

Sep 3, 2024 – 08:18 PM JST

PDB ID	•	8XUT
EMDB ID	:	EMD-38683
Title	:	XBB.1.5 Spike Trimer in complex with heparan sulfate
Authors	:	Yue, C.; Liu, P.; Mao, X.
Deposited on	:	2024-01-14
Resolution	:	3.20 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.38.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain					
1	А	1269	54%	27%	·	18%		
1	В	1269	55%	25%	•	18%		
1	С	1269	58%	23%	•	18%		

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 25149 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	В	1049	Total	С	Ν	Ο	\mathbf{S}	0	0
	1042	8154	5216	1359	1542	37	0	0	
1	1 Λ	1049	Total	С	Ν	Ο	\mathbf{S}	0	0
	1042	8154	5216	1359	1542	37	0	0	
1	1 C	1049	Total	С	Ν	Ο	S	0	0
	U	1042	8154	5216	1359	1542	37	0	0

• Molecule 1 is a protein called Spike glycoprotein.

Chain	Residue	Modelled	Actual	Comment	Reference
В	22	ILE	THR	variant	UNP P0DTC2
В	?	-	LEU	deletion	UNP P0DTC2
В	?	-	PRO	deletion	UNP P0DTC2
В	?	-	PRO	deletion	UNP P0DTC2
В	27	SER	ALA	variant	UNP P0DTC2
В	83	ALA	VAL	variant	UNP P0DTC2
В	142	ASP	GLY	variant	UNP P0DTC2
В	?	-	TYR	deletion	UNP P0DTC2
В	146	GLN	HIS	variant	UNP P0DTC2
В	183	GLU	GLN	variant	UNP P0DTC2
В	213	GLU	VAL	variant	UNP P0DTC2
В	252	VAL	GLY	variant	UNP P0DTC2
В	339	HIS	GLY	variant	UNP P0DTC2
В	346	THR	ARG	variant	UNP P0DTC2
В	368	ILE	LEU	variant	UNP P0DTC2
В	371	PHE	SER	variant	UNP P0DTC2
В	373	PRO	SER	variant	UNP P0DTC2
В	375	PHE	SER	variant	UNP P0DTC2
В	376	ALA	THR	variant	UNP P0DTC2
В	405	ASN	ASP	variant	UNP P0DTC2
В	408	SER	ARG	variant	UNP P0DTC2
В	417	ASN	LYS	variant	UNP P0DTC2
В	440	LYS	ASN	variant	UNP P0DTC2
В	445	PRO	VAL	variant	UNP P0DTC2

Continu	icu jioni pre	vious puye			
Chain	Residue	Modelled	Actual	Comment	Reference
В	446 SER		GLY	variant	UNP P0DTC2
В	460	LYS	ASN	variant	UNP P0DTC2
В	477	ASN	SER	variant	UNP P0DTC2
В	478	LYS	THR	variant	UNP P0DTC2
В	484	ALA	GLU	variant	UNP P0DTC2
В	486	PRO	PHE	variant	UNP P0DTC2
В	490	SER	PHE	variant	UNP P0DTC2
В	498	ARG	GLN	variant	UNP P0DTC2
В	501	TYR	ASN	variant	UNP P0DTC2
В	505	HIS	TYR	variant	UNP P0DTC2
В	614	GLY	ASP	variant	UNP P0DTC2
В	655	TYR	HIS	variant	UNP P0DTC2
В	679	LYS	ASN	variant	UNP P0DTC2
В	681	HIS	PRO	variant	UNP P0DTC2
В	764	LYS	ASN	variant	UNP P0DTC2
В	796	TYR	ASP	variant	UNP P0DTC2
В	954	HIS	GLN	variant	UNP P0DTC2
В	969	LYS	ASN	variant	UNP P0DTC2
А	22	ILE	THR	variant	UNP P0DTC2
А	?	-	LEU	deletion	UNP P0DTC2
А	?	-	PRO	deletion	UNP P0DTC2
А	?	-	PRO	deletion	UNP P0DTC2
А	27	SER	ALA	variant	UNP P0DTC2
А	83	ALA	VAL	variant	UNP P0DTC2
А	142	ASP	GLY	variant	UNP P0DTC2
А	?	-	TYR	deletion	UNP P0DTC2
А	146	GLN	HIS	variant	UNP P0DTC2
А	183	GLU	GLN	variant	UNP P0DTC2
А	213	GLU	VAL	variant	UNP P0DTC2
А	252	VAL	GLY	variant	UNP P0DTC2
А	339	HIS	GLY	variant	UNP P0DTC2
А	346	THR	ARG	variant	UNP P0DTC2
А	368	ILE	LEU	variant	UNP P0DTC2
А	371	PHE	SER	variant	UNP P0DTC2
А	373	PRO	SER	variant	UNP P0DTC2
А	375	PHE	SER	variant	UNP P0DTC2
A	376	ALA	THR	variant	UNP P0DTC2
А	405	ASN	ASP	variant	UNP P0DTC2
А	408	SER	ARG	variant	UNP P0DTC2
А	417	ASN	LYS	variant	UNP P0DTC2
А	440	LYS	ASN	variant	UNP P0DTC2
А	445	PRO	VAL	variant	UNP P0DTC2

