

Full wwPDB X-ray Structure Validation Report (i)

Nov 13, 2023 – 01:48 PM JST

PDB ID	:	5XC2
Title	:	Crystal structure of GH family 81 beta-1,3-glucanase from Rhizomucr miehei
		complexed with laminarihexaose
Authors	:	Qin, Z.; Yang, S.; Peng, Z.; Yan, Q.; Jiang, Z.
Deposited on	:	2017-03-22
Resolution	:	2.70 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	2808 (2.70-2.70)
Clashscore	141614	3122 (2.70-2.70)
Ramachandran outliers	138981	3069 (2.70-2.70)
Sidechain outliers	138945	3069 (2.70-2.70)
RSRZ outliers	127900	2737 (2.70-2.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	796	2% 7 7%	12% • 10%
1	В	796	.% • 74%	15% • 10%
1	С	796	4% 67%	20% • 11%
1	D	796	5% 66%	15% • 19%
2	Е	6	50%	50%
3	F	5	80%	20%

Mol	Chain	Length	Qualit	ty of chain
3	М	5	40%	60%
4	G	4	75%	25%
4	L	4		100%
4	Ο	4	75%	25%
4	Р	4	50%	50%
4	Q	4	25%	75%
5	Н	3		100%
5	Ι	3		100%
5	N	3	33%	67%
5	R	3	67%	33%
6	J	2	50%	50%
6	K	2	50%	50%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
6	BGC	J	1	-	Х	-	-
6	BGC	J	2	-	Х	-	-

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 23075 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	toms			ZeroOcc	AltConf	Trace
1	Δ	717	Total	С	Ν	Ο	\mathbf{S}	0 0	0	0
1	Л	111	5661	3624	947	1077	13		0	U
1	В	3 720	Total	С	Ν	Ο	S	0	1	0
	D		5687	3638	951	1085	13	0		0
1	C	C 705	Total	С	Ν	Ο	S	0	1	0
			5545	3553	923	1056	13	0		
1 D	648	Total	С	Ν	Ο	S	0	1	0	
		5120	3298	851	959	12			U	

• Molecule 1 is a protein called Endo-beta-1,3-glucanase.

• Molecule 2 is an oligosaccharide called beta-D-glucopyranose-(1-3)-beta-D

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace
2	Е	6	Total 67	C 36	0 31	0	0	0

• Molecule 3 is an oligosaccharide called beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace
3	F	5	Total 56	C 30	O 26	0	0	0

Continued from previous page...

Mol	Chain	Residues	At	oms		ZeroOcc	AltConf	Trace
3	М	5	Total 56	C 30	O 26	0	0	0

• Molecule 4 is an oligosaccharide called beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
4	G	4	Total C O 45 24 21	0	0	0
4	L	4	Total C O 45 24 21	0	0	0
4	О	4	Total C O 45 24 21	0	0	0
4	Р	4	Total C O 45 24 21	0	0	0
4	Q	4	Total C O 45 24 21	0	0	0

• Molecule 5 is an oligosaccharide called beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
5	Н	3	Total C O	0	0	0
		0	33 18 15	U U	Ŭ	Ŭ
5	т	2	Total C O	0	0	0
5	1	3	34 18 16			0
5	N	2	Total C O	0	0	0
5	IN	5	34 18 16	0		
5	D	R 3	Total C O	0	0	0
	К		34 18 16	0		0

• Molecule 6 is an oligosaccharide called beta-D-glucopyranose-(1-3)-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
6	J	2	Total C O 22 12 10	0	0	0
6	K	2	Total C O 22 12 10	0	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	185	Total O 185 185	0	0
7	В	143	Total O 143 143	0	0
7	С	57	$\begin{array}{cc} \text{Total} & \text{O} \\ 57 & 57 \end{array}$	0	0
7	D	94	Total O 94 94	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Endo-beta-1,3-glucanase

ARG PHE ARG ARG ASN PRO PRO PRO PRO PRO PRO ILYS HIS ASN ILE ILE TYR • Molecule 1: Endo-beta-1,3-glucanase 4% Chain C: 11% 67% 20% . VAL ALA SER GLN SER THR SER ASP SER ASP ASP ASN THR • Molecule 1: Endo-beta-1,3-glucanase 5% Chain D: 66% 15% 19% VAL ALA SER GLN SER THR SER TYR ASP ASP GLY GLY GLY ASN PRO PRO PRO THR ASN ASP VAL VAL THR MET ASN ASP ASP PRO GLN TILE SER SER VAL GLU VAL GLU VAL CLYS SER LYS SER LYS SER ASP ASP THR THR THR

L225 CLU CLU LEU LEU ARC CLY GLY GLY GLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	D277 D278 N278 N278 N285 N285 N285 N285 N285 N285 N285 N28
K326 A331 A335 N336 N336 N337 1368 N397 1368 0393 1372 1368 1372 1368 1372 1368 1372 1372 1372 1372 1372 1372 1372 1372	1454 1455 1455 1456 1456 14476 14476 14477 14477 14477 14477 14477 14477 1502 1502 1502 1502 1502 1513 1523 1523 1523 1523 15523 15523 15523
D5.42 S558 N563 N563 N563 N563 N563 N563 N563 N563 N563 N563 N563 N563 N563 N563 N563 N563 N564 N563 N564 N564 N564 N564 N566	Y6.18 Y6.18 R6.11 F6.33 H6.37 F6.33 R6.53 R6.
E692 4693 7094 7094 7094 719 719 719 719 719 719 710 7118 712 718 712 712 718 712 718 712 718 712 718 712 718 712 718 712 718 718 718 718 718 718 718 718 718 718	GLY ASP ASP ASP ASP CIV CIV CIV ASP ASP ASS ASS ASS ASS ASS ASS ASS ASS
• Molecule 2: beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyr	ta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3) canose-(1-3)-beta-D-glucopyranose
Chain E: 50%	50%
BGC1 BGC3 BGC3 BGC6 BGC6	
• Molecule 3: beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyr	ta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3) :anose
Chain F: 80%	20%
BGC1 BGC3 BGC3 BGC4 BGC5	
• Molecule 3: beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyr	ta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3) :anose
Chain M: 40%	60%
BGC1 BGC2 BGC3 BGC5 BGC5	
• Molecule 4: beta-D-glucopyranose-(1-3)-be -beta-D-glucopyranose	ta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)
Chain G: 75%	25%
BGC1 BGC2 BGC3 BGC4	
• Molecule 4: beta-D-glucopyranose-(1-3)-be -beta-D-glucopyranose	ta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)

Chain L:

100%

BGC1 BGC2 BGC3 BGC4

• Molecule 4: beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyranose

Chain O:	75%		25%	l de la construcción de la constru
BGC1 BGC2 BGC4 BGC4				
• Molecule 4: -beta-D-gluco	beta-D-glucopyranose-(1-3 pyranose)-beta-D-glucopyranc	ose-(1-3)-beta-	D-glucopyranose-(1-3)
Chain P:	50%	50%		
BGC1 BGC2 BGC3 BGC4				
• Molecule 4: -beta-D-gluco	beta-D-glucopyranose-(1-3 pyranose)-beta-D-glucopyranc	ose-(1-3)-beta-	D-glucopyranose-(1-3)
Chain Q:	25%	75%		
BGC1 BGC2 BGC4 BGC4				
• Molecule 5: e	beta-D-glucopyranose-(1-3)-beta-D-glucopy	$\operatorname{ranose}(1-3)$ -	beta-D-glucopyranos
Chain H:		100%		
BGC1 BGC2 BGC3				
• Molecule 5: e	beta-D-glucopyranose-(1-3)-beta-D-glucopy	$\operatorname{ranose}(1-3)$ -	beta-D-glucopyranos
Chain I:	1	.00%		
BGC1 BGC2 BGC3				
• Molecule 5: e	beta-D-glucopyranose-(1-3)-beta-D-glucopy	$\operatorname{ranose}(1-3)$ -	beta-D-glucopyranos
Chain N:	33%	67%		

BGC1 BGC2 BGC3

• Molecule 5: beta-D-glucopyranose-(1-3)-beta-D-glucopyranose-(1-3)-beta-D-glucopyranos

е

Chain R:	67%	33%
BGC1 BGC2 BGC3		
• Molecule	6: beta-D-glucopyranose-(1-3)-	beta-D-glucopyranose
Chain J:	50%	50%
BGC1 BGC2		
• Molecule	6: beta-D-glucopyranose-(1-3)-	beta-D-glucopyranose
Chain K:	50%	50%
BGC1 BGC2		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	108.70Å 99.02Å 138.43Å	Deperitor
a, b, c, α , β , γ	90.00° 111.35° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	29.73 - 2.70	Depositor
Resolution (A)	29.73 - 2.70	EDS
% Data completeness	99.5 (29.73-2.70)	Depositor
(in resolution range)	$99.6\ (29.73-2.70)$	EDS
R_{merge}	0.10	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.72 (at 2.68 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.8.2_1309	Depositor
D D	0.176 , 0.232	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.180 , 0.232	DCC
R_{free} test set	2005 reflections $(2.68%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	46.6	Xtriage
Anisotropy	0.284	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35 , 45.3	EDS
L-test for twinning ²	$< L > = 0.46, < L^2 > = 0.28$	Xtriage
Estimated twinning fraction	0.035 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	23075	wwPDB-VP
Average B, all atoms $(Å^2)$	24.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 18.53% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BGC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
NIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.53	0/5821	0.68	1/7949~(0.0%)	
1	В	0.49	0/5851	0.67	0/7991	
1	С	0.45	0/5704	0.67	1/7791~(0.0%)	
1	D	0.44	0/5265	0.66	0/7180	
All	All	0.48	0/22641	0.67	2/30911~(0.0%)	

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	316	ARG	NE-CZ-NH1	5.36	122.98	120.30
1	С	415	LEU	CA-CB-CG	5.25	127.37	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5661	0	5451	64	0
1	В	5687	0	5470	84	0
1	С	5545	0	5311	126	0
1	D	5120	0	4938	65	0
2	Е	67	0	56	4	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	F	56	0	48	1	0
3	М	56	0	48	2	0
4	G	45	0	39	1	0
4	L	45	0	39	0	0
4	0	45	0	39	1	0
4	Р	45	0	38	2	0
4	Q	45	0	38	4	0
5	Н	33	0	27	0	0
5	Ι	34	0	28	0	0
5	Ν	34	0	30	4	0
5	R	34	0	30	3	0
6	J	22	0	13	4	0
6	K	22	0	17	1	0
7	А	185	0	0	5	1
7	В	143	0	0	7	0
7	С	57	0	0	10	0
7	D	94	0	0	4	1
All	All	23075	0	21660	349	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (349) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:J:1:BGC:C5	6:J:1:BGC:O5	1.64	1.42
1:C:64:ASP:OD2	1:C:302:TYR:OH	1.70	1.09
1:C:644:MET:HG3	1:C:649:MET:HE3	1.40	1.02
1:C:644:MET:HG3	1:C:649:MET:CE	1.93	0.98
1:B:363:GLU:OE1	1:B:698:ARG:NH2	2.07	0.88
1:C:170:ASN:H	1:C:242:THR:HG22	1.44	0.82
1:B:353:GLN:NE2	1:B:355:ALA:O	2.12	0.81
1:C:630:GLY:H	5:N:3:BGC:H6C1	1.48	0.79
1:C:644:MET:CG	1:C:649:MET:CE	2.60	0.79
1:C:630:GLY:N	5:N:3:BGC:H6C1	1.97	0.78
1:C:104:ALA:HB2	1:C:608:ASN:HB3	1.67	0.77
1:D:90:LEU:HD13	1:D:608:ASN:HD21	1.49	0.76
1:C:99:VAL:HG12	1:C:99:VAL:O	1.85	0.76
1:C:598:MET:HE1	1:C:610:VAL:HA	1.68	0.75
1:D:406:ASP:HA	1:D:411:ARG:HH22	1.51	0.74
1:C:551:ASP:OD2	7:C:904:HOH:O	2.08	0.72

