

Nov 27, 2022 – 04:54 PM EST

PDB ID	:	6XIQ
EMDB ID	:	EMD-22196
Title	:	Cryo-EM Structure of K63R Ubiquitin Mutant Ribosome under Oxidative
		Stress
Authors	:	Zhou, Y.; Bartesaghi, A.; Silva, G.M.
Deposited on	:	2020-06-21
Resolution	:	4.20 Å(reported)
Based on initial model	:	6GQ1

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	254	97%	
2	В	387	99%	
3	С	362	98%	•
4	D	297	99%	
5	Е	176	88% .	11%
6	F	244	91%	9%
7	G	256	90%	9%
8	Н	191	99%	

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 9 Ι 221 5% 95% •• 10 J 17497% 11 L 199.. . 95% ... 12М 13898% . 13Ν 20498% 14Ο 199••• 98% Р 1518499% •• Q 186. 1699% R 189 1799% • \mathbf{S} 1817299% Т ••• 1916099% U 2012181% 17% 21V 137... 98% 22W 15541% 59% Х 2314285% 15% • ... 24Υ 12798% Ζ ••• 2513699% AA 1052690% 9% • AB • 2715698% 2833951 38% 55% • 5% 3 29121• 57% 41% 30 415843% 54% . 12% P031231 61% 39% 32P216556% • 43% 33 149 \mathbf{a} 98% • •

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol b 593498% . 35105 \mathbf{c} 90% • 8% 36 d 113. 96% 37е 13098% . f ... 3810798% 39121g 91% • 7% ... 40h 12098% i 100• 41 99% 4288 j 98% •• k 437899% • 1 445198% • 45128 \mathbf{m} 39% 59% 4625n 100% 470 10699% . 92 48р 98% •• 4921800. . 58% 38% 50252q 81% 18% • 51255r 83% 16% 52254 \mathbf{S} 85% 15% 53240 \mathbf{t} 92% 7% 54261u 99% 55225v 90% • 8% 56236• 6% 93% W •• 19057х 96% 58200 • 6% у 92%

Mol	Chain	Length	Quality of chain	
59	\mathbf{Z}	197	92%	• 6%
60	AD	151	98%	••
61	AE	138	91%	• 8%
62	AF	142	86%	13%
63	AG	143	98%	••
64	AH	136	88% .	12%
65	AI	146	99%	
66	AJ	144	99%	
67	AK	121	88%	12%
68	AL	87	99%	<mark>.</mark>
69	AM	130	99%	
70	AN	145	98%	
71	AO	135	99%	
72	AP	108	6 5% 35%	
73	AQ	119	• 81% • 1	.8%
74	AR	82	98%	
75	AS	67	94%	6%
76	AT	56	93%	• 5%
77	AU	63	94%	• 5%
78	AV	319	100%	
79	AX	76	30% 67%	•
79	AZ	76	45% 55%	
80	AY	8	25% 75%	
81	L1	217	9%	6%

Continued from previous page...

2 Entry composition (i)

There are 82 unique types of molecules in this entry. The entry contains 356903 atoms, of which 151628 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues			AltConf	Trace				
1	А	252	Total 3895	C 1191	Н 1981	N 388	0 334	S 1	0	0

• Molecule 2 is a protein called RPL3 isoform 1.

Mol	Chain	Residues			AltConf	Trace				
2	В	386	Total 6217	C 1950	Н 3142	N 584	O 533	S 8	0	0

• Molecule 3 is a protein called RPL4A isoform 1.

Mol	Chain	Residues			AltConf	Trace				
3	С	361	Total 5607	C 1729	Н 2859	N 522	0 494	${ m S} { m 3}$	0	0

• Molecule 4 is a protein called RPL5 isoform 1.

Mol	Chain	Residues			AltConf	Trace				
4	D	296	Total 4701	C 1501	Н 2326	N 414	0 458	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 5 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues			AltConf	Trace				
5	Е	156	Total 2565	C 800	Н 1326	N 222	O 216	S 1	0	0

• Molecule 6 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues			AltConf	Trace				
6	F	222	Total 3646	C 1151	H 1862	N 324	O 308	S 1	0	0

• Molecule 7 is a protein called RPL8A isoform 1.

Mol	Chain	Residues			AltConf	Trace				
7	G	233	Total 3681	C 1151	H 1877	N 323	0 327	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called RPL9A isoform 1.

Mol	Chain	Residues			Atom	S			AltConf	Trace
8	Н	191	Total 3105	C 963	H 1587	N 274	0 277	S 4	0	0

• Molecule 9 is a protein called RPL10 isoform 1.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
9	Ι	211	Total 3441	C 1083	Н 1736	N 322	0 294	${f S}{f 6}$	0	0

• Molecule 10 is a protein called RPL11B isoform 1.

Mol	Chain	Residues			Atom	S			AltConf	Trace
10	J	169	Total 2736	C 847	Н 1383	N 253	0 249	${S \atop 4}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		A	toms			AltConf	Trace
11	L	193	Total 3151	C 962	Н 1608	N 315	O 266	0	0

• Molecule 12 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues			Atom	s			AltConf	Trace
12	М	136	Total 2202	$\begin{array}{c} \mathrm{C} \\ 675 \end{array}$	Н 1149	N 199	0 177	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
13	Ν	203	Total 3499	C 1077	Н 1779	N 361	0 281	S 1	0	0

• Molecule 14 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
14	О	197	Total 3214	C 1003	H 1659	N 289	O 262	S 1	0	0

• Molecule 15 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		A	Atoms		Atoms						
15	Р	183	Total 2857	C 882	Н 1437	N 281	O 257	0	0				

• Molecule 16 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
16	Q	185	Total 2984	C 908	Н 1543	N 290	0 241	${S \over 2}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
17	R	188	Total 3138	C 935	Н 1617	N 326	O 260	0	0

• Molecule 18 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
18	S	172	Total 2932	C 930	Н 1487	N 267	0 244	S 4	0	0

• Molecule 19 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
19	Т	159	Total 2599	C 805	Н 1323	N 246	0 221	$\frac{S}{4}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Α	toms	AltConf	Trace		
20	U	100	Total 1608	C 516	Н 812	N 131	O 149	0	0

• Molecule 21 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
21	V	136	Total 2051	C 628	Н 1048	N 189	O 179	${ m S} 7$	0	0

• Molecule 22 is a protein called RPL24A isoform 1.

Mol	Chain	Residues		L	Atom	AltConf	Trace			
22	W	63	Total 1072	C 336	Н 551	N 102	O 82	S 1	0	0

• Molecule 23 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues			AltConf	Trace				
23	Х	121	Total 1989	C 620	Н 1025	N 169	O 173	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		A	Atoms	AltConf	Trace		
24	Y	126	Total 2074	C 625	Н 1081	N 192	O 176	0	0

• Molecule 25 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		A	AltConf	Trace			
25	Ζ	135	Total 2247	C 710	Н 1155	N 202	O 180	0	0

• Molecule 26 is a protein called 40S ribosomal protein S10-A.

Mol	Chain	Residues	AtomsTotalCHNOS						AltConf	Trace
26	AA	96	Total 1499	C 499	Н 727	N 126	0 145	${ m S} { m 2}$	0	0

• Molecule 27 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
27	AB	153	Total 2502	C 780	Н 1282	N 231	O 206	${ m S} { m 3}$	0	0

• Molecule 28 is a RNA chain called 35S ribosomal RNA.

Mol	Chain	Residues			Ator	ms			AltConf	Trace
28	1	3223	Total 103566	C 30790	H 34635	N 12416	O 22502	P 3223	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	?	-	G	deletion	GB 380294104

• Molecule 29 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
29	3	121	Total 3883	C 1152	Н 1304	N 461	0 845	Р 121	0	0

• Molecule 30 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues			Ator	ns			AltConf	Trace
30	4	158	Total 5048	C 1500	Н 1695	N 586	O 1109	Р 158	0	0

• Molecule 31 is a protein called RPP0 isoform 1.

Mol	Chain	Residues			Atom	S			AltConf	Trace
31	P0	189	Total 2987	C 942	Н 1514	N 257	0 270	${S \over 4}$	0	0

• Molecule 32 is a protein called RPL12A isoform 1.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
32	P2	94	Total 1497	C 448	Н 774	N 138	0 135	${ m S} { m 2}$	0	0

• Molecule 33 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
33	a	148	Total 2388	C 749	Н 1215	N 231	0 190	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called RPL29 isoform 1.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms			AltConf	Trace
34	b	58	Total 953	C 289	Н 491	N 100	O 73	0	0

• Molecule 35 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues			Atoms						
35	с	97	Total 1540	C 479	Н 797	N 124	0 139	S 1	0	0	

• Molecule 36 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues			Atoms						
36	d	109	Total 1801	$\begin{array}{c} \mathrm{C} \\ 559 \end{array}$	Н 918	N 167	O 156	S 1	0	0	

• Molecule 37 is a protein called RPL32 isoform 1.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
37	е	127	Total 2110	C 647	Н 1090	N 205	0 167	S 1	0	0

• Molecule 38 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
38	f	106	Total 1730	C 540	Н 880	N 165	0 144	S 1	0	0

• Molecule 39 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
39	g	112	Total 1821	C 545	Н 941	N 179	0 152	${S \atop 4}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues			AltConf	Trace				
40	h	119	Total 2047	C 615	Н 1078	N 186	0 167	S 1	0	0

• Molecule 41 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
41	i	99	Total 1620	C 481	Н 849	N 156	O 132	${ m S} { m 2}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
42	j	87	Total 1364	C 414	Н 683	N 148	0 114	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called RPL38 isoform 1.

Mol	Chain	Residues		Α	toms			AltConf	Trace
43	k	77	Total 1294	C 391	Н 682	N 115	O 106	0	0

• Molecule 44 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
44	1	50	Total 911	C 272	Н 475	N 97	O 65	${ m S} { m 2}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L40.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
45	m	52	Total 873	C 259	Н 456	N 86	O 67	${ m S}{ m 5}$	0	0

• Molecule 46 is a protein called RPL41A isoform 1.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
46	n	25	Total 500	C 139	Н 273	N 60	O 27	S 1	0	0

• Molecule 47 is a protein called 60S ribosomal protein L42-A.

Mol	Chain	Residues			AltConf	Trace				
47	О	105	Total 1762	C 534	Н 915	N 170	0 138	${f S}{5}$	0	0

• Molecule 48 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
48	р	91	Total 1428	C 429	Н 734	N 138	O 121	S 6	0	0

• Molecule 49 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
49	2	1743	Total 55827	C 16603	H 18686	N 6578	O 12217	Р 1743	0	0

• Molecule 50 is a protein called 40S ribosomal protein S0-A.

Mol	Chain	Residues			AltConf	Trace				
50	q	206	Total 3144	C 1014	H 1567	N 278	O 283	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 51 is a protein called RPS1A isoform 1.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
51	r	214	Total 3493	C 1084	Н 1784	N 310	0 311	${S \atop 4}$	0	0

• Molecule 52 is a protein called RPS2 isoform 1.

Mol	Chain	Residues			Atom	S			AltConf	Trace
52	s	217	Total 3358	C 1047	Н 1723	N 289	0 297	${S \over 2}$	0	0

• Molecule 53 is a protein called RPS3 isoform 1.

Mol	Chain	Residues			Atom	5			AltConf	Trace
53	t	223	Total 3551	C 1101	Н 1817	N 313	0 314	S 6	0	0

• Molecule 54 is a protein called 40S ribosomal protein S4-A.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
54	u	260	Total 4222	C 1316	Н 2154	N 389	O 360	${ m S} { m 3}$	0	0

• Molecule 55 is a protein called Rps5p.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
55	v	206	Total	C	H	N	0	S	0	0
			3284	1007	1075	300	299	3		

• Molecule 56 is a protein called 40S ribosomal protein S6-A.

Mol	Chain	Residues			Atoms							
56	W	223	Total 3671	C 1123	Н 1881	N 346	O 318	${ m S} { m 3}$	0	0		

• Molecule 57 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		A	AltConf	Trace			
57	х	184	Total 3053	C 951	Н 1572	N 265	O 265	0	0

• Molecule 58 is a protein called RPS8A isoform 1.

Mol	Chain	Residues			Atom	s			AltConf	Trace
58	У	188	Total 3014	C 925	Н 1525	N 298	O 264	${ m S} { m 2}$	0	0

• Molecule 59 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
59	Z	185	Total	C 042	H 1572	N	0	S 1	0	0
			3067	943	1573	289	201	T		

• Molecule 60 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
60	AD	150	Total 2447	C 759	Н 1255	N 224	O 207	${ m S} { m 2}$	0	0

• Molecule 61 is a protein called 40S ribosomal protein S14-B.

Mol	Chain	Residues			AltConf	Trace				
61	AE	127	Total 1774	C 545	Н 883	N 182	O 163	S 1	0	0

• Molecule 62 is a protein called RPS15 isoform 1.

Mol	Chain	Residues			Atom	S			AltConf	Trace
62	AF	124	Total 1979	C 622	Н 1002	N 182	O 166	${ m S} 7$	0	0

• Molecule 63 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
63	AG	141	Total 2271	C 708	Н 1166	N 203	O 194	0	0

• Molecule 64 is a protein called 40S ribosomal protein S17-B.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
64	AH	120	Total 1856	C 577	Н 930	N 177	O 170	${S \over 2}$	0	0

• Molecule 65 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
65	AI	145	Total 2414	C 743	Н 1222	N 237	O 210	${ m S} { m 2}$	0	0

• Molecule 66 is a protein called 40S ribosomal protein S19-A.

Mol	Chain	Residues			Atom	S			AltConf	Trace
66	AJ	143	Total 2236	C 694	Н 1124	N 208	O 208	$\frac{S}{2}$	0	0

• Molecule 67 is a protein called RPS20 isoform 1.

Mol	Chain	Residues			AltConf	Trace				
67	AK	107	Total 1772	C 539	Н 917	N 156	0 159	S 1	0	0

• Molecule 68 is a protein called 40S ribosomal protein S21-A.

Mol	Chain	Residues			AltConf	Trace				
68	AL	87	Total 1356	C 420	Н 672	N 125	0 137	${S \over 2}$	0	0

• Molecule 69 is a protein called RPS22A isoform 1.

Mol	Chain	Residues			AltConf	Trace				
69	AM	129	Total 2081	C 650	Н 1060	N 188	O 180	${ m S} { m 3}$	0	0

• Molecule 70 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues			AltConf	Trace				
70	AN	144	Total 2317	C 708	Н 1196	N 220	0 191	${S \over 2}$	0	0

• Molecule 71 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		A	AltConf	Trace			
71	AO	134	Total 2205	C 676	Н 1132	N 208	O 189	0	0

• Molecule 72 is a protein called RPS25A isoform 1.

Mol	Chain	Residues		A	toms			AltConf	Trace
72	AP	70	Total 1166	C 360	Н 603	N 104	O 99	0	0

• Molecule 73 is a protein called RPS26B isoform 1.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
73	AQ	97	Total 1583	C 475	Н 814	N 160	O 129	${ m S}{ m 5}$	0	0

• Molecule 74 is a protein called 40S ribosomal protein S27-A.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
74	AR	81	Total 1242	C 382	Н 632	N 110	0 113	${ m S}{ m 5}$	0	0

• Molecule 75 is a protein called RPS28A isoform 1.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
75	AS	63	Total 1032	C 306	Н 535	N 99	O 91	S 1	0	0

• Molecule 76 is a protein called RPS29A isoform 1.

Mol	Chain	Residues		ŀ	Atom	s			AltConf	Trace
76	AT	53	Total 873	С 274	Н 431	N 92	0 72	$\frac{S}{4}$	0	0

• Molecule 77 is a protein called 40S ribosomal protein S30-A.

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
77	AU	60	Total 1000	C 299	Н 525	N 98	0 77	S 1	0	0

• Molecule 78 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues			Atoms	S			AltConf	Trace
78	AV	318	Total 4823	C 1541	Н 2386	N 418	0 470	S 8	0	0

• Molecule 79 is a RNA chain called Transfer RNA.

Mol	Chain	Residues			Ator	ns			AltConf	Trace
70	٨v	76	Total	С	Η	Ν	0	Р	0	0
79	АЛ	70	2446	725	820	293	532	76	0	0
70	70 47	76	Total	С	Η	Ν	0	Р	0	0
79	AL	70	2446	725	820	293	532	76	U	U

• Molecule 80 is a RNA chain called mRNA.

Mol	Chain	Residues		ŀ	Aton	ns			AltConf	Trace
80	AY	8	Total 248	С 74	Н 84	N 23	O 59	Р 8	0	0

• Molecule 81 is a protein called RPL1A isoform 1.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
81	L1	204	Total 3310	C 1031	Н 1701	N 279	O 290	S 9	0	0

• Molecule 82 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
82	j	1	Total Zn 1 1	0
82	m	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
82	О	1	Total Zn 1 1	0
82	р	1	Total Zn 1 1	0
82	AQ	1	Total Zn 1 1	0
82	AR	1	Total Zn 1 1	0
82	AT	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 60S ribosomal protein L2-A

Chain F:	91%	9%
MET ALA ALA ALA ALA CYS CIU THR THR THR THR THR CIU CYS CIU C CYS CIU CIU	A23 N244	
• Molecule 7: RPL8A isoform	. 1	
Chain G:	90%	9%
MET PRIO PRIO GLY CLYS CLYS CLYS PRIO PRIO PRIO PRIO PRIO PRIO PRIO PRIO	ARG N24 A39 A36 A256 A256	
• Molecule 8: RPL9A isoform	1	
Chain H:	99%	
M1 N59 K 106 L19		
• Molecule 9: RPL10 isoform	1	
Chain I:	95%	5%
MET A2 LEU SER CVS CVS CVS CVS CVS ALA ALA ALA ASP ASP CVS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS		
• Molecule 10: RPL11B isofor	rm 1	
Chain J:	97%	• •
MET THR LLYS ALA Q6 R72 R72 R72		
• Molecule 11: 60S ribosomal	protein L13-A	
Chain L:	95%	
MET A2 A47 P48 P48 B104 ALA ALA ALA ALA LYS LYS LYS		
• Molecule 12: 60S ribosomal	protein L14-A	
Chain M:	98%	
MET 13 13 A9 A138 A138		
• Molecule 13: 60S ribosomal	protein L15-A	
Chain N:	98%	:

W O R L D W I D E PROTEIN DATA BANK

MET 62 794 8109 8109 8145 1145 7204

• Molecule 14: 60S ribosomal protein L16-A

Chain O:	98%	
MET SER V3 K82 F110 A183	- <mark>60</mark> 	
• Molecule 1	5: 60S ribosomal protein L17-A	
Chain P:	99%	
MET A2 Q118 A158 A158 A160	A161 E162 A184	
• Molecule 1	.6: 60S ribosomal protein L18-A	
Chain Q:	99%	
MET G2 V186		
• Molecule 1	7: 60S ribosomal protein L19-A	
Chain R:	99%	
MET A2 A189		
• Molecule 1	.8: 60S ribosomal protein L20-A	
Chain S:	99%	
M1 R13 R117 Y172		
• Molecule 1	9: 60S ribosomal protein L21-A	
Chain T:	99%	
MET G2 D18 I160		
• Molecule 2	20: 60S ribosomal protein L22-A	
Chain U:	81%	• 17%
	W C	

MET ALA PRO ASN THR SER ARG LYS CP CP	D91 VIII VIII VIII VIII VIII VIII VIII VI	
• Molecule 21:	60S ribosomal protein L23-A	
Chain V:	98%	
MET 22 N104 P105 V137		
• Molecule 22:	RPL24A isoform 1	
Chain W:	41% 59%	
M1 IG3 CLU GLU GLU VAL ALA LYS LYS ARG	SER ARG LYS LYS LYS LYS ALA ALA ALA ALA ARG GLU CYS CUN CYS CUN C CYS CUN CYS CUN CYS CUN CYS CUN CYS CUN C CYS CUN C CYS CUN C CYS CUN C CYS CUN C C C C C C C C C C C C C C C C C C	LYS ALA GLU LYS
ALA ALA ARG LYS ALA GLU LYS CLU LYS SER SER ALA	dl.Y dl.N dl.N dl.N dl.N dl.N dl.N dl.N dl.N	
• Molecule 23:	60S ribosomal protein L25	
Chain X:	85% · 15%	
MET ALA PRO SER ALA LYS ALA ALA ALA ALA ALA LYS	LIYS VALA VALA UVAL CIYS CLYS CLYS K22 CN3 CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	
• Molecule 24:	60S ribosomal protein L26-A	
Chain Y:	98%	
MET A2 G42 E127		
• Molecule 25:	60S ribosomal protein L27-A	
Chain Z:	99%	
MET A2 E102 F136		
• Molecule 26:	40S ribosomal protein S10-A	
Chain AA:	90% • 9%	
MI H32 PRO PRO GLN ARG PRO GLN GLN GLN	ARG TYR	

 \bullet Molecule 27: 40S ribosomal protein S11-A

98%

•

Chain AB:

 \bullet Molecule 28: 35S ribosomal RNA

C	h٤	ii	1	1:	i							38	8%																	5	5%	,									·	5%	Ď			
5	n3		C7		014 715		U19	A20	G21	423 423	G24	<mark>U25</mark>	A26	C27	020	G 30	C31		A34	A 39	A40	G41	C42		046 C47	047	UEO	A51	A52 G53	C54	GEE	005	G59	A60	G64	A65	A66 A67	C68	<mark>C69</mark>	A70 A71	CT2	C73	G75 G75	G76	A77 1170	
C81	082 U83	U84		A89	C90	G92	C93	G94	A95	197 1197	G 98	A99		C102 C103	G104	C105	A106		A109	C111	U112		A115	A116	U117	0110 0119	G120	A121	A122 A123	0124		6127	C132	U133	G137	U138	G139 C140	C141	C142	G143	A144 G145	U146	0147 G148	U149	A150	
U154	G156	A157	G158	20	C163 A164	A10 1 A165		G171	121	C1 75	G176		C179	111 82	0102 G183		A187	U188	G189	0191 U191	C192	C193	U194	U195	4 100	A190 A199	C200	A201	6202 6203	A204	C205	0206 0207	C208	A209	0210 A211	G212	0016	U217	G218	A219	4220 A221	A222	C225	C226	G227	G229
	1020	G237	A238	G239	0.240	G243	G244	U245	U246	024/ 11248	U249	U250	G251	U252 4753		C263	G264	A265	A266	4268 4268	G269		G272	A273	G274 11075	0276 U276	G277	U278	11280	G281	G282	6283 A284	A285	U286	C288	A289	G290		C293	U294	A295 A796	G297	U298	G 304	U305	A306 A307
A308		U314	C315	U316	A31/ A310	A319	-	U322	A323	A325 A325	U326	A327	U328	U329 G330	6331		<mark>A336</mark>	G337	A338	C340	G341	A342	<mark>U343</mark>	A344	G345	C346 C347	A348	A349	0.350 4.351	A352	G353	0.354 A355		U359	4361 A361	U362	4365		<mark>G368</mark>	A369	G371	A372	A373 A374	A375	G376 A 277	A378
C379	1381	U382	<mark>G383</mark>	A384	A385 A366	A387	G 388	A389	G390	4391 (392	U393	G394	A395	A396 A397	A398	A399	G400	U401	A402	G404	U405	G406	A407	A408	A409	0410 U411	G412	U413	0414 6415	A416	A417	A4 18 G4 19	G420	G421	A4 22 A4 23		0430 11431	G432	A433	U434	G437	A438	C439 A440	U441	G442	0444
G445 114 A 6	11447	U448	U449	G450	0451 ر	5 U	U	U	D	<u> ا</u> د	0 0	U	n	00		n	IJ	n	5 5	5 0	ņ	Ā	IJ	IJ.	ۍ د	P	A	D	ט ב	00	5	с <u>A486</u>	U487	U488	0403	C492	0493 0494	G495		C500	TOCH	U506	U507 U508	U509	G5 10	A519
	A522	A523		A533	U534 7525	U536		U541	6542	C544	U545	C546	G547	G548 11549	4550		A557	U558	A559	0000	U565	G566		A578	G579 GE90	0000	C586	U587	4580	G 590	G591	A592 C593	U594	G595 G500	6597 G597		0601 4602	A603		A608	A611		A619 U620	A621	A622	G624
G625	4630	U631		C634	6635 7636	C637	C638	<mark>G639</mark>	0101	0642 11643	G644	A645	A646	A647 C648	0400	CEEO		A653	C654	4656 A656		A660	G661	U662	C663 11664	0004 A665	A666	C667	9999 11669	C670	U671	A672 U673	G674	C675	4677 A677	G678	0679 0680	U681	U682	0683 7697	6685 6685		G688 U689	A690	A691	A693
C694	Ceoo	A697		C700	101 0700	G703	U704	A705	A706	0708 6708	A709	A710	A711	G712 11713	C117	A715	A716	C717	G718 1174 0	A720	G721		G725	G726	G727	0120	C734	A735	A/30 C737		C743	A747	U748	C749	C752		U756	G760	A761	U762	0764 U764	<mark>C765</mark>	U766 U767	C768	G769	A771
U772	G774	A775	<u>0776</u>	U777	0//8	A780	G781	U782	A783	A / 04 G785	A786	G787	C788	A789	A791	G792	C793	U794	G795	0670 U797	G798	6799	G 800	A801	C802	C803	ABO6	A 807	A808	G809 A810	U811	G812 C813	6105	0614 G815	A816	A81 / C818	U819	A820	1871		<mark>G826</mark>		A830	G831	G833	U834
G845 Ac/c	A040 A847	A848	C849	U850	C851	G856	G857	A858	(859 (859	G861	U862	C863	G864	U865	GR70	U871	U872	C873	0874 Co75	4075 A876	C877	G878	<mark>0879</mark>	G 880	C881	A882 A883	A884	U885	C880	C893	G894	A896 A896	1897 1		6901 6901	G902	0903 4904	1905 U905	A906	6907	6065		A913 A914	A915	G916 A917	
A920	1922 11922	C923	G924		0932 1032	G934	<mark>0935</mark>	A936	G937	11939	G940	G941	U942	0943 0944	C945	0346	G947	C948	C949	4951	A952	G953	<mark>U954</mark>		C958	כתס	A962	G963	4964 A965	0960	A967	G969 C969	A970	G971	G974	C975	0976	G978	0979	A980	TOED	G984	U985 11986	<mark>1987</mark>		A992
																										W P R			D			E														

G993	G994 U995	A996 A997	A998	C1000	G1001 A1002	A1003		A1006	U1008	A1009	G1010	111014	U1015	C1016	C1017	G1018 G1019	G1020		C1023	G1024	070TW	G1029	A1030	C1031	U1034	G1035	C1038		U1042	C1043	A1047	A1048 C1049		A1057 U1058		G1063	A1064 A1065	G1066	U1067	C1068	U1070	U1071	U1073		
U1074	A1075 C1076	U1081	U1082	61083 A1084	A1085 C1086	G1087	U1088	61090 61090		A1093	U1094	01095 111096	G1097	A1098	A1099	01100 61101		G1104	A1105	111 100	U1110	U1111	A1112	G1113 111114	G1115	G1116	G111/ C1118	C1119	A1120	U1124		G1127 II1128	A1129	A1130 G1131	C1132	A1133	G1134	U1138	G1139	G1140 C1141	G1142	A1143	01144 G1145		
C1146	G1147 G1148	G1149 A1150	U1151	41152 A1153	A1154	C1156	G1157		01161 11162	A1163	G1164	A1165	G1166 111167	U1168	A1169	A1170	61171 61172	U1173	G1174	C1175	C1176	G1178	A1179	A1180	01181 A1182	C1183	A1184	C1187	U1188	C1189 A1190	U1191	C1192	C1196	A1197	C1199 C1199	A1200		A1203 A1204	A1205	G1206	G1207 U1208		U1211	•	
A1217	01218 01219	U1220 A1221		A1225 G1226	C1227 C1228	G1229	G1230	A1231 C1232	G1233	G1234	U1235	G1236 G1237	C122	01200	01200	011201	01240	G1242	A1244	A1245	G1246	01247 C1248	G1249	G1250	A1251	A1252	01253	C1255	G1256	01257 01258	A1259	A1260 C1261	G1262	A1263 G1264	U1265	G1266	01267 01268	01269	A1270	A1271	C1272	A1274	C1077	C1279	
C1280	61281 61282	C1283 C1284		06719	G1300 A1301		A1304	01306 G1306	G1307	A1308	U1309	61310 61311	C1312	G1313	C1314	01315	A1317	A1318	G1319	1000	U1324	U1325	A1326	C1327 C1328	U1329	A1330	01331 A1332	C1333	U1334	01336 U1336		C1339 G1340	U1341	C1342 A1343	-	U1348	G1349 A1350	U1351	A1352	01353	A1355	U1356		I	
C1364	G1365 A1366	G1367 U1368	A1369	61370 61371	C1372 A1373	G1374	G1375 C1276	01370 01377	U1378	G1379	G1380	A1381	A1386	G1387	U1388	61.389 41.390	C1391	G1392	A1393	A1394	C1396		A1399	G1400 A1401	C1402	100	01405 41406	A1407	G1408	61409 U1410	C1411	G1412 C1413	G1414	01415 C1416	G1417	A1418	A1419 C1420		C1423	C1476	01427 U1427	A1428	U1430		
G1431	C1432 A1433	G1434 A1435	U1436	0143/	G1440 C1441	U1442	G1443	61444 111445	A1446	G1447	U1448	A1449 C1450		A1453	A1454	01455 01456	U1457	U1458		G1464	G1466	A1467	A1468	C1469 111470		G1476	G1480	A1481	A1482	61483 U1484	G1485	G1486	U1494	C1497	A1498	C1499	G1500 111501	C1502	A1503	A1504 C1505	A1506	G1507	A1509		
G1510	U1511 U1512	G1513 G1514	A1515	G1517 G1517	G1520	G1521	U1522 111522	01523 A1524	G1525	U1526	C1527	61528 41529	U1530	C1531	C1532	01533	A1535	G1536		G1541 C1EAD	G1543	G1544	A1545	A1546 C1547	C1548	2	C1551 C1552	01553	U1554	01555 C1556	A1557	A1558 A1559	G1560	G1561 C1562	<mark>C1563</mark>	U1564	G1565 A1566		U1569	01570 41571	TIOTY	C1574	G1576		
G1577	C1578 C1579	A1580 C1581	C1582	A1 583 U1 584	C1585 C1586	A1587	A1588 A1580	A1509 G1590	G1591	G1592	A1593	A1594 111595	C1596	C1597	G1598	111600	U1601	A1602	A1603	G1604 A1605	U1606	U1607	C1608	C1609 C1610	G1611		A1619 11620		U1627	01629 01629	U1630	C1631 A1632		G1635	C1639	G1640	01641 A1642	A1643	C1644	01645 C1646		G1650 111 65 1	TCOTO	ı	
G1655	A1656 C1657	G1658 U1659	C1660	G1662	C1663 C1664	C1665	G1666	A100/	C1669	<mark>C1670</mark>	C1671	7./910	G1675	A1676	G1677	61678 A1679	G1680	U1681	U1682	A1683	U1688	U1689		C1693 111694	U1695	A1696	A1697 C1698	A1699		U1/U2 U1703	-	C1710		G1713 A1714	A1715	U1716	G1719	U1720	U1721	01722 41733	01724	C1725	G1727		
G1728	A1729 G1730	A1731 U1732	G1733	61 / 3 4	U1737 C1738	U1739	U1740	111 746	G1747	G1748	A1749	A1 / 50 C1 751	A1752	G1753	G1754	A1767		A1760	C1761	C1762	01764 U1764	<mark>U1765</mark>		01772 C1773		01777	G1 / / 8 C1 779	G1780	C1781	U1785	<mark>G1786</mark>	A1787 C1788	G1789	G1790	C1793	G1794	01795 G1796	A1797	A1798	A1799 A1800	U1801	01 007	G1808		
A1809	A1813	A1814	U1819	01820 U1821	C1822	G1829	G1830	01031 C1832	G1833	U1834	A1835	C1836 111837	G1838	A1839	U1840	A 1841 A 1847	C1843	C1844	G1845	C1846	61848	C1849	A1850	G1851 C1852	U1853	C1854	01855 C1856	C1857	A1858	ALGOY	G1863	A1864 A1865	C1866	A1867 G1868	C1869	C1870	01871 C1872	U1873	A1874	G1875 11876	U1877	G1878 41070	U1880		
A1881	G1882 A1883	A1884 U1885	A1886	A1 68 / U1 888	111 894	A1895	A1896	1 60 1	A1900	A1901	G1902	01903	G1905	G1906	C1907	A1908	A1909 A1910	A1911	U1912	A1913	G1914 A1015	CTATY	U1 <mark>920</mark>	A1921	A1922 C1923	U1924	U1925	C1926 G1927		A1932	U1938	G1939	G1940 C1941	U1942	A1946	G1947	G1948	61949 U1950	C1951	G1952	G1953 G1954	U1955	A C	2	
D	J B		00	0 U 9 U	U II	0	A G		U A	U U	A C		, U	C A	5 C	0 U		U G	n c	11	0 U	0	A U	ට ප ට ප	D D	0 0 0 0		a G	D C	0 0 0	A U	D ೮ ೮ ೮	D D	0 0	5	с с Б	9 U D 9	n n	A U	5 U 5 U	o c	ບ = ບ ເ	50		

00000004044004	A C2095 C2095 C2098 A2099 A2009 A2100 C2101 U2102 U2103 A2104	C2105 C2110 C2111 C2112 C2114 C2114 C2114 C2115 C2115 C2118 A2117 A2119	A2120 G2121 G2121 C2122 U2127 U2127 U2128 U2127 C2130 A2131 C2133 U2123 G2133 U2123 G2133	U2135 C2136 C2136 U2137 A2139 A2139 U2140 U2141 A2142 A2143
A2144 A2145 C2147 A2145 A2146 A2154 A2153 C2155 C2155 C2155 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2156 C2160 C2160 C2160 C2160 C2160 C2167 C2160 C2167 C2160 C2167 C2165 C216 C2165 C2165 C2165 C216 C216 C216 C216 C216 C216 C216 C216	C2163 A7164 A2166 A2166 A2166 A2167 A2167 U2173 C2174 C2175	02176 02177 02179 02179 02192 02192 02193 02194 02193 02194	A198 A2201 C2202 C2203 U2205 C2205 C2205 A2205 A2205 A2205 A2205 C2210 C2209 C2210	A2213 A2215 A2215 A2218 A2218 A2228 A2220 A2220
A2224 U2226 U2226 A2229 C2230 C2234 A2243 A2244 A2244 A2244 A2244 C2245 C2245	C2245 C2246 C2248 C2249 C2249 C2249 C2265 C2261 C2260 C2263 C2263	U2269 A2270 A2270 A2271 C2273 C2273 C2276 C2276 C2276 C2277 C2278	A2280 A2281 U2282 02283 C2288 U2289 02290 02290 C2293 U2295 U2295 U2295	A2296 U2297 U2298 A2299 G2302 A2303 C2304 C2304 C2304
C2306 C2307 C2307 C2311 C2315 C2315 C2315 C2325 C2325 C2325 C2325 C2325 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2326 C2327 C2227 C227 C2777 C2777 C2777 C2777 C2777 C2777 C2777 C2777 C2777 C2777 C2777	U2340 U23440 U23442 U23442 U2349 U2349 C23552 C2354	2355 42355 42357 42355 72359 72359 72355 72365 72365 72365 72365 72365	22370 22371 A2372 A2373 A2373 A2375 C2378 C2378 C2378 C2333 C2333 C2333 C2333 C2333 C2333 C2333 C2333 C2333 C2333 C2338 C2338 C2338 C2338 C2338 C2338 C2338 C2338 C2338 C237 C2338 C237 C238 C237 C237 C237 C237 C237 C237 C237 C237	A2386 A2387 A2387 C2389 A2389 C2391 C2392 C2393 C2393 C2393 C2393
C2395 C2395 A2397 A2399 A2399 C2400 C2405 C2405 C2405 C2405 C2405 C2405	02409 12410 22415 122415 122416 122418 122420 122420 122423 122423	02426 02426 02426 02428 02428 02428 02435 02435 02435 02435 02435	22440 22442 22442 22446 A2447 22450 22455 12455 12455	A2458 A2459 U2460 A2461 A2461 A2462 C2465 U2464 C2464 C2464
A2468 C2470 C2470 U2471 U2471 C2473 C2473 C2473 C2476 C2476 C2476 C2476 C2479 C2476	C2481 C2482 C2482 A2485 A2485 U2487 C2490 A2491 A2491 C2492 C2492	A2494 C2495 C2495 C2495 U2499 U2499 U2499 V2499 A2500 A2500 V2501 V2503 V2503 V2503	U2506 C2567 U2508 U2508 U2509 U2511 U2513 U2513 U2513 U2513 U2515 U2515 U2515	A2515 A2520 42521 42521 42523 42534 42534 62535 62535 62535 62530 62530 62530 62530
U2532 (25533 (25533 (25534 A2535 A2535 U2533 U2544 U2544 U2544 U2544 U2544 U2544 U2544 U2544 U2544 U2544	A2547 A2548 C2548 C2549 C2549 U2551 C2555 C2555 A2556 C2555 C2555 C2555 C2555	12558 12559 25560 25560 42561 42566 12566 42566 42566 125571	C2572 A2580 U2581 C2582 C2583 C2585 C25555 C2555 C2555 C2555 C2555 C2555 C2555 C2555 C2555 C2555 C2555	A2691 (25592 A2593 (25594 (25594 (25598 (12599 (25599 (25599 (25599) (25599) (25599) (25600)
A2601 62662 62663 02664 62665 62665 62666 62666 62668 62668 62668 72609 72611 72611 72611 72611 72613 72615	22617 12617 12618 12619 12620 12620 12622 12622 12623 12623 12623 12623 12623	92632 122633 122634 12634 12635 12635 12635 12635 12643 12644 12645 12645 12645	C20446 A2647 A2647 A2649 A2649 A2649 U2650 U2655 C2653 C2653 C2655 A2657 A2657 C2658	C2666 A2667 U2668 U2668 A2674 C2675 A2674 C2675 C2675
A2678 A2678 A2679 C2682 A2686 A2685 A2685 A2689 A2689 A2689 A2689 A2689	A2694 A2695 A2696 A2696 A2698 A2698 C2698 C2698 C2700 C2700 A2702 A2703 A2703	02713 02714 02715 02715 02715 02715 02720 02722 02723 02723	A727 A7727 02728 02730 02731 02731 12735 A2734 A2735 A2735 A2735 C2741 C2742 C2742	A2747 A2747 A2748 C2749 U2750 C2753 C2753 C2755 C2755
C2756 U2757 U2757 C2760 C2760 U2763 U2765 U2765 U2765 U2765	C2775 C2775 C2776 C2776 C2776 C2777 C2776 C2777 A2780 U2781 U2783 U2783 U2783	A2785 (27787 (27787 (27787 (27794 (27795 (27795 (27799 (22799 (22800)	A2801 A2802 A2803 A2804 C2806 U2806 U2806 U2806 C2810 A2811 A2811 A2811 A2813	62814 62815 62815 62816 82817 12818 82819 82819 82820 12822
C2823 C2824 C2825 C2825 U2827 U2827 C2832 C2833	A2844 A2847 A2847 A2847 A2847 A2847 C2850 C2856 C2856 U2855 C2856	C2863 A2864 U2865 U2866 C2866 U2868 U2868 U2868 C2870 C2870 C2871 C2871	C2875 C2876 C2876 C2876 C2879 C2879 C2879 C2879 C2881 U2882 U2883 A2881 U2883	A2892 C2893 C2893 C2895 C2895 A2895 C2899 C2899 C2899 C2899
2901 2902 A2903 A2903 U2906 C2906 C2906 C2906 A2911 C2912 C2912 C2913 C2913 C2913	42919 42919 12920 12923 12926 12926 12926 12926 12926 12928 12928 12928 12928 12928 12928 12928 12928	A2930 C2931 U2932 A2933 A2934 A2935 A2944 C2943 C2943 C2943 C2943	62945 62946 62947 62950 62950 62951 02953 02953 02953 62959 62959 62954	U2965 02965 02966 02968 02968 02971 02973 02973 02973
U2975 2.2976 2.2977 U2978 U2978 U2981 U2981 U2981 U2981 C2984 C2984 C2984 C2984 C2984 C2984 C2984 C2984	22957 43005 43005 43006 13006 13006 43010 43011 43012 23018	U3019 U3019 A3021 A3022 C3022 C3025 C3025 C3025 C3025 C3025 C3028	A3032 A3033 A3034 A3035 A3035 (33034 A3040 C3043 G3044 G3044 G3044 A3046 U3045	A3048 A3048 A3049 U3051 U3055 U3053 U3055 U3055 U3055
U3057 U3058 U3058 U3059 U3065 U3065 U3065 U3065 C3065 U3070 U3071 U3071	A3075 G3076 G3077 A3077 U3078 U3079 C3080 C3080 C3080 C3081	63088 03089 03090 03090 03090 03092 03093 03101 03101 03101 03101 03102	U3105 U3105 U3106 U3107 U3111 C3110 C3112 C3115 C3115 C3115 C3115	U3119 C3120 C3120 A3121 A3122 C3126 C3126 C3126 C3126 A3130

					ю
- O O N H C O N D J N X D X D Z X Y Y D J X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	4	η	4	4	4
I K K Y K K K Y K Y K K Y K K Y K Y K Y	i LO	<u>о</u>	-	· + ·	-
E T T T T T T T T T T T T T T T T T T T		×		· 🔾 .	- E-4

• Molecule 33: 60S ribosomal protein L28

Chain a:	98%	
MET P2 K47 R59 A149		
• Molecule 34	: RPL29 isoform 1	
Chain b:	98%	
MET A2 K59		
• Molecule 35	: 60S ribosomal protein L30	
Chain c:	90%	• 8%
MET ALA PRO VAL LYS SER GLU GLU S	141 886 A105	
• Molecule 36	: 60S ribosomal protein L31-A	
Chain d:	96%	· ·
MET ALA GLY L4 D112 ALA		
• Molecule 37	: RPL32 isoform 1	
Chain e:	98%	
MET A2 L128 GLU ALA		
• Molecule 38	: 60S ribosomal protein L33-A	
Chain f:	98%	
MET A2 107 1107		