Chain	Residue	Modelled	Actual	Comment	Reference
А	446	SER	GLY	variant	UNP P0DTC2
A	460	LYS	ASN	variant	UNP P0DTC2
A	477	ASN	SER	variant	UNP P0DTC2
A	478	LYS	THR	variant	UNP P0DTC2
A	484	ALA	GLU	variant	UNP P0DTC2
A	486	PRO	PHE	variant	UNP P0DTC2
A	490	SER	PHE	variant	UNP P0DTC2
А	498	ARG	GLN	variant	UNP P0DTC2
А	501	TYR	ASN	variant	UNP P0DTC2
А	505	HIS	TYR	variant	UNP P0DTC2
А	614	GLY	ASP	variant	UNP P0DTC2
А	655	TYR	HIS	variant	UNP P0DTC2
А	679	LYS	ASN	variant	UNP P0DTC2
А	681	HIS	PRO	variant	UNP P0DTC2
А	764	LYS	ASN	variant	UNP P0DTC2
А	796	TYR	ASP	variant	UNP P0DTC2
А	954	HIS	GLN	variant	UNP P0DTC2
A	969	LYS	ASN	variant	UNP P0DTC2
С	22	ILE	THR	variant	UNP P0DTC2
С	?	-	LEU	deletion	UNP P0DTC2
С	?	-	PRO	deletion	UNP P0DTC2
C	?	-	PRO	deletion	UNP P0DTC2
C	27	SER	ALA	variant	UNP P0DTC2
C	83	ALA	VAL	variant	UNP P0DTC2
C	142	ASP	GLY	variant	UNP P0DTC2
C	?	-	TYR	deletion	UNP P0DTC2
C	146	GLN	HIS	variant	UNP P0DTC2
C	183	GLU	GLN	variant	UNP P0DTC2
C	213	GLU	VAL	variant	UNP P0DTC2
C	252	VAL	GLY	variant	UNP P0DTC2
C	339	HIS	GLY	variant	UNP P0DTC2
C	346	THR	ARG	variant	UNP P0DTC2
C	368	ILE	LEU	variant	UNP P0DTC2
C	371	PHE	SER	variant	UNP P0DTC2
C	373	PRO	SER	variant	UNP P0DTC2
	375	PHE	SER	variant	UNP P0DTC2
	376	ALA	THR	variant	UNP P0DTC2
	405	ASN	ASP	variant	UNP P0DTC2
	408	SER	ARG	variant	UNP P0DTC2
	417	ASN	LYS	variant	UNP P0DTC2
	440		ASN	variant	UNP P0DTC2
I U	445	\square PRO	VAL	variant	+ UNP PUDTC2

Chain	Residue	Modelled	Actual	Comment	Reference
С	446	SER	GLY	variant	UNP P0DTC2
С	460	LYS	ASN	variant	UNP P0DTC2
С	477	ASN	SER	variant	UNP P0DTC2
С	478	LYS	THR	variant	UNP P0DTC2
С	484	ALA	GLU	variant	UNP P0DTC2
С	486	PRO	PHE	variant	UNP P0DTC2
С	490	SER	PHE	variant	UNP P0DTC2
С	498	ARG	GLN	variant	UNP P0DTC2
С	501	TYR	ASN	variant	UNP P0DTC2
С	505	HIS	TYR	variant	UNP P0DTC2
С	614	GLY	ASP	variant	UNP P0DTC2
С	655	TYR	HIS	variant	UNP P0DTC2
С	679	LYS	ASN	variant	UNP P0DTC2
С	681	HIS	PRO	variant	UNP P0DTC2
С	764	LYS	ASN	variant	UNP P0DTC2
C	796	TYR	ASP	variant	UNP P0DTC2
C	954	HIS	GLN	variant	UNP P0DTC2
С	969	LYS	ASN	variant	UNP P0DTC2

• Molecule 2 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	AltConf
9	В	1	Total C N O	0
		1	14 8 1 5	0
0	2 B	1	Total C N O	0
		1	14 8 1 5	0