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:34:ASN:HB3	1:C:37:ASN:ND2	2.06	0.71
1:B:74:TYR:O	1:B:116:ARG:NH1	2.25	0.70
1:D:150:ASN:OD1	1:D:150:ASN:N	2.18	0.68
6:J:1:BGC:O5	6:J:1:BGC:C6	2.38	0.67
1:C:222:ASP:OD1	1:C:223:LYS:N	2.27	0.67
1:B:692:GLU:OE2	1:B:724:ARG:NH1	2.29	0.66
1:C:400:LEU:HA	1:C:493:LEU:HD11	1.77	0.65
1:D:251:PRO:HG3	1:D:321:LEU:HD11	1.79	0.65
1:C:115:LEU:HD11	1:C:175:PHE:HB3	1.78	0.65
6:J:1:BGC:C5	6:J:1:BGC:C1	2.74	0.65
1:B:621:GLN:NE2	7:B:909:HOH:O	2.30	0.64
1:A:633:LEU:HD22	1:A:669:ILE:HG13	1.80	0.64
1:D:415:LEU:HD12	1:D:418:ILE:HD11	1.80	0.64
1:C:63:PRO:O	1:C:64:ASP:HB2	1.96	0.63
1:C:258:LEU:HG	1:C:298:LEU:HD21	1.81	0.63
1:A:101:TYR:HE2	1:A:669:ILE:HD11	1.64	0.62
1:D:454:LEU:HB3	1:D:458:MET:HE3	1.81	0.62
1:D:424:LYS:NZ	1:D:494:ASP:OD2	2.27	0.62
1:D:566:LYS:HG3	1:D:578:THR:HG23	1.80	0.62
1:C:625:TYR:OH	1:C:637:HIS:NE2	2.27	0.61
1:D:81:THR:HG23	1:D:113:VAL:HG13	1.82	0.61
1:D:91:GLY:HA3	1:D:106:TYR:CE1	2.35	0.61
1:A:104:ALA:HB2	1:A:608:ASN:HB3	1.81	0.61
1:A:103:ASP:CG	1:A:611:ARG:HH12	2.04	0.60
7:C:903:HOH:O	5:N:3:BGC:O3	2.04	0.60
1:C:317:THR:HG22	1:C:318:ASP:H	1.67	0.60
1:B:456:THR:HG23	1:B:462:ASP:HB2	1.83	0.60
4:Q:2:BGC:O4	5:R:2:BGC:H6C1	2.02	0.60
1:B:181:ILE:HB	1:B:229:LYS:HE3	1.84	0.59
1:C:380:THR:HG21	1:C:426:ALA:HB1	1.83	0.59
1:B:117:LEU:HD11	1:B:247:VAL:HG11	1.85	0.59
1:B:690:PRO:HB2	1:B:721:PHE:HD1	1.67	0.59
1:D:83:ARG:NH2	1:D:110:SER:OG	2.35	0.59
1:C:563:TRP:CD1	1:C:647:GLU:HB2	2.37	0.59
1:B:190:LYS:N	1:B:190:LYS:HD3	2.18	0.59
1:C:644:MET:CG	1:C:649:MET:HE3	2.22	0.58
1:A:440:ARG:NH2	1:A:451:LYS:HD3	2.18	0.58
1:B:190:LYS:NZ	1:B:190:LYS:H	2.02	0.58
1:C:593:TYR:OH	1:C:652:ILE:O	2.15	0.58
1:D:276:SER:HA	1:D:282:ALA:HA	1.87	0.56
1:A:306:LEU:HD11	1:A:330:THR:HB	1.87	0.56

	to as pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:258:LEU:HD22	1:C:317:THR:HG21	1.88	0.56
1:C:574:ASN:HB3	1:C:577:LEU:HB3	1.87	0.56
1:D:455:PRO:HD2	1:D:458:MET:HE2	1.88	0.56
1:A:103:ASP:OD1	1:A:103:ASP:N	2.39	0.55
1:C:400:LEU:HD23	1:C:400:LEU:C	2.26	0.55
1:C:510:ILE:HD11	1:C:577:LEU:HD11	1.87	0.55
1:B:306:LEU:HD11	1:B:330:THR:HB	1.88	0.55
1:C:349:TRP:CH2	1:C:567:LEU:HB3	2.41	0.55
1:B:627:THR:O	6:J:1:BGC:O6	2.25	0.55
1:D:33:ALA:HB2	1:D:51:PHE:HD1	1.71	0.55
1:D:251:PRO:HG2	1:D:319:MET:CG	2.37	0.55
1:D:689:ASN:ND2	1:D:692:GLU:OE1	2.40	0.55
1:C:695:PRO:HA	1:C:698:ARG:HD3	1.89	0.54
1:C:400:LEU:HD22	1:C:401:ILE:HA	1.90	0.54
1:B:116:ARG:HB3	1:B:176:LEU:HG	1.89	0.54
1:B:669:ILE:O	1:B:673:VAL:HG23	2.08	0.54
1:B:379:GLU:HA	1:B:382:LYS:NZ	2.22	0.54
1:C:506:THR:O	1:C:510:ILE:HG22	2.07	0.53
1:A:631:ARG:NH1	7:A:909:HOH:O	2.34	0.53
1:B:71:LEU:HD22	1:B:78:PRO:HB2	1.90	0.53
1:A:42:PRO:HG3	1:A:47:ILE:HD11	1.90	0.53
1:C:712:LEU:O	1:C:715:THR:OG1	2.22	0.53
1:C:276:SER:HA	1:C:282:ALA:HA	1.91	0.53
1:C:42:PRO:HG3	1:C:47:ILE:HD11	1.91	0.53
1:C:226:GLU:HB3	1:C:238:SER:OG	2.09	0.53
1:A:118:THR:OG1	1:A:119:SER:N	2.38	0.52
1:A:675:SER:HB2	1:A:676:PRO:HD2	1.89	0.52
1:A:26:HIS:CG	1:A:27:PRO:HD2	2.45	0.52
1:C:606:PRO:O	1:C:610:VAL:HG23	2.09	0.52
1:D:201:ARG:CZ	1:D:224:PRO:HG3	2.39	0.52
1:D:386:TYR:OH	4:P:3:BGC:O6	2.27	0.52
1:C:30:PRO:HG3	1:C:41:VAL:HG21	1.92	0.52
1:A:548:ASP:OD2	4:G:1:BGC:H6C2	2.10	0.52
1:C:685:TYR:HE2	1:C:692:GLU:HB2	1.75	0.52
1:A:179:HIS:HB2	1:A:207:MET:HG2	1.92	0.51
1:C:180:ALA:HA	1:C:233:SER:OG	2.11	0.51
1:D:633:LEU:HD23	1:D:637:HIS:CD2	2.46	0.51
1:A:614:VAL:HB	7:A:988:HOH:O	2.11	0.51
1:C:345:SER:HB2	1:C:651:TYR:CE2	2.46	0.51
1:B:624:ASP:OD2	6:K:2:BGC:O6	2.26	0.51
1:C:88:LYS:HE3	1:C:324:ALA:O	2.11	0.51

Interatomic C				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:494:ASP:OD2	1:C:497:TRP:HB2	2.11	0.51	
1:C:575:THR:N	1:C:576:PRO:HD2	2.26	0.51	
1:C:645:THR:HG23	1:C:647:GLU:H	1.76	0.51	
1:A:597:TRP:CZ3	1:A:653:ARG:HG2	2.46	0.51	
1:B:63:PRO:HD2	1:B:66:TYR:O	2.11	0.51	
1:D:393:GLN:O	1:D:397:MET:HG2	2.11	0.51	
1:D:548:ASP:OD1	4:Q:1:BGC:O6	2.27	0.51	
4:P:2:BGC:H6C1	4:P:2:BGC:H2	1.92	0.51	
1:C:563:TRP:O	1:C:567:LEU:HG	2.10	0.51	
1:C:574:ASN:OD1	1:C:576:PRO:HG2	2.10	0.51	
1:A:57:ASN:HB3	1:A:70:LEU:O	2.10	0.50	
1:B:518:ASP:HB2	2:E:6:BGC:H6C2	1.92	0.50	
1:C:401:ILE:HD11	1:C:713:TYR:CG	2.46	0.50	
1:C:563:TRP:CE2	1:C:567:LEU:HD11	2.47	0.50	
1:A:108:ILE:HG13	1:A:109:ASN:H	1.75	0.50	
1:B:102:THR:HG23	1:B:612:ASN:OD1	2.12	0.50	
1:B:95:PRO:N	7:B:917:HOH:O	2.44	0.50	
1:C:84:GLN:HB3	1:C:249:LYS:NZ	2.27	0.50	
1:C:104:ALA:CB	1:C:608:ASN:HB3	2.41	0.50	
1:D:317:THR:OG1	1:D:331:ALA:HB3	2.12	0.50	
1:B:135:ASP:OD1	1:B:138:SER:N	2.44	0.50	
1:D:325:THR:O	1:D:325:THR:OG1	2.21	0.50	
1:A:100:PRO:HD2	1:A:633:LEU:HD13	1.93	0.50	
1:B:100:PRO:HD2	1:B:633:LEU:HG	1.94	0.50	
1:B:411:ARG:HH11	1:B:411:ARG:HB2	1.77	0.50	
1:C:202:LYS:NZ	1:C:260:ASP:OD1	2.40	0.50	
1:C:654:THR:HB	1:C:655:PRO:HD2	1.92	0.49	
1:A:108:ILE:HD12	1:A:622:LYS:HB3	1.94	0.49	
1:A:384:ASP:HB2	1:A:467:GLU:OE2	2.12	0.49	
1:C:686:ALA:CB	1:C:715:THR:HG22	2.41	0.49	
7:C:901:HOH:O	5:N:1:BGC:O1	2.01	0.49	
1:D:269:GLY:HA3	1:D:289:LYS:HD2	1.94	0.49	
1:C:129:ARG:HD3	7:C:924:HOH:O	2.13	0.49	
1:D:275:ARG:NH1	7:D:915:HOH:O	2.45	0.49	
1:A:287:LYS:HE3	1:A:336:GLU:OE1	2.13	0.49	
1:C:386:TYR:OH	3:M:4:BGC:H6C2	2.12	0.49	
1:D:718:ARG:HB3	1:D:720:HIS:CE1	2.48	0.49	
1:A:72:ASP:OD2	1:A:72:ASP:N	2.46	0.48	
1:C:181:ILE:N	1:C:232:ASN:O	2.41	0.48	
1:B:299:THR:HB	1:B:337:TRP:HZ2	1.78	0.48	
1:B:365:MET:O	1:B:368:ILE:HG22	2.13	0.48	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:Q:2:BGC:H3	5:R:2:BGC:H2	1.94	0.48
1:B:8:LEU:HD12	1:B:274:ALA:HB1	1.96	0.48
1:C:645:THR:HG23	1:C:647:GLU:N	2.28	0.48
1:C:414:GLU:O	1:C:418:ILE:HD12	2.13	0.48
1:D:287:LYS:HG2	1:D:336:GLU:HG2	1.95	0.48
1:D:249:LYS:O	1:D:251:PRO:HD3	2.14	0.48
1:A:43:THR:HG21	1:A:473:TYR:CD2	2.49	0.48
1:D:80:LEU:HD13	1:D:155:PHE:CD2	2.49	0.48
1:D:448:ILE:O	1:D:476:HIS:HE1	1.97	0.48
1:D:583:LEU:O	1:D:587:VAL:HG23	2.14	0.48
1:B:694:TYR:HB3	1:B:695:PRO:HD3	1.96	0.47
1:B:26:HIS:CG	1:B:27:PRO:HD2	2.49	0.47
1:B:222:ASP:HB2	1:B:223:LYS:HD2	1.96	0.47
1:B:226:GLU:HB3	1:B:238:SER:OG	2.15	0.47
1:B:606:PRO:O	1:B:610:VAL:HG23	2.14	0.47
1:A:104:ALA:CB	1:A:608:ASN:HB3	2.44	0.47
1:A:99:VAL:HG13	1:A:633:LEU:HD12	1.96	0.47
1:A:251:PRO:HG2	1:A:319:MET:CG	2.45	0.47
1:C:327:GLY:HA2	7:C:920:HOH:O	2.13	0.47
1:C:400:LEU:C	1:C:400:LEU:CD2	2.83	0.47
1:D:90:LEU:HD21	1:D:90:LEU:HD21 1:D:606:PRO:HG2		0.47
1:D:104:ALA:HB2	1:D:608:ASN:ND2	2.29	0.47
1:A:690:PRO:HB2	1:A:721:PHE:HD1	1.79	0.47
1:A:251:PRO:HG2	1:A:319:MET:HG2	1.96	0.47
1:A:692:GLU:OE2	7:A:902:HOH:O	2.20	0.47
1:B:118:THR:OG1	1:B:119:SER:N	2.46	0.47
1:B:384:ASP:HB2	1:B:467:GLU:OE2	2.15	0.47
1:C:618:TYR:HD1	1:C:623:THR:HG22	1.79	0.47
1:D:40:ILE:HG21	1:D:524:ALA:HB2	1.95	0.47
1:D:163:TYR:HB2	1:D:246:ARG:NH2	2.29	0.47
1:C:542:LYS:HB2	7:C:916:HOH:O	2.15	0.47
1:A:363:GLU:OE2	1:A:698:ARG:NE	2.48	0.47
1:C:34:ASN:HB3	1:C:37:ASN:HD22	1.80	0.47
1:C:97:ASN:N	1:C:97:ASN:OD1	2.47	0.47
1:C:136:HIS:HB3	7:C:930:HOH:O	2.15	0.47
1:C:622:LYS:NZ	4:0:1:BGC:O4	2.44	0.47
1:B:251:PRO:HG2	1:B:319:MET:CG	2.45	0.46
1:C:700:VAL:O	1:C:708:ARG:NH1	2.44	0.46
1:B:95:PRO:HD2	7:B:917:HOH:O	2.14	0.46
1:B:103:ASP:OD1	1:B:103:ASP:N	2.45	0.46
1:C:216:ILE:HD11	1:C:250:LEU:HD22	1.96	0.46

