

Full wwPDB X-ray Structure Validation Report (i)

Nov 13, 2023 – 02:10 PM JST

PDB ID	:	5XAT
Title	:	Structural insights into the elevator-like mechanism of the sodium/citrate sym-
		porter CitS
Authors	:	Jin, M.S.; Kim, J.W.; Kim, S.; Kim, S.; Lee, H.; Lee, JO.
Deposited on	:	2017-03-14
Resolution	:	3.76 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 3.76 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1039 (3.94-3.58)
Clashscore	141614	1051 (3.92 - 3.60)
Ramachandran outliers	138981	1015 (3.92 - 3.60)
Sidechain outliers	138945	1011 (3.92 - 3.60)
RSRZ outliers	127900	1050 (3.96-3.56)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	438	3% 75%	20%	5%
1	В	438	5%	17%	7%
1	С	438	10%	22%	7%
1	D	438	67%	24%	• 7%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-

ria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	FLC	А	502	-	Х	-	-
3	FLC	В	501	-	-	Х	-
3	FLC	С	501	-	Х	-	-
4	BOG	А	503	-	-	Х	-

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 12336 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	418	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	410	3123	2068	502	533	20	0	0	0
1	р	400	Total	С	Ν	0	S	0	0	0
	I D	409	3054	2025	491	520	18	0		U
1	C	408	Total	С	Ν	0	S	0	0	0
			3056	2030	486	520	20			0
1	1 D	406	Total	С	Ν	0	S	0	0	0
		400	3037	2015	485	517	20		0	U

• Molecule 1 is a protein called Citrate-sodium symporter.

There are 16 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	11	GLY	-	expression tag	UNP P31602
А	12	SER	-	expression tag	UNP P31602
А	447	PRO	-	expression tag	UNP P31602
А	448	ARG	-	expression tag	UNP P31602
В	11	GLY	-	expression tag	UNP P31602
В	12	SER	-	expression tag	UNP P31602
В	447	PRO	-	expression tag	UNP P31602
В	448	ARG	-	expression tag	UNP P31602
С	11	GLY	-	expression tag	UNP P31602
С	12	SER	-	expression tag	UNP P31602
С	447	PRO	-	expression tag	UNP P31602
С	448	ARG	-	expression tag	UNP P31602
D	11	GLY	-	expression tag	UNP P31602
D	12	SER	-	expression tag	UNP P31602
D	447	PRO	-	expression tag	UNP P31602
D	448	ARG	-	expression tag	UNP P31602

• Molecule 2 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Na 1 1	0	0
2	В	1	Total Na 1 1	0	0
2	D	1	Total Na 1 1	0	0

• Molecule 3 is CITRATE ANION (three-letter code: FLC) (formula: $C_6H_5O_7$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C O 13 6 7	0	0
3	В	1	Total C O 13 6 7	0	0
3	С	1	Total C O 13 6 7	0	0

• Molecule 4 is octyl beta-D-glucopyranoside (three-letter code: BOG) (formula: $C_{14}H_{28}O_6$).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
4	А	1	Total 20	C 14	O 6	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	2	Total O 2 2	0	0
5	В	1	Total O 1 1	0	0
5	D	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Citrate-sodium symporter

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	87.67Å 91.87Å 96.32Å	Depositor
a, b, c, α , β , γ	86.10° 82.22° 69.66°	Depositor
Bosolution(A)	95.41 - 3.76	Depositor
Resolution (A)	47.70 - 3.76	EDS
% Data completeness	95.0 (95.41-3.76)	Depositor
(in resolution range)	95.0 (47.70-3.76)	EDS
R_{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.98 (at 3.77 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0135	Depositor
B B.	0.267 , 0.298	Depositor
II, II, <i>free</i>	0.283 , 0.311	DCC
R_{free} test set	1401 reflections (5.21%)	wwPDB-VP
Wilson B-factor $(Å^2)$	178.4	Xtriage
Anisotropy	0.164	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33 , 232.3	EDS
L-test for twinning ²	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	12336	wwPDB-VP
Average B, all atoms $(Å^2)$	241.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.97% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FLC, BOG, NA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	B	ond angles
10101	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.48	0/3184	0.68	1/4318~(0.0%)
1	В	0.46	0/3114	0.68	0/4227
1	С	0.49	0/3118	0.70	3/4232~(0.1%)
1	D	0.63	2/3096~(0.1%)	0.91	17/4201~(0.4%)
All	All	0.52	2/12512~(0.0%)	0.75	21/16978~(0.1%)

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	D	353	GLU	CG-CD	5.17	1.59	1.51
1	D	320	GLU	CG-CD	5.16	1.59	1.51

 \mathbf{Z} Mol Chain Res Observed(^o) Ideal(°) Type Atoms $\overline{\mathbf{C}}$ 172ARG NE-CZ-NH1 8.92 124.76 120.30 1 1 D 290LEU CB-CG-CD2 8.38 125.24111.00 D GLU 1 320 OE1-CD-OE2 -8.04113.65 123.30 D 1 26MET CG-SD-CE 7.80 112.68 100.20 CB-CG-OD1 1 D 171ASP 7.16124.75118.30 1 D LEU 141 CB-CG-CD2 -6.60 99.79 111.00 1 D LEU CA-CB-CG 164-6.47100.42 115.30 1 D 419LEU CB-CG-CD1 -6.39100.14 111.00 1 D CYS N-CA-C -6.3793.80 414111.00 1 D 348 TYR CB-CG-CD1 6.24 124.74 121.00 1 D 137 LEU CB-CG-CD2 6.23 121.59 111.00 1 D 134ARG NE-CZ-NH1 123.34 120.30 6.07D 1 382 TRP CA-CB-CG 6.04125.17 113.70 D N-CA-CB 121.12 1 87 PHE 5.84110.60 1 D 353 GLU OE1-CD-OE2 -5.71116.45123.30

All (21) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	D	397	LEU	CA-CB-CG	5.63	128.26	115.30
1	С	135	ARG	CB-CG-CD	5.44	125.75	111.60
1	D	216	LEU	CB-CG-CD1	-5.29	102.00	111.00
1	D	399	MET	CG-SD-CE	-5.12	92.02	100.20
1	А	102	LYS	CD-CE-NZ	5.03	123.26	111.70
1	С	102	LYS	CD-CE-NZ	5.02	123.25	111.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3123	0	3290	83	0
1	В	3054	0	3223	74	0
1	С	3056	0	3220	114	0
1	D	3037	0	3215	143	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
2	D	1	0	0	0	0
3	А	13	0	5	3	0
3	В	13	0	5	14	0
3	С	13	0	5	1	0
4	А	20	0	28	9	0
5	А	2	0	0	3	0
5	В	1	0	0	0	0
5	D	1	0	0	0	0
All	All	12336	0	12991	400	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 16.