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf
0	Р	1	Total	С	Ν	0	0
	D	1	14	8	1	5	0
2	В	1	Total	С	Ν	Ο	0
2	D	1	14	8	1	5	0
2	В	1	Total	С	Ν	Ο	0
	D	1	14	8	1	5	0
2	В	1	Total	С	Ν	Ο	0
		1	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
	2	-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
	2	-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
	2	-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
		-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
		-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
		1	14	8	1	5	0
2	В	1	Total	С	Ν	Ο	0
		-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
		-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	Ο	0
	2	-	14	8	1	5	Ŭ
2	В	1	Total	С	Ν	0	0
		-	14	8	1	5	Ŭ
2	А	1	Total	С	Ν	Ο	0
		_	14	8	1	5	
2	А	1	Total	С	Ν	Ο	0
			14	8	1	5	
2	А	1	Total	С	Ν	O	0
			14	8	1	5	
2	А	1	Total	C	Ν	Õ	0
			14	8	1	5	
2	А	1	Total	C	N	U E	0
			14	8	1	5	
2	А	1	Total	C	N	U E	0
			14	8	1	5	-
2	А	1	Total	C	N	Ũ	0
_	11	_	14	8	1	5	Ĭ

Continued from previous page...

Mol	Chain	Residues	A	ton	ns		AltConf
0	٨	1	Total	С	Ν	Ο	0
	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	Ο	0
2	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	0	0
2	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	0	0
2	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	0	0
	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	Ο	0
	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	Ο	0
	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	Ο	0
	А	1	14	8	1	5	0
0	٨	1	Total	С	Ν	Ο	0
	А	1	14	8	1	5	0
0	C	1	Total	С	Ν	Ο	0
	C	1	14	8	1	5	0
2	C	1	Total	С	Ν	0	0
	C	1	14	8	1	5	0
0	C	1	Total	С	Ν	0	0
	U	1	14	8	1	5	0
2	С	1	Total	С	Ν	Ο	0
	U	1	14	8	1	5	0
2	С	1	Total	С	Ν	Ο	0
2	U	T	14	8	1	5	0
2	С	1	Total	С	Ν	Ο	0
	U	1	14	8	1	5	0
2	С	1	Total	С	Ν	Ο	0
	U	1	14	8	1	5	0
2	С	1	Total	С	Ν	Ο	0
		Ŧ	14	8	1	5	
2	С	1	Total	С	Ν	Ο	0
		1	14	8	1	5	0
2	С	1	Total	С	Ν	Ο	0
		L	14	8	1	5	0
2	С	1	Total	С	Ν	0	0
		1	14	8	1	5	
2	C	1	Total	С	Ν	0	0
		1	14	8	1	5	

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf				
9	С	1	Total C N O	0				
	U	1	14 8 1 5	0				
2	С	1	Total C N O	0				
	U	1	14 8 1 5	0				
2	C	C	C	С	С	1	Total C N O	0
	U	1	14 8 1 5	0				
2	С	1	Total C N O	0				
	U	1	14 8 1 5	U				