	A la C	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:645:THR:HG21	7:C:928:HOH:O	2.15	0.46	
1:D:142:ARG:HD3	7:D:935:HOH:O	2.14	0.46	
1:A:313:ASN:ND2	7:A:914:HOH:O	2.39	0.46	
1:C:644:MET:HG3	1:C:649:MET:HE1	1.90	0.46	
1:B:371:ASP:OD1	7:B:904:HOH:O	2.20	0.46	
1:B:448:ILE:O	1:B:476:HIS:HE1	1.99	0.46	
1:C:96:THR:N	7:C:913:HOH:O	2.42	0.46	
1:B:115:LEU:HD23	1:B:247:VAL:HG21	1.98	0.46	
1:C:644:MET:SD	1:C:648:LEU:HD23	2.56	0.46	
1:D:685:TYR:CE2	1:D:689:ASN:HB3	2.51	0.46	
1:B:304:HIS:HB3	1:B:594:GLU:HG3	1.98	0.46	
1:B:607:GLU:HG3	1:B:608:ASN:N	2.28	0.46	
1:A:723:ARG:HD3	1:A:723:ARG:HA	1.78	0.46	
1:C:126:VAL:HA	1:C:127:PRO:HD3	1.77	0.46	
1:C:470:HIS:CD2	1:C:476:HIS:CD2	3.04	0.46	
1:D:603:LYS:HE2	1:D:603:LYS:HB3	1.38	0.46	
1:A:249:LYS:O	1:A:251:PRO:HD3	2.15	0.46	
1:B:302:TYR:CE1	1:B:326:LYS:HD2	2.51	0.46	
1:A:481:GLY:HA3	481:GLY:HA3 7:A:971:HOH:O 2.16		0.45	
1:B:597:TRP:CZ3	1:B:653:ARG:HG2	2.51	0.45	
1:B:391:GLY:O	1:B:394:LYS:HG2	2.16	0.45	
1:C:358:PRO:O	1:C:361:ILE:HG22	2.16	0.45	
1:B:249:LYS:O	1:B:251:PRO:HD3	2.16	0.45	
1:C:354:ALA:HB1	1:C:407:GLN:HB3	1.97	0.45	
1:B:274:ALA:O	1:B:275:ARG:HD2	2.15	0.45	
1:D:201:ARG:HA	1:D:219:SER:HB2	1.98	0.45	
1:A:115:LEU:HD11	1:A:175:PHE:HB3	1.98	0.45	
1:B:108:ILE:HG22	1:B:622:LYS:HB2	1.99	0.45	
1:B:363:GLU:O	1:B:366:THR:HB	2.17	0.45	
1:A:116:ARG:HH11	1:A:116:ARG:HG2	1.82	0.45	
1:A:440:ARG:HH21	1:A:451:LYS:HD3	1.82	0.45	
1:C:326:LYS:HD3	1:C:595:TYR:CZ	2.52	0.45	
1:C:503:LYS:HB3	1:C:503:LYS:HE2	1.71	0.45	
1:D:326:LYS:HD3	1:D:595:TYR:CZ	2.52	0.45	
1:B:82:ILE:O	1:B:114:ASP:HB2	2.16	0.45	
1:D:560:ASN:HA	7:D:957:HOH:O	2.15	0.45	
1:C:309:ILE:HD12	1:C:338:THR:O	2.16	0.44	
1:C:421:ASP:O	1:C:424:LYS:HB2	2.17	0.44	
1:D:424:LYS:NZ	7:D:922:HOH:O	2.49	0.44	
1:D:613:LYS:NZ	1:D:660:GLN:HB3	2.32	0.44	
1:B:57:ASN:HB3	1:B:70:LEU:O	2.17	0.44	

Interatomic Clash				
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:384:ASP:HB2	1:B:467:GLU:OE1	2.17	0.44	
1:C:400:LEU:O	1:C:403:ASN:N	2.36	0.44	
1:B:103:ASP:OD1	1:B:611:ARG:NH1	2.50	0.44	
1:C:350:LEU:HB2	1:C:351:PRO:HD2	1.99	0.44	
1:B:95:PRO:CD	7:B:917:HOH:O	2.66	0.44	
1:C:70:LEU:HD11	1:C:141:LEU:HD11	2.00	0.44	
1:C:197:THR:HG22	1:C:228:ARG:HG3	2.00	0.44	
1:B:179:HIS:HB2	1:B:207:MET:HG2	1.99	0.44	
1:B:473:TYR:HA	1:B:476:HIS:NE2	2.33	0.44	
1:C:384:ASP:OD1	1:C:384:ASP:N	2.51	0.44	
1:D:225:LEU:HD23	1:D:225:LEU:HA	1.74	0.44	
1:A:103:ASP:OD1	1:A:611:ARG:NH1	2.40	0.44	
1:C:26:HIS:HA	1:C:27:PRO:HD3	1.88	0.44	
1:C:404:LYS:HA	1:C:404:LYS:HD3	1.75	0.44	
1:A:694:TYR:HB3	1:A:695:PRO:HD3	2.00	0.44	
1:B:355:ALA:HA	1:B:356:PRO:HD3	1.78	0.44	
1:D:615:ILE:HG13	1:D:623:THR:HB	1.99	0.44	
1:B:382:LYS:HG2	1:B:387:PHE:HB3	2.00	0.43	
1:C:507:GLU:HA	1:C:510:ILE:CG2	2.48	0.43	
1:A:171:LEU:O	1:A:173:PRO:HD3	2.18	0.43	
1:A:518:ASP:OD1	1:A:518:ASP:N	2.50	0.43	
1:C:598:MET:CE	1:C:610:VAL:HA	2.43	0.43	
1:B:669:ILE:HG13	1:B:670:ALA:N	2.32	0.43	
1:B:449:VAL:HB	1:B:471:SER:HA	2.00	0.43	
1:D:203:PHE:HB2	1:D:217:ILE:HB	2.01	0.43	
1:C:349:TRP:CZ3	1:C:567:LEU:HB3	2.54	0.43	
1:C:625:TYR:CE1	1:C:636:ILE:HG21	2.54	0.43	
1:D:537:TRP:CH2	1:D:618:TYR:HE2	2.37	0.43	
1:B:30:PRO:HG3	1:B:41:VAL:HG21	2.00	0.43	
1:B:216:ILE:HG21	1:B:218:TYR:CZ	2.54	0.43	
1:D:285:THR:HA	1:D:337:TRP:O	2.19	0.43	
1:D:694:TYR:HB3	1:D:695:PRO:HD3	1.99	0.43	
1:C:154:ASP:HB2	1:C:167:ASN:HB3	2.00	0.43	
1:C:563:TRP:CZ2	1:C:567:LEU:HD11	2.54	0.43	
1:C:601:GLY:N	7:C:902:HOH:O	2.03	0.43	
1:C:613:LYS:HZ1	1:C:660:GLN:HB3	1.84	0.43	
1:C:695:PRO:O	1:C:698:ARG:HB2	2.19	0.43	
1:A:451:LYS:HE2	1:A:451:LYS:HB3	1.81	0.43	
1:C:394:LYS:HE3	1:C:395:PHE:CZ	2.54	0.43	
1:B:631:ARG:HD3	7:B:907:HOH:O	2.19	0.42	
1:A:126:VAL:HA	1:A:127:PRO:HD3	1.81	0.42	