• Molecule 39: 60S ribosomal protein L34-A

Chain g:	91%	• 7%
MET A2 R4 R80 K113 LVS SER	LYS LYS LYS LYS	
• Molecule 40:	: 60S ribosomal protein L35-A	
Chain h:	98%	
MET A2 K26 A120		
• Molecule 41:	: 60S ribosomal protein L36-A	
Chain i:	99%	
MET T2 H100		
• Molecule 42:	: 60S ribosomal protein L37-A	
Chain j:	98%	
MET G2 G81 A88		
• Molecule 43:	: RPL38 isoform 1	
Chain k:	99%	
MET A2 L78		
• Molecule 44:	: 60S ribosomal protein L39	
Chain l:	98%	·
MET A2 I51		
• Molecule 45:	: 60S ribosomal protein L40	
Chain m:	39% · 59%	
MET GLN TLE PHE VAL LYS LYS THR LEU THR CLY	THR THR THR THR THEU CULU CULU CULU CULU CULU CULU CULU CU	LEU GLU ASP GLY GLY GLY ARG THR LEU SER ASP TYR ASN
ILE LYS LYS GLU GLU GLU GLU THR LEU HIS LEU LEU	ARG ARG ARG CLY CLY CLY AR4 AR4 AR4 AR4 AR4 AR4 AR4 AR4 AR4 AR4	

• Molecule 46: RPL41A isoform 1	
Chain n: 100%	
There are no outlier residues recorded for this chain.	
\bullet Molecule 47: 60S ribosomal protein L42-A	
Chain o: 99%	
V2 A30 F108	
• Molecule 48: 60S ribosomal protein L43-A	
Chain p: 98%	
MET A2	
• Molecule 49: 18S ribosomal RNA	
Chain 2: 58%	
U1 A2 U3 U37 U37 U37 U37 U37 U34 U34 U34 U35 U34 U34 U34 U35 U36 U37 U37 U34 U34 U34 U34 U35 U35 U36 U37 U38 U34 U35 U37 U38 U37 U38 U37 U38 U39 U39 U39 U39 <	C90 G91 A92 A93
U94 A106 A107 A116 A126 A126 A126 A126 A126 A126 A126 A126 A126 A127 A128 A136 A137 A136 A136 A137 A136 A136 A145 A146 A146 A147 A148 A148 <	C190 C191 U192 U193
U194 U194 C196 C196 C196 C196 C206 U207 U206 U209 U209 U209 U209 U212 U221 U212 U221 U221 U221 U221 U22	U260 U261 U262
A266 A266 C270 C276 C276 C276 C276 C276 C277 C282 C282 C282 C282 C282 C282 C282	6392 C393 C396 C396
A397 A397 A400 A401 A400 A401 A405 A405 A405 A415 A415 A415 A415 A415 A415 A415 A41	0493 0494 C495 G496
C497 C550 U502 U502 U502 U502 C550 C514 A551 A551 A551 A552 A553 A553 A553 A553 A554 A556 A553 A556 A556 A556 A556 A556 A556	
A606 A606 C613 C613 C614 A619 A619 A622 A622 A622 A622 A622 A622 A622 C614 C633 C641 C633 C654 C654 C654 C654 C654 C654 C654 C654 C654 C654 C655 C6588 C658 C658 C658 C658 C6588 C658 C658 C658 C658 C658	C697 U698 U699
C702 V705 V705 V706 V705 V706 V706 V707 C708 V711 V712 V713 V714 V714 V714 V714 V714 V713 V714 V714 V715 V715 V716 V718 V719 V729 V733 V749 V743 V744 V745 V745 V745 V745 V745 V745 V745 V745 V755 V745	U(66 A771 G772 A774 A774 G778

Chain s:	85%	15%
MET SER ALA PLO PLO CLU CLU CLU CLN CLN CLN CLN CLN CLY PHE CLY CLY	ARG ASN ARG ALS ALS ALS ALC ALC CLV CLV CLV CLV CLV CLV CLV CLV CLV C	
• Molecule 53: RPS3	isoform 1	
Chain t:	92%	7%
MET VAL A3 R94 0140 C224 A225 A225 A225 A12 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	GIU ALA ALA ALA ALA ALA PRO FRO GIU ALA	
• Molecule 54: 40S rik	oosomal protein S4-A	
Chain u:	99%	.
MET A2 1154 1195 L261		
• Molecule 55: Rps5p		
Chain v:	90%	• 8%
MET SER ASP ASP ASP ALA PLA CLU VAL CLU CLU GLU GLU CAL VAL	VAL GLU GLU GLU H225 N128 H225	
• Molecule 56: 40S rit	posomal protein S6-A	
Chain w:	93%	• 6%
M1 N10 T71 R85 R85 R85 R85 R94 R148 R148 R148 R148	K223 ALA ALA ALA ARG ARG ARG ARG SER SER SER ALA ALA ALA	
• Molecule 57: 40S rib	posomal protein S7-A	
Chain x:	96%	
MET SER ALA ALA RIO7 BIB7 CLU THR THR HIS		
• Molecule 58: RPS8A	A isoform 1	
Chain y:	92%	• 6%
MET C2 C2 C2 C2 C3 C3 C3 F3 K5 T104 L175 L175 L175 L175 L175 C110 C110 C110 C110 C110 C110 C110 C11	GLU GLU VAL ALA ALA ALA KI35 K200	
• Molecule 59: 40S rib	oosomal protein S9-A	

Chain z:	92%	• 6%
MET P2 K29 K138 S162	E186 ALA ASLA ASLP GLU ASLA ASLA CLU GLU CLU	
• Molecule	60: 40S ribosomal protein S13	
Chain AD:	98%	
MET 62 85 N105 N151		
• Molecule	61: 40S ribosomal protein S14-B	
Chain AE:	91%	• 8%
MET ALA ASP ASP ASP LEU VAL GLN ALA	ARN ASN SII 1126 L137	
• Molecule	62: RPS15 isoform 1	
Chain AF:	86%	•• 13%
MET SER GLN ALA ASN ASN K8	E69 R127 A12 A13 A13 A13 A13 A13 A13 LVS LVS LVS	
• Molecule	63: 40S ribosomal protein S16-A	
Chain AG:	98%	
MET SER A3 C33 R143		
• Molecule	64: 40S ribosomal protein S17-B	
Chain AH:	88%	• 12%
MET G2 L24 S89 ALA LEU LEU	LEU SER A126 A126 A126 A126 A126 A126 A126 A126	
• Molecule	65: 40S ribosomal protein S18-A	
Chain AI:	99%	
MET S2 L3 V4 V5 V5		

 \bullet Molecule 66: 40S ribosomal protein S19-A

Chain AJ:	99%	·	
MEIT 9 2 5 13 4			
• Molecule 67: RPS	S20 isoform 1		
Chain AK:	88%	12%	
MET SER PHE CLN CLN CLN CLN CLU CLU CLN CLN CLN			
\bullet Molecule 68: 40S	ribosomal protein S21-A		
Chain AL:	99%	:	
M1 146 R87			
• Molecule 69: RPS	S22A isoform 1		
Chain AM:	99%		
MET T2 Y130			
• Molecule 70: 40S	ribosomal protein S23-A		
Chain AN:	98%	••	
MET 62 6112 8112 8145 8145			
\bullet Molecule 71: 40S ribosomal protein S24-A			
Chain AO:	99%		
MET S2 D135			
• Molecule 72: RPS	S25A isoform 1		
Chain AP:	65%	35%	
MET PRO PRO CLN CLN CLN CLN CLN SER LVS ALA ALA ALA	ALA ALA ALA CLY CLY CLY CLYS CLYS CLYS CLYS SER CLYS SER ASC ASC ASC ASC ASC ASC ASC ASC ASC ASC		

 \bullet Molecule 73: RPS26B isoform 1

Chain AQ:	81% .	18%
RG N 88 - 37 - 5 RG N 88 - 5 RG N 88 - 5 RG N 80	R R R R R R R R R R R R R R R R R R R	
• Molecule 74	40S ribosomal protein S27-A	
Chain AR: —	98%	••
MET V2 T61 K81 K82		
• Molecule 75:	: RPS28A isoform 1	
Chain AS:	94%	6%
MET ASP ASN LYS LYS T5 R67		
• Molecule 76	: RPS29A isoform 1	
Chain AT:	93%	• 5%
MET ALA HIS E4 R12 R12 R56		
• Molecule 77	: 40S ribosomal protein S30-A	
Chain AU:	94%	• 5%
MET A2 R10 S61 VAL GLN		
• Molecule 78	: Guanine nucleotide-binding protein subunit beta-li	ke protein
Chain AV:	100%	
MET A2 F186 M316 A318 A318 A318		
• Molecule 79	· Transfer BNA	
Chain AX:	200/ 670/	
	507%	
61 64 7 7 8 6 1 6 1 6 1 6 1 0 1 0 1 0 1 0 1 1 1 1 1	C11 C13 C13 C13 C13 C13 C13 C13	C56 657 657 657 653 653 661 663 663 665 665

• Molecule 79: Transfer RNA

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	9629	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \times 4k)$	Depositor
Maximum map value	27.135	Depositor
Minimum map value	-15.154	Depositor
Average map value	0.000	Depositor
Map value standard deviation	1.000	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	545.792, 545.792, 545.792	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.066, 1.066, 1.066	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		B	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/1948	0.60	0/2617	
2	В	0.27	0/3146	0.55	0/4228	
3	С	0.27	0/2800	0.54	1/3790~(0.0%)	
4	D	0.28	0/2425	0.53	0/3271	
5	Ε	0.27	0/1260	0.53	0/1694	
6	F	0.29	0/1821	0.52	0/2451	
7	G	0.78	2/1836~(0.1%)	0.57	2/2481~(0.1%)	
8	Н	0.27	0/1539	0.56	0/2073	
9	Ι	0.27	0/1741	0.55	0/2335	
10	J	0.27	0/1374	0.59	0/1842	
11	L	0.27	0/1568	0.57	0/2106	
12	М	0.26	0/1068	0.52	0/1438	
13	Ν	0.27	0/1757	0.58	0/2354	
14	0	0.29	0/1585	0.54	0/2128	
15	Р	0.27	0/1443	0.53	0/1944	
16	Q	0.26	0/1465	0.54	0/1965	
17	R	0.27	0/1538	0.57	0/2050	
18	S	0.28	0/1481	0.56	0/1990	
19	Т	0.28	0/1300	0.53	0/1743	
20	U	0.29	0/812	0.53	1/1099~(0.1%)	
21	V	0.27	0/1018	0.55	0/1369	
22	W	0.28	0/533	0.56	0/707	
23	Х	0.27	0/979	0.50	0/1321	
24	Y	0.25	0/1004	0.56	0/1341	
25	Ζ	0.28	0/1118	0.50	0/1497	
26	AA	0.31	0/789	0.53	0/1067	
27	AB	0.27	$0/1\overline{247}$	0.55	$0/1\overline{681}$	
28	1	1.52	15/77157~(0.0%)	1.05	$259\overline{/120295}~(0.2\%)$	
29	3	0.36	0/2883	0.91	2/4491~(0.0%)	
30	4	4.75	8/3746~(0.2%)	1.40	28/5832~(0.5%)	
31	P0	0.29	0/1498	0.55	0/2025	
32	P2	0.26	$0/\overline{728}$	0.54	0/975	

Mal	Chain	B	ond lengths	I	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	a	0.26	0/1204	0.56	0/1612
34	b	0.27	0/473	0.50	0/629
35	с	0.27	0/751	0.53	0/1008
36	d	0.26	0/897	0.55	0/1205
37	е	0.26	0/1041	0.52	0/1394
38	f	0.28	0/868	0.58	0/1168
39	g	0.29	0/890	0.61	0/1189
40	h	0.28	0/978	0.53	0/1301
41	i	0.27	0/778	0.53	0/1034
42	j	2.01	1/696~(0.1%)	0.80	3/923~(0.3%)
43	k	0.27	0/618	0.56	0/826
44	1	0.29	0/443	0.65	0/588
45	m	0.27	0/423	0.55	0/562
46	n	0.26	0/228	0.64	0/293
47	0	0.28	0/860	0.57	0/1136
48	р	0.27	0/701	0.62	0/934
49	2	0.53	6/41539~(0.0%)	1.08	65/64723~(0.1%)
50	q	0.27	0/1617	0.52	0/2215
51	r	0.26	0/1735	0.58	1/2335~(0.0%)
52	s	0.27	0/1665	0.54	0/2263
53	t	0.28	0/1759	0.55	0/2368
54	u	0.26	0/2109	0.57	0/2839
55	V	0.27	0/1629	0.56	0/2202
56	W	0.28	0/1814	0.60	0/2425
57	Х	0.28	0/1506	0.54	0/2028
58	У	0.27	0/1514	0.59	0/2021
59	Z	0.26	0/1519	0.55	0/2035
60	AD	0.27	0/1215	0.57	0/1638
61	AE	0.26	0/901	0.57	0/1217
62	AF	0.28	0/998	0.55	0/1341
63	AG	0.28	0/1125	0.54	0/1510
64	AH	0.27	0/935	0.58	1/1254~(0.1%)
65	AI	0.25	0/1211	0.56	0/1628
66	AJ	0.28	0/1130	0.58	0/1517
67	AK	0.26	0/865	0.53	0/1169
68	AL	0.28	0/693	0.56	0/935
69	AM	0.26	0/1038	0.55	0/1395
70	AN	0.27	0/1139	0.58	0/1518
71	AO	0.27	0/1087	0.55	0/1449
72	AP	0.27	0/571	0.53	0/768
73	AQ	0.27	0/782	0.59	0/1047
74	AR	0.25	0/620	0.50	0/838
75	AS	0.28	0/499	0.58	0/670

Mal	Chain	B	ond lengths	Bond angles		
IVIOI		RMSZ	# Z > 5	RMSZ	# Z > 5	
76	AT	0.27	0/452	0.59	0/600	
77	AU	0.27	0/483	0.53	0/643	
78	AV	0.25	0/2490	0.52	0/3389	
79	AX	0.36	1/1818~(0.1%)	0.85	1/2831~(0.0%)	
79	AZ	0.35	1/1818~(0.1%)	0.86	0/2831	
80	AY	0.24	0/181	0.98	0/278	
81	L1	0.27	0/1634	0.53	0/2195	
All	All	1.14	34/220547~(0.0%)	0.90	364/324117~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
3	С	0	1
7	G	0	1
11	L	0	1
14	0	0	1
39	g	0	1
45	m	0	1
54	u	0	1
55	V	0	1
81	L1	0	1
All	All	0	10

All (34) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	1	148	G	C6-N1	153.66	2.47	1.39
28	1	148	G	N3-C4	144.30	2.36	1.35
30	4	95	G	N3-C4	138.97	2.32	1.35
30	4	95	G	C6-N1	136.18	2.34	1.39
28	1	2262	А	N3-C4	134.62	2.15	1.34
28	1	148	G	N1-C2	132.42	2.43	1.37
28	1	148	G	C2-N3	130.17	2.36	1.32
30	4	95	G	C2-N3	120.09	2.28	1.32
28	1	2262	А	C6-N1	117.99	2.18	1.35
30	4	95	G	N1-C2	115.08	2.29	1.37
28	1	148	G	C5-C4	110.75	2.15	1.38
30	4	95	G	C5-C4	106.72	2.13	1.38

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	1	2262	A	C5-C4	98.47	2.07	1.38
28	1	2262	А	N1-C2	96.71	2.21	1.34
28	1	2262	А	C2-N3	94.54	2.18	1.33
28	1	148	G	C5-C6	86.69	2.29	1.42
28	1	2262	A	C5-C6	86.03	2.18	1.41
30	4	95	G	C5-C6	83.71	2.26	1.42
49	2	1759	С	C1'-N1	69.26	2.52	1.48
42	j	81	GLY	CA-C	52.34	2.35	1.51
49	2	1759	С	N1-C6	43.61	1.63	1.37
49	2	1759	С	N1-C2	31.21	1.71	1.40
7	G	135	GLY	CA-C	30.96	2.01	1.51
49	2	1759	С	C4-C5	-11.69	1.33	1.43
79	AZ	1	G	OP3-P	-10.68	1.48	1.61
79	AX	1	G	OP3-P	-10.66	1.48	1.61
49	2	1759	С	N3-C4	-8.03	1.28	1.33
28	1	148	G	C8-N7	7.78	1.35	1.30
49	2	1759	С	C2'-C1'	7.49	1.61	1.53
30	4	95	G	C8-N7	7.28	1.35	1.30
30	4	95	G	N9-C8	6.97	1.42	1.37
28	1	148	G	N9-C8	6.76	1.42	1.37
28	1	2262	A	C8-N7	5.37	1.35	1.31
7	G	135	GLY	N-CA	5.23	1.53	1.46

All	(364)) bond	angle	outliers	are	listed	below:
-----	-------	--------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	2	1759	С	C6-N1-C2	-126.81	69.58	120.30
49	2	1759	С	C5-C6-N1	69.15	155.57	121.00
49	2	1759	С	N3-C2-O2	-38.63	94.86	121.90
28	1	148	G	C4-C5-N7	-38.09	95.56	110.80
28	1	2262	А	N1-C2-N3	-35.62	111.49	129.30
49	2	1759	С	N1-C2-N3	34.82	143.57	119.20
49	2	1759	С	N3-C4-C5	-34.82	107.97	121.90
30	4	95	G	C4-C5-N7	-34.38	97.05	110.80
30	4	95	G	N3-C4-N9	28.80	143.28	126.00
28	1	2262	А	C2-N3-C4	27.55	124.37	110.60
28	1	148	G	N3-C4-N9	26.70	142.02	126.00
28	1	2262	А	C4-C5-N7	-26.55	97.42	110.70
28	1	148	G	C2-N3-C4	26.22	125.01	111.90
28	1	148	G	N7-C8-N9	26.02	126.11	113.10
30	4	95	G	N7-C8-N9	25.94	126.07	113.10
30	4	95	G	C2-N3-C4	24.89	124.35	111.90

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	r J

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	2	1759	С	C2-N1-C1'	23.34	144.48	118.80
28	1	2262	А	N7-C8-N9	22.79	125.19	113.80
49	2	1759	С	C6-N1-C1'	20.94	145.93	120.80
28	1	148	G	N1-C2-N3	-20.70	111.48	123.90
30	4	95	G	N9-C4-C5	-20.06	97.38	105.40
28	1	148	G	N9-C4-C5	-19.30	97.68	105.40
30	4	95	G	N1-C2-N3	-19.19	112.38	123.90
28	1	2262	А	N9-C4-C5	-18.64	98.34	105.80
30	4	95	G	N3-C4-C5	-18.52	119.34	128.60
28	1	148	G	N3-C4-C5	-17.51	119.84	128.60
28	1	2262	А	N3-C4-N9	16.64	140.71	127.40
49	2	1759	С	O4'-C1'-N1	16.24	121.19	108.20
30	4	95	G	C6-C5-N7	15.98	139.99	130.40
28	1	148	G	C6-C5-N7	15.56	139.73	130.40
28	1	148	G	C5-N7-C8	14.76	111.68	104.30
49	2	1759	С	N3-C4-N4	14.35	128.05	118.00
28	1	2262	А	C5-N7-C8	13.29	110.55	103.90
28	1	2262	А	C6-C5-N7	12.92	141.34	132.30
42	j	81	GLY	O-C-N	-12.88	102.09	122.70
49	2	1759	С	N1-C1'-C2'	12.65	130.44	114.00
28	1	2302	G	C5-C6-O6	12.33	136.00	128.60
30	4	95	G	C5-N7-C8	12.02	110.31	104.30
28	1	2262	А	C6-N1-C2	11.61	125.56	118.60
28	1	208	С	C2-N1-C1'	11.28	131.20	118.80
28	1	2302	G	N1-C6-O6	-10.82	113.41	119.90
28	1	346	С	C2-N1-C1'	10.81	130.69	118.80
30	4	95	G	C5-C6-N1	10.66	116.83	111.50
49	2	87	С	C2-N1-C1'	10.59	130.45	118.80
28	1	2290	С	N3-C2-O2	-9.96	114.93	121.90
28	1	105	С	N1-C2-O2	9.93	124.86	118.90
49	2	1440	С	N3-C2-O2	-9.90	114.97	121.90
49	2	1759	С	C2-N3-C4	9.85	124.82	119.90
28	1	148	G	C5-C6-N1	9.80	116.40	111.50
28	1	3298	С	C2-N1-C1'	9.77	129.55	118.80
28	1	1109	U	C2-N1-C1'	9.75	129.40	117.70
28	1	346	С	N1-C2-O2	9.73	124.74	118.90
28	1	696	С	N3-C2-O2	-9.73	115.09	121.90
28	1	1608	С	C2-N1-C1'	9.66	129.42	118.80
49	2	522	U	C2-N1-C1'	9.61	129.24	117.70
28	1	105	С	N3-C2-O2	-9.47	115.27	121.90
28	1	1505	С	C6-N1-C2	-9.29	116.58	120.30
28	1	148	G	C4-C5-C6	9.16	124.30	118.80