All (400) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:78:TYR:CZ	1:C:228:ALA:HB1	1.51	1.42
1:D:78:TYR:CE1	1:D:224:ILE:HD11	1.57	1.37
1:C:78:TYR:CE2	1:C:228:ALA:HB1	1.60	1.36
1:C:78:TYR:CZ	1:C:228:ALA:CB	2.12	1.31
1:D:352:GLN:OE1	1:D:356:ASN:ND2	1.62	1.31
1:B:31:TYR:OH	1:B:64:ILE:HB	1.22	1.30
1:A:70:LYS:O	1:A:76:ASN:ND2	1.67	1.27
1:D:398:CYS:HA	1:D:401:ASN:ND2	1.51	1.26
1:C:70:LYS:O	1:C:76:ASN:ND2	1.68	1.25
1:C:77:LYS:HE3	1:C:78:TYR:CE2	1.73	1.23
1:B:70:LYS:O	1:B:76:ASN:ND2	1.68	1.23
1:D:260:THR:CG2	1:D:320:GLU:OE2	1.93	1.15
1:D:260:THR:HG21	1:D:320:GLU:OE2	0.99	1.14
1:C:78:TYR:OH	1:C:228:ALA:CB	1.95	1.14
1:C:77:LYS:CE	1:C:78:TYR:HE2	1.61	1.13
1:D:210:SER:HB3	1:D:354:ILE:HB	1.28	1.09
1:C:78:TYR:OH	1:C:228:ALA:HB2	1.52	1.08
1:D:205:ARG:HD2	1:D:348:TYR:CE1	1.89	1.07
1:C:77:LYS:HG3	1:C:78:TYR:CE2	1.91	1.06
1:D:78:TYR:CE1	1:D:224:ILE:CD1	2.39	1.05
1:C:77:LYS:HE3	1:C:78:TYR:HE2	0.87	1.01
1:D:352:GLN:OE1	1:D:356:ASN:CG	2.01	0.99
1:D:84:VAL:HA	1:D:87:PHE:CE2	1.97	0.98
1:D:175:MET:CE	1:D:445:MET:HG3	1.94	0.98
1:B:31:TYR:HH	1:B:64:ILE:HB	1.29	0.97
1:B:186:ASN:HB3	3:B:501:FLC:OB2	1.63	0.97
1:D:170:VAL:HA	1:D:173:ILE:HD12	1.46	0.96
1:B:31:TYR:OH	1:B:64:ILE:CB	2.13	0.94
1:C:78:TYR:CZ	1:C:228:ALA:HB2	2.00	0.94
1:A:188:ALA:O	1:A:192:PRO:HG3	1.69	0.93
1:D:264:THR:HG22	1:D:267:GLU:OE2	1.69	0.93
1:A:428:ARG:HH22	3:A:502:FLC:CAC	1.81	0.93
1:B:188:ALA:O	1:B:192:PRO:HG3	1.68	0.92
1:C:188:ALA:O	1:C:192:PRO:HG3	1.71	0.91
1:D:141:LEU:HA	1:D:145:ILE:HD12	1.53	0.91
1:B:23:ILE:HG21	1:B:31:TYR:CE1	2.05	0.90
1:D:160:ILE:O	1:D:164:LEU:HD12	1.70	0.90
1:D:171:ASP:HA	1:D:445:MET:HE3	1.52	0.90
1:D:185:GLY:HA2	1:D:402:ARG:HD2	1.54	0.90
1:C:166:PHE:HB2	1:C:168:ILE:HD11	1.52	0.89
1:D:264:THR:HG22	1:D:267:GLU:CD	1.93	0.89
1:D:84:VAL:HA	1:D:87:PHE:CZ	2.07	0.88

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:264:THR:CG2	1:D:267:GLU:OE1	2.21	0.88
1:B:402:ARG:NE	3:B:501:FLC:OG2	2.06	0.87
1:D:267:GLU:OE1	1:D:267:GLU:N	2.06	0.87
1:D:141:LEU:CA	1:D:145:ILE:HD12	2.05	0.86
1:B:402:ARG:CD	3:B:501:FLC:OG1	2.24	0.85
1:D:175:MET:HE2	1:D:445:MET:HG3	1.57	0.84
1:C:166:PHE:HB2	1:C:168:ILE:CD1	2.07	0.84
1:D:351:LEU:O	1:D:355:ILE:HG13	1.77	0.84
1:D:188:ALA:O	1:D:192:PRO:HG3	1.77	0.84
1:B:402:ARG:HE	3:B:501:FLC:CGC	1.91	0.83
1:A:267:GLU:OE1	1:A:267:GLU:N	2.09	0.83
1:D:117:LEU:HD11	1:D:191:VAL:CG1	2.08	0.83
1:C:78:TYR:CE1	1:C:80:GLY:N	2.47	0.82
1:D:162:ILE:HG13	1:D:368:ILE:HG21	1.61	0.81
1:B:402:ARG:NE	3:B:501:FLC:CGC	2.43	0.81
1:C:78:TYR:CE1	1:C:80:GLY:CA	2.64	0.80
1:D:260:THR:HG23	1:D:319:PRO:HB2	1.62	0.80
1:D:78:TYR:HE1	1:D:224:ILE:HD11	1.01	0.79
1:C:78:TYR:CE1	1:C:413:ALA:O	2.35	0.79
1:D:398:CYS:HA	1:D:401:ASN:HD21	1.47	0.79
1:B:75:PHE:CZ	1:B:85:MET:SD	2.76	0.78
1:B:188:ALA:O	1:B:192:PRO:CG	2.31	0.78
1:A:188:ALA:O	1:A:192:PRO:CG	2.32	0.78
1:D:264:THR:HG23	1:D:267:GLU:OE1	1.82	0.78
1:C:188:ALA:O	1:C:192:PRO:CG	2.33	0.77
1:C:438:ALA:HB1	1:C:442:PHE:HE1	1.49	0.77
1:C:163:GLY:HA2	1:C:168:ILE:CD1	2.14	0.77
1:A:75:PHE:CZ	1:A:85:MET:SD	2.78	0.77
1:C:77:LYS:HG3	1:C:78:TYR:CD2	2.20	0.76
1:B:348:TYR:HB3	3:B:501:FLC:CGC	2.15	0.76
1:C:75:PHE:CZ	1:C:85:MET:SD	2.78	0.76
1:A:21:PHE:O	1:A:28:LEU:HG	1.86	0.75
1:C:78:TYR:HE1	1:C:413:ALA:O	1.67	0.75
1:C:132:VAL:HG23	1:C:137:LEU:HD21	1.67	0.75
1:A:401:ASN:OD1	5:A:601:HOH:O	2.05	0.74
1:C:78:TYR:CE1	1:C:80:GLY:HA3	2.22	0.74
1:D:264:THR:HG22	1:D:267:GLU:OE1	1.86	0.74
1:B:402:ARG:NE	3:B:501:FLC:OG1	2.20	0.73
1:C:184:GLY:O	1:C:188:ALA:HB3	1.88	0.73
1:D:398:CYS:CA	1:D:401:ASN:ND2	2.44	0.73
1:D:84:VAL:HG22	1:D:87:PHE:HZ	1.53	0.73