	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:448:ILE:O	1:C:476:HIS:HE1	2.02	0.42	
1:D:675:SER:HB2	1:D:676:PRO:HD2	2.01	0.42	
1:A:617:ILE:HD12	3:F:3:BGC:H6C2	2.01	0.42	
1:B:158:VAL:HG11	1:B:267:PRO:HB2	2.00	0.42	
1:B:384:ASP:HB2	1:B:467:GLU:CD	2.39	0.42	
1:C:473:TYR:HA	1:C:476:HIS:NE2	2.34	0.42	
1:C:690:PRO:HB2	1:C:721:PHE:HD1	1.83	0.42	
1:D:42:PRO:HG3	1:D:47:ILE:HD11	2.01	0.42	
1:B:74:TYR:C	1:B:74:TYR:CD2	2.93	0.42	
1:B:228:ARG:NH2	1:B:230:GLN:HB2	2.34	0.42	
1:C:99:VAL:O	1:C:99:VAL:CG1	2.56	0.42	
1:B:42:PRO:HG3	1:B:47:ILE:HD11	2.02	0.42	
1:C:117:LEU:HD11	1:C:247:VAL:HG11	2.00	0.42	
1:D:84:GLN:O	1:D:84:GLN:NE2	2.52	0.42	
1:A:461:THR:O	1:A:462:ASP:HB3	2.20	0.42	
1:B:115:LEU:CD2	1:B:247:VAL:HG21	2.50	0.42	
1:C:424:LYS:HD3	1:C:497:TRP:NE1	2.34	0.42	
1:C:627:THR:OG1	1:C:630:GLY:O	2.32	0.42	
1:C:645:THR:CG2	1:C:648:LEU:H	2.33	0.42	
1:D:17:PRO:HG3	1:D:523:PHE:HE1	1.84	0.42	
1:A:163:TYR:CD1	A:163:TYR:CD1 1:A:248:ALA:HB2 2.55		0.42	
1:B:225:LEU:HD23	1:B:225:LEU:HA	1.82	0.42	
1:C:400:LEU:HD22	1:C:401:ILE:N	2.35	0.42	
1:D:535:HIS:HE1	1:D:537:TRP:CH2	2.38	0.42	
4:Q:3:BGC:H5	5:R:2:BGC:H4	2.02	0.42	
1:A:81:THR:OG1	1:A:116:ARG:NE	2.30	0.42	
1:B:122:TRP:HA	1:B:125:VAL:HG12	2.02	0.42	
1:B:379:GLU:HA	1:B:382:LYS:HZ3	1.84	0.41	
1:B:567:LEU:HD23	1:B:570:LEU:HD12	2.02	0.41	
1:C:550:ARG:HA	1:C:550:ARG:HD3	1.66	0.41	
1:C:686:ALA:HB2	1:C:715:THR:HG22	2.02	0.41	
1:C:692:GLU:O	1:C:695:PRO:HD2	2.20	0.41	
1:A:121:GLU:OE1	1:A:121:GLU:N	2.53	0.41	
1:A:229:LYS:HA	1:A:235:LEU:HD23	2.01	0.41	
1:A:506:THR:HG21	1:A:568:TRP:CE3	2.55	0.41	
1:B:633:LEU:HD22	1:B:637:HIS:CD2	2.55	0.41	
1:C:400:LEU:HD22	1:C:401:ILE:CA	2.51	0.41	
1:D:597:TRP:CZ3	1:D:653:ARG:HG2	2.55	0.41	
1:A:115:LEU:HD23	1:A:247:VAL:HG21	2.02	0.41	
1:A:182:ILE:HD11	1:A:206:THR:HG22	2.03	0.41	
1:A:355:ALA:HA	1:A:356:PRO:HD3	1.74	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:80:LEU:HD22	1:B:155:PHE:CD2	2.56	0.41	
1:B:100:PRO:HB2	1:B:101:TYR:CE2	2.55	0.41	
1:C:400:LEU:O	1:C:402:LEU:N	2.54	0.41	
1:D:563:TRP:CD1	1:D:647:GLU:HB2	2.56	0.41	
1:D:90:LEU:HD13	1:D:608:ASN:ND2	2.27	0.41	
1:A:58:LEU:HD23	1:A:58:LEU:HA	1.94	0.41	
1:B:61:THR:O	1:B:63:PRO:HD3	2.20	0.41	
1:B:91:GLY:HA3	1:B:106:TYR:CZ	2.56	0.41	
1:D:298:LEU:HD12	1:D:298:LEU:HA	1.87	0.41	
3:M:2:BGC:O3	3:M:3:BGC:H6C2	2.21	0.41	
1:A:203:PHE:HB2	1:A:217:ILE:HB	2.02	0.41	
1:B:662:TRP:CZ3	1:B:685:TYR:HB2	2.55	0.41	
1:C:258:LEU:HD11	1:C:298:LEU:HD11	2.02	0.41	
1:C:404:LYS:HD2	1:C:407:GLN:HB2	2.03	0.41	
1:C:428:LEU:HD12	1:C:428:LEU:HA	1.85	0.41	
1:A:34:ASN:HB3	1:A:37:ASN:ND2	2.36	0.41	
1:A:94:PRO:HA	1:A:95:PRO:HD3	1.87	0.41	
1:A:396:ALA:HA	1:A:423:LEU:HD22	2.03	0.41	
1:B:70:LEU:HD13	1:B:70:LEU:HA	1.92	0.41	
1:B:590:ARG:HG3	7:B:982:HOH:O	2.20	0.41	
1:C:598:MET:HE3	1:C:605:ARG:CG	2.51	0.41	
1:C:598:MET:HE3	1:C:605:ARG:HD3	2.03	0.41	
1:D:563:TRP:CZ2	1:D:567:LEU:HD11	2.56	0.41	
1:D:575:THR:N	1:D:576:PRO:HD2	2.36	0.41	
1:A:474:SER:HB3	2:E:2:BGC:H6C1	2.01	0.41	
1:B:302:TYR:CZ	1:B:326:LYS:HD2	2.56	0.41	
1:C:7:ASP:HB2	1:C:275:ARG:HH22	1.86	0.41	
1:C:118:THR:HG23	1:C:174:GLN:HB3	2.03	0.41	
1:B:567:LEU:HD23	1:B:567:LEU:HA	1.85	0.40	
1:C:78:PRO:HD2	1:C:122:TRP:O	2.22	0.40	
1:D:429:PRO:O	1:D:434:GLU:HG2	2.21	0.40	
1:D:456:THR:HG23	1:D:462:ASP:HB2	2.02	0.40	
1:A:386:TYR:CD1	2:E:3:BGC:H6C2	2.57	0.40	
1:A:583:LEU:O	1:A:587:VAL:HG23	2.21	0.40	
1:C:24:ILE:HB	1:C:458:MET:CE	2.51	0.40	
1:C:613:LYS:HD2	1:C:613:LYS:HA	1.91	0.40	
1:C:697:LEU:HD23	1:C:715:THR:HG21	2.03	0.40	
1:C:612:ASN:HA	1:C:665:LYS:NZ	2.36	0.40	
1:D:26:HIS:HA	1:D:27:PRO:HD3	1.83	0.40	
1:D:258:LEU:HD21	1:D:317:THR:HG21	2.04	0.40	
1:D:294:GLU:H	1:D:294:GLU:HG2	1.52	0.40	

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance} \ (\text{\AA}) \end{array}$	Clash overlap (Å)
1:A:116:ARG:HB3	1:A:176:LEU:HG	2.03	0.40
1:A:386:TYR:CE1	2:E:3:BGC:H6C2	2.57	0.40
1:C:246:ARG:CZ	1:C:266:TRP:HB3	2.51	0.40
1:C:376:TYR:O	1:C:380:THR:HB	2.22	0.40
1:C:400:LEU:CD2	1:C:401:ILE:N	2.85	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
7:A:1068:HOH:O	7:D:952:HOH:O[2_848]	2.17	0.03

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	713/796~(90%)	678 (95%)	34 (5%)	1 (0%)	51	78
1	В	719/796~(90%)	678 (94%)	40 (6%)	1 (0%)	51	78
1	С	698/796~(88%)	656 (94%)	41 (6%)	1 (0%)	51	78
1	D	633/796~(80%)	604 (95%)	28 (4%)	1 (0%)	47	73
All	All	2763/3184 (87%)	2616 (95%)	143 (5%)	4 (0%)	51	78

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	64	ASP
1	В	64	ASP
1	D	64	ASP
1	С	64	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	603/685~(88%)	589~(98%)	14 (2%)	50 78
1	В	606/685~(88%)	588~(97%)	18 (3%)	41 70
1	С	587/685~(86%)	563~(96%)	24~(4%)	30 59
1	D	539/685~(79%)	514 (95%)	25~(5%)	27 54
All	All	2335/2740~(85%)	2254 (96%)	81 (4%)	37 65

All (81) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	19	SER
1	А	103	ASP
1	А	108	ILE
1	А	141	LEU
1	А	150	ASN
1	А	199	SER
1	А	456	THR
1	А	477	HIS
1	А	518	ASP
1	А	521	GLU
1	А	536	SER
1	А	548	ASP
1	А	633	LEU
1	А	674	GLN
1	В	14	ASN
1	В	74	TYR
1	В	86	SER
1	В	102	THR
1	В	190	LYS
1	В	194	ASN
1	В	207	MET
1	В	230	GLN
1	В	247	VAL
1	В	336	GLU

Mol	Mol Chain		Type		
1	В	368	ILE		
1	В	406	ASP		
1	В	409	GLN		
1	В	458	MET		
1	В	582	SER		
1	В	607	GLU		
1	В	633	LEU		
1	В	723	ARG		
1	С	13	SER		
1	С	86	SER		
1	С	96	THR		
1	С	112	VAL		
1	С	183	SER		
1	С	205	ILE		
1	С	212	THR		
1	С	290	THR		
1	С	307	THR		
1	С	366	THR		
1	С	400	LEU		
1	С	402	LEU		
1	С	404	LYS		
1	С	406	ASP		
1	С	415	LEU		
1	С	421	ASP		
1	С	428	LEU		
1	С	465	SER		
1	С	489	ILE		
1	С	572	THR		
1	С	574	ASN		
1	С	633	LEU		
1	С	697	LEU		
1	С	707	THR		
1	D	84	GLN		
1	D	108	ILE		
1	D	114	ASP		
1	D	141	LEU		
1	D	150	ASN		
1	D	176	LEU		
1	D	212	THR		
1	D	223	LYS		
1	D	239	LYS		
1	D	263	ARG		

Mol	Chain	Res	Type
1	D	272	ILE
1	D	325	THR
1	D	335	ASN
1	D	368	ILE
1	D	372	ILE
1	D	477	HIS
1	D	502	LEU
1	D	518	ASP
1	D	558[A]	SER
1	D	558[B]	SER
1	D	603	LYS
1	D	633	LEU
1	D	639	ILE
1	D	644	MET
1	D	720	HIS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such side chains are listed below:

Mol	Chain	Res	Type
1	А	34	ASN
1	С	14	ASN
1	С	491	HIS
1	D	608	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

52 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

Mol	Type	Chain	Res	Link	Counts	ond leng BMSZ	# Z > 2	$\begin{array}{c c} & \text{Bond angles} \\ \hline C_{\text{ounts}} & BMSZ & \# Z > 2 \end{array}$		
2	BGC	E	1	2	12 12 12	0.85	$\frac{\# Z >2}{0}$	17 17 17	$\frac{2.46}{2.46}$	$\frac{\# Z > 2}{4(23\%)}$
2	BGC	E	2	2	12,12,12	1.67	$\frac{3}{27\%}$	15,15,17	1.33	$\frac{1}{20\%}$
2	BGC	E	3	2	11,11,12	1.01	$\frac{3(2170)}{2(18\%)}$	15,15,17 15 15 17	$\frac{1.00}{2.17}$	$\frac{6}{6}$
2	BGC	E	4	2	11,11,12	2.59	$\frac{2}{4}(36\%)$	15,15,17	2 79	$\frac{6}{6}$
2	BGC	E	5	2	11.11.12	1.64	$\frac{1}{3}(27\%)$	15.15.17	1.49	$\frac{2(13\%)}{2(13\%)}$
2	BGC	E	6	2	11.11.12	1.74	$\frac{3}{27\%}$	15.15.17	1.69	$\frac{1}{3}(20\%)$
3	BGC	F	1	3	12.12.12	0.98	1 (8%)	17.17.17	2.38	7 (41%)
3	BGC	F	2	3	11.11.12	1.89	1(9%)	15.15.17	3.73	4 (26%)
3	BGC	F	3	3	11,11,12	1.51	2(18%)	15,15,17	1.25	2 (13%)
3	BGC	F	4	3	11.11.12	1.59	$\frac{2}{2}(18\%)$	15.15.17	1.16	1 (6%)
3	BGC	F	5	3	11,11,12	1.85	3 (27%)	15,15,17	1.41	2 (13%)
4	BGC	G	1	4	12,12,12	1.16	1 (8%)	17,17,17	0.69	0
4	BGC	G	2	4	11,11,12	1.37	2 (18%)	15,15,17	1.49	3 (20%)
4	BGC	G	3	4	11,11,12	1.68	3 (27%)	15,15,17	1.18	1 (6%)
4	BGC	G	4	4	11,11,12	1.76	2 (18%)	15,15,17	1.26	2 (13%)
5	BGC	Н	1	5	11,11,12	4.09	7 (63%)	15,15,17	4.96	10 (66%)
5	BGC	Н	2	5	11,11,12	1.75	3 (27%)	15,15,17	2.55	6 (40%)
5	BGC	Н	3	5	11,11,12	0.80	0	15,15,17	2.93	7 (46%)
5	BGC	Ι	1	5	12,12,12	1.23	1 (8%)	17,17,17	1.87	5 (29%)
5	BGC	Ι	2	5	11,11,12	<mark>3.59</mark>	4 (36%)	15,15,17	2.57	4 (26%)
5	BGC	Ι	3	5	11,11,12	2.02	1 (9%)	15,15,17	4.49	10 (66%)
6	BGC	J	1	6	11,11,12	5.99	8 (72%)	15,15,17	3.60	10 (66%)
6	BGC	J	2	6	11,11,12	7.56	9 (81%)	15,15,17	5.64	10 (66%)
6	BGC	K	1	6	11,11,12	1.73	3 (27%)	15,15,17	2.32	4 (26%)
6	BGC	K	2	6	11,11,12	1.94	3 (27%)	15,15,17	3.28	<mark>5 (33%)</mark>
4	BGC	L	1	4	12,12,12	1.10	1 (8%)	17,17,17	2.36	<mark>5 (29%)</mark>
4	BGC	L	2	4	11,11,12	1.82	2 (18%)	15,15,17	2.46	<mark>6 (40%)</mark>
4	BGC	L	3	4	11,11,12	1.61	1 (9%)	15,15,17	2.29	6 (40%)
4	BGC	L	4	4	11,11,12	1.85	3 (27%)	15,15,17	1.13	1 (6%)
3	BGC	М	1	3	12,12,12	0.76	0	17,17,17	2.07	5 (29%)
3	BGC	М	2	3	11,11,12	1.73	3 (27%)	15,15,17	1.29	1 (6%)
3	BGC	M	3	3	11,11,12	1.70	3 (27%)	15,15,17	3.28	7 (46%)