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
28	1	208	C	N1-C2-O2	8.73	124.14	118.90
7	G	135	GLY	N-CA-C	8.68	134.81	113.10
28	1	346	С	N3-C2-O2	-8.62	115.87	121.90
28	1	1340	G	N3-C4-N9	8.60	131.16	126.00
28	1	2262	A	N3-C4-C5	-8.52	120.84	126.80
49	2	927	С	N3-C2-O2	-8.48	115.96	121.90
28	1	1340	G	C6-C5-N7	-8.44	125.34	130.40
28	1	148	G	N1-C2-N2	8.41	123.77	116.20
49	2	87	С	N1-C2-O2	8.37	123.92	118.90
28	1	208	С	C6-N1-C1'	-8.31	110.83	120.80
28	1	1255	С	N3-C2-O2	-8.27	116.11	121.90
28	1	2277	С	N1-C2-O2	8.26	123.85	118.90
28	1	3023	U	C2-N1-C1'	8.23	127.58	117.70
28	1	2290	С	C5-C4-N4	8.21	125.94	120.20
30	4	19	С	N1-C2-O2	8.18	123.81	118.90
30	4	95	G	N3-C2-N2	8.12	125.59	119.90
28	1	1280	С	N3-C2-O2	-8.04	116.27	121.90
49	2	208	U	C2-N1-C1'	8.04	127.34	117.70
28	1	2899	С	C2-N1-C1'	8.03	127.64	118.80
28	1	2627	С	N1-C2-O2	7.90	123.64	118.90
28	1	1187	С	N1-C2-O2	7.76	123.55	118.90
28	1	1381	A	O4'-C1'-N9	7.74	114.39	108.20
28	1	2290	С	C6-N1-C2	-7.73	117.21	120.30
28	1	948	С	C6-N1-C2	-7.65	117.24	120.30
28	1	696	С	N1-C2-O2	7.64	123.49	118.90
28	1	1644	С	C2-N1-C1'	7.63	127.19	118.80
28	1	1608	С	C6-N1-C1'	-7.61	111.67	120.80
49	2	414	С	N3-C2-O2	-7.60	116.58	121.90
28	1	1710	С	N1-C2-O2	7.55	123.43	118.90
28	1	346	С	C6-N1-C1'	-7.54	111.75	120.80
28	1	3265	С	N3-C2-O2	-7.54	116.62	121.90
49	2	87	С	C6-N1-C1'	-7.54	111.76	120.80
28	1	871	U	C2-N1-C1'	7.51	126.72	117.70
28	1	3020	U	C2-N1-C1'	7.47	126.66	117.70
28	1	1109	U	N3-C2-O2	-7.45	116.99	122.20
49	2	965	U	C2-N1-C1'	7.38	126.55	117.70
28	1	2666	С	C2-N1-C1'	7.37	126.91	118.80
28	1	3298	С	N1-C2-O2	7.35	123.31	118.90
28	1	2778	G	C4-N9-C1'	7.35	136.05	126.50
28	1	2098	С	N3-C2-O2	-7.34	116.76	121.90
28	1	3298	С	C6-N1-C1'	-7.32	112.02	120.80
49	2	1687	U	C5-C4-O4	7.29	130.28	125.90

α $\cdot \cdot$ \cdot	e		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	2	1729	С	N3-C2-O2	-7.25	116.82	121.90
28	1	2302	G	N3-C4-N9	-7.21	121.67	126.00
28	1	2302	G	N9-C4-C5	7.20	108.28	105.40
49	2	522	U	N3-C2-O2	-7.20	117.16	122.20
49	2	414	С	C6-N1-C2	-7.19	117.42	120.30
42	j	81	GLY	CA-C-N	7.16	132.94	117.20
28	1	1340	G	C5-C6-O6	-7.13	124.32	128.60
28	1	2262	А	C4-C5-C6	7.05	120.53	117.00
28	1	3308	С	C6-N1-C2	-7.03	117.49	120.30
28	1	3110	С	N3-C2-O2	-7.02	116.99	121.90
28	1	359	U	C2-N1-C1'	7.01	126.11	117.70
28	1	2292	U	OP1-P-OP2	-7.01	109.09	119.60
49	2	161	U	C2-N1-C1'	6.99	126.09	117.70
28	1	346	С	C6-N1-C2	-6.98	117.51	120.30
28	1	286	U	C2-N1-C1'	6.96	126.05	117.70
28	1	2290	С	C6-N1-C1'	6.94	129.12	120.80
49	2	522	U	N1-C2-O2	6.92	127.65	122.80
28	1	148	G	N3-C2-N2	6.92	124.74	119.90
28	1	903	U	N3-C2-O2	-6.92	117.36	122.20
28	1	2307	G	N3-C2-N2	6.91	124.74	119.90
28	1	636	С	C6-N1-C2	-6.88	117.55	120.30
28	1	2290	С	N3-C4-N4	-6.88	113.19	118.00
28	1	2891	U	C5-C4-O4	6.87	130.02	125.90
30	4	95	G	C8-N9-C4	6.86	109.14	106.40
49	2	87	С	N3-C2-O2	-6.83	117.12	121.90
49	2	1687	U	N3-C4-O4	-6.82	114.63	119.40
49	2	208	U	N3-C2-O2	-6.80	117.44	122.20
49	2	114	С	O4'-C1'-N1	6.78	113.62	108.20
28	1	2302	G	N1-C2-N3	6.76	127.96	123.90
28	1	1280	С	N1-C2-O2	6.72	122.93	118.90
49	2	927	С	N1-C2-O2	6.71	122.92	118.90
28	1	1532	C	N1-C2-O2	6.69	122.91	118.90
28	1	2776	С	C6-N1-C2	-6.65	117.64	120.30
28	1	2360	С	N1-C2-O2	6.63	122.88	118.90
28	1	1340	G	N1-C6-O6	6.59	123.86	119.90
28	1	1109	U	N1-C2-O2	6.58	127.41	122.80
28	1	1737	U	C2-N1-C1'	6.58	125.60	117.70
28	1	3105	U	C2-N1-C1'	6.56	125.57	117.70
28	1	3308	С	C2-N1-C1'	6.55	126.01	118.80
28	1	2277	С	N3-C2-O2	-6.55	117.32	121.90
28	1	2983	С	C6-N1-C2	-6.54	117.69	120.30
28	1	2666	C	C6-N1-C2	-6.51	117.69	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	1	2778	G	C8-N9-C1'	-6.50	118.55	127.00
28	1	1188	U	C6-N1-C2	-6.46	117.12	121.00
49	2	1458	G	C4-N9-C1'	6.45	134.89	126.50
28	1	2262	А	C8-N9-C4	6.45	108.38	105.80
30	4	95	G	C4-C5-C6	6.45	122.67	118.80
49	2	87	С	C6-N1-C2	-6.44	117.72	120.30
49	2	522	U	C6-N1-C1'	-6.42	112.21	121.20
28	1	1188	U	C5-C6-N1	6.42	125.91	122.70
28	1	969	С	N1-C2-O2	6.39	122.73	118.90
28	1	2899	С	N1-C2-O2	6.38	122.73	118.90
28	1	1780	G	C4-N9-C1'	6.37	134.79	126.50
28	1	2608	G	C6-C5-N7	-6.35	126.59	130.40
28	1	1340	G	C4-N9-C1'	6.33	134.73	126.50
28	1	2786	G	C4-N9-C1'	6.33	134.73	126.50
28	1	2302	G	C4-C5-N7	-6.32	108.27	110.80
28	1	2290	С	N1-C2-N3	6.31	123.62	119.20
28	1	3308	С	N1-C2-O2	6.31	122.69	118.90
30	4	19	С	C2-N1-C1'	6.29	125.72	118.80
28	1	1725	С	N3-C2-O2	-6.29	117.50	121.90
28	1	1579	С	N3-C2-O2	-6.28	117.50	121.90
28	1	2302	G	N1-C2-N2	-6.28	110.55	116.20
28	1	3308	С	N3-C2-O2	-6.27	117.51	121.90
28	1	3110	С	N1-C2-O2	6.26	122.65	118.90
28	1	141	С	N3-C2-O2	-6.25	117.52	121.90
28	1	1857	С	C6-N1-C2	-6.23	117.81	120.30
49	2	1458	G	C8-N9-C1'	-6.23	118.91	127.00
30	4	95	G	N1-C2-N2	6.22	121.80	116.20
49	2	1715	G	C4-N9-C1'	6.21	134.57	126.50
49	2	208	U	N1-C2-O2	6.19	127.14	122.80
28	1	30	G	N3-C4-N9	6.18	129.71	126.00
7	G	135	GLY	O-C-N	-6.17	112.82	122.70
49	2	1440	С	N1-C2-O2	6.17	122.60	118.90
28	1	404	G	N3-C2-N2	6.16	124.21	119.90
28	1	3265	С	N1-C2-O2	6.15	122.59	118.90
28	1	2693	С	C6-N1-C2	-6.15	117.84	120.30
28	1	1698	C	C6-N1-C2	-6.15	117.84	120.30
28	1	2891	U	N3-C4-O4	-6.14	115.10	119.40
28	1	1029	G	C4-N9-C1'	6.14	134.48	126.50
28	1	1725	С	N1-C2-O2	6.14	122.58	118.90
28	1	3086	A	C2-N3-C4	6.13	113.67	110.60
49	2	243	G	C4-N9-C1'	6.13	134.47	126.50
28	1	404	G	N3-C4-N9	6.11	129.66	126.00

α \cdot \cdot \cdot	C	•	
Continued	trom	nremous	naae
contentaca	<i>J</i> 10110	preciouo	pago

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	1	208	С	N3-C2-O2	-6.09	117.63	121.90
28	1	141	С	C6-N1-C2	-6.08	117.87	120.30
28	1	1939	G	C4-N9-C1'	6.06	134.38	126.50
30	4	150	G	N3-C4-N9	6.05	129.63	126.00
28	1	2307	G	N1-C2-N2	-6.05	110.76	116.20
28	1	1440	G	N9-C4-C5	-6.05	102.98	105.40
28	1	31	С	N3-C2-O2	-6.04	117.67	121.90
28	1	1710	С	N3-C2-O2	-6.04	117.67	121.90
28	1	208	С	C6-N1-C2	-6.04	117.88	120.30
28	1	30	G	C6-C5-N7	-6.03	126.78	130.40
28	1	1183	С	C6-N1-C2	-6.01	117.90	120.30
28	1	1109	U	C6-N1-C1'	-6.00	112.80	121.20
42	j	81	GLY	N-CA-C	6.00	128.11	113.10
28	1	1505	С	N3-C2-O2	-5.99	117.70	121.90
28	1	445	G	C4-N9-C1'	5.97	134.26	126.50
28	1	1340	G	N3-C4-C5	-5.95	125.63	128.60
49	2	1715	G	C8-N9-C1'	-5.95	119.27	127.00
28	1	547	G	N3-C4-N9	-5.93	122.44	126.00
28	1	2912	G	C4-N9-C1'	5.93	134.21	126.50
49	2	1458	G	N3-C4-N9	5.91	129.55	126.00
28	1	2623	G	C4-N9-C1'	5.89	134.16	126.50
49	2	1784	С	N3-C2-O2	-5.89	117.78	121.90
28	1	2302	G	C2-N3-C4	-5.89	108.96	111.90
30	4	137	С	C6-N1-C2	-5.88	117.95	120.30
28	1	3111	U	C2-N1-C1'	5.88	124.76	117.70
28	1	1505	С	N1-C2-O2	5.87	122.42	118.90
28	1	267	G	N3-C4-N9	-5.87	122.48	126.00
64	AH	24	LEU	CA-CB-CG	5.85	128.76	115.30
28	1	404	G	N9-C4-C5	-5.84	103.06	105.40
28	1	1376	С	N3-C2-O2	-5.83	117.81	121.90
28	1	2782	U	C5-C4-O4	-5.83	122.40	125.90
28	1	1644	С	N1-C2-O2	5.83	122.40	118.90
28	1	226	С	N3-C2-O2	-5.83	117.82	121.90
20	U	91	ASP	CB-CG-OD1	5.81	123.53	118.30
49	2	1440	С	C6-N1-C2	-5.80	117.98	120.30
49	2	1467	С	N1-C2-O2	5.80	122.38	118.90
28	1	148	G	C8-N9-C4	5.79	108.72	106.40
28	1	1608	C	N1-C2-O2	5.79	122.38	118.90
49	2	1729	С	N1-C2-O2	5.78	122.37	118.90
28	1	3080	G	N3-C4-C5	-5.77	125.72	128.60
28	1	668	G	C4-N9-C1'	5.75	133.98	126.50
28	1	1340	G	C8-N9-C1'	-5.75	119.52	127.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	1	1414	G	N1-C6-O6	-5.71	116.47	119.90
28	1	1255	С	N1-C2-O2	5.69	122.31	118.90
28	1	871	U	N3-C2-O2	-5.66	118.24	122.20
28	1	2899	С	N3-C2-O2	-5.66	117.94	121.90
49	2	1271	G	C5-C6-O6	5.66	131.99	128.60
28	1	1146	С	C6-N1-C2	-5.65	118.04	120.30
28	1	2786	G	N3-C4-N9	5.64	129.38	126.00
30	4	152	G	C4-N9-C1'	5.64	133.83	126.50
28	1	1639	С	N3-C2-O2	-5.64	117.95	121.90
28	1	816	А	C8-N9-C4	-5.62	103.55	105.80
49	2	191	С	C6-N1-C2	-5.62	118.05	120.30
28	1	2786	G	C8-N9-C1'	-5.61	119.70	127.00
28	1	2899	С	C6-N1-C1'	-5.59	114.09	120.80
30	4	150	G	C6-C5-N7	-5.58	127.05	130.40
28	1	1531	С	N1-C2-O2	5.56	122.24	118.90
49	2	243	G	C8-N9-C1'	-5.56	119.77	127.00
28	1	2623	G	C8-N9-C1'	-5.55	119.78	127.00
28	1	2594	С	C6-N1-C1'	5.55	127.46	120.80
79	AX	2	С	C6-N1-C2	-5.55	118.08	120.30
28	1	1790	G	C4-N9-C1'	5.54	133.70	126.50
28	1	2619	G	C4-N9-C1'	5.54	133.70	126.50
28	1	1513	G	C4-N9-C1'	5.53	133.69	126.50
49	2	1686	С	N1-C2-O2	5.53	122.22	118.90
28	1	2568	С	N1-C2-O2	5.53	122.22	118.90
28	1	2627	С	N3-C2-O2	-5.51	118.04	121.90
28	1	1513	G	N3-C4-N9	5.51	129.31	126.00
28	1	3298	С	N3-C2-O2	-5.51	118.05	121.90
28	1	31	С	O4'-C1'-N1	5.50	112.60	108.20
30	4	14	С	P-O3'-C3'	5.49	126.29	119.70
49	2	160	С	C2-N1-C1'	5.49	124.84	118.80
28	1	696	С	C6-N1-C2	-5.49	118.10	120.30
28	1	1896	A	C4-N9-C1'	5.49	136.18	126.30
28	1	404	G	C4-C5-N7	5.48	112.99	110.80
28	1	1340	G	N9-C4-C5	-5.47	103.21	105.40
49	2	500	С	N3-C2-O2	-5.47	118.07	121.90
30	4	115	С	N3-C2-O2	-5.47	118.07	121.90
28	1	2655	U	P-O3'-C3'	5.47	126.27	119.70
28	1	1440	G	C4-C5-N7	5.47	112.99	110.80
28	1	2608	G	C4-N9-C1'	5.47	133.61	126.50
28	1	2786	G	N3-C4-C5	-5.47	125.87	128.60
28	1	1392	G	C4-N9-C1'	5.45	133.59	126.50
28	1	3080	G	C2-N3-C4	5.45	114.62	111.90

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
28	1	2777	G	OP1-P-O3'	5.44	117.17	105.20
28	1	1109	U	C6-N1-C2	-5.43	117.74	121.00
28	1	707	U	P-O3'-C3'	5.43	126.22	119.70
28	1	2881	С	N1-C2-O2	5.43	122.16	118.90
28	1	871	U	N1-C2-O2	5.42	126.60	122.80
28	1	1505	С	C5-C6-N1	5.41	123.70	121.00
28	1	668	G	O4'-C1'-N9	5.41	112.53	108.20
28	1	769	G	C4-N9-C1'	5.41	133.53	126.50
28	1	141	С	N1-C2-O2	5.40	122.14	118.90
28	1	2307	G	N3-C4-N9	5.39	129.23	126.00
28	1	3080	G	C4-N9-C1'	5.38	133.50	126.50
28	1	2302	G	C6-C5-N7	5.38	133.62	130.40
28	1	54	С	N1-C2-O2	5.37	122.12	118.90
28	1	2798	С	C2-N1-C1'	5.36	124.69	118.80
49	2	784	С	N3-C2-O2	-5.36	118.15	121.90
28	1	1833	G	N3-C4-N9	5.35	129.21	126.00
28	1	2098	С	N1-C2-O2	5.34	122.11	118.90
49	2	1389	С	C2-N1-C1'	5.34	124.67	118.80
28	1	2868	U	C6-N1-C2	-5.33	117.80	121.00
28	1	1857	С	N3-C2-O2	-5.33	118.17	121.90
28	1	1644	С	C6-N1-C1'	-5.33	114.41	120.80
28	1	903	U	N1-C2-O2	5.32	126.52	122.80
49	2	1467	С	N3-C2-O2	-5.31	118.18	121.90
28	1	1698	С	C2-N1-C1'	5.30	124.63	118.80
49	2	1759	С	C5-C4-N4	5.30	123.91	120.20
28	1	189	G	C8-N9-C4	-5.29	104.28	106.40
28	1	1513	G	C8-N9-C1'	-5.29	120.13	127.00
28	1	1780	G	C8-N9-C1'	-5.28	120.14	127.00
30	4	19	С	N3-C2-O2	-5.27	118.21	121.90
28	1	3023	U	N3-C2-O2	-5.27	118.51	122.20
28	1	1939	G	C8-N9-C1'	-5.26	120.16	127.00
28	1	668	G	C8-N9-C1'	-5.26	120.16	127.00
28	1	1109	U	C5-C6-N1	5.26	125.33	122.70
28	1	1187	С	N3-C4-C5	5.25	124.00	121.90
28	1	3023	U	C6-N1-C1'	-5.25	113.85	121.20
28	1	2398	А	C2-N3-C4	5.24	113.22	110.60
49	2	965	U	C6-N1-C1'	-5.23	113.88	121.20
28	1	2360	C	N3-C2-O2	-5.22	118.24	121.90
28	1	2777	G	P-O3'-C3'	5.22	125.96	119.70
28	1	1395	G	C8-N9-C4	-5.22	104.31	106.40
28	1	816	A	N7-C8-N9	5.21	116.41	113.80
49	2	962	С	N3-C2-O2	-5.20	118.26	121.90

Continued from previous page...

Continued	from	nrevious	naae
Continueu	JIOIII	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	1	208	С	C5-C6-N1	5.19	123.59	121.00
51	r	61	LEU	CA-CB-CG	5.19	127.24	115.30
49	2	1128	С	N3-C2-O2	-5.19	118.27	121.90
28	1	547	G	C5-C6-O6	5.18	131.71	128.60
28	1	948	С	N3-C2-O2	-5.17	118.28	121.90
3	С	182	LEU	CA-CB-CG	5.16	127.18	115.30
28	1	445	G	N3-C4-C5	-5.16	126.02	128.60
30	4	150	G	C4-N9-C1'	5.16	133.21	126.50
28	1	1411	С	C6-N1-C2	-5.15	118.24	120.30
49	2	747	С	N3-C2-O2	-5.15	118.29	121.90
28	1	3212	С	C6-N1-C2	-5.15	118.24	120.30
28	1	68	С	N1-C2-O2	5.15	121.99	118.90
49	2	243	G	N3-C4-N9	5.14	129.09	126.00
49	2	1638	G	C4-N9-C1'	5.14	133.19	126.50
28	1	2290	С	P-O3'-C3'	5.14	125.87	119.70
28	1	2894	С	C2-N1-C1'	5.14	124.46	118.80
28	1	2522	G	C4-N9-C1'	5.14	133.18	126.50
28	1	1187	С	N3-C2-O2	-5.13	118.31	121.90
28	1	3020	U	C6-N1-C1'	-5.13	114.02	121.20
28	1	3023	U	N1-C2-O2	5.13	126.39	122.80
28	1	1227	С	N1-C2-O2	5.13	121.98	118.90
28	1	404	G	C6-C5-N7	-5.12	127.33	130.40
28	1	3020	U	N1-C2-O2	5.12	126.39	122.80
49	2	1298	U	O4'-C1'-N1	-5.12	104.10	108.20
29	3	49	G	N1-C6-O6	-5.12	116.83	119.90
28	1	1644	С	N3-C2-O2	-5.11	118.32	121.90
28	1	1562	С	C6-N1-C2	-5.11	118.26	120.30
28	1	1833	G	C4-N9-C1'	5.11	133.14	126.50
28	1	2594	С	C6-N1-C2	-5.11	118.26	120.30
28	1	1029	G	C8-N9-C1'	-5.11	120.36	127.00
28	1	749	С	C6-N1-C2	-5.11	118.26	120.30
28	1	2291	А	C5'-C4'-O4'	-5.10	102.98	109.10
28	1	2307	G	C6-C5-N7	-5.10	127.34	130.40
30	4	152	G	N3-C4-C5	-5.10	126.05	128.60
49	2	131	С	C6-N1-C2	-5.10	118.26	120.30
28	1	1513	G	N3-C2-N2	5.09	123.46	119.90
28	1	1340	G	C4-C5-N7	5.09	112.84	110.80
28	1	2899	C	C6-N1-C2	-5.09	118.26	120.30
30	4	107	G	C2-N3-C4	5.08	114.44	111.90
28	1	1340	G	C4-C5-C6	5.05	121.83	118.80
28	1	1392	G	N3-C4-C5	-5.05	126.08	128.60
49	2	500	С	N1-C2-O2	5.05	121.93	118.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	1	1282	G	C6-C5-N7	-5.04	127.37	130.40
28	1	707	U	OP2-P-O3'	5.04	116.30	105.20
49	2	1494	C	C6-N1-C1'	5.04	126.85	120.80
28	1	54	С	N3-C2-O2	-5.03	118.38	121.90
28	1	1780	G	N3-C4-C5	-5.03	126.09	128.60
28	1	445	G	C8-N9-C1'	-5.02	120.47	127.00
28	1	267	G	C8-N9-C1'	5.02	133.53	127.00
29	3	29	C	N3-C2-O2	-5.02	118.39	121.90
30	4	152	G	N3-C4-N9	5.02	129.01	126.00
28	1	1183	C	N3-C2-O2	-5.01	118.39	121.90
28	1	2290	С	C2-N1-C1'	-5.01	113.29	118.80
30	4	95	G	C5-C6-O6	-5.00	125.60	128.60

There are no chirality outliers.