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:136:LEU:HD23	1:A:249:LYS:NZ	2.04	0.73
1:B:23:ILE:CG2	1:B:31:TYR:CE1	2.72	0.72
1:A:136:LEU:HD23	1:A:249:LYS:HZ1	1.54	0.72
1:A:264:THR:OG1	1:A:267:GLU:OE1	2.06	0.72
1:D:78:TYR:CD1	1:D:224:ILE:HD11	2.22	0.72
1:D:117:LEU:HD11	1:D:191:VAL:HG13	1.70	0.72
1:A:436:VAL:O	1:A:439:SER:OG	2.08	0.71
1:D:162:ILE:CG1	1:D:368:ILE:HG21	2.19	0.71
1:A:184:GLY:O	1:A:188:ALA:HB3	1.92	0.70
1:C:171:ASP:OD1	1:C:172:ARG:N	2.25	0.70
1:C:438:ALA:O	1:C:442:PHE:HD1	1.73	0.70
1:D:141:LEU:O	1:D:146:PRO:HD3	1.91	0.70
1:C:78:TYR:CZ	1:C:80:GLY:HA3	2.27	0.70
1:C:77:LYS:O	1:C:78:TYR:CD2	2.45	0.70
1:D:75:PHE:HA	1:D:79:ILE:HD12	1.72	0.70
1:D:84:VAL:HG22	1:D:87:PHE:CZ	2.25	0.70
1:B:184:GLY:O	1:B:188:ALA:HB3	1.92	0.69
1:D:23:ILE:HG23	1:D:67:GLU:HG3	1.74	0.69
1:C:21:PHE:CE2	1:C:71:ARG:NH1	2.60	0.69
1:C:438:ALA:HB1	1:C:442:PHE:CE1	2.26	0.69
1:B:72:LEU:CB	1:B:75:PHE:HB3	2.23	0.69
1:D:352:GLN:OE1	1:D:356:ASN:OD1	2.10	0.68
1:A:83:PRO:HG3	1:A:412:SER:O	1.94	0.68
1:C:77:LYS:O	1:C:78:TYR:CG	2.46	0.68
1:D:188:ALA:O	1:D:192:PRO:CG	2.41	0.68
1:C:78:TYR:CD1	1:C:79:ILE:N	2.62	0.68
1:A:72:LEU:CB	1:A:75:PHE:HB3	2.23	0.67
1:D:75:PHE:HA	1:D:79:ILE:CG1	2.24	0.67
1:C:72:LEU:CB	1:C:75:PHE:HB3	2.23	0.67
1:C:163:GLY:HA2	1:C:168:ILE:HD12	1.75	0.67
1:C:21:PHE:O	1:C:28:LEU:HG	1.95	0.67
1:B:72:LEU:HB3	1:B:75:PHE:HB3	1.76	0.67
1:D:79:ILE:O	1:D:84:VAL:HG21	1.93	0.67
1:D:398:CYS:HA	1:D:401:ASN:HD22	1.59	0.67
1:A:128:ALA:HB1	4:A:503:BOG:O2	1.95	0.67
1:D:75:PHE:CD2	1:D:79:ILE:HG21	2.29	0.67
1:D:355:ILE:O	1:D:358:ILE:HG13	1.95	0.67
1:C:72:LEU:HB3	1:C:75:PHE:HB3	1.77	0.67
1:C:78:TYR:CD1	1:C:80:GLY:N	2.62	0.66
1:A:428:ARG:NH2	3:A:502:FLC:OA2	2.27	0.66
1:A:72:LEU:HB3	1:A:75:PHE:HB3	1.77	0.65