• Molecule 3 is 2-O-sulfo-beta-L-altropyranuronic acid (three-letter code: IDU) (formula: $C_6H_{10}O_{10}S$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			AltConf	
3	А	1	Total 15	С 6	O 8	S 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain B:	55%	25% •	18%
MET PHE VHL VLL LEU LEU LEU VLL LEU VLL CLEU CLE SER SER SER SER SER SER SER SER LEU LEU	THR ARG THR THR THR TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS	L54 V62 F65 V62 V62 V62 V62 V61 SER G17	ASN GLY THR R77 R77 R78 R78 F79 D30 D30 N87 N87 D38
089 V90 E96 E96 K97 S97 S97 N99 F106 F106 F1106 F1106 F1106 F1106 F1106 F1106 F1117 S1116	N121 124 1126 1126 1126 1130 1131 1138 1138 1138 1138 1138 1138	VI 145 TYR GLN LYS ASN ASN ASN LYS SER TRP MET GLU SER SER	GLU R159 V150 V150 C166 F167 F168 F168
F175 L176 M177 D178 L179 E190 F196 K196 F201 F201 F201 F201 F205 Y206 Y206	1210 217 218 2219 7220 7229 7220 1225 1223 1233 1235 1233 1235 1233	L241 L242 H245 R245 S247 Y248 L249 T250 P251 V252	D253 S254 W258 M259 A260 A260 A262 A264 A264 A264
7275 1277 1277 1277 1278 1289 1284 1284 1284 1284 1284 1284 1284 1284	132 132 132 132 1332 1332 1332 1332 133	5009 6376 6376 79 79 7383 7383 7383 7385	K386 L387 N388 N388 C391 F392 F392 V395 V395
1402 8443 8443 8444 8444 8415 8414 9414 1415 8415 8415 8415 8415 8415 8415 8	1428 1428 1430 1430 1432 1434 1437 1437 1437 1437 1437 1437 1437	N448 N448 F456 R457 R456 R466 R466 P473 Y473 Y473	N477 K478 K478 A483 A484 N487 C488 Y489 S490
4491 1492 1492 1493 1493 1493 1493 1493 1493 1493 1493	L5 17 L5 17 L5 17 L5 17 L5 17 L5 17 L5 17 C5 25 C	N942 F543 S555 N3555 K557 K557 K558 F559 F559 F559	4563 4564 7566 4570 4570 4570 7579 7579 7579 7580
1884 1887 1887 1889 18891 18891 18895 18905 18906 18006 18006 1611 7617 7617 7617 7617 7617 7617 7	VILLA VILLA	1651 1651 N657 0663 1664 1666	6669 1670 6671 6672 8673 9675 THR GLN THR CLN
SER HIS ARG ARG ARG ARG ARG CAR ARG CAR ARG CAR CAR CAR CAR CAR CAR CAR CAR CAR CAR	8700 8711 8711 1713 1713 1713 1714 1714 1714 1714 1	7.35 7.37 7.739 7.739 7.739 7.739 7.739 7.739 7.758 7.758 7.761	9762 L767 L768 E773 9774 0774
V7 81 K77 86 47 87 77 87 77 87 77 87 77 97 77 97 77 97 77 97 77 97 77 97 77 97 77 97 77 96 77 98 77 97 77 98 77 96 77 98 77 96 77 98 77 96 77 98 77 97 77 98 77 97 77 96 77 96 77 96 77 97 77 96 77 97 77 96 77 96 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76	8916 18917 18917 18918 18918 18918 1918 1927 1927 1115 1115 1115 1115 1115 1115 1115 11	LTS LEU GLY GLY GLY ASP ARG ASP LEU LEU C851 C851	A852 (853 (855 (855 (855 (855 (855 (855 (866) (877) (1878)
1882 1885 1886 1886 1886 1886 1896 1896 1896 1896	F906 7906 7908 7908 7911 7913 7913 7913 7913 7913 7913 7913 7913 7913 7913 7913 7913 7913 7913 7913 7913 7914 7915 7915 7916 7917 7918 7919 7910 7910 7911 7912 7913 7914 7915 7916 7917 7918 7918 7918 7918 7918 7918 7918 7918 7918 7918 7918 7918 7918	1934 1934 1936 1956 1956 1957 0957 N960	L966 K969 S975 L977 L977 L977 R983 R983 R983
E388 E389 A981 A991 A991 A991 A995 C995 C995 C1004 A1004 A1006 A1006 A1010 A1010	A1 026 K1 038 C 038 C 043 C 043 C 043 L 1049 L 1049 L 1049 V 061 V 061 N 1049 L 1049 L 1049 L 1049 N 1074	C1052 R1091 F1095 R1107 N1108 11115 D1118	81123 C1126 V1129 I1122 I1132 V1137 V1137