All (10) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	150	LEU	Peptide
3	С	182	LEU	Peptide
7	G	135	GLY	Mainchain
11	L	47	ALA	Peptide
81	L1	120	VAL	Peptide
14	0	110	PRO	Peptide
39	g	80	ARG	Peptide
45	m	126	LYS	Peptide
54	u	195	ILE	Peptide
55	V	127	GLN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	250/254~(98%)	215~(86%)	33~(13%)	2(1%)	19	60
2	В	384/387~(99%)	339~(88%)	45~(12%)	0	100	100
3	С	359/362~(99%)	314 (88%)	44 (12%)	1 (0%)	41	76
4	D	294/297~(99%)	263 (90%)	31~(10%)	0	100	100
5	Е	152/176~(86%)	134 (88%)	18~(12%)	0	100	100
6	F	220/244~(90%)	198 (90%)	22 (10%)	0	100	100
7	G	231/256~(90%)	208 (90%)	22 (10%)	1 (0%)	34	72
8	Н	189/191~(99%)	167 (88%)	21 (11%)	1 (0%)	29	68
9	Ι	207/221~(94%)	185 (89%)	22 (11%)	0	100	100
10	J	167/174~(96%)	139 (83%)	28 (17%)	0	100	100
11	L	191/199~(96%)	154 (81%)	34 (18%)	3 (2%)	9	45
12	М	134/138~(97%)	122 (91%)	11 (8%)	1 (1%)	22	62
13	Ν	201/204~(98%)	176 (88%)	23 (11%)	2 (1%)	15	54
14	Ο	195/199~(98%)	177 (91%)	$17 \ (9\%)$	1 (0%)	29	68
15	Р	181/184~(98%)	169 (93%)	12 (7%)	0	100	100
16	Q	183/186~(98%)	168 (92%)	15 (8%)	0	100	100
17	R	186/189~(98%)	175 (94%)	11 (6%)	0	100	100
18	S	170/172~(99%)	148 (87%)	22~(13%)	0	100	100
19	Т	157/160~(98%)	139 (88%)	17 (11%)	1 (1%)	25	64
20	U	98/121~(81%)	93~(95%)	5 (5%)	0	100	100
21	V	134/137~(98%)	114 (85%)	18 (13%)	2 (2%)	10	46
22	W	61/155~(39%)	57~(93%)	4 (7%)	0	100	100
23	Х	119/142~(84%)	107 (90%)	12 (10%)	0	100	100
24	Y	124/127~(98%)	117 (94%)	7~(6%)	0	100	100
25	Ζ	133/136~(98%)	117 (88%)	15 (11%)	1 (1%)	19	60
26	AA	94/105~(90%)	81 (86%)	12 (13%)	1 (1%)	14	52
27	AB	151/156~(97%)	129 (85%)	22 (15%)	0	100	100
31	P0	187/312~(60%)	143 (76%)	44 (24%)	0	100	100
32	P2	92/165~(56%)	70 (76%)	22 (24%)	0	100	100
33	a	$\overline{146/149}~(98\%)$	122 (84%)	23 (16%)	1 (1%)	22	62

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{n} tiles
34	b	56/59~(95%)	46 (82%)	10~(18%)	0	100	100
35	с	95/105~(90%)	87 (92%)	7~(7%)	1 (1%)	14	52
36	d	107/113~(95%)	96 (90%)	11 (10%)	0	100	100
37	е	125/130~(96%)	111 (89%)	14 (11%)	0	100	100
38	f	104/107~(97%)	89 (86%)	14 (14%)	1 (1%)	15	54
39	g	110/121~(91%)	98 (89%)	12 (11%)	0	100	100
40	h	117/120~(98%)	105 (90%)	12~(10%)	0	100	100
41	i	97/100~(97%)	82 (84%)	15~(16%)	0	100	100
42	j	85/88~(97%)	74 (87%)	11 (13%)	0	100	100
43	k	75/78~(96%)	69 (92%)	6 (8%)	0	100	100
44	1	48/51~(94%)	41 (85%)	7~(15%)	0	100	100
45	m	50/128~(39%)	37 (74%)	12~(24%)	1 (2%)	7	40
46	n	23/25~(92%)	21 (91%)	2 (9%)	0	100	100
47	О	103/106~(97%)	84 (82%)	19~(18%)	0	100	100
48	р	89/92~(97%)	85 (96%)	4 (4%)	0	100	100
50	q	204/252~(81%)	173 (85%)	29~(14%)	2(1%)	15	54
51	r	212/255~(83%)	177 (84%)	34~(16%)	1 (0%)	29	68
52	s	215/254~(85%)	195 (91%)	19 (9%)	1 (0%)	29	68
53	t	221/240~(92%)	187 (85%)	34~(15%)	0	100	100
54	u	258/261~(99%)	210 (81%)	47~(18%)	1 (0%)	34	72
55	V	204/225~(91%)	172 (84%)	30~(15%)	2 (1%)	15	54
56	W	221/236~(94%)	171 (77%)	47 (21%)	3 (1%)	11	47
57	х	182/190~(96%)	156 (86%)	26 (14%)	0	100	100
58	У	184/200~(92%)	154 (84%)	28 (15%)	2 (1%)	14	52
59	Z	183/197~(93%)	159 (87%)	23 (13%)	1 (0%)	29	68
60	AD	148/151~(98%)	131 (88%)	15 (10%)	2 (1%)	11	47
61	AE	125/138~(91%)	107 (86%)	17 (14%)	1 (1%)	19	60
62	AF	122/142~(86%)	98 (80%)	22 (18%)	2 (2%)	9	45
63	AG	139/143~(97%)	109 (78%)	29 (21%)	1 (1%)	22	62
64	AH	116/136~(85%)	105 (90%)	11 (10%)	0	100	100
65	AI	143/146~(98%)	125 (87%)	17 (12%)	1 (1%)	22	62

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
66	AJ	141/144~(98%)	123 (87%)	18 (13%)	0	100	100
67	AK	105/121~(87%)	84 (80%)	21 (20%)	0	100	100
68	AL	85/87~(98%)	68 (80%)	16 (19%)	1 (1%)	13	50
69	AM	127/130~(98%)	114 (90%)	13 (10%)	0	100	100
70	AN	142/145~(98%)	113 (80%)	28 (20%)	1 (1%)	22	62
71	AO	132/135~(98%)	119 (90%)	13 (10%)	0	100	100
72	AP	68/108~(63%)	53~(78%)	15~(22%)	0	100	100
73	AQ	95/119~(80%)	69~(73%)	26 (27%)	0	100	100
74	AR	79/82~(96%)	65~(82%)	13~(16%)	1 (1%)	12	48
75	AS	61/67~(91%)	52 (85%)	9~(15%)	0	100	100
76	AT	51/56~(91%)	46 (90%)	5 (10%)	0	100	100
77	AU	58/63~(92%)	51 (88%)	7~(12%)	0	100	100
78	AV	$3\overline{16}/319~(99\%)$	269 (85%)	47 (15%)	0	100	100
81	L1	202/217~(93%)	155 (77%)	46 (23%)	1 (0%)	29	68
All	All	$112\overline{13}/12280~(91\%)$	9675 (86%)	1493 (13%)	45 (0%)	38	72

All (45) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
11	L	47	ALA
11	L	48	PRO
11	L	62	THR
14	0	110	PRO
50	q	111	ILE
52	s	39	THR
54	u	154	ILE
56	W	10	ASN
60	AD	105	ASN
62	AF	127	ARG
3	С	130	ALA
19	Т	18	ASP
21	V	105	PRO
60	AD	85	PRO
45	m	89	TYR
81	L1	120	VAL
25	Ζ	102	GLU
26	AA	32	HIS

Mol	Chain	Res	Type
33	a	47	LYS
58	у	104	ILE
38	f	59	VAL
56	W	148	SER
62	AF	69	GLU
1	А	143	GLU
7	G	39	ALA
8	Н	59	ASN
12	М	9	ALA
13	N	94	TYR
13	N	145	ASP
35	с	41	LEU
50	q	109	ASN
55	V	126	ASP
56	W	152	ASP
61	AE	126	THR
70	AN	112	LYS
74	AR	61	THR
55	V	128	ASN
58	У	39	GLY
65	AI	92	ILE
1	А	153	GLY
21	V	104	ASN
51	r	63	GLY
59	Z	162	SER
63	AG	33	GLY
68	AL	46	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	193/196~(98%)	191~(99%)	2(1%)	76	86
2	В	319/323~(99%)	318 (100%)	1 (0%)	92	95
3	С	288/289~(100%)	285~(99%)	3~(1%)	76	86

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
contentaca	J. 0.110	proceed ac	pagem

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	D	244/245~(100%)	243 (100%)	1 (0%)	91	94
5	Ε	134/153~(88%)	133~(99%)	1 (1%)	84	90
6	F	186/205~(91%)	186 (100%)	0	100	100
7	G	187/208~(90%)	187 (100%)	0	100	100
8	Н	$171/171 \ (100\%)$	170 (99%)	1 (1%)	86	92
9	Ι	177/187~(95%)	176 (99%)	1 (1%)	86	92
10	J	147/151~(97%)	146 (99%)	1 (1%)	84	90
11	L	154/159~(97%)	154 (100%)	0	100	100
12	М	107/109~(98%)	107~(100%)	0	100	100
13	Ν	175/176~(99%)	174 (99%)	1 (1%)	86	92
14	Ο	160/162~(99%)	159~(99%)	1 (1%)	86	92
15	Р	140/146~(96%)	139~(99%)	1 (1%)	84	90
16	Q	150/151~(99%)	150 (100%)	0	100	100
17	R	153/154~(99%)	153 (100%)	0	100	100
18	S	156/156~(100%)	154 (99%)	2(1%)	69	82
19	Т	136/137~(99%)	136 (100%)	0	100	100
20	U	87/107~(81%)	86 (99%)	1 (1%)	73	84
21	V	104/105~(99%)	104 (100%)	0	100	100
22	W	55/129~(43%)	55~(100%)	0	100	100
23	Х	104/118~(88%)	103~(99%)	1 (1%)	76	86
24	Y	109/110~(99%)	108 (99%)	1 (1%)	78	87
25	Ζ	115/116~(99%)	115 (100%)	0	100	100
26	AA	77/98~(79%)	77~(100%)	0	100	100
27	AB	133/137~(97%)	133 (100%)	0	100	100
31	P0	160/254~(63%)	160 (100%)	0	100	100
32	P2	81/136~(60%)	80 (99%)	1 (1%)	71	83
33	a	118/119~(99%)	117 (99%)	1 (1%)	81	89
34	b	46/47~(98%)	46 (100%)	0	100	100
35	с	81/88~(92%)	80 (99%)	1 (1%)	71	83
36	d	94/97~(97%)	94 (100%)	0	100	100
37	е	109/111 (98%)	109 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers]	Perce	ntiles
38	f	90/91~(99%)	90~(100%)	0		100	100
39	g	95/103~(92%)	94~(99%)	1 (1%)		73	84
40	h	104/105~(99%)	103~(99%)	1 (1%)		76	86
41	i	81/82~(99%)	81 (100%)	0		100	100
42	j	70/71~(99%)	70 (100%)	0		100	100
43	k	68/69~(99%)	68 (100%)	0		100	100
44	1	45/46~(98%)	45 (100%)	0		100	100
45	m	47/116 (40%)	47 (100%)	0		100	100
46	n	22/23~(96%)	22 (100%)	0		100	100
47	О	90/91~(99%)	90 (100%)	0		100	100
48	р	71/72~(99%)	70 (99%)	1 (1%)		67	80
50	q	164/210~(78%)	164 (100%)	0		100	100
51	r	191/224~(85%)	190 (100%)	1 (0%)		88	93
52	s	176/205~(86%)	176 (100%)	0		100	100
53	t	182/195~(93%)	181 (100%)	1 (0%)		88	93
54	u	221/222 (100%)	221 (100%)	0		100	100
55	v	173/191~(91%)	172 (99%)	1 (1%)		86	92
56	W	189/201~(94%)	188 (100%)	1 (0%)		88	93
57	х	165/170~(97%)	164 (99%)	1 (1%)		86	92
58	У	150/161~(93%)	149 (99%)	1 (1%)		84	90
59	Z	158/166~(95%)	156 (99%)	2 (1%)		69	82
60	AD	127/128~(99%)	127 (100%)	0		100	100
61	AE	81/105 (77%)	81 (100%)	0		100	100
62	AF	101/118 (86%)	100 (99%)	1 (1%)		76	86
63	AG	117/119~(98%)	117 (100%)	0		100	100
64	AH	94/124~(76%)	94 (100%)	0		100	100
65	AI	128/129~(99%)	128 (100%)	0		100	100
66	AJ	115/116 (99%)	115 (100%)	0		100	100
67	AK	100/114 (88%)	100 (100%)	0		100	100
68	AL	74/74~(100%)	74 (100%)	0		100	100
69	AM	110/111 (99%)	110 (100%)	0		100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
70	AN	119/120~(99%)	118 (99%)	1 (1%)	81	89
71	AO	112/113~(99%)	112 (100%)	0	100	100
72	AP	61/89~(68%)	61 (100%)	0	100	100
73	AQ	83/100~(83%)	82~(99%)	1 (1%)	71	83
74	AR	70/71~(99%)	70~(100%)	0	100	100
75	AS	56/60~(93%)	56~(100%)	0	100	100
76	AT	47/49~(96%)	46 (98%)	1 (2%)	53	71
77	AU	51/54~(94%)	50~(98%)	1 (2%)	55	73
78	AV	259/262~(99%)	259~(100%)	0	100	100
81	L1	185/198~(93%)	185 (100%)	0	100	100
All	All	9492/10318~(92%)	9454 (100%)	38 (0%)	91	94

All (38) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	28	LYS
1	А	193	ARG
2	В	159	ARG
3	С	138	ARG
3	С	197	ARG
3	С	350	LYS
4	D	152	ARG
5	Е	175	LYS
8	Н	106	LYS
9	Ι	183	LYS
10	J	72	ARG
13	Ν	109	ARG
14	0	82	LYS
15	Р	118	GLN
18	S	13	ARG
18	S	117	ARG
20	U	70	LYS
23	Х	39	LYS
24	Y	42	GLN
32	P2	93	LYS
33	a	59	ARG
35	с	86	ARG
39	g	4	ARG

\mathbf{Mol}	Chain	Res	Type
40	h	26	LYS
48	р	60	CYS
51	r	166	LYS
53	t	94	ARG
55	V	65	ARG
56	W	94	ARG
57	Х	107	ARG
58	у	53	LYS
59	Z	29	LYS
59	Z	138	LYS
62	AF	127	ARG
70	AN	123	LYS
73	AQ	10	ARG
76	AT	12	ARG
77	AU	10	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such sidechains are listed below:

Mol	Chain	Res	Type
8	Н	9	GLN
12	М	126	GLN
15	Р	118	GLN
24	Y	81	GLN
34	b	19	ASN
45	m	120	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
28	1	3220/3395~(94%)	1863~(57%)	158 (4%)
29	3	$120/121 \ (99\%)$	49 (40%)	5(4%)
30	4	157/158~(99%)	86 (54%)	9~(5%)
49	2	1739/1800 (96%)	675 (38%)	20 (1%)
79	AX	76/76~(100%)	51 (67%)	3~(3%)
79	AZ	75/76~(98%)	40 (53%)	1 (1%)
80	AY	7/8~(87%)	6 (85%)	0
All	All	5394/5634 (95%)	2770 (51%)	196~(3%)

All (2770) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
28	1	7	С
28	1	14	U
28	1	15	С
28	1	19	U
28	1	20	А
28	1	21	G
28	1	22	G
28	1	23	А
28	1	24	G
28	1	25	U
28	1	26	А
28	1	27	С
28	1	29	С
28	1	30	G
28	1	31	С
28	1	34	А
28	1	39	А
28	1	40	А
28	1	42	С
28	1	47	С
28	1	50	U
28	1	51	А
28	1	53	G
28	1	54	С
28	1	55	G
28	1	56	G
28	1	60	А
28	1	64	G
28	1	65	А
28	1	66	А
28	1	68	С
28	1	69	С
28	1	70	А
28	1	71	A
28	1	72	С
28	1	73	С
28	1	74	G
28	1	76	G
28	1	77	A
28	1	78	U
28	1	81	С
28	1	82	С
28	1	83	U
L	l	L	

Mol	Chain	Res	Type
28	1	84	U
28	1	89	А
28	1	90	С
28	1	92	G
28	1	93	С
28	1	94	G
28	1	96	G
28	1	98	G
28	1	99	А
28	1	102	С
28	1	104	G
28	1	105	С
28	1	106	А
28	1	109	A
28	1	110	G
28	1	111	С
28	1	112	U
28	1	115	А
28	1	116	А
28	1	117	U
28	1	118	U
28	1	119	U
28	1	120	G
28	1	122	А
28	1	123	А
28	1	124	U
28	1	127	G
28	1	132	С
28	1	133	U
28	1	137	G
28	1	139	G
28	1	140	С
28	1	141	С
28	1	142	С
28	1	144	A
28	1	145	G
28	1	146	U
28	1	147	U
28	1	148	G
28	1	149	U
28	1	150	A
28	1	151	А

Mol	Chain	Res	Type
28	1	154	U
28	1	155	G
28	1	156	G
28	1	157	А
28	1	158	G
28	1	163	С
28	1	164	А
28	1	165	А
28	1	171	G
28	1	174	С
28	1	176	G
28	1	179	С
28	1	182	U
28	1	183	G
28	1	187	A
28	1	188	U
28	1	189	G
28	1	190	U
28	1	191	U
28	1	193	С
28	1	195	U
28	1	198	А
28	1	199	А
28	1	200	С
28	1	201	А
28	1	202	G
28	1	203	G
28	1	204	А
28	1	205	С
28	1	206	G
28	1	208	C
28	1	210	U
28	1	211	A
28	1	212	G
28	1	216	G
28	1	218	G
28	1	219	А
28	1	221	A
28	1	222	A
28	1	225	C
28	1	226	С
$\overline{28}$	1	227	G

Mol	Chain	Res	Type
28	1	229	G
28	1	234	G
28	1	237	G
28	1	239	G
28	1	240	U
28	1	243	G
28	1	244	G
28	1	246	U
28	1	247	С
28	1	248	U
28	1	249	U
28	1	251	G
28	1	252	U
28	1	253	A
28	1	263	С
28	1	264	G
28	1	265	А
28	1	266	А
28	1	267	G
28	1	268	А
28	1	269	G
28	1	272	G
28	1	273	А
28	1	274	G
28	1	275	U
28	1	276	U
28	1	277	G
28	1	278	U
28	1	280	U
28	1	281	G
28	1	282	G
28	1	283	G
28	1	284	A
28	1	285	A
28	1	286	U
28	1	288	C
28	1	289	A
28	1	290	G
28	1	292	U
28	1	293	C
28	1	294	U
28	1	296	A