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:23:ILE:HG23	1:C:67:GLU:HG3	1.78	0.65
1:D:160:ILE:O	1:D:164:LEU:CD1	2.43	0.65
1:A:23:ILE:HG23	1:A:67:GLU:HG3	1.80	0.64
1:D:141:LEU:HA	1:D:145:ILE:CD1	2.26	0.64
1:D:260:THR:CG2	1:D:319:PRO:HB2	2.27	0.64
1:D:205:ARG:CD	1:D:348:TYR:CE1	2.76	0.64
1:D:184:GLY:O	1:D:188:ALA:HB3	1.97	0.64
1:B:402:ARG:HD3	3:B:501:FLC:OG1	1.97	0.64
1:B:23:ILE:HG23	1:B:67:GLU:HG3	1.78	0.63
1:D:78:TYR:HE1	1:D:224:ILE:CD1	1.89	0.63
1:B:23:ILE:HB	1:B:31:TYR:CD1	2.33	0.63
1:C:77:LYS:CE	1:C:78:TYR:CE2	2.54	0.63
1:D:141:LEU:HA	1:D:145:ILE:HB	1.81	0.63
1:C:438:ALA:O	1:C:442:PHE:CD1	2.52	0.63
1:D:75:PHE:HA	1:D:79:ILE:CD1	2.28	0.63
1:B:438:ALA:O	1:B:442:PHE:HD1	1.82	0.62
1:C:166:PHE:CB	1:C:168:ILE:HD11	2.29	0.62
1:C:83:PRO:HG3	1:C:412:SER:O	1.98	0.62
1:D:441:VAL:O	1:D:444:MET:HG2	2.00	0.62
1:D:411:LEU:O	1:D:414:CYS:O	2.18	0.61
1:D:185:GLY:HA2	1:D:402:ARG:CD	2.30	0.61
1:B:72:LEU:HD12	1:B:75:PHE:CD1	2.36	0.61
1:C:350:ASP:OD1	1:C:352:GLN:HG2	2.01	0.61
1:A:31:TYR:OH	1:A:64:ILE:HB	2.01	0.61
1:B:350:ASP:OD1	1:B:352:GLN:HG2	2.01	0.61
1:B:402:ARG:CZ	3:B:501:FLC:OG2	2.49	0.61
1:D:185:GLY:CA	1:D:402:ARG:HD2	2.30	0.60
1:B:124:LEU:HB3	1:B:420:ILE:HG21	1.83	0.60
1:C:127:GLY:O	1:C:131:SER:OG	2.19	0.60
1:A:124:LEU:HB3	1:A:420:ILE:HG21	1.83	0.60
1:C:124:LEU:HB3	1:C:420:ILE:HG21	1.84	0.60
1:C:160:ILE:O	1:C:164:LEU:HG	2.02	0.60
1:C:163:GLY:HA2	1:C:168:ILE:HD13	1.83	0.60
1:D:286:ALA:O	1:D:291:PRO:HA	2.02	0.60
1:C:31:TYR:OH	1:C:64:ILE:HB	2.02	0.60
1:D:84:VAL:CA	1:D:87:PHE:CE2	2.81	0.60
1:D:160:ILE:HA	1:D:173:ILE:HD13	1.83	0.60
1:B:354:ILE:HG22	1:B:358:ILE:HD11	1.84	0.59
1:D:416:ARG:HB3	1:D:419:LEU:HD13	1.82	0.59
1:D:148:ILE:HG23	1:D:399:MET:HE3	1.83	0.59
1:A:354:ILE:HG22	1:A:358:ILE:HD11	1.84	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:80:GLY:HA3	1:B:413:ALA:O	2.02	0.59
1:A:354:ILE:O	1:A:358:ILE:HG13	2.03	0.59
1:B:354:ILE:O	1:B:358:ILE:HG13	2.03	0.59
1:B:265:HIS:O	1:B:269:ALA:N	2.29	0.58
1:D:351:LEU:HA	1:D:354:ILE:HG22	1.86	0.58
1:C:354:ILE:O	1:C:358:ILE:HG13	2.03	0.58
1:D:45:ASN:OD1	1:D:100:THR:HG21	2.03	0.58
1:B:186:ASN:CB	3:B:501:FLC:OB2	2.47	0.58
1:C:72:LEU:HD12	1:C:75:PHE:CD1	2.38	0.58
1:C:265:HIS:O	1:C:269:ALA:N	2.30	0.57
1:C:354:ILE:HG22	1:C:358:ILE:HD11	1.84	0.57
1:D:31:TYR:OH	1:D:64:ILE:HB	2.03	0.57
1:D:141:LEU:N	1:D:145:ILE:HD12	2.19	0.57
1:A:72:LEU:HD12	1:A:75:PHE:CD1	2.38	0.57
1:C:78:TYR:HB2	1:C:231:ASP:OD2	2.05	0.57
1:A:21:PHE:HB2	1:A:28:LEU:CD1	2.34	0.56
1:C:78:TYR:HD1	1:C:79:ILE:H	1.49	0.56
1:D:260:THR:HG21	1:D:320:GLU:CD	2.09	0.56
1:A:141:LEU:HD22	4:A:503:BOG:C8'	2.35	0.56
1:A:340:LEU:HD21	1:A:408:LEU:HD13	1.88	0.56
1:D:148:ILE:CG2	1:D:399:MET:HE3	2.35	0.56
1:A:21:PHE:HB2	1:A:28:LEU:HD11	1.88	0.56
1:D:350:ASP:O	1:D:354:ILE:HG22	2.06	0.56
1:A:141:LEU:HB2	4:A:503:BOG:C7'	2.35	0.56
1:B:402:ARG:NH2	3:B:501:FLC:OG2	2.38	0.56
1:D:175:MET:HE3	1:D:445:MET:HG3	1.86	0.56
1:C:163:GLY:O	1:C:168:ILE:HD12	2.04	0.56
1:B:340:LEU:HD21	1:B:408:LEU:HD13	1.88	0.56
1:A:136:LEU:CD2	1:A:249:LYS:NZ	2.69	0.56
1:D:75:PHE:O	1:D:79:ILE:HB	2.06	0.56
1:A:40:LEU:HB3	1:D:284:VAL:HG11	1.87	0.55
1:B:273:VAL:HG22	1:C:59:PHE:CG	2.42	0.55
1:C:21:PHE:CZ	1:C:71:ARG:NH1	2.76	0.54
1:C:340:LEU:HD21	1:C:408:LEU:HD13	1.88	0.54
1:B:136:LEU:HD23	1:B:249:LYS:NZ	2.22	0.54
1:C:264:THR:N	1:C:267:GLU:OE1	2.41	0.54
1:A:141:LEU:CB	4:A:503:BOG:H8'1	2.37	0.54
1:D:438:ALA:O	1:D:442:PHE:HD1	1.90	0.54
1:D:75:PHE:HA	1:D:79:ILE:HG13	1.89	0.53
1:D:148:ILE:HG23	1:D:399:MET:CE	2.38	0.53
1:D:23:ILE:HG23	1:D:67:GLU:CG	2.39	0.53