 \bullet Molecule 1: Spike glycoprotein

ASP ASP SER GLU PRO VAL LEU LYS GLY VAL LYS CLY HIS TYR THR

• Molecule 1: Spike glycoprotein

Chain A:	54%	27% · .	18%
MET PHE VAL VAL LEU VAL LEU VAL LEU VAL SER SER SER SER SER SER SER SER SER SER	LILE THR ARG 756 834 837 844 845 845 850 850 850 850 850 850 850 850 850 85	F 95 H 66 H 66 H 69 H 69 H 69 C 10 T H 8 C 11 T H 8 C 11 T H 8 T H 8 H 8 T H 8	K77 F79 F83 L84 N87 N87
898 1100 1100 1100 1105 1110 1110 1111 1114 1114	1115 1126 1127 1128 1128 1128 1128 1128 1128 1128	LYS ASN ASN ASN LYS SER TYP GLU CLU CLU CLU CLU CLU	V159 V160 N165 C166 T167 F174 F175 L176
M177 D178 L179 E180 E180 R190 R190 R190 R200 F201 F201 F201 F203 F203 F204 F204 F204 F203 F203 F206 F204	P217 Q219 Q219 L223 L226 V227 U228 P229 P229 P239 R233 R233 R233 R233 R233 R233 R233 R	1240 L241 L245 H245 H245 AR6 S247 Y248 L249 L249 T250 P251	8254 8261 8261 8262 8264 8269 7269 7269 1276
L277 L277 X278 X278 X278 X288 X288 X288 X288 X	1300 1307 1307 1307 1315 1315 1315 1315 1315 1315 1315 131	F338 F342 F349 8349 N354 N355 K355 K355 K355	1358 V362 A363 D364 E371 F371 F373 F373
F375 A376 A376 F376 F378 C379 C379 C379 C379 C378 C378 C378 C378 C378 C378 C378 C378	D338 D338 1402 E406 8408 0447 1447 1447 1448 1445 1445 1445 1445 1445 1445 1445	D442 P445 P445 N448 N448 Y451 L452 Y453 Y453	R457 K458 S459 K460 L460 L461 D467 Y473
N477 K478 K478 K478 A484 A484 A484 P491 C488 S494 C488 S494 C488 S494 F495 F495 F495 F495	Y501 6502 6502 6502 6502 6506 6506 7508 7508 7508 7508 7509 7509 7509 7510 7511 7511 7528 7528 7528 7528 7528	L533 N536 N536 N540 N544 C550	L552 T553 E554 S555 L560 Q563 Q563 R565
6566 R567 A570 D574 A575 P579 P579 P579 D586 D586 D586 D586 D586 D586 D586 D586	6932 6932 8936 8596 8596 8596 8596 1598 1698 609 613 6013 6013 613 613 613 7518 613 7148 714 810 714 810 711 810 711 810 711 810 810 810 810 810 810 810 810 810 8	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	8637 1642 16644 1661 1651 1655 1655
10657 10663 10663 10664 10665 1084 10865 10865 10865 10865 10865 10865 1086 1086 1086 1086 1086 1086 1086 1086	VAL AVAL SER SER 7707 7707 7707 7707 7719 4713 4713 4713 4713 7724 7724 7724 7724 7724 7724 7726	M730 M732 T732 T734 T734 C735 C735 C738 C738 T741 T741	F759 F759 T761 T761 T762 R762 R765 A771
VT72 E773 Q774 NT77 N777 N777 1781 E780 F797 F797 F797 F797 F797 F797 F797 F79	1900 1900 1927 1927 1927 1927 1927 1928 1927 1928 1927 1928 1928 1928 1928 1928 1928 1928 1928	ASP CASP CAS CAS CLY CLY CLY CLE ALA ALA ALA ALA ALA ALA ALA ARG ARG ARD ARG ARD ARG	C851 A852 A852 A855 A855 A855 C856 C857 C858 C857 C859 C855 C855 C855 C855 C855 C855 C855
1863 1864 1864 1864 1864 1869 1881 1886 1888 1888 1888 <td>1895 1895 1895 1896 1990 1990 1991 1990 1991 1991 1916 1916</td> <td>926 1931 1934 1934 1935 1935 1936 1938 1938 1938 1938 1938 1938</td> <td>L945 6946 K947 L959 L962 L962</td>	1895 1895 1895 1896 1990 1990 1991 1990 1991 1991 1916 1916	926 1931 1934 1934 1935 1935 1936 1938 1938 1938 1938 1938 1938	L945 6946 K947 L959 L962 L962
F970 1973 1973 1977 1980 1980 1983 1983 1993	L1004 11005 71006 11009 L1012 L1013 L1013 A1026 A1028 M1028 M1028 M1028 M1028 C1033 C1033	11.041 11.042 11.043 11.046 11.049 11.049 11.049 11.049 11.049 11.049 11.049 11.049 11.049	N1074 11077 A1078 A1078 C1082 H1083 V1094
T1105 Q1106 Q1107 T110 P1112 P1112 T1116 T1115 T1115 T1117 D11132 V1138	P1140 LEU LEU P1140 CLN PHE LEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	HILS THR SER FRO ASP VAL ASP CLY CLY ASP TILE SER	GLY TLE ASN ASN ALA SER VAL VAL ASN TLE GLN GLN

LLYS ASP ASP ASP ASP ASSN AASN VALA ASSN VALA ASSN AASN AASN CLUPY CLUPS SER ALAS ASP ASP ASP ASSN CLUPY CLU

• Molecule 1: Spike glycoprotein

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	257757	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV $(4k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: IDU, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.33	0/8345	0.51	0/11349
1	В	0.32	0/8345	0.50	0/11349
1	С	0.30	0/8345	0.49	0/11349
All	All	0.32	0/25035	0.50	0/34047