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	Bond lengths			Bond angles		
WIOI	Type	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
3	BGC	М	4	3	11,11,12	1.91	2 (18%)	$15,\!15,\!17$	2.16	6 (40%)
3	BGC	М	5	3	11,11,12	1.52	2 (18%)	15,15,17	1.28	3 (20%)
5	BGC	Ν	1	5	12,12,12	1.35	1 (8%)	17,17,17	1.96	7 (41%)
5	BGC	Ν	2	5	11,11,12	2.63	2 (18%)	15,15,17	5.49	4 (26%)
5	BGC	Ν	3	5	11,11,12	1.99	5 (45%)	15,15,17	2.13	6 (40%)
4	BGC	0	1	4	12,12,12	1.18	1 (8%)	17,17,17	1.02	1 (5%)
4	BGC	О	2	4	11,11,12	1.75	2 (18%)	15,15,17	1.17	1 (6%)
4	BGC	Ο	3	4	11,11,12	1.64	2 (18%)	15,15,17	1.31	3 (20%)
4	BGC	Ο	4	4	11,11,12	1.55	2 (18%)	15,15,17	1.75	4 (26%)
4	BGC	Р	1	4	12,12,12	1.47	2 (16%)	17,17,17	2.14	5 (29%)
4	BGC	Р	2	4	11,11,12	1.47	2 (18%)	15,15,17	<mark>3.17</mark>	6 (40%)
4	BGC	Р	3	4	11,11,12	1.59	1 (9%)	15,15,17	2.60	7 (46%)
4	BGC	Р	4	4	11,11,12	1.94	3 (27%)	15,15,17	1.48	4 (26%)
4	BGC	Q	1	4	12,12,12	1.08	1 (8%)	17,17,17	2.28	5 (29%)
4	BGC	Q	2	4	11,11,12	1.34	2 (18%)	15,15,17	2.27	4 (26%)
4	BGC	Q	3	4	11,11,12	1.87	6 (54%)	15,15,17	2.63	6 (40%)
4	BGC	Q	4	4	11,11,12	1.54	2 (18%)	15,15,17	<mark>3.53</mark>	6 (40%)
5	BGC	R	1	5	12,12,12	1.19	1 (8%)	17,17,17	0.78	1 (5%)
5	BGC	R	2	5	11,11,12	1.85	2 (18%)	15,15,17	<mark>3.34</mark>	8 (53%)
5	BGC	R	3	5	11,11,12	1.21	1 (9%)	15,15,17	1.88	5 (33%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	BGC	Е	1	2	-	2/2/22/22	0/1/1/1
2	BGC	Е	2	2	-	0/2/19/22	0/1/1/1
2	BGC	Е	3	2	-	2/2/19/22	0/1/1/1
2	BGC	Е	4	2	-	2/2/19/22	0/1/1/1
2	BGC	Е	5	2	-	1/2/19/22	0/1/1/1
2	BGC	Е	6	2	-	0/2/19/22	0/1/1/1
3	BGC	F	1	3	-	0/2/22/22	0/1/1/1
3	BGC	F	2	3	-	2/2/19/22	0/1/1/1
3	BGC	F	3	3	-	2/2/19/22	0/1/1/1
3	BGC	F	4	3	-	2/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	BGC	F	5	3	-	2/2/19/22	0/1/1/1
4	BGC	G	1	4	-	2/2/22/22	0/1/1/1
4	BGC	G	2	4	_	2/2/19/22	0/1/1/1
4	BGC	G	3	4	_	0/2/19/22	0/1/1/1
4	BGC	G	4	4	_	2/2/19/22	0/1/1/1
5	BGC	Н	1	5	-	1/2/19/22	0/1/1/1
5	BGC	Н	2	5	-	2/2/19/22	0/1/1/1
5	BGC	Н	3	5	_	1/2/19/22	0/1/1/1
5	BGC	Ι	1	5	-	0/2/22/22	0/1/1/1
5	BGC	Ι	2	5	_	0/2/19/22	0/1/1/1
5	BGC	Ι	3	5	-	2/2/19/22	0/1/1/1
6	BGC	J	1	6	-	2/2/19/22	0/1/1/1
6	BGC	J	2	6	-	2/2/19/22	0/1/1/1
6	BGC	K	1	6	-	0/2/19/22	0/1/1/1
6	BGC	K	2	6	-	2/2/19/22	0/1/1/1
4	BGC	L	1	4	-	0/2/22/22	0/1/1/1
4	BGC	L	2	4	-	0/2/19/22	0/1/1/1
4	BGC	L	3	4	_	0/2/19/22	0/1/1/1
4	BGC	L	4	4	-	0/2/19/22	0/1/1/1
3	BGC	М	1	3	-	2/2/22/22	0/1/1/1
3	BGC	М	2	3	_	0/2/19/22	0/1/1/1
3	BGC	М	3	3	-	1/2/19/22	0/1/1/1
3	BGC	М	4	3	-	2/2/19/22	0/1/1/1
3	BGC	М	5	3	-	2/2/19/22	0/1/1/1
5	BGC	N	1	5	_	0/2/22/22	0/1/1/1
5	BGC	N	2	5	-	0/2/19/22	0/1/1/1
5	BGC	N	3	5	-	2/2/19/22	0/1/1/1
4	BGC	0	1	4	-	0/2/22/22	0/1/1/1
4	BGC	Ο	2	4	-	2/2/19/22	0/1/1/1
4	BGC	0	3	4	-	0/2/19/22	0/1/1/1
4	BGC	0	4	4	-	0/2/19/22	0/1/1/1
4	BGC	Р	1	4	-	2/2/22/22	0/1/1/1
4	BGC	Р	2	4	-	1/2/19/22	0/1/1/1
4	BGC	Р	3	4	_	1/2/19/22	0/1/1/1
4	BGC	Р	4	4	-	2/2/19/22	0/1/1/1
4	BGC	Q	1	4	-	2/2/22/22	0/1/1/1
4	BGC	Q	2	4	-	2/2/19/22	0/1/1/1
4	BGC	Q	3	4	_	2/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	BGC	Q	4	4	-	2/2/19/22	0/1/1/1
5	BGC	R	1	5	-	2/2/22/22	0/1/1/1
5	BGC	R	2	5	-	2/2/19/22	0/1/1/1
5	BGC	R	3	5	-	0/2/19/22	0/1/1/1

All (126) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
6	J	2	BGC	O2-C2	-17.75	1.05	1.43
6	J	1	BGC	O3-C3	-12.78	1.12	1.43
6	J	1	BGC	O5-C5	10.53	1.64	1.43
5	Ι	2	BGC	O3-C3	-9.73	1.20	1.43
6	J	2	BGC	O5-C1	8.84	1.57	1.43
6	J	2	BGC	O3-C3	-8.48	1.23	1.43
6	J	1	BGC	O5-C1	8.07	1.56	1.43
5	N	2	BGC	O5-C5	7.64	1.58	1.43
5	Н	1	BGC	O5-C5	-7.32	1.28	1.43
2	Е	4	BGC	O5-C1	-6.46	1.33	1.43
6	J	2	BGC	C2-C3	6.46	1.62	1.52
6	J	2	BGC	O5-C5	6.13	1.55	1.43
5	Н	1	BGC	O5-C1	6.08	1.53	1.43
5	Ι	3	BGC	C1-C2	-6.08	1.38	1.52
6	J	2	BGC	O4-C4	-5.94	1.29	1.43
6	J	2	BGC	C6-C5	-5.80	1.32	1.51
5	Н	1	BGC	O6-C6	-5.64	1.18	1.42
3	F	2	BGC	O5-C1	-5.30	1.35	1.43
5	Ι	2	BGC	O5-C1	-5.00	1.35	1.43
5	Н	1	BGC	C1-C2	4.94	1.63	1.52
5	N	3	BGC	O5-C1	-4.77	1.36	1.43
3	М	4	BGC	O5-C1	-4.70	1.36	1.43
4	L	4	BGC	O5-C1	4.56	1.51	1.43
5	R	2	BGC	O5-C1	-4.54	1.36	1.43
4	L	2	BGC	O5-C1	-4.53	1.36	1.43
6	J	1	BGC	C1-C2	4.37	1.62	1.52
4	L	3	BGC	O5-C1	-4.30	1.36	1.43
4	Р	3	BGC	O5-C1	-4.29	1.36	1.43
4	Р	4	BGC	O5-C1	4.28	1.50	1.43
3	F	5	BGC	O5-C1	4.26	1.50	1.43
4	G	4	BGC	O5-C1	4.24	1.50	1.43
4	G	3	BGC	O5-C1	4.13	1.50	1.43
2	Е	3	BGC	O5-C1	4.00	1.50	1.43
3	М	2	BGC	O5-C1	-3.95	1.37	1.43

Conti	nued fron	ı previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
3	F	3	BGC	O5-C1	3.81	1.49	1.43
4	0	3	BGC	O5-C1	3.79	1.49	1.43
4	0	2	BGC	O5-C1	3.77	1.49	1.43
6	Κ	1	BGC	O5-C1	-3.75	1.37	1.43
2	Ε	5	BGC	O5-C1	3.69	1.49	1.43
4	0	4	BGC	O5-C1	3.64	1.49	1.43
6	K	2	BGC	O5-C1	-3.64	1.37	1.43
4	Q	4	BGC	O5-C1	-3.63	1.37	1.43
2	Е	6	BGC	C2-C3	-3.61	1.47	1.52
5	Н	1	BGC	C6-C5	-3.61	1.39	1.51
2	Е	3	BGC	C2-C3	-3.59	1.47	1.52
4	Р	4	BGC	C2-C3	-3.59	1.47	1.52
4	Р	2	BGC	O5-C1	-3.46	1.38	1.43
3	F	4	BGC	O5-C1	3.45	1.49	1.43
2	Е	2	BGC	O5-C1	3.42	1.49	1.43
4	Р	1	BGC	O5-C1	-3.42	1.34	1.42
3	М	5	BGC	O5-C1	3.41	1.49	1.43
5	Н	1	BGC	C2-C3	3.40	1.57	1.52
4	0	2	BGC	C2-C3	-3.32	1.47	1.52
2	Е	6	BGC	O5-C1	3.31	1.49	1.43
6	J	2	BGC	C4-C5	-3.27	1.46	1.53
4	Р	1	BGC	O5-C5	-3.22	1.36	1.44
5	Ι	1	BGC	O5-C5	-3.20	1.36	1.44
6	J	1	BGC	C4-C5	3.16	1.59	1.53
6	K	2	BGC	O2-C2	-3.12	1.36	1.43
6	K	2	BGC	O5-C5	-3.11	1.37	1.43
2	Е	4	BGC	O5-C5	-3.09	1.37	1.43
6	J	1	BGC	C6-C5	-3.08	1.41	1.51
4	0	1	BGC	O5-C1	3.05	1.50	1.42
5	Н	2	BGC	C2-C3	-3.04	1.48	1.52
3	М	3	BGC	O5-C1	-3.01	1.38	1.43
4	G	1	BGC	O5-C1	2.87	1.50	1.42
4	0	3	BGC	C2-C3	-2.87	1.48	1.52
2	Е	2	BGC	C2-C3	-2.86	1.48	1.52
5	R	1	BGC	O5-C1	2.86	1.50	1.42
3	F	5	BGC	C2-C3	-2.85	1.48	1.52
3	М	3	BGC	05-C5	-2.82	1.37	1.43
2	Е	5	BGC	C2-C3	-2.77	1.48	1.52
5	N	2	BGC	05-C1	2.74	1.48	1.43
5	H	2	BGC	05-C1	-2.72	1.39	1.43
4	0	3	BGC	C4-C5	-2.71	1.47	1.53
3	F	5	BGC	05-C5	2.70	1.48	1.43