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:77:LYS:C	1:C:78:TYR:CD2	2.82	0.53
1:D:441:VAL:O	1:D:445:MET:HG2	2.08	0.53
1:D:75:PHE:HE1	1:D:81:GLY:O	1.92	0.53
1:D:210:SER:HA	1:D:354:ILE:HD12	1.90	0.53
1:D:374:VAL:HG22	1:D:397:LEU:CD1	2.39	0.52
1:A:428:ARG:NH2	3:A:502:FLC:OA1	2.42	0.52
1:C:187:GLY:O	1:C:192:PRO:HD3	2.10	0.52
1:C:132:VAL:CG2	1:C:137:LEU:HD21	2.37	0.52
1:C:134:ARG:HA	1:C:137:LEU:HD11	1.91	0.52
1:B:264:THR:N	1:B:267:GLU:OE1	2.42	0.52
1:D:75:PHE:CD1	1:D:81:GLY:HA2	2.45	0.52
1:C:79:ILE:HG22	1:C:79:ILE:O	2.11	0.51
1:B:72:LEU:HD12	1:B:75:PHE:CG	2.45	0.51
1:D:154:GLY:HA2	1:D:157:ILE:HG22	1.93	0.51
1:B:348:TYR:CD1	3:B:501:FLC:HG1	2.45	0.51
1:C:22:LYS:HG2	1:C:27:PRO:HA	1.93	0.51
1:B:398:CYS:HA	1:B:401:ASN:ND2	2.26	0.51
1:B:402:ARG:CG	3:B:501:FLC:OG1	2.59	0.51
1:D:175:MET:CE	1:D:445:MET:CG	2.81	0.51
1:D:164:LEU:HD12	1:D:164:LEU:H	1.76	0.50
1:A:162:ILE:HD11	1:A:364:VAL:HG12	1.93	0.50
1:D:75:PHE:CE2	1:D:79:ILE:HG21	2.46	0.50
1:B:162:ILE:HD11	1:B:364:VAL:HG12	1.93	0.50
1:A:132:VAL:HG11	4:A:503:BOG:H5	1.93	0.50
1:B:72:LEU:HB2	1:B:75:PHE:HB3	1.94	0.50
1:C:163:GLY:CA	1:C:168:ILE:HD12	2.42	0.50
1:A:141:LEU:HD22	4:A:503:BOG:H8'1	1.94	0.50
1:C:398:CYS:HA	1:C:401:ASN:ND2	2.27	0.50
1:D:75:PHE:CE1	1:D:81:GLY:HA2	2.47	0.50
1:C:351:LEU:O	1:C:355:ILE:HG12	2.12	0.50
1:C:162:ILE:HD11	1:C:364:VAL:HG12	1.93	0.49
1:C:72:LEU:HB2	1:C:75:PHE:HB3	1.94	0.49
1:A:351:LEU:O	1:A:355:ILE:HG12	2.12	0.49
1:D:22:LYS:HG2	1:D:27:PRO:HA	1.94	0.49
1:B:351:LEU:O	1:B:355:ILE:HG12	2.12	0.49
1:C:428:ARG:HH22	3:C:501:FLC:CAC	2.26	0.49
1:D:197:TYR:HD1	1:D:442:PHE:HE2	1.59	0.49
1:B:75:PHE:CE1	1:B:85:MET:SD	3.06	0.49
1:D:67:GLU:O	1:D:71:ARG:HG2	2.13	0.49
1:D:227:ALA:HB2	1:D:397:LEU:HD23	1.94	0.49
1:A:187:GLY:O	1:A:192:PRO:HD3	2.13	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:121:ILE:HD11	1:D:191:VAL:HG12	1.95	0.48
1:D:348:TYR:N	1:D:348:TYR:CD2	2.80	0.48
1:A:47:LEU:N	1:D:283:TYR:HE2	2.12	0.48
1:B:69:GLY:O	1:B:76:ASN:HB2	2.13	0.48
1:C:72:LEU:HD12	1:C:75:PHE:CG	2.48	0.48
1:C:77:LYS:CG	1:C:78:TYR:CE2	2.81	0.48
1:C:438:ALA:C	1:C:442:PHE:HD1	2.16	0.48
1:A:132:VAL:CG1	4:A:503:BOG:H5	2.44	0.48
1:C:21:PHE:CD1	1:C:71:ARG:NH2	2.82	0.48
1:A:72:LEU:HD12	1:A:75:PHE:CG	2.49	0.48
1:A:437:ILE:O	1:A:441:VAL:HG23	2.14	0.48
1:C:75:PHE:CE1	1:C:85:MET:SD	3.07	0.48
1:D:374:VAL:HG22	1:D:397:LEU:HD11	1.95	0.47
1:D:441:VAL:HG13	1:D:444:MET:HE2	1.96	0.47
1:A:72:LEU:HB2	1:A:75:PHE:HB3	1.94	0.47
1:B:437:ILE:O	1:B:441:VAL:HG23	2.14	0.47
1:A:59:PHE:CZ	1:D:272:LEU:HD23	2.49	0.47
1:C:437:ILE:O	1:C:441:VAL:HG23	2.15	0.47
1:A:75:PHE:CE1	1:A:85:MET:SD	3.08	0.47
1:A:398:CYS:HA	1:A:401:ASN:ND2	2.29	0.47
1:A:141:LEU:HB2	4:A:503:BOG:H8'1	1.95	0.47
1:B:402:ARG:HG2	3:B:501:FLC:OG1	2.14	0.47
1:C:69:GLY:O	1:C:76:ASN:HB2	2.13	0.47
1:B:430:GLY:O	1:B:434:VAL:HG23	2.14	0.47
1:D:179:LEU:N	1:D:180:PRO:HD2	2.30	0.47
1:B:197:TYR:HD1	1:B:442:PHE:HE2	1.61	0.47
1:D:351:LEU:HA	1:D:354:ILE:CG2	2.44	0.47
1:D:75:PHE:CA	1:D:79:ILE:HD12	2.41	0.47
1:B:264:THR:OG1	1:B:267:GLU:N	2.43	0.47
1:A:69:GLY:O	1:A:76:ASN:HB2	2.14	0.46
1:C:355:ILE:HD13	1:C:358:ILE:HD12	1.97	0.46
1:D:79:ILE:O	1:D:79:ILE:HG22	2.16	0.46
1:D:83:PRO:O	1:D:87:PHE:CD2	2.68	0.46
1:A:430:GLY:O	1:A:434:VAL:HG23	2.14	0.46
1:B:416:ARG:HB3	1:B:419:LEU:HD12	1.98	0.46
1:C:440:ILE:O	1:C:444:MET:HG2	2.14	0.46
1:D:272:LEU:HB2	1:D:328:LEU:HD11	1.97	0.46
1:B:187:GLY:O	1:B:192:PRO:HD3	2.15	0.46
1:C:134:ARG:O	1:C:137:LEU:HG	2.15	0.46
1:D:430:GLY:O	1:D:434:VAL:HG23	2.15	0.46
1:A:114:SER:HB3	1:D:51:ILE:HD11	1.98	0.46