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	2
All	All	0	3

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	328	ARG	Sidechain
1	В	158	ARG	Sidechain
1	В	328	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8154	0	7959	274	0
1	В	8154	0	7959	271	0
1	С	8154	0	7959	235	0
2	А	224	0	208	2	0
2	В	224	0	208	5	0
2	С	224	0	208	4	0
3	А	15	0	4	0	0
All	All	25149	0	24505	718	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

All (718) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:277:LEU:HD11	1:A:279:TYR:CE1	1.76	1.20
1:A:126:VAL:HG21	1:A:175:PHE:HE2	0.99	1.12
1:A:126:VAL:HG21	1:A:175:PHE:CE2	1.86	1.10
1:B:121:ASN:HD22	1:B:176:LEU:HD23	1.07	1.07
1:B:121:ASN:HD22	1:B:176:LEU:CD2	1.72	1.02
1:A:342:PHE:HD1	1:A:371:PHE:HE1	1.09	0.98
1:C:738:CYS:SG	1:C:753:LEU:HD21	2.06	0.95
1:B:121:ASN:ND2	1:B:176:LEU:CD2	2.31	0.92
1:A:460:LYS:HD3	1:A:461:LEU:H	1.32	0.92
1:A:342:PHE:CD1	1:A:371:PHE:HE1	1.90	0.90
1:B:121:ASN:ND2	1:B:176:LEU:HD23	1.86	0.90
1:A:342:PHE:HD1	1:A:371:PHE:CE1	1.89	0.90
1:B:984:LEU:HD12	1:B:988:GLU:CG	2.03	0.89
1:A:126:VAL:CG2	1:A:175:PHE:HE2	1.87	0.85
1:A:277:LEU:CD1	1:A:279:TYR:CE1	2.58	0.85
1:A:477:ASN:O	1:A:478:LYS:HG3	1.77	0.84
1:B:477:ASN:O	1:B:478:LYS:HG3	1.79	0.82
1:C:106:PHE:HB2	1:C:117:LEU:HB3	1.60	0.82
1:B:560:LEU:H	1:B:563:GLN:HB3	1.46	0.80
1:C:477:ASN:O	1:C:478:LYS:HG3	1.81	0.80

Atom-1	Atom-2	Interatomic	Clash
1.D.607.MET.CE		$\frac{\text{distance (A)}}{2.11}$	overlap (A)
$\frac{1:D:097:MET:CE}{1:D:121:CVC:UA}$	1:D:097:MET:HA		0.80
1:D:131:0 Y 5:HA	1:B:100:CYS:HB3	1.03	0.79
1:A:330:PRO:HD3	1:A:544:ASN:HD21	1.47	0.79
1:B:984:LEU:HD12	1:B:988:GLU:HG3	1.65	0.77
1:A:106:PHE:HB2	1:A:117:LEU:HB3	1.66	0.77
1:B:984:LEU:HD12	1:B:988:GLU:HG2	1.65	0.77
1:C:448:ASN:HB2	1:C:497:PHE:HB2	1.69	0.75
1:B:909:ILE:HD11	1:B:1047:TYR:HB3	1.68	0.75
1:B:456:PHE:H	1:B:491:PRO:HB3	1.51	0.75
1:B:121:ASN:ND2	1:B:176:LEU:HD22	2.00	0.73
1:B:697:MET:HA	1:B:697:MET:HE2	1.70	0.73
1:B:708:SER:HB3	1:B:711:SER:HB3	1.70	0.73
1:A:780:GLU:OE1	1:A:780:GLU:N	2.19	0.73
1:B:206:LYS:HE2	1:B:221:SER:HB2	1.72	0.72
1:C:821:LEU:HD11	1:C:939:SER:HB2	1.72	0.72
1:A:566:GLY:HA3	1:A:575:ALA:HB3	1.72	0.71
1:C:115:GLN:HA	1:C:132:GLU:HG2	1.72	0.71
1:C:226:LEU:HG	1:C:227:VAL:HG13	1.72	0.71
1:C:442:ASP:O	1:C:448:ASN:ND2	2.24	0.71
1:C:724:THR:HG22	1:C:934:ILE:HD11	1.72	0.71
1:B:448:ASN:HB2	1:B:497:PHE:HB2	1.71	0.70
1:B:570:ALA:HB2	1:A:852:ALA:HB1	1.73	0.70
1:B:852:ALA:HB1	1:C:570:ALA:HB2	1.74	0.70
1:A:112:SER:HA	1:A:132:GLU:HG2	1.73	0.70
1:A:442:ASP:O	1:A:448:ASN:ND2	2.25	0.70
1:B:100:ILE:HG22	1:B:242:LEU:HD12	1.73	0.69
1:A:277:LEU:HD11	1:A:279:TYR:HE1	1.47	0.69
1:B:124:THR:HB	2:B:1302:NAG:H62	1.75	0.69
1:B:419:ALA:O	1:B:424:LYS:NZ	2.26	0.69
1:C:189:LEU:HD22	1:C:210:ILE:HG12	1.75	0.69
1:A:456:PHE:H	1:A:491:PRO:HB3	1.57	0.68
1:A:318:PHE:HB3	1:A:593:GLY:HA3	1.75	0.68
1:B:580:GLN:HB3	2:B:1306:NAG:H82	1.76	0.68
1:A:806:LEU:HD23	1:A:878:LEU:HD23	1.76	0.67
1:B:878:LEU:O	1:B:882:ILE:HD12	1.94	0.67
1:A:118:LEU:HD21	1:A:120:VAL:HG23	1.74	0.67
1:C:81:ASN:HB3	1:C:138:ASP:HB2	1.76	0.67
1:A:354:ASN:O	1:A:356:LYS:NZ	2.27	0.67
1:C:67:ALA:HA	1:C:264:ALA:HB2	1.76	0.67
1:B:402:ILE:HG21	1:B:418:ILE:HD11	1.77	0.67
1:A:379:CYS:HB3	1:A:384:PRO:HG3	1.75	0.67

