

wwPDB EM Validation Summary Report (i)

May 13, 2024 - 10:23 pm BST

PDB ID	:	6XTX
EMDB ID	:	EMD-10619
Title	:	CryoEM structure of human CMG bound to ATPgammaS and DNA
Authors	:	Rzechorzek, N.J.; Pellegrini, L.
Deposited on	:	2020-01-16
Resolution	:	3.29 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	FAILED
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.29 Å.

There are no overall percentile quality scores available for this entry.

MolProbity failed to run properly - the sequence quality summary graphics cannot be shown.

2 Entry composition (i)

There are 16 unique types of molecules in this entry. The entry contains 40834 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA replication licensing factor MCM2.

Mol	Chain	Residues		A	AltConf	Trace			
1	2	691	Total 5514	C 3471	N 988	O 1023	S 32	0	0

• Molecule 2 is a protein called DNA replication licensing factor MCM3.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	3	608	Total 4782	C 2997	N 844	0 916	S 25	0	0

• Molecule 3 is a protein called DNA replication licensing factor MCM4.

Mol	Chain	Residues		At	AltConf	Trace			
3	4	598	Total 4784	C 3016	N 850	O 892	S 26	0	0

There are 20 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
4	-19	MET	-	initiating methionine	UNP P33991
4	-18	HIS	-	expression tag	UNP P33991
4	-17	HIS	-	expression tag	UNP P33991
4	-16	HIS	-	expression tag	UNP P33991
4	-15	HIS	-	expression tag	UNP P33991
4	-14	HIS	-	expression tag	UNP P33991
4	-13	HIS	-	expression tag	UNP P33991
4	-12	HIS	-	expression tag	UNP P33991
4	-11	HIS	-	expression tag	UNP P33991
4	-10	GLU	-	expression tag	UNP P33991
4	-9	ASN	-	expression tag	UNP P33991
4	-8	LEU	-	expression tag	UNP P33991
4	-7	TYR	-	expression tag	UNP P33991
4	-6	PHE	-	expression tag	UNP P33991
4	-5	GLN	-	expression tag	UNP P33991

Continued on next page...

Chain	Residue	Modelled	Actual	Comment	Reference
4	-4	GLY	-	expression tag	UNP P33991
4	-3	SER	-	expression tag	UNP P33991
4	-2	SER	-	expression tag	UNP P33991
4	-1	ALA	-	expression tag	UNP P33991
4	0	THR	-	expression tag	UNP P33991

Continued from previous page...

• Molecule 4 is a protein called DNA replication licensing factor MCM5.

Mol	Chain	Residues		At	AltConf	Trace			
4	5	577	Total 4524	C 2841	N 805	0 843	${ m S}\ 35$	0	0

• Molecule 5 is a protein called DNA replication licensing factor MCM6.

Mol	Chain	Residues		A	AltConf	Trace			
5	6	679	Total 5473	C 3448	N 965	O 1033	${ m S}\ 27$	0	0

• Molecule 6 is a protein called DNA replication licensing factor MCM7.

Mol	Chain	Residues		At	AltConf	Trace			
6	7	598	Total 4727	C 2960	N 837	O 901	S 29	0	0

• Molecule 7 is a protein called DNA replication complex GINS protein PSF1.

Mol	Chain	Residues		At	AltConf	Trace			
7	А	196	Total 1613	C 1016	N 290	O 295	S 12	0	0

• Molecule 8 is a protein called DNA replication complex GINS protein PSF2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	В	176	Total 1431	C 916	N 242	0 264	S 9	0	0

There are 37 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	186	GLU	-	expression tag	UNP Q9Y248
В	187	ASN	-	expression tag	UNP $Q9Y248$

Continued on next page...

Continu	ied from pre	vious page		~	
Chain	Residue	Modelled	Actual	Comment	Reference
<u> </u>	188	LEU	-	expression tag	UNP Q9Y248
B	189	TYR	-	expression tag	UNP Q9Y248
B	190	PHE	-	expression tag	UNP Q9Y248
В	191	GLN	-	expression tag	UNP Q9Y248
В	192	GLY	-	expression tag	UNP Q9Y248
В	193	SER	-	expression tag	UNP Q9Y248
В	194	ALA	-	expression tag	UNP Q9Y248
В	195	TRP	-	expression tag	UNP Q9Y248
В	196	SER	-	expression tag	UNP Q9Y248
В	197	HIS	-	expression tag	UNP Q9Y248
В	198	PRO	-	expression tag	UNP Q9Y248
В	199	GLN	-	expression tag	UNP Q9Y248
В	200	PHE	-	expression tag	UNP Q9Y248
В	201	GLU	-	expression tag	UNP Q9Y248
В	202	LYS	-	expression tag	UNP Q9Y248
В	203	GLY	-	expression tag	UNP Q9Y248
В	204	GLY	-	expression tag	UNP Q9Y248
В	205	GLY	-	expression tag	UNP Q9Y248
В	206	SER	-	expression tag	UNP Q9Y248
В	207	GLY	-	expression tag	UNP Q9Y248
В	208	GLY	-	expression tag	UNP Q9Y248
В	209	GLY	-	expression tag	UNP Q9Y248
В	210	SER	-	expression tag	UNP Q9Y248
В	211	GLY	-	expression tag	UNP Q9Y248
В	212	GLY	-	expression tag	UNP Q9Y248
В	213	SER	-	expression tag	UNP Q9Y248
В	214	ALA	-	expression tag	UNP Q9Y248
В	215	TRP	-	expression tag	UNP Q9Y248
В	216	SER	-	expression tag	UNP Q9Y248
В	217	HIS	-	expression tag	UNP Q9Y248
В	218	PRO	-	expression tag	UNP Q9Y248
В	219	GLN	-	expression tag	UNP Q9Y248
В	220	PHE	-	expression tag	UNP Q9Y248
В	221	GLU	-	expression tag	UNP Q9Y248
В	222	LYS	-	expression tag	UNP Q9Y248

~ . .