Mol	Chain	Res	Type
28	1	298	U
28	1	304	G
28	1	305	U
28	1	306	А
28	1	308	А
28	1	309	U
28	1	314	U
28	1	315	С
28	1	316	U
28	1	318	А
28	1	319	А
28	1	323	A
28	1	324	A
28	1	325	A
28	1	326	U
28	1	327	A
28	1	328	U
28	1	329	U
28	1	330	G
28	1	331	G
28	1	337	G
28	1	338	А
28	1	339	С
28	1	340	С
28	1	341	G
28	1	342	А
28	1	343	U
28	1	344	А
28	1	345	G
28	1	346	С
28	1	347	G
28	1	348	A
28	1	349	A
28	1	350	С
28	1	352	A
28	1	353	G
28	1	354	U
28	1	355	A
28	1	359	U
28	1	360	G
28	1	361	A
28	1	362	U

Mol	Chain	Res	Type
28	1	365	А
28	1	368	G
28	1	370	U
28	1	371	G
28	1	372	А
28	1	374	А
28	1	375	А
28	1	376	G
28	1	377	А
28	1	378	А
28	1	379	С
28	1	380	U
28	1	381	U
28	1	382	U
28	1	383	G
28	1	384	A
28	1	385	A
28	1	386	А
28	1	387	А
28	1	389	А
28	1	390	G
28	1	391	А
28	1	392	G
28	1	393	U
28	1	394	G
28	1	396	А
28	1	397	А
28	1	398	А
28	1	399	А
28	1	400	G
28	1	401	U
28	1	402	A
28	1	403	С
28	1	404	G
28	1	405	U
28	1	406	G
28	1	407	А
28	1	408	A
28	1	409	A
28	1	410	U
28	1	411	U
$\overline{28}$	1	412	G

Mol	Chain	Res	Type
28	1	413	U
28	1	415	G
28	1	416	А
28	1	419	G
28	1	421	G
28	1	423	А
28	1	430	U
28	1	431	U
28	1	432	G
28	1	433	А
28	1	434	U
28	1	437	G
28	1	438	А
28	1	440	A
28	1	441	U
28	1	442	G
28	1	443	G
28	1	444	U
28	1	446	U
28	1	448	U
28	1	449	U
28	1	488	U
28	1	489	U
28	1	492	С
28	1	493	U
28	1	494	G
28	1	495	G
28	1	500	С
28	1	501	А
28	1	506	U
28	1	507	U
28	1	508	U
28	1	509	U
28	1	510	G
28	1	519	A
28	1	521	A
28	1	523	A
28	1	533	A
28	1	534	U
28	1	535	G
28	1	536	U
28	1	541	U

Mol	Chain	Res	Type
28	1	542	G
28	1	544	С
28	1	545	U
28	1	546	С
28	1	547	G
28	1	548	G
28	1	549	U
28	1	550	А
28	1	557	А
28	1	558	U
28	1	559	А
28	1	560	G
28	1	565	U
28	1	566	G
28	1	578	A
28	1	579	G
28	1	580	С
28	1	586	С
28	1	587	U
28	1	589	A
28	1	590	G
28	1	592	А
28	1	593	С
28	1	594	U
28	1	595	G
28	1	596	С
28	1	597	G
28	1	601	U
28	1	602	А
28	1	603	А
28	1	608	A
28	1	611	A
28	1	619	A
28	1	621	A
28	1	622	A
28	1	623	U
28	1	625	G
28	1	631	U
28	1	634	С
28	1	636	С
28	1	637	С
28	1	638	С

Mol	Chain	Res	Type
28	1	639	G
28	1	642	U
28	1	643	U
28	1	644	G
28	1	645	А
28	1	646	А
28	1	647	А
28	1	648	С
28	1	649	А
28	1	650	С
28	1	653	А
28	1	655	С
28	1	656	А
28	1	660	A
28	1	661	G
28	1	662	U
28	1	663	С
28	1	664	U
28	1	665	А
28	1	667	С
28	1	669	U
28	1	671	U
28	1	673	U
28	1	674	G
28	1	675	С
28	1	676	G
28	1	677	А
28	1	678	G
28	1	679	U
28	1	680	G
28	1	681	U
28	1	682	U
28	1	683	U
28	1	684	G
28	1	685	G
28	1	688	G
28	1	689	U
28	1	690	A
28	1	691	A
28	1	692	A
28	1	694	С
28	1	695	С

Mol	Chain	Res	Type
28	1	696	С
28	1	697	А
28	1	700	С
28	1	702	С
28	1	703	G
28	1	704	U
28	1	705	А
28	1	706	А
28	1	707	U
28	1	708	G
28	1	709	А
28	1	710	А
28	1	711	А
28	1	712	G
28	1	713	U
28	1	715	A
28	1	716	А
28	1	717	С
28	1	718	G
28	1	719	U
28	1	720	А
28	1	721	G
28	1	725	G
28	1	727	G
28	1	728	G
28	1	734	С
28	1	735	А
28	1	736	А
28	1	737	G
28	1	743	C
28	1	747	A
28	1	752	С
28	1	756	U
28	1	760	G
28	1	761	A
28	1	762	U
28	1	763	G
28	1	764	U
28	1	765	С
28	1	766	U
28	1	767	U
28	1	768	С

Mol	Chain	Res	Type
28	1	769	G
28	1	771	A
28	1	772	U
28	1	773	G
28	1	774	G
28	1	775	A
28	1	776	U
28	1	779	G
28	1	780	A
28	1	781	G
28	1	782	U
28	1	784	А
28	1	785	G
28	1	786	A
28	1	787	G
28	1	789	A
28	1	790	U
28	1	792	G
28	1	794	U
28	1	795	G
28	1	797	U
28	1	798	G
28	1	801	А
28	1	802	С
28	1	803	С
28	1	806	А
28	1	807	А
28	1	808	A
28	1	809	G
28	1	810	A
28	1	811	U
28	1	812	G
$\overline{28}$	1	813	G
28	1	814	U
$\overline{28}$	1	815	G
$\overline{28}$	1	816	A
28	1	817	A
28	1	818	C
28	1	820	A
$\overline{28}$	1	821	U
28	1	825	U
$\overline{28}$	1	826	G

Mol	Chain	Res	Type
28	1	829	U
28	1	830	А
28	1	831	G
28	1	832	G
28	1	833	G
28	1	834	U
28	1	845	G
28	1	846	А
28	1	847	А
28	1	849	С
28	1	850	U
28	1	851	С
28	1	857	G
28	1	858	А
28	1	860	G
28	1	861	С
28	1	862	U
28	1	864	G
28	1	865	U
28	1	870	G
28	1	872	U
28	1	874	U
28	1	875	G
28	1	876	А
28	1	878	G
28	1	879	U
28	1	880	G
28	1	881	С
28	1	882	А
28	1	883	А
28	1	884	A
28	1	885	U
28	1	886	С
28	1	893	С
28	1	894	G
28	1	895	А
28	1	896	A
28	1	897	U
28	1	901	G
28	1	902	G
28	1	903	U
28	1	904	А

Mol	Chain	Res	Type
28	1	905	U
28	1	906	А
28	1	907	G
28	1	908	G
28	1	909	G
28	1	913	А
28	1	914	A
28	1	915	A
28	1	916	G
28	1	917	А
28	1	920	А
28	1	921	A
28	1	922	U
28	1	924	G
28	1	933	А
28	1	934	G
28	1	935	U
28	1	936	А
28	1	937	G
28	1	938	С
28	1	939	U
28	1	940	G
28	1	941	G
28	1	942	U
28	1	943	U
28	1	944	С
28	1	946	U
28	1	947	G
28	1	948	С
28	1	949	С
28	1	951	A
28	1	953	G
28	1	954	U
28	1	958	С
28	1	959	С
28	1	962	A
28	1	963	G
28	1	965	A
28	1	966	U
28	1	967	A
28	1	970	A
28	1	971	G

Mol	Chain	Res	Type
28	1	974	G
28	1	975	С
28	1	977	С
28	1	979	U
28	1	980	A
28	1	981	U
28	1	984	G
28	1	985	U
28	1	987	U
28	1	991	G
28	1	992	А
28	1	993	G
28	1	994	G
28	1	995	U
28	1	997	А
28	1	999	G
28	1	1000	С
28	1	1001	G
28	1	1002	А
28	1	1003	А
28	1	1006	А
28	1	1007	U
28	1	1008	U
28	1	1010	G
28	1	1014	U
28	1	1016	С
28	1	1018	G
28	1	1020	G
28	1	1023	С
28	1	1024	G
28	1	1025	A
28	1	1029	G
28	1	1031	С
28	1	1034	U
28	1	1035	G
28	1	1038	C
28	1	1043	С
28	1	1047	A
28	1	1049	С
28	1	1057	A
28	1	1058	U
28	1	1063	G

Mol	Chain	Res	Type
28	1	1064	А
28	1	1066	G
28	1	1067	U
28	1	1069	С
28	1	1071	U
28	1	1072	G
28	1	1073	U
28	1	1075	А
28	1	1076	С
28	1	1081	U
28	1	1082	U
28	1	1085	А
28	1	1087	G
28	1	1089	G
28	1	1090	G
28	1	1093	A
28	1	1094	U
28	1	1096	U
28	1	1097	G
28	1	1098	А
28	1	1099	А
28	1	1100	U
28	1	1101	G
28	1	1104	G
28	1	1105	А
28	1	1110	U
28	1	1111	U
28	1	1112	A
28	1	1113	G
28	1	1114	U
28	1	1115	G
28	1	1117	G
28	1	1118	С
28	1	1119	С
28	1	1120	A
28	1	1124	U
28	1	1127	G
28	1	1128	U
28	1	1129	A
28	1	1131	G
28	1	1133	A
28	1	1134	G

Mol	Chain	Res	Type
28	1	1138	U
28	1	1140	G
28	1	1141	С
28	1	1142	G
28	1	1143	А
28	1	1144	U
28	1	1145	G
28	1	1146	С
28	1	1147	G
28	1	1148	G
28	1	1150	А
28	1	1151	U
28	1	1152	G
28	1	1153	A
28	1	1154	А
28	1	1155	С
28	1	1156	С
28	1	1157	G
28	1	1161	G
28	1	1162	U
28	1	1163	А
28	1	1164	G
28	1	1165	А
28	1	1166	G
28	1	1167	U
28	1	1168	U
28	1	1170	А
28	1	1171	G
28	1	1173	U
28	1	1174	G
28	1	1175	С
28	1	1176	С
28	1	1177	G
28	1	1178	G
28	1	1180	A
28	1	1181	U
28	1	1182	А
28	1	1183	С
28	1	1184	A
28	1	1188	U
28	1	1189	С
28	1	1190	А

Mol	Chain	Res	Type
28	1	1192	С
28	1	1196	С
28	1	1197	А
28	1	1199	С
28	1	1200	А
28	1	1203	А
28	1	1204	А
28	1	1205	А
28	1	1206	G
28	1	1207	G
28	1	1208	U
28	1	1211	U
28	1	1217	А
28	1	1219	С
28	1	1220	U
28	1	1221	А
28	1	1225	А
28	1	1226	G
28	1	1227	С
28	1	1228	С
28	1	1229	G
28	1	1231	А
28	1	1232	С
28	1	1233	G
28	1	1234	G
28	1	1236	G
28	1	1238	С
28	1	1240	А
28	1	1241	U
28	1	1242	G
28	1	1243	G
28	1	1244	А
28	1	1245	A
28	1	1247	U
28	1	1248	С
28	1	1249	G
28	1	1250	G
28	1	1253	U
28	1	1254	С
28	1	1257	С
28	1	1258	U
28	1	1259	A

Mol	Chain	Res	Type
28	1	1260	А
28	1	1261	G
28	1	1262	G
28	1	1263	А
28	1	1264	G
28	1	1265	U
28	1	1266	G
28	1	1268	G
28	1	1269	U
28	1	1271	А
28	1	1272	С
28	1	1274	А
28	1	1277	С
28	1	1279	С
28	1	1280	С
28	1	1282	G
28	1	1283	С
28	1	1284	С
28	1	1295	G
28	1	1300	G
28	1	1301	А
28	1	1304	А
28	1	1305	U
28	1	1306	G
28	1	1307	G
28	1	1308	А
28	1	1309	U
28	1	1310	G
28	1	1311	G
28	1	1312	С
28	1	1313	G
28	1	1315	U
28	1	1316	С
28	1	1317	А
28	1	1318	А
28	1	1319	G
28	1	1323	G
28	1	1324	U
28	1	1325	U
28	1	1326	A
28	1	1327	С
28	1	1328	С

Mol	Chain	Res	Type
28	1	1330	А
28	1	1331	U
28	1	1332	A
28	1	1334	U
28	1	1335	С
28	1	1336	U
28	1	1339	С
28	1	1341	U
28	1	1342	С
28	1	1343	А
28	1	1348	U
28	1	1349	G
28	1	1350	А
28	1	1351	U
28	1	1352	А
28	1	1353	U
28	1	1354	G
28	1	1355	А
28	1	1357	G
28	1	1364	С
28	1	1366	А
28	1	1367	G
28	1	1368	U
28	1	1369	А
28	1	1370	G
28	1	1371	G
28	1	1372	C
28	1	1373	А
28	1	1374	G
28	1	1375	G
28	1	1376	C
28	1	1377	G
28	1	1378	U
28	1	1379	G
$\overline{28}$	1	1380	G
28	1	1381	A
28	1	1386	А
28	1	1387	G
28	1	1389	G
28	1	1390	A
28	1	1391	C
$\overline{28}$	1	1392	G

Mol	Chain	Res	Type
28	1	1393	А
28	1	1394	А
28	1	1395	G
28	1	1396	С
28	1	1399	А
28	1	1400	G
28	1	1401	А
28	1	1402	С
28	1	1405	U
28	1	1406	А
28	1	1407	А
28	1	1408	G
28	1	1409	G
28	1	1410	U
28	1	1411	С
28	1	1412	G
28	1	1413	G
28	1	1414	G
28	1	1416	С
28	1	1418	А
28	1	1419	А
28	1	1420	С
28	1	1423	С
28	1	1426	С
28	1	1427	U
28	1	1428	А
28	1	1429	G
28	1	1430	U
28	1	1431	G
28	1	1432	С
28	1	1433	A
28	1	1435	А
28	1	1436	U
28	1	1437	С
28	1	1440	G
28	1	1441	G
28	1	1442	U
28	1	1444	G
28	1	1445	U
28	1	1446	А
28	1	1447	G
28	1	1448	U

Mol	Chain	Res	Type
28	1	1449	А
28	1	1450	G
28	1	1453	А
28	1	1454	А
28	1	1455	U
28	1	1456	А
28	1	1457	U
28	1	1458	U
28	1	1464	G
28	1	1465	А
28	1	1466	G
28	1	1467	А
28	1	1468	А
28	1	1469	С
28	1	1470	U
28	1	1476	G
28	1	1480	G
28	1	1481	А
28	1	1482	А
28	1	1483	G
28	1	1484	U
28	1	1485	G
28	1	1486	G
28	1	1494	U
28	1	1497	С
28	1	1498	А
28	1	1499	C
28	1	1500	G
28	1	1502	С
28	1	1504	А
28	1	1506	A
28	1	1507	G
$\overline{28}$	1	1508	C
$\overline{28}$	1	1509	A
$\overline{28}$	1	1510	G
28	1	1511	U
28	1	1512	U
28	1	1514	G
$\overline{28}$	1	1516	C
$\overline{28}$	1	1517	G
28	1	1520	G
$\overline{28}$	1	1521	G

Mol	Chain	Res	Type
28	1	1522	U
28	1	1523	U
28	1	1524	A
28	1	1525	G
28	1	1526	U
28	1	1528	G
28	1	1529	А
28	1	1530	U
28	1	1531	С
28	1	1532	С
28	1	1533	U
28	1	1534	А
28	1	1535	А
28	1	1536	G
28	1	1541	G
28	1	1542	G
28	1	1543	G
28	1	1544	G
28	1	1546	А
28	1	1547	G
28	1	1548	С
28	1	1551	С
28	1	1553	U
28	1	1554	U
28	1	1556	С
28	1	1557	А
28	1	1558	А
28	1	1559	А
28	1	1560	G
28	1	1562	С
28	1	1563	С
28	1	1564	U
28	1	1565	G
28	1	1566	A
28	1	1569	U
28	1	1570	U
28	1	1571	А
28	1	1574	С
28	1	1575	А
28	1	1577	G
28	1	1578	С
28	1	1580	А

Mol	Chain	Res	Type
28	1	1581	С
28	1	1582	С
28	1	1584	U
28	1	1585	С
28	1	1586	G
28	1	1587	А
28	1	1588	A
28	1	1589	А
28	1	1590	G
28	1	1591	G
28	1	1592	G
28	1	1593	А
28	1	1595	U
28	1	1596	С
28	1	1597	С
28	1	1598	G
28	1	1600	U
28	1	1601	U
28	1	1603	А
28	1	1604	G
28	1	1605	А
28	1	1607	U
28	1	1608	С
28	1	1609	С
28	1	1610	G
28	1	1611	G
28	1	1619	А
28	1	1620	U
28	1	1627	U
28	1	1628	С
28	1	1629	U
28	1	1631	С
28	1	1632	A
28	1	1635	G
28	1	1640	G
28	1	1641	U
28	1	1642	А
28	1	1643	A
28	1	1644	С
28	1	1645	U
28	1	1646	G
28	1	1651	U

Mol	Chain	Res	Type
28	1	1655	G
28	1	1656	А
28	1	1657	С
28	1	1659	U
28	1	1660	С
28	1	1661	G
28	1	1663	С
28	1	1664	G
28	1	1665	С
28	1	1666	G
28	1	1667	А
28	1	1669	С
28	1	1670	С
28	1	1672	U
28	1	1675	G
28	1	1676	А
28	1	1679	А
28	1	1680	G
28	1	1681	U
28	1	1682	U
28	1	1683	А
28	1	1688	U
28	1	1689	U
28	1	1693	С
28	1	1694	U
28	1	1696	А
28	1	1698	С
28	1	1699	А
28	1	1702	U
28	1	1703	U
28	1	1709	С
28	1	1713	G
28	1	1714	A
28	1	1715	A
28	1	1716	U
28	1	1719	G
28	1	1720	U
28	1	1721	U
28	1	1722	U
28	1	1724	U
28	1	1725	C
28	1	1726	С

Mol	Chain	Res	Type
28	1	1727	G
28	1	1728	G
28	1	1729	А
28	1	1730	G
28	1	1731	А
28	1	1733	G
28	1	1734	G
28	1	1737	U
28	1	1738	С
28	1	1740	U
28	1	1746	U
28	1	1748	G
28	1	1749	A
28	1	1750	A
28	1	1751	G
28	1	1752	А
28	1	1753	G
28	1	1754	G
28	1	1757	А
28	1	1760	А
28	1	1761	С
28	1	1762	С
28	1	1764	U
28	1	1765	U
28	1	1772	U
28	1	1773	С
28	1	1777	U
28	1	1778	G
28	1	1780	G
28	1	1781	С
28	1	1785	U
28	1	1786	G
28	1	1787	A
28	1	1788	С
28	1	1790	G
28	1	1793	С
28	1	1794	G
28	1	1795	U
28	1	1797	A
28	1	1798	A
28	1	1799	А
28	1	1801	U

Mol	Chain	Res	Type
28	1	1807	G
28	1	1808	G
28	1	1809	А
28	1	1813	А
28	1	1814	А
28	1	1819	U
28	1	1821	U
28	1	1822	C
28	1	1830	G
28	1	1832	С
28	1	1833	G
28	1	1835	А
28	1	1836	С
28	1	1838	G
28	1	1839	А
28	1	1840	U
28	1	1842	А
28	1	1843	С
28	1	1844	С
28	1	1846	С
28	1	1848	G
28	1	1849	С
28	1	1850	А
28	1	1851	G
28	1	1852	G
28	1	1853	U
28	1	1856	С
28	1	1857	С
28	1	1858	А
28	1	1859	А
28	1	1863	G
28	1	1864	А
28	1	1866	С
28	1	1867	A
28	1	1869	С
28	1	1871	U
28	1	1872	С
28	1	1873	U
28	1	1874	А
28	1	1875	G
28	1	1876	U
28	1	1877	U

28 1 1879 A	
28 1 1880 U	
28 1 1882 G	
28 1 1883 A	
28 1 1884 A	
28 1 1886 A	
28 1 1887 A	
28 1 1888 U	
28 1 1894 U	
28 1 1897 G	
28 1 1900 A	
28 1 1901 A	
28 1 1902 G	
28 1 1903 U	
28 1 1905 G	
28 1 1906 G	
28 1 1908 A	
28 1 1909 A	
28 1 1910 A	
28 1 1911 A	
28 1 1912 U	
28 1 1913 A	
28 1 1914 G	
28 1 1915 A	
28 1 1920 U	
28 1 1922 A	
28 1 1924 U	
28 1 1927 G	
28 1 1932 A	
28 1 1938 U	
28 1 1939 G	
28 1 1940 G	
28 1 1941 C	
28 1 1942 U	
28 1 1946 A	
28 1 1947 G	
28 1 1948 G	
28 1 1950 U	
28 1 1951 C	
28 1 1952 G	
28 1 1953 G	
28 1 1954 G	