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1.C.330.PRO.HB2	1.C.332.ILE.HG12	1.77	0.67
1:A:735:SEB:HG	1:A:859:THB:HG1	1.43	0.66
1:A:1094:VAL:N	1:A:1105:THB:O	2.27	0.66
1.C·391·CYS·HA	1·C·525·CYS·HB3	1.77	0.66
1:A:435:ALA:HB2	1:A:510:VAL:HG13	1.77	0.66
1:A:643:PHE:HD1	1:A:644:GLN:H	1.40	0.66
1:A:490:SER:O	1:A:493:GLN:NE2	2.29	0.66
1:C:330:PRO:HD3	1:C:544:ASN:HD21	1.61	0.66
1:B:1126:CYS:HB2	1:B:1132:ILE:HG21	1.78	0.66
1:C:139:PRO:HB3	1:C:159:VAL:HA	1.77	0.66
1:C:924:ALA:O	1:C:928:ASN:ND2	2.29	0.66
1:A:448:ASN:HB2	1:A:497:PHE:HB2	1.78	0.65
1:B:106:PHE:HB2	1:B:117:LEU:HB3	1.77	0.65
1:C:419:ALA:O	1:C:424:LYS:NZ	2.30	0.65
1:A:100:ILE:HG22	1:A:242:LEU:HD12	1.79	0.65
1:B:358:ILE:HB	1:B:395:VAL:HG13	1.79	0.65
1:B:703:ASN:HD22	1:A:787:GLN:HE21	1.44	0.65
1:A:591:SER:OG	1:A:634:ARG:NH2	2.30	0.65
1:B:984:LEU:HD22	1:C:381:GLY:O	1.97	0.65
1:B:566:GLY:HA3	1:B:575:ALA:HB3	1.80	0.64
1:B:917:TYR:HB3	1:C:1129:VAL:HG23	1.80	0.64
1:B:289:VAL:HG23	1:B:306:PHE:HE1	1.63	0.64
1:C:516:GLU:OE2	1:C:516:GLU:N	2.31	0.64
1:A:598:ILE:HB	1:A:609:ALA:HB3	1.78	0.63
1:A:457:ARG:HH12	1:A:461:LEU:HD13	1.62	0.63
1:A:78:ARG:HE	1:A:261:GLY:HA3	1.63	0.63
1:C:710:ASN:ND2	1:C:1076:THR:OG1	2.31	0.63
1:B:560:LEU:HB2	1:B:563:GLN:HB2	1.80	0.63
1:C:212:LEU:HD12	1:C:214:ARG:H	1.63	0.63
1:B:98:SER:HA	1:B:180:GLU:H	1.63	0.63
1:A:731:MET:H	1:A:774:GLN:HE21	1.47	0.63
1:A:457:ARG:HH22	1:A:461:LEU:HB2	1.64	0.63
1:A:574:ASP:O	1:A:587:ILE:N	2.30	0.62
1:C:102:ARG:HE	1:C:243:ALA:HB3	1.64	0.62
1:A:358:ILE:HB	1:A:395:VAL:HG23	1.80	0.62
1:C:492:LEU:HD12	1:C:492:LEU:O	1.98	0.62
1:B:353:TRP:CZ2	1:B:466:ARG:HD2	2.33	0.62
1:C:34:ARG:NH1	1:C:219:GLY:O	2.32	0.62
1:B:404:GLY:HA2	1:B:508:TYR:HE1	1.64	0.62
1:A:118:LEU:HD23	1:A:119:ILE:N	2.14	0.62
1:A:383:SER:N	1:C:983:ARG:O	2.32	0.62