Conti	nued fron	i previ	ous page	•••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
3	М	5	BGC	C2-C3	-2.69	1.48	1.52
4	L	2	BGC	O5-C5	-2.66	1.38	1.43
4	G	4	BGC	O5-C5	2.65	1.48	1.43
5	N	1	BGC	O5-C5	-2.65	1.37	1.44
4	Q	2	BGC	O5-C1	-2.63	1.39	1.43
3	F	4	BGC	C2-C3	-2.56	1.48	1.52
4	G	2	BGC	O5-C1	2.54	1.47	1.43
4	0	4	BGC	C2-C3	-2.54	1.48	1.52
4	Q	3	BGC	C2-C3	-2.54	1.48	1.52
3	F	1	BGC	O2-C2	-2.53	1.37	1.43
4	G	3	BGC	C2-C3	-2.53	1.48	1.52
4	G	2	BGC	C2-C3	-2.51	1.48	1.52
5	Н	1	BGC	C4-C5	-2.51	1.47	1.53
6	J	1	BGC	O6-C6	-2.50	1.31	1.42
3	М	3	BGC	O2-C2	-2.50	1.38	1.43
4	L	4	BGC	C2-C3	-2.48	1.48	1.52
3	М	2	BGC	O5-C5	-2.45	1.38	1.43
4	L	4	BGC	O5-C5	2.45	1.48	1.43
2	Е	4	BGC	O4-C4	-2.43	1.37	1.43
5	Ι	2	BGC	O2-C2	-2.39	1.38	1.43
6	K	1	BGC	O2-C2	-2.37	1.38	1.43
4	Р	4	BGC	O5-C5	2.36	1.48	1.43
6	J	1	BGC	O2-C2	-2.36	1.38	1.43
2	Е	6	BGC	O5-C5	2.36	1.48	1.43
5	Н	2	BGC	O2-C2	-2.34	1.38	1.43
2	Е	4	BGC	C4-C5	-2.34	1.48	1.53
3	F	3	BGC	C2-C3	-2.30	1.49	1.52
4	Q	3	BGC	O3-C3	-2.29	1.37	1.43
2	Е	5	BGC	O5-C5	2.29	1.48	1.43
6	K	1	BGC	O5-C5	-2.28	1.38	1.43
4	Q	3	BGC	O5-C1	-2.26	1.40	1.43
5	R	3	BGC	O5-C1	-2.22	1.40	1.43
4	Q	3	BGC	C1-C2	-2.17	1.47	1.52
5	N	3	BGC	C4-C5	-2.16	1.48	1.53
4	Q	4	BGC	C2-C3	-2.15	1.49	1.52
2	E	2	BGC	O5-C5	2.14	1.47	1.43
5	N	3	BGC	O4-C4	-2.13	1.38	1.43
5	N	3	BGC	O5-C5	-2.13	1.39	1.43
3	М	2	BGC	O2-C2	-2.12	1.38	1.43
4	Q	1	BGC	O5-C5	-2.12	1.39	1.44
4	L	1	BGC	O5-C5	-2.11	1.39	1.44
5	N	3	BGC	C4-C3	-2.10	1.47	1.52

 α J fa . . :

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	Q	3	BGC	C4-C3	-2.09	1.47	1.52
4	Р	2	BGC	O5-C5	-2.07	1.39	1.43
4	Q	2	BGC	O4-C4	-2.07	1.38	1.43
5	R	2	BGC	O5-C5	-2.06	1.39	1.43
6	J	2	BGC	C1-C2	2.06	1.56	1.52
5	Ι	2	BGC	O4-C4	-2.04	1.38	1.43
3	М	4	BGC	C4-C5	-2.04	1.48	1.53
4	G	3	BGC	O5-C5	2.02	1.47	1.43

All (240) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Atoms Z		$Ideal(^{o})$
5	Ν	2	BGC	O5-C5-C6	-16.52	81.30	107.20
5	Н	1	BGC	O5-C5-C6	-16.32	81.62	107.20
3	F	2	BGC	O5-C1-C2	-13.40	90.08	110.77
6	J	2	BGC	O5-C5-C6	-13.09	86.69	107.20
6	J	2	BGC	C1-C2-C3	10.95	123.12	109.67
4	Q	4	BGC	C1-C2-C3	-10.55	96.70	109.67
5	N	2	BGC	O2-C2-C1	-9.57	89.56	109.15
5	Ι	3	BGC	C1-C2-C3	9.16	120.93	109.67
5	N	2	BGC	C1-C2-C3	8.59	120.22	109.67
4	Р	2	BGC	C1-C2-C3	8.40	119.99	109.67
4	L	1	BGC	C4-C3-C2	-7.91	97.01	110.82
5	Ι	3	BGC	O5-C5-C6	7.52	119.00	107.20
6	K	2	BGC	C1-O5-C5	7.47	122.31	112.19
3	М	3	BGC	C1-C2-C3	7.39	118.75	109.67
6	J	1	BGC	C1-C2-C3	7.27	118.60	109.67
5	Н	3	BGC	C1-O5-C5	7.04	121.73	112.19
5	R	2	BGC	O5-C5-C6	-6.72	96.67	107.20
3	F	1	BGC	O3-C3-C4	6.70	125.84	110.35
2	Е	4	BGC	O5-C1-C2	-6.59	100.61	110.77
4	Q	2	BGC	O4-C4-C3	-6.56	95.18	110.35
5	R	2	BGC	O5-C1-C2	-6.49	100.76	110.77
5	Ι	2	BGC	C2-C3-C4	-6.40	99.82	110.89
6	K	2	BGC	O5-C5-C6	-6.39	97.19	107.20
4	Q	1	BGC	C4-C3-C2	-6.35	99.74	110.82
5	Н	2	BGC	C2-C3-C4	-6.12	100.30	110.89
6	J	2	BGC	O3-C3-C4	6.09	124.43	110.35
6	J	2	BGC	O6-C6-C5	6.06	132.09	111.29
6	J	2	BGC	C3-C4-C5	5.88	120.73	110.24
6	J	1	BGC	O2-C2-C1	-5.88	97.12	109.15
4	Р	2	BGC	C1-O5-C5	5.82	120.08	112.19

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	М	3	BGC	O2-C2-C1	-5.80	97.28	109.15
6	K	1	BGC	C1-C2-C3	5.78	116.77	109.67
5	Ι	3	BGC	O5-C1-C2	5.70	119.58	110.77
4	Р	3	BGC	C1-O5-C5	5.57	119.74	112.19
5	Ι	3	BGC	O5-C5-C4	5.54	124.30	110.83
4	L	2	BGC	O3-C3-C2	5.50	120.54	109.99
2	Е	1	BGC	C4-C3-C2	-5.48	101.26	110.82
4	Q	3	BGC	O3-C3-C4	-5.41	97.83	110.35
5	Н	2	BGC	C1-O5-C5	5.37	119.47	112.19
2	Е	1	BGC	C3-C4-C5	5.26	119.62	110.24
6	К	1	BGC	O5-C1-C2	-5.18	102.78	110.77
4	Р	1	BGC	O5-C5-C4	-4.98	100.65	109.69
2	Е	4	BGC	O3-C3-C2	4.92	119.42	109.99
6	J	2	BGC	C6-C5-C4	-4.83	101.70	113.00
4	L	3	BGC	O3-C3-C2	4.79	119.17	109.99
5	Н	1	BGC	O2-C2-C3	-4.78	100.56	110.14
6	K	2	BGC	C2-C3-C4	-4.75	102.68	110.89
5	R	2	BGC	C2-C3-C4	-4.72	102.73	110.89
4	Q	4	BGC	O5-C1-C2	-4.64	103.62	110.77
5	Ι	3	BGC	C1-O5-C5	-4.63	105.92	112.19
6	J	1	BGC	C3-C4-C5	4.61	118.46	110.24
5	Ι	2	BGC	O5-C1-C2	-4.57	103.72	110.77
5	Н	3	BGC	C3-C4-C5	-4.55	102.13	110.24
6	J	1	BGC	C6-C5-C4	4.49	123.51	113.00
4	Р	2	BGC	O3-C3-C2	-4.48	101.42	109.99
5	Ι	3	BGC	C6-C5-C4	-4.44	102.61	113.00
6	K	2	BGC	C1-C2-C3	4.43	115.11	109.67
5	R	2	BGC	C1-O5-C5	4.37	118.12	112.19
5	Н	3	BGC	C2-C3-C4	-4.36	103.35	110.89
4	L	2	BGC	C2-C3-C4	-4.29	103.47	110.89
4	Q	3	BGC	O3-C3-C2	-4.26	101.83	109.99
6	J	2	BGC	O5-C5-C4	4.26	121.18	110.83
4	L	3	BGC	O5-C1-C2	-4.25	104.22	110.77
4	0	4	BGC	C3-C4-C5	4.24	117.80	110.24
4	Q	3	BGC	C6-C5-C4	-4.18	103.21	113.00
4	Q	4	BGC	C2-C3-C4	-4.18	103.66	110.89
3	М	1	BGC	O5-C5-C4	4.15	117.23	109.69
3	М	1	BGC	C1-O5-C5	4.11	121.42	113.66
4	Р	3	BGC	O5-C1-C2	4.11	117.12	110.77
5	Ι	3	BGC	C2-C3-C4	-4.08	103.83	110.89
5	R	3	BGC	C2-C3-C4	-4.07	103.85	110.89
5	Н	1	BGC	C2-C3-C4	-4.04	103.90	110.89

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
4	Р	1	BGC	C1-O5-C5	-4.03	106.06	113.66
3	М	3	BGC	C1-O5-C5	4.02	117.64	112.19
2	Е	3	BGC	C3-C4-C5	3.96	117.30	110.24
5	N	3	BGC	C1-O5-C5	3.92	117.50	112.19
2	Е	1	BGC	O5-C5-C4	3.90	116.78	109.69
5	N	3	BGC	C6-C5-C4	-3.90	103.87	113.00
6	J	1	BGC	C1-O5-C5	3.86	117.42	112.19
3	М	4	BGC	C1-C2-C3	3.83	114.37	109.67
4	Р	3	BGC	C2-C3-C4	-3.82	104.29	110.89
2	Е	6	BGC	C3-C4-C5	3.81	117.04	110.24
4	Q	1	BGC	O5-C1-C2	-3.81	103.49	110.28
3	М	3	BGC	C3-C4-C5	3.78	116.98	110.24
6	J	1	BGC	O6-C6-C5	3.78	124.25	111.29
3	М	1	BGC	C4-C3-C2	-3.73	104.31	110.82
6	J	2	BGC	O3-C3-C2	3.68	117.05	109.99
4	Q	1	BGC	O3-C3-C2	-3.68	101.83	110.35
2	Е	5	BGC	O5-C1-C2	-3.66	105.11	110.77
6	K	2	BGC	O3-C3-C2	3.66	117.00	109.99
5	Ι	1	BGC	C1-O5-C5	-3.65	106.77	113.66
2	Е	4	BGC	O6-C6-C5	-3.58	99.00	111.29
4	Q	3	BGC	O5-C5-C6	3.57	112.80	107.20
5	Ν	1	BGC	O3-C3-C2	-3.56	102.11	110.35
3	М	3	BGC	O3-C3-C2	-3.53	103.24	109.99
3	F	1	BGC	O2-C2-C1	-3.47	101.11	109.16
5	Н	3	BGC	O5-C1-C2	3.46	116.11	110.77
2	Е	3	BGC	O5-C1-C2	3.44	116.08	110.77
5	I	2	BGC	O4-C4-C5	-3.44	100.76	109.30
5	I	3	BGC	O3-C3-C2	3.43	116.57	109.99
5	N	3	BGC	C2-C3-C4	-3.40	105.02	110.89
5	Н	1	BGC	C6-C5-C4	-3.39	105.06	113.00
3	F	5	BGC	C2-C3-C4	-3.39	105.03	110.89
3	М	4	BGC	C2-C3-C4	-3.39	105.03	110.89
5	Ι	3	BGC	O2-C2-C3	-3.37	103.38	110.14
4	Р	1	BGC	O2-C2-C1	-3.37	101.34	109.16
5	I	1	BGC	O3-C3-C4	3.35	118.10	110.35
2	E	4	BGC	O3-C3-C4	-3.35	102.60	110.35
3	М	3	BGC	O2-C2-C3	-3.34	103.44	110.14
5	N	1	BGC	C4-C3-C2	-3.33	105.02	110.82
4	L	3	BGC	O3-C3-C4	-3.32	102.67	110.35
5	I	3	BGC	C3-C4-C5	3.32	116.16	110.24
4	Q	4	BGC	O2-C2-C3	3.26	116.67	110.14
5	R	3	BGC	C1-O5-C5	3.26	116.60	112.19