Mol	Chain	Res	Type
28	1	1955	U
28	1	2095	G
28	1	2098	С
28	1	2100	А
28	1	2101	С
28	1	2103	U
28	1	2104	А
28	1	2105	G
28	1	2110	G
28	1	2111	G
28	1	2112	U
28	1	2114	С
28	1	2115	G
28	1	2116	G
28	1	2117	А
28	1	2118	С
28	1	2119	А
28	1	2120	А
28	1	2121	G
28	1	2122	G
28	1	2126	А
28	1	2127	U
28	1	2129	U
28	1	2131	А
28	1	2132	С
28	1	2133	U
28	1	2134	G
28	1	2136	С
28	1	2137	U
28	1	2138	А
28	1	2139	A
28	1	2140	U
28	1	2141	U
28	1	2142	A
28	1	2143	А
28	1	2144	А
28	1	2145	А
28	1	2146	С
28	1	2147	А
28	1	2152	А
28	1	2154	U
28	1	2155	G

Mol	Chain	Res	Type
28	1	2156	С
28	1	2157	G
28	1	2159	U
28	1	2160	G
28	1	2163	С
28	1	2165	G
28	1	2167	А
28	1	2170	U
28	1	2173	U
28	1	2174	G
28	1	2175	U
28	1	2176	U
28	1	2177	G
28	1	2178	A
28	1	2179	С
28	1	2188	A
28	1	2192	С
28	1	2194	G
28	1	2197	С
28	1	2198	A
28	1	2201	G
28	1	2202	С
28	1	2203	U
28	1	2204	С
28	1	2205	U
28	1	2206	G
28	1	2208	A
28	1	2209	U
28	1	2210	G
28	1	2213	A
28	1	2214	A
28	1	2215	A
28	1	2218	G
28	1	2220	A
28	1	2224	A
28	1	2225	U
28	1	2226	U
28	1	2229	A
28	1	2230	С
28	1	2231	С
28	1	2234	G
28	1	2242	A

Mol	Chain	Res	Type
28	1	2243	А
28	1	2244	А
28	1	2246	G
28	1	2248	С
28	1	2249	G
28	1	2254	U
28	1	2255	А
28	1	2261	G
28	1	2262	А
28	1	2263	С
28	1	2269	U
28	1	2270	А
28	1	2271	A
28	1	2273	G
28	1	2274	U
28	1	2276	G
28	1	2278	С
28	1	2280	А
28	1	2282	U
28	1	2283	G
28	1	2288	G
28	1	2289	U
28	1	2290	С
28	1	2291	А
28	1	2292	U
28	1	2293	С
28	1	2294	U
28	1	2296	А
28	1	2297	U
28	1	2299	А
28	1	2302	G
28	1	2303	А
28	1	2304	С
28	1	2305	G
28	1	2306	С
28	1	2307	G
28	1	2311	G
28	1	2314	U
28	1	2315	G
28	1	2324	А
28	1	2325	G
28	1	2326	А

Mol	Chain	Res	Type
28	1	2328	U
28	1	2336	U
28	1	2340	U
28	1	2342	U
28	1	2348	А
28	1	2349	U
28	1	2352	А
28	1	2354	С
28	1	2355	G
28	1	2356	А
28	1	2357	A
28	1	2358	А
28	1	2359	С
28	1	2360	С
28	1	2361	А
28	1	2362	С
28	1	2363	А
28	1	2364	G
28	1	2365	С
28	1	2370	G
28	1	2371	G
28	1	2372	А
28	1	2373	А
28	1	2374	С
28	1	2375	G
28	1	2378	С
28	1	2379	U
28	1	2383	С
28	1	2385	G
28	1	2386	А
28	1	2387	A
28	1	2389	С
28	1	2390	A
28	1	2391	G
28	1	2392	С
28	1	2394	G
28	1	2396	G
28	1	2397	A
28	1	2398	А
28	1	2399	A
28	1	2400	G
28	1	2401	А

Mol	Chain	Res	Type
28	1	2402	А
28	1	2403	G
28	1	2404	А
28	1	2406	С
28	1	2409	G
28	1	2410	U
28	1	2415	С
28	1	2416	U
28	1	2417	U
28	1	2419	А
28	1	2420	С
28	1	2423	U
28	1	2425	G
28	1	2427	U
28	1	2429	G
28	1	2432	A
28	1	2433	U
28	1	2434	U
28	1	2435	G
28	1	2436	U
28	1	2440	G
28	1	2441	А
28	1	2442	G
28	1	2446	U
28	1	2447	А
28	1	2450	G
28	1	2452	G
28	1	2455	U
28	1	2458	А
28	1	2459	А
28	1	$2\overline{460}$	U
28	1	2462	A
28	1	2463	G
28	1	2464	U
28	1	$2\overline{468}$	A
28	1	2469	G
28	1	2470	С
28	1	2471	U
28	1	2473	С
28	1	2477	G
28	1	2479	С
$\overline{28}$	1	2480	А

Mol	Chain	Res	Type
28	1	2481	G
28	1	2482	U
28	1	2485	A
28	1	2487	U
28	1	2490	С
28	1	2491	А
28	1	2492	С
28	1	2493	U
28	1	2494	А
28	1	2496	С
28	1	2498	U
28	1	2499	U
28	1	2500	A
28	1	2501	U
28	1	2503	G
28	1	2504	U
28	1	2505	U
28	1	2506	U
28	1	2508	U
28	1	2509	U
28	1	2511	A
28	1	2513	U
28	1	2514	U
28	1	2515	А
28	1	2516	U
28	1	2517	U
28	1	2518	С
28	1	2521	U
28	1	2523	А
28	1	2525	G
28	1	2526	С
28	1	2530	G
28	1	2531	C
28	1	2532	U
28	1	2534	G
28	1	2536	А
28	1	2537	U
28	1	2539	С
28	1	2540	A
28	1	2542	U
28	1	2543	U
28	1	2544	U

Mol	Chain	Res	Type
28	1	2545	С
28	1	2546	С
28	1	2547	A
28	1	2549	G
28	1	2550	U
28	1	2551	U
28	1	2553	U
28	1	2554	А
28	1	2555	G
28	1	2557	А
28	1	2558	U
28	1	2560	С
28	1	2562	A
28	1	2565	U
28	1	2569	A
28	1	2570	U
28	1	2571	U
28	1	2572	С
28	1	2580	А
28	1	2581	U
28	1	2582	С
28	1	2583	С
28	1	2585	G
28	1	2586	G
28	1	2587	U
28	1	2588	U
28	1	2589	G
28	1	2591	А
28	1	2592	G
28	1	2593	А
28	1	2594	С
28	1	2597	U
28	1	2598	G
28	1	2599	U
28	1	2600	С
28	1	2601	А
28	1	2603	G
28	1	2604	U
28	1	2605	G
28	1	2606	G
28	1	2607	G
28	1	2608	G

Mol	Chain	Res	Type
28	1	2610	G
28	1	2611	U
28	1	2614	G
28	1	2615	G
28	1	2617	U
28	1	2618	G
28	1	2619	G
28	1	2620	G
28	1	2622	С
28	1	2627	С
28	1	2628	A
28	1	2629	U
28	1	2632	G
28	1	2634	U
28	1	2635	A
28	1	2636	A
28	1	2637	A
28	1	2642	A
28	1	2644	С
28	1	2645	G
28	1	2647	А
28	1	2648	G
28	1	2649	А
28	1	2650	U
28	1	2651	G
28	1	2652	U
28	1	2653	С
28	1	2655	U
28	1	2656	А
28	1	2658	G
28	1	2667	A
28	1	2668	U
28	1	2674	A
28	1	2675	С
28	1	2676	A
28	1	2677	G
28	1	2678	A
28	1	2679	A
28	1	2682	С
28	1	2686	A
28	1	2688	U
28	1	2689	A

Mol	Chain	Res	Type
28	1	2690	G
28	1	2692	А
28	1	2694	А
28	1	2696	А
28	1	2697	А
28	1	2698	G
28	1	2699	G
28	1	2700	G
28	1	2702	А
28	1	2703	А
28	1	2704	А
28	1	2713	U
28	1	2715	А
28	1	2716	U
28	1	2717	U
28	1	2720	G
28	1	2722	U
28	1	2723	U
28	1	2726	С
28	1	2728	G
28	1	2729	U
28	1	2731	U
28	1	2735	U
28	1	2736	А
28	1	2737	С
28	1	2741	С
28	1	2742	С
28	1	2747	А
28	1	2748	А
28	1	2749	G
28	1	2750	U
28	1	2753	G
28	1	2755	С
28	1	2756	С
28	1	2757	U
28	1	$27\overline{60}$	C
28	1	2762	А
28	1	2763	U
28	1	2764	С
28	1	2765	С
28	1	2766	U
28	1	2767	U

Mol	Chain	Res	Type
28	1	2768	U
28	1	2772	С
28	1	2773	С
28	1	2774	С
28	1	2775	U
28	1	2776	С
28	1	2778	G
28	1	2779	А
28	1	2781	U
28	1	2783	U
28	1	2784	G
28	1	2785	А
28	1	2786	G
28	1	2787	G
28	1	2788	С
28	1	2794	G
28	1	2795	U
28	1	2796	G
28	1	2798	С
28	1	2799	А
28	1	2800	G
28	1	2801	А
28	1	2802	А
28	1	2803	А
28	1	2805	G
28	1	2806	U
28	1	2807	U
28	1	2808	A
28	1	2809	С
28	1	2810	С
28	1	2811	A
28	1	2813	А
28	1	2814	G
28	1	2815	G
28	1	2816	G
28	1	2817	А
28	1	2819	A
28	1	2820	A
28	1	2821	С
28	1	2823	G
28	1	2824	G
28	1	2826	U

Mol	Chain	Res	Type
28	1	2827	U
28	1	2833	А
28	1	2835	U
28	1	2837	А
28	1	2838	А
28	1	2844	С
28	1	2845	А
28	1	2846	U
28	1	2847	А
28	1	2850	G
28	1	2855	U
28	1	2856	G
28	1	2860	U
28	1	2863	G
28	1	2865	U
28	1	2866	U
28	1	2867	С
28	1	2868	U
28	1	2869	U
28	1	2870	С
28	1	2871	G
28	1	2874	G
28	1	2875	U
28	1	2877	G
28	1	2878	G
28	1	2879	С
28	1	2880	U
28	1	2881	С
28	1	2882	U
28	1	2883	U
28	1	2887	A
28	1	2893	С
28	1	2894	С
28	1	2895	G
28	1	2896	A
28	1	2898	G
28	1	2899	С
28	1	2900	A
28	1	2901	G
28	1	2902	A
28	1	2903	A
28	1	2905	U

Mol	Chain	Res	Type
28	1	2906	С
28	1	2908	G
28	1	2909	U
28	1	2910	А
28	1	2911	А
28	1	2913	С
28	1	2916	U
28	1	2919	А
28	1	2920	U
28	1	2923	U
28	1	2924	U
28	1	2926	А
28	1	2928	С
28	1	2929	С
28	1	2930	A
28	1	2931	С
28	1	2932	U
28	1	2933	А
28	1	2935	U
28	1	2936	А
28	1	2941	А
28	1	2942	С
28	1	2943	G
28	1	2944	U
28	1	2945	G
28	1	2946	А
28	1	2947	G
28	1	2950	G
28	1	2951	G
28	1	2952	G
28	1	2953	U
28	1	2959	С
28	1	2960	С
28	1	2964	G
28	1	2965	U
28	1	2966	G
28	1	2968	G
28	1	2971	A
28	1	2972	G
28	1	2973	G
28	1	2974	U
28	1	2975	U

Mol	Chain	Res	Type
28	1	2976	А
28	1	2977	G
28	1	2978	U
28	1	2979	U
28	1	2982	А
28	1	2983	С
28	1	2984	С
28	1	2990	G
28	1	2993	G
28	1	2997	G
28	1	3005	А
28	1	3006	А
28	1	3007	U
28	1	3010	U
28	1	3011	А
28	1	3012	A
28	1	3018	С
28	1	3019	U
28	1	3021	А
28	1	3022	G
28	1	3023	U
28	1	3024	А
28	1	3025	С
28	1	3026	G
28	1	3027	А
28	1	3028	G
28	1	3029	А
28	1	3032	A
28	1	3034	С
28	1	3035	A
28	1	3036	G
28	1	3040	A
28	1	3043	С
28	1	3044	G
28	1	3045	G
28	1	3047	U
28	1	3049	A
28	1	3051	U
28	1	3052	G
28	1	3053	G
28	1	3055	U
28	1	3056	U

Mol	Chain	Res	Type
28	1	3057	U
28	1	3058	U
28	1	3059	G
28	1	3062	G
28	1	3064	U
28	1	3065	G
28	1	3067	С
28	1	3070	А
28	1	3071	U
28	1	3073	А
28	1	3074	G
28	1	3075	G
28	1	3076	С
28	1	3077	A
28	1	3078	U
28	1	3080	G
28	1	3081	С
28	1	3087	А
28	1	3088	G
28	1	3090	U
28	1	3092	С
28	1	3093	С
28	1	3099	С
28	1	3100	U
28	1	3101	G
28	1	3102	G
28	1	3103	А
28	1	3105	U
28	1	3106	А
28	1	3107	U
28	1	3112	G
28	1	3114	А
28	1	3115	С
28	1	3118	С
28	1	3120	С
28	1	3122	А
28	1	3125	U
28	1	3126	С
28	1	3130	А
28	1	3131	U
28	1	3132	С
28	1	3133	С

Mol	Chain	Res	Type
28	1	3137	С
28	1	3138	U
28	1	3139	А
28	1	3142	А
28	1	3143	С
28	1	3144	G
28	1	3151	U
28	1	3152	U
28	1	3153	U
28	1	3154	С
28	1	3155	U
28	1	3156	U
28	1	3157	U
28	1	3169	U
28	1	3170	A
28	1	3171	U
28	1	3172	А
28	1	3173	G
28	1	3174	А
28	1	3176	G
28	1	3179	U
28	1	3180	А
28	1	3181	С
28	1	3182	G
28	1	3185	U
28	1	3186	А
28	1	3187	А
28	1	3196	U
28	1	3198	U
28	1	3199	G
28	1	3206	С
28	1	3207	U
28	1	3209	A
28	1	3211	C
28	1	3212	С
28	1	3213	A
28	1	3216	G
28	1	3217	C
28	1	3218	A
28	1	3219	G
28	1	3220	G
$\overline{28}$	1	3224	G

Mol	Chain	Res	Type
28	1	3226	А
28	1	3228	С
28	1	3229	G
28	1	3230	G
28	1	3234	А
28	1	3235	С
28	1	3236	U
28	1	3237	U
28	1	3238	G
28	1	3242	G
28	1	3251	U
28	1	3252	G
28	1	3255	U
28	1	3256	G
28	1	3258	U
28	1	3259	U
28	1	3260	G
28	1	3261	С
28	1	3262	U
28	1	3265	С
28	1	3267	А
28	1	3270	U
28	1	3271	G
28	1	3273	А
28	1	3275	U
28	1	3277	U
28	1	3278	С
28	1	3279	А
28	1	3281	U
28	1	3289	G
28	1	3290	G
28	1	3292	А
28	1	3293	U
28	1	3294	А
28	1	3298	С
28	1	3299	А
28	1	3301	U
28	1	3303	G
28	1	3304	U
28	1	3305	А
28	1	3306	U
28	1	3307	А

Mol	Chain	Res	Type
28	1	3308	С
28	1	3309	G
28	1	3310	А
28	1	3311	С
28	1	3312	U
28	1	3313	U
28	1	3316	А
28	1	3317	U
28	1	3318	G
28	1	3319	U
28	1	3320	А
28	1	3326	G
28	1	3331	U
28	1	3332	U
28	1	3333	G
28	1	3335	А
28	1	3336	А
28	1	3337	G
28	1	3339	А
28	1	3341	U
28	1	3342	А
28	1	3343	G
28	1	3345	G
28	1	3346	U
28	1	3348	G
28	1	3350	С
28	1	3351	U
28	1	3352	U
28	1	3353	G
28	1	3354	U
28	1	3355	U
28	1	3358	U
28	1	3359	A
28	1	3360	С
28	1	3361	G
28	1	3362	A
28	1	3368	U
28	1	3369	G
28	1	3370	А
28	1	3371	G
28	1	3372	A
28	1	3374	U

Mol	Chain	Res	Type
28	1	3375	А
28	1	3376	А
28	1	3377	G
28	1	3379	С
28	1	3380	U
28	1	3381	U
28	1	3382	U
28	1	3385	U
28	1	3389	U
28	1	3390	G
28	1	3391	А
28	1	3393	U
28	1	3394	U
28	1	3396	U
29	3	6	С
29	3	7	G
29	3	10	С
29	3	11	А
29	3	12	U
29	3	15	С
29	3	20	А
29	3	22	А
29	3	23	A
29	3	24	А
29	3	25	G
29	3	26	С
29	3	28	C
29	3	29	С
29	3	31	U
29	3	33	С
29	3	36	C
29	3	37	G
29	3	42	А
29	3	44	C
29	3	45	А
29	3	47	C
29	3	48	U
29	3	49	G
$\overline{29}$	3	52	G
29	3	53	U
$\overline{29}$	3	54	U
29	3	62	U

Mol	Chain	Res	Type
29	3	64	А
29	3	65	G
29	3	68	С
29	3	73	С
29	3	74	С
29	3	75	G
29	3	77	G
29	3	78	U
29	3	80	G
29	3	83	U
29	3	85	G
29	3	86	U
29	3	87	G
29	3	91	G
29	3	93	С
29	3	97	А
29	3	98	С
29	3	104	А
29	3	105	С
29	3	112	G
29	3	121	U
30	4	3	А
30	4	4	С
30	4	6	U
30	4	8	С
30	4	9	А
30	4	10	А
30	4	14	С
30	4	15	G
30	4	18	U
30	4	19	С
30	4	20	U
30	4	21	С
30	4	22	U
30	4	23	U
30	4	24	G
30	4	25	G
30	4	26	U
30	4	28	С
30	4	31	G
30	4	33	A
30	4	34	U

Mol	Chain	Res	Type
30	4	35	С
30	4	37	А
30	4	38	U
30	4	39	G
30	4	40	А
30	4	41	А
30	4	42	G
30	4	43	А
30	4	44	А
30	4	45	С
30	4	46	G
30	4	51	G
30	4	52	А
30	4	53	A
30	4	54	A
30	4	56	G
30	4	58	G
30	4	59	А
30	4	61	А
30	4	62	С
30	4	63	G
30	4	70	G
30	4	74	U
30	4	75	G
30	4	79	А
30	4	80	А
30	4	81	U
30	4	84	С
30	4	85	G
30	4	86	U
30	4	87	G
30	4	88	A
30	4	91	С
30	4	93	U
30	4	94	С
30	4	96	A
30	4	99	C
30	4	104	A
30	4	105	A
30	4	106	C
30	4	107	G
30	4	108	C

Mol	Chain	Res	Type
30	4	109	А
30	4	110	С
30	4	111	А
30	4	112	U
30	4	113	U
30	4	114	G
30	4	125	U
30	4	126	А
30	4	128	U
30	4	133	G
30	4	134	G
30	4	137	C
30	4	138	А
30	4	139	U
30	4	140	G
30	4	147	U
30	4	151	С
30	4	152	G
30	4	153	U
30	4	155	А
30	4	156	U
30	4	157	U
30	4	158	U
49	2	2	А
49	2	4	С
49	2	5	U
49	2	17	C
49	2	25	С
49	2	26	A
49	2	27	U
49	2	34	G
49	2	37	U
49	2	42	G
49	2	43	A
49	2	45	U
49	2	47	A
49	2	57	G
49	2	58	U
49	2	59	C
49	2	61	A
49	2	62	A
49	2	63	G

Mol	Chain	Res	Type
49	2	64	U
49	2	65	А
49	2	66	U
49	2	67	А
49	2	69	G
49	2	70	С
49	2	71	А
49	2	73	U
49	2	75	U
49	2	76	А
49	2	77	U
49	2	78	А
49	2	79	С
49	2	80	A
49	2	81	G
49	2	83	G
49	2	84	А
49	2	85	А
49	2	88	U
49	2	89	G
49	2	90	С
49	2	91	G
49	2	92	А
49	2	93	А
49	2	94	U
49	2	100	А
49	2	104	А
49	2	114	С
49	2	115	G
49	2	116	U
49	2	119	A
49	2	120	U
49	2	121	U
49	2	124	A
49	2	126	A
49	2	127	G
49	2	128	U
49	2	130	C
49	2	131	С
49	2	132	U
49	2	135	A
49	2	136	С

Mol	Chain	Res	Type
49	2	137	U
49	2	138	А
49	2	139	С
49	2	141	U
49	2	145	А
49	2	146	U
49	2	149	С
49	2	150	U
49	2	151	G
49	2	157	А
49	2	160	С
49	2	164	А
49	2	165	G
49	2	177	U
49	2	178	U
49	2	181	A
49	2	186	С
49	2	188	А
49	2	189	С
49	2	190	С
49	2	191	С
49	2	192	U
49	2	193	U
49	2	194	U
49	2	195	G
49	2	196	G
49	2	200	А
49	2	204	G
49	2	205	U
49	2	206	А
49	2	208	U
49	2	210	А
49	2	212	U
49	2	215	A
49	2	216	U
49	2	217	A
49	2	219	A
49	2	221	A
49	2	222	A
49	2	223	U
49	2	224	С
49	2	227	U