	lo uo pugo	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:184:GLY:C	1:C:188:ALA:HB3	2.36	0.45
1:C:430:GLY:O	1:C:434:VAL:HG23	2.15	0.45
1:C:23:ILE:HG23	1:C:67:GLU:CG	2.43	0.45
1:D:437:ILE:O	1:D:441:VAL:HG23	2.16	0.45
1:B:350:ASP:CG	1:B:352:GLN:HG2	2.37	0.45
1:A:355:ILE:HD13	1:A:358:ILE:HD12	1.98	0.45
1:B:77:LYS:HE3	1:B:228:ALA:HB1	1.99	0.45
1:D:187:GLY:O	1:D:192:PRO:HD3	2.16	0.45
1:C:77:LYS:HE3	1:C:228:ALA:HB1	1.99	0.45
1:C:416:ARG:HB3	1:C:419:LEU:HD12	1.97	0.45
1:A:171:ASP:OD1	1:A:172:ARG:N	2.50	0.45
1:D:72:LEU:O	1:D:76:ASN:ND2	2.50	0.45
1:A:77:LYS:HE3	1:A:228:ALA:HB1	1.99	0.45
1:A:416:ARG:HB3	1:A:419:LEU:HD12	1.98	0.45
1:B:171:ASP:OD1	1:B:172:ARG:N	2.50	0.45
1:A:24:PHE:O	1:A:24:PHE:CD2	2.70	0.44
1:B:355:ILE:HD13	1:B:358:ILE:HD12	1.98	0.44
1:B:23:ILE:CG2	1:B:31:TYR:CD1	2.99	0.44
1:C:45:ASN:OD1	1:C:102:LYS:HE3	2.17	0.44
1:D:166:PHE:O	1:D:166:PHE:CD2	2.70	0.44
1:A:440:ILE:O	1:A:444:MET:HG2	2.17	0.44
1:D:438:ALA:O	1:D:442:PHE:CD1	2.69	0.44
1:A:438:ALA:O	1:A:442:PHE:CD1	2.70	0.44
1:D:160:ILE:HG12	1:D:170:VAL:HG13	1.99	0.44
1:B:265:HIS:HA	1:B:268:THR:OG1	2.18	0.44
1:C:21:PHE:CD2	1:C:71:ARG:NH1	2.72	0.44
1:C:350:ASP:CG	1:C:352:GLN:HG2	2.38	0.44
1:D:272:LEU:CA	1:D:328:LEU:HD11	2.48	0.44
1:A:45:ASN:OD1	1:A:102:LYS:HE3	2.17	0.44
1:A:216:LEU:HB2	5:A:602:HOH:O	2.18	0.44
1:B:179:LEU:N	1:B:180:PRO:HD2	2.32	0.44
1:C:78:TYR:CE2	1:C:228:ALA:CB	2.55	0.44
1:D:348:TYR:N	1:D:348:TYR:HD2	2.15	0.44
1:C:166:PHE:HB2	1:C:168:ILE:HD12	1.97	0.44
1:C:265:HIS:HA	1:C:268:THR:OG1	2.18	0.43
1:A:24:PHE:CE2	1:D:273:VAL:HG21	2.53	0.43
1:B:23:ILE:HG23	1:B:67:GLU:CG	2.44	0.43
1:B:45:ASN:OD1	1:B:102:LYS:HE3	2.17	0.43
1:A:114:SER:HB3	1:D:51:ILE:CD1	2.47	0.43
1:C:189:GLY:O	1:C:193:LEU:HB2	2.19	0.43
1:D:210:SER:O	1:D:354:ILE:CD1	2.66	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	$\begin{tabular}{ c c c c } \hline Clash \\ \hline overlap (Å) \\ \hline 0.43 \\ \hline 0.42 \\ \hline 0.41 \\ \hline $
1:D:210:SER:O	1:D:354:ILE:HG13	2.19	0.43
1:B:350:ASP:OD2	1:B:352:GLN:HG2	2.19	0.42
1:A:272:LEU:HD23	1:D:59:PHE:CZ	2.53	0.42
1:A:59:PHE:CG	1:D:273:VAL:HG22	2.55	0.42
1:B:72:LEU:O	1:B:76:ASN:HB3	2.20	0.42
1:C:264:THR:OG1	1:C:267:GLU:N	2.45	0.42
1:A:442:PHE:O	1:A:445:MET:SD	2.78	0.42
1:C:394:THR:O	1:C:398:CYS:HB2	2.20	0.42
1:D:75:PHE:CD2	1:D:79:ILE:CG2	3.01	0.42
1:D:355:ILE:O	1:D:358:ILE:CG1	2.66	0.42
1:D:414:CYS:O	1:D:416:ARG:N	2.53	0.42
1:A:26:MET:HE3	1:A:31:TYR:HD1	1.83	0.42
1:C:350:ASP:OD2	1:C:352:GLN:HG2	2.19	0.42
1:D:51:ILE:HG23	1:D:55:PHE:CE2	2.55	0.42
1:C:442:PHE:O	1:C:445:MET:HG2	2.20	0.42
1:B:40:LEU:HB3	1:C:284:VAL:HG11	2.02	0.42
1:B:394:THR:O	1:B:398:CYS:HB2	2.20	0.42
1:D:222:PHE:CE2	1:D:367:ALA:HB2	2.55	0.42
1:C:134:ARG:HA	1:C:137:LEU:CD1	2.49	0.41
1:D:282:ALA:HB2	1:D:307:ILE:HD12	2.02	0.41
1:C:72:LEU:O	1:C:76:ASN:HB3	2.20	0.41
1:C:179:LEU:N	1:C:180:PRO:HD2	2.35	0.41
1:D:296:VAL:HG21	1:D:440:ILE:HG12	2.01	0.41
1:A:21:PHE:O	1:A:28:LEU:CG	2.62	0.41
1:A:59:PHE:HZ	1:D:272:LEU:HD23	1.85	0.41
1:C:153:VAL:O	1:C:157:ILE:HG12	2.20	0.41
1:C:160:ILE:HG12	1:C:170:VAL:HG13	2.02	0.41
1:A:189:GLY:O	1:A:193:LEU:HB2	2.21	0.41
1:A:279:PHE:CD1	1:D:52:VAL:HG11	2.55	0.41
1:B:153:VAL:O	1:B:157:ILE:HG12	2.21	0.41
1:C:240:LEU:HB3	1:C:389:ILE:HG12	2.03	0.41
1:A:160:ILE:HG12	1:A:170:VAL:HG13	2.03	0.41
1:B:222:PHE:CE2	1:B:367:ALA:HB2	2.55	0.41
1:D:75:PHE:CE2	1:D:79:ILE:CG2	3.03	0.41
1:A:181:ILE:HA	5:A:602:HOH:O	2.21	0.41
1:D:210:SER:CA	1:D:354:ILE:HD12	2.51	0.41
1:A:153:VAL:O	1:A:157:ILE:HG12	2.21	0.41
1:A:179:LEU:N	1:A:180:PRO:HD2	2.35	0.41
1:C:51:ILE:HG23	1:C:55:PHE:CE2	2.56	0.41
1:A:222:PHE:CE2	1:A:367:ALA:HB2	2.55	0.41
1:A:240:LEU:HB3	1:A:389:ILE:HG12	2.03	0.41