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Е	6	BGC	O5-C5-C4	3.22	118.67	110.83
4	L	3	BGC	O2-C2-C3	3.22	116.58	110.14
2	Е	2	BGC	C1-O5-C5	3.21	116.54	112.19
4	0	4	BGC	C2-C3-C4	3.18	116.39	110.89
4	L	2	BGC	O5-C1-C2	-3.17	105.88	110.77
5	Н	3	BGC	O3-C3-C2	3.16	116.05	109.99
6	J	1	BGC	O3-C3-C4	3.15	117.62	110.35
5	Н	1	BGC	O6-C6-C5	3.14	122.08	111.29
4	Р	4	BGC	C1-O5-C5	3.12	116.42	112.19
6	J	1	BGC	O5-C5-C6	-3.10	102.34	107.20
2	Е	3	BGC	C1-O5-C5	3.10	116.40	112.19
2	Е	1	BGC	O5-C5-C6	-3.08	98.77	106.44
3	F	1	BGC	C1-C2-C3	-3.08	103.92	110.31
4	Q	3	BGC	C1-O5-C5	3.08	116.36	112.19
5	Н	1	BGC	O3-C3-C2	3.08	115.88	109.99
3	М	4	BGC	C1-O5-C5	3.07	116.36	112.19
4	G	4	BGC	C1-O5-C5	3.07	116.35	112.19
5	R	2	BGC	C6-C5-C4	-3.06	105.83	113.00
5	Ι	2	BGC	O6-C6-C5	-3.02	100.94	111.29
4	L	1	BGC	O1-C1-O5	-3.00	101.36	110.38
3	F	2	BGC	C1-O5-C5	-3.00	108.13	112.19
3	М	3	BGC	O4-C4-C5	-2.96	101.94	109.30
4	Р	4	BGC	C3-C4-C5	2.96	115.52	110.24
5	Ν	2	BGC	C1-O5-C5	2.95	116.19	112.19
3	М	5	BGC	C3-C4-C5	2.95	115.50	110.24
2	Е	4	BGC	O5-C5-C6	-2.95	102.59	107.20
5	R	2	BGC	O5-C5-C4	2.92	117.94	110.83
4	Q	2	BGC	C6-C5-C4	2.92	119.85	113.00
6	J	1	BGC	O4-C4-C5	-2.91	102.06	109.30
4	Q	4	BGC	C3-C4-C5	-2.91	105.04	110.24
3	F	2	BGC	O2-C2-C1	2.90	115.09	109.15
3	М	4	BGC	O2-C2-C3	-2.88	104.38	110.14
4	L	2	BGC	O3-C3-C4	-2.84	103.78	110.35
3	М	2	BGC	C1-O5-C5	2.84	116.04	112.19
5	R	2	BGC	C3-C4-C5	2.83	115.29	110.24
3	М	4	BGC	O4-C4-C5	-2.83	102.27	109.30
5	R	3	BGC	O2-C2-C3	-2.81	104.50	110.14
5	I	1	BGC	02-C2-C1	-2.80	102.67	109.16
5	I	1	BGC	C4-C3-C2	-2.80	105.94	110.82
5	N	1	BGC	O5-C1-C2	-2.77	105.33	110.28
4	P	2	BGC	C3-C4-C5	2.77	115.19	110.24
4	P	3	BGC	O5-C5-C4	2.77	117.57	110.83

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	М	4	BGC	O5-C1-C2	-2.76	106.51	110.77
2	Е	3	BGC	O2-C2-C3	-2.75	104.62	110.14
2	Е	5	BGC	C3-C4-C5	2.75	115.14	110.24
3	М	1	BGC	C3-C4-C5	2.75	115.14	110.24
6	J	2	BGC	O2-C2-C1	-2.74	103.55	109.15
3	М	1	BGC	C1-C2-C3	-2.73	104.64	110.31
5	Н	2	BGC	O5-C5-C6	2.70	111.44	107.20
3	F	1	BGC	C4-C3-C2	-2.69	106.12	110.82
4	Р	3	BGC	O2-C2-C3	-2.69	104.75	110.14
5	Н	1	BGC	O4-C4-C3	-2.67	104.17	110.35
4	Р	3	BGC	O3-C3-C2	2.67	115.10	109.99
6	K	1	BGC	O2-C2-C1	-2.67	103.70	109.15
5	Н	1	BGC	C3-C4-C5	2.66	114.99	110.24
4	Р	3	BGC	C1-C2-C3	2.65	112.92	109.67
5	Ν	1	BGC	O3-C3-C4	2.60	116.35	110.35
5	Н	2	BGC	C1-C2-C3	-2.54	106.54	109.67
4	Q	4	BGC	O5-C5-C6	2.52	111.16	107.20
2	Ε	4	BGC	C1-C2-C3	-2.51	106.58	109.67
5	R	3	BGC	O3-C3-C2	2.51	114.80	109.99
4	L	1	BGC	O3-C3-C4	-2.51	104.55	110.35
4	L	1	BGC	O5-C1-C2	2.51	114.76	110.28
4	Q	2	BGC	C2-C3-C4	-2.51	106.56	110.89
5	Н	1	BGC	O3-C3-C4	-2.49	104.58	110.35
5	R	2	BGC	C1-C2-C3	2.49	112.73	109.67
5	Н	3	BGC	O4-C4-C5	2.49	115.48	109.30
4	L	2	BGC	C1-O5-C5	2.49	115.56	112.19
4	G	4	BGC	O5-C5-C6	2.49	111.10	107.20
2	Е	3	BGC	C2-C3-C4	2.48	115.19	110.89
4	G	3	BGC	C1-C2-C3	2.46	112.69	109.67
6	J	2	BGC	C1-O5-C5	2.40	115.45	112.19
3	F	3	BGC	C1-O5-C5	-2.37	108.98	112.19
4	G	2	BGC	O5-C5-C4	-2.37	105.06	110.83
4	G	2	BGC	O2-C2-C1	-2.37	104.30	109.15
2	E	3	BGC	O5-C5-C4	2.36	116.57	110.83
4	Q	1	BGC	O2-C2-C3	2.35	115.78	110.35
5	N	1	BGC	O1-C1-C2	2.35	115.64	109.03
3	F	4	BGC	O5-C5-C6	2.34	110.88	107.20
5	Н	2	BGC	C6-C5-C4	-2.34	107.52	113.00
4	Q	2	BGC	$O6-C6-C\overline{5}$	2.31	119.21	111.29
4	L	3	BGC	C2-C3-C4	-2.31	106.90	110.89
4	L	2	$BG\overline{C}$	C1-C2-C3	$2.2\overline{9}$	112.48	109.67
5	Ν	1	BGC	O4-C4-C5	-2.28	103.62	109.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	0	4	BGC	C1-C2-C3	2.25	112.43	109.67
5	Ν	3	BGC	O3-C3-C4	-2.25	105.16	110.35
4	L	3	BGC	O2-C2-C1	-2.24	104.56	109.15
4	Q	1	BGC	C3-C4-C5	2.24	114.24	110.24
5	Ι	1	BGC	C6-C5-C4	2.24	118.25	113.00
5	Ν	1	BGC	O5-C5-C6	-2.23	100.88	106.44
4	0	1	BGC	O5-C1-C2	2.23	114.26	110.28
2	Е	6	BGC	C6-C5-C4	-2.23	107.78	113.00
3	F	1	BGC	O4-C4-C3	2.22	115.49	110.35
3	М	5	BGC	C2-C3-C4	2.20	114.71	110.89
3	F	3	BGC	C2-C3-C4	2.20	114.70	110.89
5	Н	3	BGC	C6-C5-C4	2.20	118.15	113.00
4	Q	3	BGC	O2-C2-C3	-2.20	105.74	110.14
4	Р	2	BGC	O4-C4-C3	2.19	115.42	110.35
5	Ν	3	BGC	O2-C2-C1	2.18	113.62	109.15
5	Н	2	BGC	C3-C4-C5	-2.18	106.35	110.24
4	Р	4	BGC	O5-C5-C4	2.18	116.13	110.83
3	F	1	BGC	C1-O5-C5	2.18	117.77	113.66
2	Е	2	BGC	O5-C5-C6	2.18	110.61	107.20
4	Р	4	BGC	C6-C5-C4	-2.16	107.95	113.00
4	L	1	BGC	C6-C5-C4	-2.16	107.95	113.00
6	Κ	1	BGC	C3-C4-C5	2.15	114.08	110.24
5	Н	1	BGC	O5-C1-C2	-2.15	107.45	110.77
5	R	1	BGC	C6-C5-C4	-2.14	108.00	113.00
4	0	3	BGC	O6-C6-C5	-2.13	103.97	111.29
4	0	3	BGC	C3-C4-C5	2.13	114.04	110.24
4	G	2	BGC	C6-C5-C4	-2.13	108.02	113.00
3	F	5	BGC	O5-C5-C6	2.12	110.53	107.20
4	0	2	BGC	O5-C5-C6	2.11	110.52	107.20
4	Р	1	BGC	O4-C4-C5	2.11	114.53	109.30
6	J	1	BGC	O3-C3-C2	2.09	114.00	109.99
4	0	4	BGC	C6-C5-C4	-2.08	108.14	113.00
4	Р	2	BGC	O4-C4-C5	-2.07	104.15	109.30
4	0	3	BGC	C6-C5-C4	-2.07	108.16	113.00
3	F	1	BGC	O4-C4-C5	-2.06	104.18	109.30
4	Р	1	BGC	O1-C1-O5	-2.06	104.20	110.38
5	R	3	BGC	O5-C5-C4	-2.05	105.84	110.83
2	Е	2	BGC	C3-C4-C5	-2.04	106.61	110.24
3	F	2	BGC	O5-C5-C4	-2.02	105.92	110.83
3	М	5	BGC	C6-C5-C4	-2.02	108.28	113.00
5	N	3	BGC	O3-C3-C2	2.01	113.84	109.99
4	L	4	BGC	O3-C3-C2	2.00	113.83	109.99

Continued from previous page...

There are no chirality outliers.

