 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.303 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-6711 and PDB model 5X8T. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.09 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.09).

9.4 Atom inclusion (i)

At the recommended contour level, 74% of all backbone atoms, 68% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.09) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.6830	0.4510
0	0.0780	0.1390
1	0.6110	0.4100
2	0.5320	0.3480
3	0.6790	0.4750
4	0.7030	0.4840
5	0.6600	0.4090
6	0.4890	0.3800
7	0.6250	0.4670
А	0.7350	0.4700
В	0.7310	0.4450
С	0.6160	0.4290
D	0.6530	0.4620
Е	0.5760	0.4120
F	0.2800	0.2780
G	0.4480	0.3690
Н	0.2370	0.3220
K	0.5880	0.4420
L	0.5430	0.4270
М	0.6450	0.4440
Ν	0.6290	0.4170
О	0.6450	0.4360
Р	0.5470	0.3950
Q	0.5600	0.4240
R	0.6570	0.4170
S	0.5420	0.4110
Т	0.5260	0.4070
U	0.4890	0.4060
V	0.4980	0.3810
W	0.7640	0.4760
X	0.6030	0.4270
Y	0.6280	0.4550
Z	0.4720	0.3770

1.0

0.0 <0.0