Mol	Chain	Res	Type
49	2	228	G
49	2	230	С
49	2	231	U
49	2	232	U
49	2	233	С
49	2	234	G
49	2	235	G
49	2	237	С
49	2	238	U
49	2	239	С
49	2	240	U
49	2	241	U
49	2	242	U
49	2	245	U
49	2	249	U
49	2	250	С
49	2	252	U
49	2	255	U
49	2	256	A
49	2	259	U
49	2	260	U
49	2	261	U
49	2	262	U
49	2	266	А
49	2	269	G
49	2	270	С
49	2	271	А
49	2	272	U
49	2	276	С
49	2	278	U
49	2	280	U
49	2	282	С
49	2	284	G
49	2	288	A
49	2	298	С
49	2	299	A
49	2	313	U
49	2	316	A
49	2	321	С
49	2	322	G
49	2	323	A
49	2	333	A

Mol	Chain	Res	Type
49	2	337	G
49	2	338	С
49	2	341	А
49	2	345	U
49	2	346	G
49	2	351	С
49	2	352	А
49	2	359	А
49	2	361	С
49	2	376	С
49	2	378	А
49	2	381	С
49	2	389	G
49	2	390	G
49	2	392	G
49	2	393	С
49	2	396	G
49	2	397	А
49	2	398	G
49	2	399	А
49	2	400	А
49	2	402	С
49	2	404	G
49	2	405	С
49	2	406	U
49	2	407	А
49	2	408	С
49	2	409	С
49	2	415	С
49	2	416	А
49	2	417	A
49	2	418	G
49	2	419	G
49	2	421	А
49	2	422	G
49	2	426	G
49	2	434	G
49	2	435	С
49	2	436	A
49	2	437	A
49	2	439	U
49	2	440	U

Mol	Chain	Res	Type
49	2	444	С
49	2	451	A
49	2	452	А
49	2	453	U
49	2	454	U
49	2	455	С
49	2	456	А
49	2	458	G
49	2	461	G
49	2	467	G
49	2	468	А
49	2	469	С
49	2	475	A
49	2	483	A
49	2	492	A
49	2	493	U
49	2	494	U
49	2	496	G
49	2	497	G
49	2	502	U
49	2	506	А
49	2	507	U
49	2	509	G
49	2	511	А
49	2	512	А
49	2	513	U
49	2	515	А
49	2	520	А
49	2	523	G
49	2	525	A
49	2	526	A
49	2	527	A
49	2	536	С
49	2	539	G
49	2	540	G
49	2	541	A
49	2	542	A
49	2	545	A
49	2	551	G
49	2	554	С
49	2	555	A
49	2	557	G

Mol	Chain	Res	Type
49	2	558	U
49	2	565	С
49	2	568	G
49	2	579	А
49	2	580	А
49	2	582	U
49	2	583	С
49	2	585	А
49	2	586	G
49	2	594	А
49	2	600	U
49	2	606	А
49	2	608	U
49	2	613	G
49	2	614	С
49	2	619	A
49	2	620	А
49	2	621	А
49	2	622	А
49	2	623	А
49	2	624	G
49	2	639	U
49	2	641	G
49	2	651	G
49	2	654	С
49	2	655	G
49	2	656	G
49	2	657	U
49	2	658	С
49	2	677	G
49	2	678	A
49	2	679	U
49	2	680	U
49	2	682	С
49	2	684	A
49	2	686	С
49	2	695	U
49	2	696	С
49	2	698	U
49	2	699	U
49	2	702	G
49	2	705	U

Mol	Chain	Res	Type
49	2	706	А
49	2	707	А
49	2	708	С
49	2	709	С
49	2	711	U
49	2	713	А
49	2	716	С
49	2	717	С
49	2	718	U
49	2	719	U
49	2	721	U
49	2	722	G
49	2	728	U
49	2	729	G
49	2	730	G
49	2	731	С
49	2	732	G
49	2	733	А
49	2	734	А
49	2	735	С
49	2	738	G
49	2	740	А
49	2	741	С
49	2	742	U
49	2	743	U
49	2	744	U
49	2	752	А
49	2	753	А
49	2	755	А
49	2	757	A
49	2	758	U
49	2	759	U
49	2	765	G
49	2	766	U
49	2	771	A
49	2	773	C
49	2	774	A
49	2	778	G
49	2	779	U
49	2	780	A
49	2	783	G
49	2	784	С

Mol	Chain	Res	Type
49	2	789	А
49	2	794	U
49	2	799	A
49	2	802	G
49	2	803	А
49	2	804	А
49	2	806	А
49	2	807	А
49	2	810	G
49	2	811	А
49	2	812	А
49	2	813	U
49	2	814	A
49	2	815	G
49	2	820	U
49	2	821	U
49	2	829	А
49	2	831	U
49	2	832	U
49	2	833	U
49	2	834	G
49	2	836	U
49	2	840	U
49	2	841	U
49	2	843	U
49	2	845	G
49	2	847	A
49	2	848	С
49	2	850	А
49	2	851	U
49	2	852	C
49	2	853	G
49	2	855	A
49	2	857	U
49	2	862	A
49	2	863	A
49	2	864	U
49	2	865	A
49	2	884	A
49	2	894	U
49	2	895	G
49	2	897	С

Mol	Chain	Res	Type
49	2	898	А
49	2	903	U
49	2	912	U
49	2	914	G
49	2	917	U
49	2	919	А
49	2	921	U
49	2	925	G
49	2	926	А
49	2	929	А
49	2	931	С
49	2	932	U
49	2	933	A
49	2	935	U
49	2	944	А
49	2	951	A
49	2	960	U
49	2	966	A
49	2	970	А
49	2	973	А
49	2	976	G
49	2	988	А
49	2	992	А
49	2	993	А
49	2	1001	А
49	2	1004	U
49	2	1005	А
49	2	1016	С
49	2	1021	С
49	2	1025	A
49	2	1026	A
49	2	1028	С
49	2	1029	U
49	2	1031	U
49	2	1032	G
49	2	1039	A
49	2	1052	U
49	2	1053	G
49	2	1055	U
49	2	1056	U
49	2	1064	G
49	2	1076	А

Mol	Chain	Res	Type
49	2	1081	А
49	2	1091	А
49	2	1092	А
49	2	1097	U
49	2	1098	U
49	2	1099	U
49	2	1100	G
49	2	1101	G
49	2	1113	А
49	2	1118	G
49	2	1124	А
49	2	1126	G
49	2	1131	А
49	2	1132	A
49	2	1135	U
49	2	1137	A
49	2	1138	A
49	2	1139	A
49	2	1150	G
49	2	1158	С
49	2	1159	С
49	2	1162	С
49	2	1163	А
49	2	1164	G
49	2	1165	G
49	2	1166	A
49	2	1167	G
49	2	1174	С
49	2	1182	U
49	2	1183	А
49	2	1184	А
49	2	1185	U
49	2	1190	С
49	2	1191	U
49	2	1192	С
49	2	1193	A
49	2	1194	A
49	2	1199	G
49	2	1200	G
49	2	1202	А
49	2	1203	A
49	2	1205	С

Mol	Chain	Res	Type
49	2	1206	U
49	2	1207	С
49	2	1212	G
49	2	1213	G
49	2	1214	U
49	2	1215	С
49	2	1217	А
49	2	1219	А
49	2	1221	А
49	2	1222	С
49	2	1259	U
49	2	1262	U
49	2	1268	G
49	2	1269	U
49	2	1274	С
49	2	1275	A
49	2	1276	U
49	2	1278	G
49	2	1284	С
49	2	1285	U
49	2	1288	G
49	2	1298	U
49	2	1299	G
49	2	1301	U
49	2	1307	U
49	2	1308	G
49	2	1309	С
49	2	1313	А
49	2	1314	U
49	2	1315	U
49	2	1321	A
49	2	1336	А
49	2	1338	С
49	2	1339	С
49	2	1340	U
49	2	1341	A
49	2	1342	С
49	2	1343	U
49	2	1344	A
49	2	1345	А
49	2	1346	А
49	2	1347	U

Mol	Chain	Res	Type
49	2	1348	А
49	2	1349	G
49	2	1351	G
49	2	1352	G
49	2	1353	U
49	2	1356	U
49	2	1357	А
49	2	1358	G
49	2	1359	С
49	2	1360	А
49	2	1361	U
49	2	1362	U
49	2	1363	U
49	2	1366	U
49	2	1367	G
49	2	1371	A
49	2	1372	U
49	2	1374	С
49	2	1376	С
49	2	1377	U
49	2	1378	U
49	2	1380	U
49	2	1382	А
49	2	1383	G
49	2	1384	А
49	2	1387	G
49	2	1388	А
49	2	1389	С
49	2	1390	U
49	2	1391	A
49	2	1392	U
49	2	1397	U
49	2	1398	U
49	2	1399	С
49	2	1400	A
49	2	1401	A
49	2	1404	С
49	2	1407	U
49	2	1410	A
49	2	1412	G
49	2	1413	U
49	2	1414	U

Mol	Chain	Res	Type
49	2	1415	U
49	2	1427	А
49	2	1428	G
49	2	1432	U
49	2	1433	G
49	2	1434	U
49	2	1441	С
49	2	1445	G
49	2	1446	А
49	2	1447	С
49	2	1457	С
49	2	1458	G
49	2	1460	А
49	2	1467	С
49	2	1471	А
49	2	1472	С
49	2	1473	U
49	2	1474	G
49	2	1479	А
49	2	1481	С
49	2	1482	С
49	2	1485	С
49	2	1489	U
49	2	1490	С
49	2	1492	А
49	2	1493	А
49	2	1494	С
49	2	1496	U
49	2	1498	G
49	2	1501	С
49	2	1503	A
49	2	1504	G
49	2	1507	G
49	2	1509	C
49	2	1511	U
49	2	1512	G
49	2	1514	U
49	2	1515	A
49	2	1516	A
49	2	1518	С
49	2	1520	U
49	2	1521	G

Mol	Chain	Res	Type
49	2	1522	U
49	2	1523	G
49	2	1524	А
49	2	1527	С
49	2	1530	С
49	2	1531	G
49	2	1533	С
49	2	1534	G
49	2	1535	U
49	2	1536	G
49	2	1537	С
49	2	1538	U
49	2	1539	G
49	2	1540	G
49	2	1541	G
49	2	1542	G
49	2	1550	А
49	2	1557	U
49	2	1559	А
49	2	1561	U
49	2	1569	А
49	2	1575	G
49	2	1582	U
49	2	1583	А
49	2	1584	G
49	2	1587	А
49	2	1590	G
49	2	1596	С
49	2	1600	A
49	2	1611	A
49	2	1612	U
49	2	1613	U
49	2	1615	С
49	2	1616	G
49	2	1618	С
49	2	1619	С
49	2	1620	C
49	2	1622	G
49	2	1631	A
49	2	1634	С
49	2	1635	A
49	2	1636	С

Mol	Chain	Res	Type
49	2	1637	С
49	2	1638	G
49	2	1651	А
49	2	1656	U
49	2	1657	U
49	2	1658	G
49	2	1664	С
49	2	1670	G
49	2	1672	G
49	2	1673	G
49	2	1677	С
49	2	1678	А
49	2	1679	G
49	2	1680	G
49	2	1682	U
49	2	1683	С
49	2	1685	G
49	2	1689	А
49	2	1693	А
49	2	1694	А
49	2	1695	G
49	2	1697	G
49	2	1698	G
49	2	1699	G
49	2	1700	С
49	2	1703	С
49	2	1704	U
49	2	1705	С
49	2	1706	С
49	2	1707	А
49	2	1708	U
49	2	1710	U
49	2	1711	С
49	2	$171\overline{2}$	A
49	2	1713	G
49	2	1714	A
49	2	1715	G
49	2	1716	С
49	2	1717	G
49	2	1719	А
49	2	1720	G
49	2	1721	А

Mol	Chain	Res	Type
49	2	1722	A
49	2	1723	U
49	2	1725	U
49	2	1730	А
49	2	1731	А
49	2	1745	G
49	2	1746	А
49	2	1747	G
49	2	1755	А
49	2	1757	G
49	2	1758	U
49	2	1759	С
49	2	1763	А
49	2	1766	A
49	2	1768	G
49	2	1769	U
49	2	1770	U
49	2	1779	U
49	2	1780	G
49	2	1782	А
49	2	1783	С
49	2	1792	G
49	2	1794	А
49	2	1795	U
49	2	1796	С
49	2	1797	А
79	AX	2	С
79	AX	3	G
79	AX	4	G
79	AX	5	А
79	AX	7	U
79	AX	8	U
79	AX	9	A
79	AX	11	С
79	AX	12	U
79	AX	13	C
79	AX	16	U
79	AX	17	U
79	AX	18	G
79	AX	19	G
79	AX	20	G
79	AX	21	А

Mol	Chain	Res	Type
79	AX	25	С
79	AX	28	С
79	AX	29	А
79	AX	30	G
79	AX	32	С
79	AX	33	U
79	AX	34	G
79	AX	35	А
79	AX	36	А
79	AX	38	А
79	AX	39	U
79	AX	41	U
79	AX	42	G
79	AX	43	G
79	AX	44	A
79	AX	45	G
79	AX	46	G
79	AX	47	U
79	AX	48	С
79	AX	51	G
79	AX	54	U
79	AX	55	U
79	AX	56	С
79	AX	57	G
79	AX	59	U
79	AX	60	С
79	AX	61	С
79	AX	62	А
79	AX	64	A
79	AX	66	A
79	AX	68	U
79	AX	69	U
79	AX	70	C
79	AX	71	G
79	AX	74	C
80	AY	44	A
80	AY	45	A
80	AY	46	U
80	AY	48	U
80	AY	49	U
80	AY	50	U
79	AZ	2	C

Mol	Chain	Res	Type
79	AZ	4	G
79	AZ	5	A
79	AZ	7	U
79	AZ	8	U
79	AZ	9	А
79	AZ	12	U
79	AZ	13	С
79	AZ	16	U
79	AZ	17	U
79	AZ	18	G
79	AZ	19	G
79	AZ	20	G
79	AZ	21	A
79	AZ	25	С
79	AZ	27	С
79	AZ	28	С
79	AZ	32	С
79	AZ	34	G
79	AZ	35	А
79	AZ	36	А
79	AZ	38	А
79	AZ	39	U
79	AZ	41	U
79	AZ	44	А
79	AZ	45	G
79	AZ	46	G
79	AZ	47	U
79	AZ	48	С
79	AZ	54	U
79	AZ	55	U
79	AZ	56	С
79	AZ	59	U
79	AZ	62	A
79	AZ	68	U
79	AZ	69	U
79	AZ	70	C
79	AZ	71	G
79	AZ	73	А
79	AZ	74	C

All (196) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
28	1	19	U
28	1	46	U
28	1	50	U
28	1	53	G
28	1	55	G
28	1	59	G
28	1	141	С
28	1	149	U
28	1	187	А
28	1	198	А
28	1	201	А
28	1	202	G
28	1	207	U
28	1	251	G
28	1	265	А
28	1	267	G
28	1	283	G
28	1	289	А
28	1	307	А
28	1	318	А
28	1	322	U
28	1	323	А
28	1	336	А
28	1	345	G
28	1	391	А
28	1	418	А
28	1	431	U
28	1	443	G
28	1	500	С
28	1	509	U
28	1	547	G
28	1	578	A
28	1	595	G
28	1	630	А
28	1	646	A
28	1	693	A
28	1	696	С
28	1	707	U
28	1	778	U
28	1	831	G
28	1	846	A
28	1	856	G
28	1	885	U
L	L	L	

Mol	Chain	Res	Type
28	1	900	G
28	1	902	G
28	1	932	U
28	1	935	U
28	1	940	G
28	1	964	G
28	1	998	А
28	1	999	G
28	1	1002	А
28	1	1042	U
28	1	1066	G
28	1	1084	А
28	1	1110	U
28	1	1112	А
28	1	1113	G
28	1	1128	U
28	1	1147	G
28	1	1165	А
28	1	1166	G
28	1	1300	G
28	1	1325	U
28	1	1375	G
28	1	1389	G
28	1	1390	А
28	1	1410	U
28	1	1435	А
28	1	1448	U
28	1	1501	U
28	1	1525	G
28	1	1529	А
$\overline{28}$	1	1535	A
28	1	1565	G
$\overline{28}$	1	1574	С
28	1	1597	С
$\overline{28}$	1	1639	С
28	1	1640	G
28	1	1650	G
$\overline{28}$	1	1664	G
28	1	1665	С
$\overline{28}$	1	1668	G
28	1	1678	G
$\overline{28}$	1	1829	G

Mol	Chain	Res	Type
28	1	1837	U
28	1	1852	G
28	1	1855	U
28	1	1868	G
28	1	1875	G
28	1	1902	G
28	1	1926	С
28	1	1949	G
28	1	2103	U
28	1	2140	U
28	1	2155	G
28	1	2177	G
28	1	2223	A
28	1	2247	G
28	1	2260	U
28	1	2270	A
28	1	2290	С
28	1	2303	A
28	1	2325	G
28	1	2353	G
28	1	2360	С
28	1	2361	A
28	1	2378	С
28	1	2391	G
28	1	2467	G
28	1	2469	G
28	1	2480	А
28	1	2491	А
28	1	2498	U
28	1	2517	U
28	1	2520	A
28	1	2541	U
28	1	2545	С
28	1	2609	A
28	1	2633	U
28	1	2635	A
28	1	2655	U
28	1	2685	С
28	1	2696	A
28	1	2699	G
28	1	2734	A
28	1	2749	G

Mol	Chain	Res	Type
28	1	2765	С
28	1	2777	G
28	1	2801	А
28	1	2816	G
28	1	2823	G
28	1	2832	С
28	1	2836	С
28	1	2837	А
28	1	2844	С
28	1	2854	U
28	1	2855	U
28	1	2894	С
28	1	2904	U
28	1	2928	С
28	1	2930	A
28	1	2959	С
28	1	2981	U
28	1	3006	А
28	1	3021	A
28	1	3046	А
28	1	3050	U
28	1	3052	G
28	1	3101	G
28	1	3113	A
28	1	3136	G
28	1	3138	U
28	1	3143	С
28	1	3210	А
28	1	3229	G
28	1	3305	A
28	1	3315	G
29	3	25	G
29	3	47	С
29	3	61	G
29	3	67	G
29	3	84	A
30	4	3	A
30	4	14	С
30	4	20	U
30	4	43	A
30	4	44	A
30	4	53	А

Mol	Chain	Res	Type
30	4	69	U
30	4	86	U
30	4	133	G
49	2	88	U
49	2	240	U
49	2	706	A
49	2	757	А
49	2	1123	С
49	2	1138	А
49	2	1164	G
49	2	1181	U
49	2	1190	С
49	2	1205	С
49	2	1298	U
49	2	1358	G
49	2	1379	С
49	2	1497	U
49	2	1513	G
49	2	1541	G
49	2	1684	U
49	2	1715	G
49	2	1746	A
49	2	1758	U
79	AX	1	G
79	AX	42	G
79	AX	67	A
79	AZ	67	A

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 7 ligands modelled in this entry, 7 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers.

There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-22196. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 256

Z Index: 206

6.3.2 Raw map

X Index: 256

Y Index: 267

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{22196}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 11315 $\rm nm^3;$ this corresponds to an approximate mass of 10221 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.238 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.238 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.20	-	-
Author-provided FSC curve	4.14	5.15	4.20
Unmasked-calculated*	6.11	9.73	6.72

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.11 differs from the reported value 4.2 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-22196 and PDB model 6XIQ. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

This section was not generated.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 96% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

Chain	Atom inclusion
All	0.9625
1	0.9455
2	0.9797
3	0.9849
4	0.9374
A	0.9126
AA	0.9881
AB	0.9731
AD	0.9732
AE	0.9756
AF	0.9810
AG	0.9620
AH	0.9756
AI	0.9731
AJ	0.9880
AK	0.9321
AL	0.9849
AM	0.9800
AN	0.9826
AO	0.9914
AP	0.9452
AQ	0.9554
AR	0.9751
AS	0.9874
AT	0.9505
AU	0.9804
AV	0.9558
AX	0.9317
AY	0.9085
AZ	0.9102
В	0.9853
С	0.9859
D	0.9862
E	0.9876
F	0.9851

Chain	Atom inclusion
G	0.9780
Н	0.9792
Ι	0.9824
J	0.9848
L	0.9825
L1	0.8369
М	0.9893
N	0.9786
0	0.9789
Р	0.9688
P0	0.7514
P2	0.8956
Q	0.9849
R	0.9822
S	0.9879
Т	0.9847
U	0.9936
V	0.9653
W	0.9941
Х	0.9926
Y	0.9928
Z	0.9851
a	0.9720
b	0.9801
с	0.9808
d	0.9883
е	0.9859
f	0.9829
g	0.9812
h	0.9820
i	0.9785
j	0.9848
k	0.9917
1	0.9614
m	0.7723
n	0.9856
0	0.9723
р	0.9701
q	0.9741
r	0.9762
S	0.9795
t	0.9668

Continued from previous page...

Chain	Atom inclusion
u	0.9801
V	0.9803
W	0.9585
х	0.9807
У	0.9833
Z	0.9750