A 4 1	A + 0	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:189:GLY:O	1:B:193:LEU:HB2	2.20	0.41
1:D:210:SER:O	1:D:354:ILE:HD12	2.20	0.41
1:A:72:LEU:O	1:A:76:ASN:HB3	2.20	0.41
1:B:189:GLY:C	1:B:192:PRO:HD2	2.41	0.41
1:C:87:PHE:CE1	1:C:349:THR:HG21	2.56	0.41
1:D:143:GLY:C	1:D:146:PRO:HD2	2.41	0.41
1:D:347:CYS:HB2	1:D:348:TYR:CD2	2.56	0.41
1:D:394:THR:O	1:D:398:CYS:HB2	2.21	0.41
1:A:141:LEU:CD2	4:A:503:BOG:H8'1	2.51	0.41
1:A:394:THR:O	1:A:398:CYS:HB2	2.20	0.41
1:B:263:ILE:HD13	1:B:327:ARG:NH1	2.35	0.41
1:C:263:ILE:HD13	1:C:327:ARG:NH1	2.36	0.41
1:C:266:ARG:O	1:C:270:VAL:HG23	2.21	0.41
1:D:398:CYS:CA	1:D:401:ASN:HD21	2.21	0.40
1:A:282:ALA:HB2	1:A:307:ILE:HD12	2.04	0.40
1:B:87:PHE:CE1	1:B:349:THR:HG21	2.56	0.40
1:D:76:ASN:OD1	1:D:77:LYS:HG3	2.21	0.40
1:A:162:ILE:HD12	1:A:368:ILE:HG13	2.03	0.40
1:D:351:LEU:O	1:D:355:ILE:CG1	2.59	0.40
1:A:166:PHE:CE2	1:A:361:ALA:HA	2.57	0.40
1:A:273:VAL:HG22	1:D:59:PHE:CG	2.56	0.40
1:B:133:ASN:HD22	1:B:136:LEU:HD13	1.87	0.40
1:B:266:ARG:NE	1:C:335:GLN:OE1	2.51	0.40
1:C:132:VAL:CG2	1:C:137:LEU:CD2	2.99	0.40
1:C:222:PHE:CE2	1:C:367:ALA:HB2	2.56	0.40
1:D:186:ASN:HB2	1:D:402:ARG:HE	1.85	0.40
1:A:133:ASN:HD22	1:A:136:LEU:HD13	1.86	0.40
1:C:134:ARG:HB2	1:C:313:ALA:HA	2.04	0.40
1:D:57:ILE:HD13	1:D:103:GLU:HG2	2.03	0.40
1:D:141:LEU:HA	1:D:145:ILE:CB	2.49	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	414/438~(94%)	391~(94%)	22~(5%)	1 (0%)	47	78
1	В	405/438~(92%)	382 (94%)	22~(5%)	1 (0%)	47	78
1	С	404/438~(92%)	379~(94%)	24~(6%)	1 (0%)	47	78
1	D	402/438~(92%)	382~(95%)	18 (4%)	2~(0%)	29	65
All	All	1625/1752~(93%)	1534 (94%)	86 (5%)	5(0%)	41	74

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	415	ASN
1	А	73	PRO
1	В	73	PRO
1	С	73	PRO
1	D	73	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	А	324/343~(94%)	324 (100%)	0	100	100
1	В	317/343~(92%)	317~(100%)	0	100	100
1	\mathbf{C}	318/343~(93%)	318 (100%)	0	100	100
1	D	317/343~(92%)	315~(99%)	2(1%)	86	93
All	All	1276/1372~(93%)	1274 (100%)	2 (0%)	93	97

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	D	194	SER
1	D	215	ILE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	133	ASN
1	А	356	ASN
1	В	76	ASN
1	В	133	ASN
1	В	356	ASN
1	С	76	ASN
1	С	356	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 7 ligands modelled in this entry, 3 are monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal Tuna Chain		Dec	Tink	Bo	Bond lengths			Bond angles		
MOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
3	FLC	В	501	-	12,12,12	2.48	4 (33%)	17,17,17	3.39	6 (35%)	
3	FLC	А	502	-	12,12,12	2.40	5 (41%)	17,17,17	4.53	11 (64%)	
4	BOG	А	503	-	20,20,20	0.48	0	25,25,25	0.96	2 (8%)	
3	FLC	С	501	-	12,12,12	2.23	4 (33%)	17,17,17	4.65	13 (76%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	FLC	В	501	-	-	1/16/16/16	-
3	FLC	А	502	-	-	6/16/16/16	-
4	BOG	А	503	-	-	3/11/31/31	0/1/1/1
3	FLC	С	501	-	-	6/16/16/16	-

All (13) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	А	502	FLC	CB-CBC	-5.38	1.47	1.53
3	В	501	FLC	CB-CBC	-4.96	1.48	1.53
3	С	501	FLC	CB-CBC	-4.95	1.48	1.53
3	В	501	FLC	CG-CB	-4.21	1.48	1.53
3	В	501	FLC	CA-CB	-4.01	1.48	1.53
3	А	502	FLC	CA-CB	-3.30	1.49	1.53
3	С	501	FLC	CA-CB	-3.19	1.49	1.53
3	А	502	FLC	CG-CB	-3.14	1.49	1.53
3	С	501	FLC	CG-CB	-2.94	1.50	1.53
3	А	502	FLC	OHB-CB	2.89	1.48	1.43
3	С	501	FLC	OHB-CB	2.83	1.48	1.43
3	В	501	FLC	OHB-CB	2.38	1.47	1.43
3	А	502	FLC	OG2-CGC	-2.02	1.24	1.30

All (32) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	А	502	FLC	OB1-CBC-CB	-9.39	108.95	122.25
3	С	501	FLC	OB1-CBC-CB	-9.13	109.33	122.25
3	С	501	FLC	OB2-CBC-CB	8.27	127.41	113.05
3	В	501	FLC	OHB-CB-CA	-7.93	90.84	109.40
3	А	502	FLC	OHB-CB-CBC	-7.87	97.82	108.86
3	А	502	FLC	OB2-CBC-CB	7.54	126.14	113.05
3	С	501	FLC	OHB-CB-CBC	-7.14	98.84	108.86
3	С	501	FLC	OHB-CB-CA	-7.13	92.71	109.40
3	В	501	FLC	CA-CB-CBC	6.55	124.17	110.11
3	А	502	FLC	CA-CB-CBC	6.36	123.77	110.11
3	А	502	FLC	OHB-CB-CA	-6.23	94.83	109.40
3	В	501	FLC	OHB-CB-CBC	-6.17	100.21	108.86
3	С	501	FLC	OHB-CB-CG	-5.53	96.45	109.40

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	501	FLC	CA-CB-CBC	5.40	121.72	110.11
3	А	502	FLC	OHB-CB-CG	-5.22	97.17	109.40
3	В	501	FLC	OHB-CB-CG	-4.07	99.88	109.40
3	С	501	FLC	CG-CB-CA	3.47	118.21	109.16
3	В	501	FLC	CG-CB-CA	3.22	117.56	109.16
3	С	501	FLC	CG-CB-CBC	3.14	116.85	110.11
3	А	502	FLC	CG-CB-CBC	3.04	116.64	110.11
3	В	501	FLC	OB1-CBC-CB	3.03	126.55	122.25
3	А	502	FLC	OA1-CAC-CA	-2.76	114.86	122.94
3	С	501	FLC	OA2-CAC-CA	2.69	123.00	114.35
3	С	501	FLC	CB-CA-CAC	2.67	120.27	113.81
3	С	501	FLC	OG1-CGC-CG	-2.62	115.30	122.94
3	А	502	FLC	CG-CB-CA	2.50	115.68	109.16
3	С	501	FLC	OA1-CAC-CA	-2.48	115.70	122.94
3	А	502	FLC	OA2-CAC-CA	2.34	121.87	114.35
4	А	503	BOG	C4-C3-C2	-2.29	106.82	110.82
3	А	502	FLC	CB-CA-CAC	2.16	119.05	113.81
4	А	503	BOG	C1'-O1-C1	2.09	117.31	113.84
3	С	501	FLC	OG2-CGC-CG	2.02	120.84	114.35

There are no chirality outliers.