• Molecule 9 is a protein called DNA replication complex GINS protein PSF3.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	С	194	Total 1552	C 985	N 268	O 293	S 6	0	0

• Molecule 10 is a protein called DNA replication complex GINS protein SLD5.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	D	203	Total 1679	C 1065	N 290	0 314	S 10	0	0

• Molecule 11 is a protein called Cell division control protein 45 homolog.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	Е	538	Total 4380	C 2785	N 751	0 813	S 31	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	346	GLN	GLU	variant	UNP O75419

Mol	Chain	Residues	Atoms					AltConf	Trace
12	М	11	Total 220	C 110	N 22	0 77	Р 11	0	0

• Molecule 13 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
13	2	1	Total Zn 1 1	0
13	4	1	Total Zn 1 1	0
13	5	1	Total Zn 1 1	0
13	6	1	Total Zn 1 1	0
13	7	1	Total Zn 1 1	0

• Molecule 14 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Atoms				
14	0	1	Total	С	Ν	Ο	Р	0
14	14 2	L	27	10	5	10	2	0
14	2	1	Total	С	Ν	0	Р	0
14	3		27	10	5	10	2	0

• Molecule 15 is PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER (three-letter code: AGS) (formula: C₁₀H₁₆N₅O₁₂P₃S).

Mol	Chain	Residues	Atoms					AltConf	
15	1	1	Total	С	Ν	0	Р	S	0
10	4	1	31	10	5	12	3	1	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues		Atoms					AltConf
15	4	1	Total	С	Ν	Ο	Р	S	0
10	4	L	31	10	5	12	3	1	0
15	7	1	Total	С	Ν	Ο	Р	S	0
10		L	31	10	5	12	3	1	0

• Molecule 16 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
16	4	1	Total Mg 1 1	0
16	6	1	Total Mg 1 1	0
16	7	1	Total Mg 1 1	0

MolProbity failed to run properly - this section is therefore empty.

3 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	213527	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	57.6	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

4 Model quality (i)

4.1 Standard geometry (i)

MolProbity failed to run properly - this section is therefore empty.

4.2 Too-close contacts (i)

MolProbity failed to run properly - this section is therefore empty.

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.2 Protein sidechains (i)

MolProbity failed to run properly - this section is therefore empty.

4.3.3 RNA (i)

MolProbity failed to run properly - this section is therefore empty.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

Of 13 ligands modelled in this entry, 8 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

Mal	Mal True Chain Dec 1		Tinle	Bond lengths			Bond angles			
INIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
15	AGS	4	902	16	26,33,33	0.81	0	26,52,52	0.81	1 (3%)
14	ADP	3	1001	-	24,29,29	0.94	1 (4%)	29,45,45	1.46	4 (13%)
15	AGS	4	904	16	26,33,33	0.82	0	26,52,52	0.83	1 (3%)
14	ADP	2	1001	-	24,29,29	0.98	1 (4%)	29,45,45	1.55	4 (13%)
15	AGS	7	1001	16	26,33,33	0.76	0	26,52,52	0.71	1 (3%)

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
15	AGS	4	902	16	-	3/17/38/38	0/3/3/3
14	ADP	3	1001	-	-	4/12/32/32	0/3/3/3
15	AGS	4	904	16	-	7/17/38/38	0/3/3/3
14	ADP	2	1001	-	-	2/12/32/32	0/3/3/3
15	AGS	7	1001	16	-	4/17/38/38	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
14	2	1001	ADP	C5-C4	2.44	1.47	1.40
14	3	1001	ADP	C5-C4	2.21	1.46	1.40

The worst 5 of 11 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
14	2	1001	ADP	C3'-C2'-C1'	4.02	107.03	100.98
14	3	1001	ADP	PA-O3A-PB	-3.87	119.53	132.83
14	2	1001	ADP	PA-O3A-PB	-3.83	119.70	132.83
14	3	1001	ADP	N3-C2-N1	-3.28	123.56	128.68
14	2	1001	ADP	N3-C2-N1	-3.03	123.95	128.68

There are no chirality outliers.

5 of 20 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
14	3	1001	ADP	C5'-O5'-PA-O1A
14	3	1001	ADP	C5'-O5'-PA-O2A
15	4	904	AGS	PB-O3B-PG-O2G
15	4	904	AGS	PB-O3B-PG-O3G
15	4	904	AGS	C5'-O5'-PA-O1A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10619. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

5.1 Orthogonal projections (i)

This section was not generated.

5.2 Central slices (i)

This section was not generated.

5.3 Largest variance slices (i)

This section was not generated.

5.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

5.5 Orthogonal surface views (i)

This section was not generated.

5.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

6 Map analysis (i)

This section contains the results of statistical analysis of the map.

6.1 Map-value distribution (i)

This section was not generated.

6.2 Volume estimate versus contour level (i)

This section was not generated.

6.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

7 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

8 Map-model fit (i)

This section was not generated.