All (62) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
4	Р	4	BGC	O5-C5-C6-O6
4	0	2	BGC	C4-C5-C6-O6
4	Р	1	BGC	O5-C5-C6-O6
4	Q	1	BGC	O5-C5-C6-O6
2	Е	3	BGC	O5-C5-C6-O6
4	Q	4	BGC	O5-C5-C6-O6
5	Ι	3	BGC	O5-C5-C6-O6
4	Q	1	BGC	C4-C5-C6-O6
3	М	4	BGC	O5-C5-C6-O6
4	G	1	BGC	O5-C5-C6-O6
4	0	2	BGC	O5-C5-C6-O6
5	R	2	BGC	O5-C5-C6-O6
4	G	1	BGC	C4-C5-C6-O6
4	G	4	BGC	C4-C5-C6-O6
4	Р	4	BGC	C4-C5-C6-O6
3	М	1	BGC	O5-C5-C6-O6
4	G	4	BGC	O5-C5-C6-O6
4	Р	1	BGC	C4-C5-C6-O6
5	R	2	BGC	C4-C5-C6-O6
3	F	5	BGC	O5-C5-C6-O6
4	Q	2	BGC	O5-C5-C6-O6
2	Ε	1	BGC	C4-C5-C6-O6
4	Q	4	BGC	C4-C5-C6-O6
2	Ε	3	BGC	C4-C5-C6-O6
3	М	5	BGC	O5-C5-C6-O6
3	М	1	BGC	C4-C5-C6-O6
4	Q	3	BGC	O5-C5-C6-O6
5	Н	2	BGC	O5-C5-C6-O6
3	F	5	BGC	C4-C5-C6-O6
5	Ν	3	BGC	O5-C5-C6-O6
4	Q	2	BGC	C4-C5-C6-O6
5	Н	2	BGC	C4-C5-C6-O6
5	Ν	3	BGC	C4-C5-C6-O6
4	G	2	BGC	O5-C5-C6-O6
5	R	1	BGC	O5-C5-C6-O6
4	Q	3	BGC	C4-C5-C6-O6
3	М	4	BGC	C4-C5-C6-O6
3	F	3	BGC	C4-C5-C6-O6
5	R	1	BGC	C4-C5-C6-O6
2	E	1	BGC	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
2	Е	4	BGC	O5-C5-C6-O6
3	М	3	BGC	O5-C5-C6-O6
2	Е	4	BGC	C4-C5-C6-O6
3	М	5	BGC	C4-C5-C6-O6
4	Р	3	BGC	C4-C5-C6-O6
6	К	2	BGC	C4-C5-C6-O6
2	Е	5	BGC	O5-C5-C6-O6
6	К	2	BGC	O5-C5-C6-O6
5	Н	1	BGC	O5-C5-C6-O6
6	J	2	BGC	C4-C5-C6-O6
5	Н	3	BGC	O5-C5-C6-O6
5	Ι	3	BGC	C4-C5-C6-O6
3	F	3	BGC	O5-C5-C6-O6
3	F	2	BGC	O5-C5-C6-O6
4	G	2	BGC	C4-C5-C6-O6
6	J	2	BGC	O5-C5-C6-O6
3	F	4	BGC	O5-C5-C6-O6
3	F	4	BGC	C4-C5-C6-O6
4	Р	2	BGC	C4-C5-C6-O6
3	F	2	BGC	C4-C5-C6-O6
6	J	1	BGC	C4-C5-C6-O6
6	J	1	BGC	O5-C5-C6-O6

Continued from previous page...

There are no ring outliers.

19 monomers are involved in 24 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	М	3	BGC	1	0
4	Р	2	BGC	1	0
2	Е	3	BGC	2	0
2	Е	2	BGC	1	0
2	Е	6	BGC	1	0
4	0	1	BGC	1	0
3	М	4	BGC	1	0
6	Κ	2	BGC	1	0
4	Р	3	BGC	1	0
4	Q	2	BGC	2	0
5	Ν	1	BGC	1	0
4	Q	1	BGC	1	0
5	N	3	BGC	3	0
6	J	1	BGC	4	0
3	F	3	BGC	1	0

Continued from previous page...

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	М	2	BGC	1	0
5	R	2	BGC	3	0
4	G	1	BGC	1	0
4	Q	3	BGC	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2		$OWAB(Å^2)$	Q<0.9
1	А	717/796~(90%)	-0.27	14 (1%) 6	67	2, 10, 33, 60	0
1	В	720/796~(90%)	-0.26	6 (0%) 80	6 87	4, 16, 37, 69	0
1	С	705/796~(88%)	0.36	34 (4%) 3	80 28	11, 37, 68, 83	0
1	D	648/796~(81%)	0.19	43 (6%) 1	.8 16	6, 29, 63, 82	0
All	All	2790/3184~(87%)	-0.00	97 (3%) 4	4 44	2, 21, 59, 83	0

All (97) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	D	5	GLY	5.7
1	D	175	PHE	5.7
1	С	720	HIS	4.6
1	С	6	ASP	4.1
1	С	365	MET	3.8
1	А	74	TYR	3.8
1	D	91	GLY	3.8
1	D	37	ASN	3.7
1	D	203	PHE	3.6
1	В	5	GLY	3.6
1	А	147	GLN	3.5
1	С	426	ALA	3.5
1	D	458	MET	3.4
1	D	112	VAL	3.2
1	С	722	PHE	3.2
1	D	7	ASP	3.2
1	D	56	ASP	3.1
1	С	95	PRO	3.1
1	С	719	PRO	3.1
1	D	31	MET	3.1
1	В	278	ASP	3.1

Mol	Chain	Res	Type	RSRZ
1	С	228	ARG	3.0
1	D	25	LYS	3.0
1	С	99	VAL	3.0
1	В	192	ASP	3.0
1	С	145	THR	3.0
1	С	76	GLY	3.0
1	D	296	PRO	2.9
1	С	213	SER	2.9
1	D	277	ASP	2.8
1	D	90	LEU	2.8
1	С	558[A]	SER	2.8
1	D	459	GLY	2.8
1	А	31	MET	2.7
1	C	73	GLY	2.7
1	D	215	PHE	2.7
1	С	275	ARG	2.7
1	D	295	ALA	2.7
1	D	114	ASP	2.7
1	С	147	GLN	2.7
1	A	195	THR	2.7
1	С	5	GLY	2.6
1	D	294	GLU	2.6
1	D	225	LEU	2.5
1	D	310	ASP	2.5
1	D	457	SER	2.5
1	D	6	ASP	2.5
1	В	191	SER	2.5
1	С	600	ASP	2.5
1	D	55	ALA	2.5
1	A	149	SER	2.5
1	C	409	GLN	2.4
1	C	189	LYS	2.4
1	D	111	VAL	2.4
1	A	148	ASP	2.4
1	B	222	ASP	2.4
1	C	687	ILE	2.4
1	A	128	ASP	2.4
1	D	171	LEU	2.4
1	A	222	ASP	2.3
1	C	418	ILE	2.3
1	D	279	ASN	2.3
1		148	ASP	2.3

Mol	Chain	Res	Type	RSRZ
1	D	517	ASN	2.3
1	D	559	VAL	2.2
1	D	278	ASP	2.2
1	С	422	LYS	2.2
1	D	58	LEU	2.2
1	D	201	ARG	2.2
1	D	214	THR	2.2
1	С	93	TYR	2.2
1	С	346	PRO	2.2
1	А	55	ALA	2.2
1	D	239	LYS	2.2
1	А	38	GLY	2.2
1	D	222	ASP	2.2
1	D	26	HIS	2.2
1	С	355	ALA	2.2
1	D	631	ARG	2.2
1	D	199	SER	2.1
1	С	222	ASP	2.1
1	D	172	THR	2.1
1	А	279	ASN	2.1
1	С	149	SER	2.1
1	В	7	ASP	2.1
1	С	94	PRO	2.1
1	А	280	ASN	2.1
1	D	454	LEU	2.1
1	С	186	ALA	2.1
1	С	354	ALA	2.1
1	С	405	SER	2.1
1	А	68	LEU	2.0
1	D	143	LEU	2.0
1	D	252	ALA	2.0
1	D	176	LEU	2.0
1	А	37	ASN	2.0
1	С	223	LYS	2.0

Continued	from	previous	page
		1	1 0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	BGC	F	1	12/12	0.81	0.31	28,40,46,52	0
4	BGC	Q	4	11/12	0.81	0.24	34,41,53,63	0
2	BGC	Е	1	12/12	0.84	0.21	13,30,41,42	0
6	BGC	J	2	11/12	0.84	0.35	30,45,52,59	0
4	BGC	G	4	11/12	0.86	0.21	9,25,34,39	0
5	BGC	Н	3	11/12	0.87	0.38	46,50,63,64	0
6	BGC	J	1	11/12	0.88	0.20	12,14,24,25	0
4	BGC	0	1	12/12	0.88	0.32	$27,\!32,\!47,\!52$	0
3	BGC	М	5	11/12	0.89	0.18	$27,\!35,\!42,\!44$	0
4	BGC	0	4	11/12	0.90	0.30	$28,\!37,\!45,\!47$	0
5	BGC	Н	2	11/12	0.92	0.24	$17,\!27,\!46,\!46$	0
4	BGC	L	4	11/12	0.92	0.24	$21,\!29,\!37,\!47$	0
4	BGC	Q	1	12/12	0.92	0.12	$26,\!30,\!43,\!45$	0
4	BGC	G	1	12/12	0.92	0.20	18,28,42,48	0
4	BGC	Q	3	11/12	0.93	0.19	20,24,31,32	0
3	BGC	F	5	11/12	0.93	0.22	21,28,31,33	0
3	BGC	М	1	12/12	0.94	0.15	24,29,35,41	0
4	BGC	0	3	11/12	0.94	0.23	20,23,34,34	0
4	BGC	L	1	12/12	0.94	0.17	18,26,38,46	0
4	BGC	Р	2	11/12	0.94	0.13	15,18,22,24	0
5	BGC	Ι	1	12/12	0.94	0.15	12,16,26,28	0
5	BGC	Ν	3	11/12	0.94	0.17	21,22,28,34	0
5	BGC	R	1	12/12	0.94	0.14	$19,\!23,\!26,\!28$	0
5	BGC	R	3	11/12	0.94	0.29	18,32,38,53	0
4	BGC	Р	4	11/12	0.94	0.17	$15,\!20,\!30,\!33$	0
3	BGC	М	2	11/12	0.94	0.14	12,17,22,22	0
6	BGC	K	1	11/12	0.94	0.13	$9,\!15,\!24,\!33$	0
2	BGC	Е	6	11/12	0.95	0.16	$27,\!33,\!36,\!46$	0
5	BGC	Ι	3	11/12	0.95	0.12	8,11,14,15	0
4	BGC	Q	2	11/12	0.95	0.12	$21,\!23,\!28,\!29$	0
3	BGC	М	3	11/12	0.95	0.15	19,22,27,30	0
5	BGC	R	2	11/12	0.95	0.24	24,29,36,46	0
3	BGC	M	4	11/12	0.95	0.12	21,25,28,29	0
5	BGC	Н	1	11/12	0.95	0.14	7,12,15,18	0
4	BGC	Р	3	11/12	0.95	0.10	11,15,17,20	0
4	BGC	0	2	11/12	0.95	0.16	14,20,24,25	0
6	BGC	K	2	11/12	0.95	0.11	7,9,13,13	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
5	BGC	N	2	11/12	0.96	0.16	12,16,21,23	0
3	BGC	F	2	11/12	0.96	0.14	14,19,22,23	0
4	BGC	Р	1	12/12	0.96	0.10	21,28,33,36	0
4	BGC	L	3	11/12	0.96	0.13	$11,\!15,\!20,\!23$	0
3	BGC	F	3	11/12	0.96	0.13	$6,\!11,\!16,\!17$	0
2	BGC	Е	5	11/12	0.96	0.15	$10,\!15,\!18,\!19$	0
2	BGC	Е	2	11/12	0.96	0.13	4,10,16,18	0
5	BGC	Ι	2	11/12	0.96	0.12	7,9,14,15	0
2	BGC	Е	4	11/12	0.96	0.12	6,8,10,12	0
4	BGC	G	2	11/12	0.97	0.12	8,10,12,16	0
4	BGC	G	3	11/12	0.97	0.10	$7,\!9,\!13,\!14$	0
5	BGC	N	1	12/12	0.97	0.11	18,25,28,35	0
3	BGC	F	4	11/12	0.98	0.13	9,11,19,19	0
2	BGC	Е	3	11/12	0.98	0.09	7,9,11,12	0
4	BGC	L	2	11/12	0.98	0.18	8,11,13,14	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