All (16) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	502	FLC	CBC-CB-CG-CGC
3	С	501	FLC	CBC-CB-CG-CGC
4	А	503	BOG	C2'-C1'-O1-C1
3	В	501	FLC	CBC-CB-CG-CGC
4	А	503	BOG	O1-C1'-C2'-C3'
3	А	502	FLC	CB-CA-CAC-OA2
3	А	502	FLC	OHB-CB-CG-CGC
3	С	501	FLC	OHB-CB-CG-CGC
3	А	502	FLC	CB-CA-CAC-OA1
4	А	503	BOG	C1'-C2'-C3'-C4'
3	С	501	FLC	CB-CA-CAC-OA2
3	С	501	FLC	CB-CA-CAC-OA1
3	А	502	FLC	CG-CB-CBC-OB1
3	A	502	FLC	CG-CB-CBC-OB2
3	С	501	FLC	CG-CB-CBC-OB1
3	С	501	FLC	CG-CB-CBC-OB2

There are no ring outliers.

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	В	501	FLC	14	0
3	А	502	FLC	3	0
4	А	503	BOG	9	0
3	С	501	FLC	1	0

4 monomers are involved in 27 short contacts:

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient must be highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	418/438~(95%)	0.15	14 (3%) 46 40	140, 203, 269, 322	0
1	В	409/438~(93%)	0.30	21 (5%) 28 25	150, 228, 291, 338	0
1	С	408/438~(93%)	0.52	43 (10%) 6 5	143, 254, 340, 401	0
1	D	406/438~(92%)	0.58	48 (11%) 4 4	158, 273, 369, 408	0
All	All	1641/1752~(93%)	0.39	126 (7%) 13 11	140, 233, 336, 408	0

All (126) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	395	ALA	7.6
1	С	185	GLY	6.4
1	D	394	THR	6.3
1	С	201	THR	6.1
1	С	184	GLY	6.0
1	С	200	VAL	5.6
1	D	396	GLY	5.4
1	С	196	ILE	5.2
1	С	197	TYR	5.2
1	С	199	SER	5.0
1	D	177	TYR	4.9
1	С	189	GLY	4.8
1	D	262	GLN	4.8
1	С	193	LEU	4.6
1	В	395	ALA	4.5
1	С	162	ILE	4.3
1	С	180	PRO	4.2
1	D	230	LEU	4.2
1	D	165	VAL	4.2
1	В	24	PHE	4.1
1	D	219	ALA	4.1

Mol	Chain	Res	Type	RSRZ
1	D	390	GLU	4.0
1	А	184	GLY	3.9
1	D	389	ILE	3.9
1	D	404	GLY	3.9
1	С	190	ALA	3.8
1	D	317	CYS	3.8
1	D	161	ALA	3.6
1	С	395	ALA	3.5
1	D	164	LEU	3.5
1	С	370	VAL	3.5
1	С	181	ILE	3.4
1	С	366	ALA	3.4
1	В	80	GLY	3.4
1	В	25	GLY	3.4
1	С	175	MET	3.3
1	С	176	LEU	3.3
1	В	184	GLY	3.1
1	А	190	ALA	3.1
1	С	115	ASN	3.1
1	С	321	ILE	3.1
1	В	177	TYR	3.1
1	В	442	PHE	3.1
1	С	148	ILE	3.0
1	D	386	PHE	3.0
1	D	201	THR	2.9
1	С	208	TYR	2.9
1	D	200	VAL	2.9
1	D	316	LEU	2.9
1	D	233	ILE	2.9
1	С	171	ASP	2.9
1	D	442	PHE	2.9
1	С	179	LEU	2.9
1	В	263	ILE	2.8
1	С	442	PHE	2.8
1	D	393	ILE	2.8
1	C	49	THR	2.7
1	А	354	ILE	2.7
1	D	208	TYR	2.7
1	D	182	MET	2.7
1	В	168	ILE	2.7
1	С	418	ASN	2.7
1	В	338	TRP	2.7

Mol	Chain	Res	Type	RSRZ
1	D	410	VAL	2.6
1	С	289	ILE	2.6
1	С	177	TYR	2.6
1	В	112	ASP	2.6
1	D	27	PRO	2.6
1	А	80	GLY	2.6
1	D	215	ILE	2.6
1	D	222	PHE	2.6
1	D	392	ALA	2.6
1	А	158	PHE	2.5
1	D	333	SER	2.5
1	D	178	VAL	2.5
1	С	152	ILE	2.5
1	В	46	ALA	2.5
1	С	192	PRO	2.5
1	D	160	ILE	2.5
1	А	178	VAL	2.5
1	D	173	ILE	2.5
1	С	188	ALA	2.5
1	В	317	CYS	2.4
1	D	295	GLY	2.4
1	D	147	THR	2.4
1	D	384	MET	2.4
1	С	112	ASP	2.4
1	D	232	ILE	2.4
1	С	365	ILE	2.4
1	А	197	TYR	2.4
1	С	402	ARG	2.4
1	В	397	LEU	2.4
1	A	297	ALA	2.3
1	A	298	ILE	2.3
1	В	377	ALA	2.3
1	D	405	SER	2.3
1	В	366	ALA	2.3
1	D	26	MET	2.3
1	В	197	TYR	2.3
1	D	334	LYS	2.3
1	С	182	MET	2.3
1	D	49	THR	2.3
1	С	383	LEU	2.3
1	В	166	PHE	2.3
1	В	115	ASN	2.2

Mol	Chain	Res	Type	RSRZ
1	D	168	ILE	2.2
1	С	174	MET	2.2
1	D	412	SER	2.2
1	А	395	ALA	2.2
1	В	44	TYR	2.2
1	D	387	PHE	2.2
1	А	369	ILE	2.2
1	В	362	ASN	2.1
1	А	185	GLY	2.1
1	А	296	VAL	2.1
1	С	367	ALA	2.1
1	С	400	ALA	2.1
1	D	50	ASP	2.1
1	С	369	ILE	2.1
1	С	240	LEU	2.0
1	С	415	ASN	2.0
1	D	445	MET	2.0
1	D	209	TYR	2.0
1	D	397	LEU	2.0
1	D	375	LEU	2.0
1	А	397	LEU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
3	FLC	В	501	13/13	0.83	0.33	190,221,287,297	0
3	FLC	А	502	13/13	0.87	0.27	141,178,206,213	0

	J = J = J								
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9	
3	FLC	С	501	13/13	0.88	0.21	217,237,259,265	0	
4	BOG	А	503	20/20	0.88	0.46	182,204,236,250	0	
2	NA	В	502	1/1	0.92	0.08	271,271,271,271	0	
2	NA	А	501	1/1	0.95	0.27	302,302,302,302	0	
2	NA	D	501	1/1	0.97	0.12	319,319,319,319	0	

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