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
1:A:560:LEU:H	1:A:563:GLN:HB3	1.63	0.62
1:A:555:SER:HB2	1:A:584:ILE:HB	1.81	0.62
1:A:249:LEU:HG	1:A:251:PRO:HD2	1.81	0.62
1:B:376:ALA:HB3	1:B:435:ALA:HB3	1.82	0.62
1:B:755:GLN:OE1	1:C:969:LYS:HB2	2.00	0.62
1:B:1123:SER:OG	1:A:914:ASN:ND2	2.32	0.62
1:A:357:ARG:NH1	1:A:396:TYR:OH	2.33	0.61
1:A:1046:GLY:HA2	1:C:890:ALA:HA	1.82	0.61
1:A:104:TRP:O	1:A:105:ILE:HD13	2.01	0.61
1:A:460:LYS:HD3	1:A:461:LEU:N	2.09	0.61
1:B:908:GLY:O	1:B:1038:LYS:NZ	2.26	0.61
1:B:29:THR:HG23	1:B:62:VAL:HG23	1.83	0.61
1:B:909:ILE:HG23	1:B:911:VAL:HG23	1.83	0.61
1:A:34:ARG:HH22	1:A:217:PRO:HB2	1.66	0.60
1:B:442:ASP:O	1:B:448:ASN:ND2	2.34	0.60
1:B:409:GLN:O	1:B:414:GLN:NE2	2.34	0.60
1:B:673:SER:HB3	1:B:695:TYR:HE2	1.66	0.60
1:B:897:PRO:HA	1:C:707:TYR:CE1	2.37	0.60
1:B:433:VAL:HG22	1:B:512:VAL:HG23	1.83	0.60
1:A:643:PHE:HE2	1:A:655:TYR:CG	2.20	0.60
1:C:159:VAL:HG13	1:C:160:TYR:HD1	1.67	0.60
1:B:247:SER:O	1:B:248:TYR:HB3	2.02	0.60
1:A:804:GLN:NE2	1:A:935:GLN:OE1	2.33	0.60
1:C:477:ASN:O	1:C:478:LYS:CG	2.49	0.59
1:B:289:VAL:HG23	1:B:306:PHE:CE1	2.37	0.59
1:B:992:GLN:HE21	1:B:995:ARG:HH21	1.49	0.59
1:C:204:TYR:HB3	1:C:223:LEU:HG	1.82	0.59
1:A:237:ARG:NH1	1:A:239:GLN:OE1	2.35	0.59
1:C:200:TYR:HB3	1:C:202:LYS:HE2	1.85	0.59
1:C:566:GLY:HA3	1:C:575:ALA:HB3	1.84	0.59
1:A:1041:ASP:OD1	1:A:1041:ASP:O	2.19	0.59
1:B:473:TYR:O	1:B:474:GLN:NE2	2.35	0.59
1:A:316:SER:O	1:A:595:VAL:HG12	2.02	0.59
1:B:1107:ARG:HD2	1:A:904:TYR:CE2	2.38	0.59
1:B:558:LYS:HG3	1:A:282:ASN:HA	1.84	0.59
1:A:770:ILE:HD11	1:A:1012:LEU:HD23	1.85	0.58
1:B:406:GLU:HB3	1:B:418:ILE:HD12	1.85	0.58
1:A:439:ASN:ND2	1:A:506:GLN:OE1	2.36	0.58
1:A:1115:ILE:HG22	1:A:1137:VAL:HG23	1.85	0.58
1:C:318:PHE:HZ	1:C:635:VAL:HA	1.68	0.58
1:C:735:SER:HG	1:C:859:THR:HG1	1.46	0.58

	has page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:897:PRO:HA	1:C:707:TYR:HE1	1.66	0.58
1:A:477:ASN:O	1:A:478:LYS:CG	2.47	0.58
1:C:523:THR:HG22	1:C:524:VAL:HG13	1.85	0.58
1:B:78:ARG:HH11	1:B:261:GLY:HA3	1.68	0.58
1:A:729:VAL:O	1:A:777:ASN:ND2	2.36	0.58
1:C:966:LEU:O	1:C:975:SER:OG	2.20	0.58
1:B:663:ASP:OD1	1:B:663:ASP:N	2.35	0.58
1:A:315:THR:HG22	1:A:316:SER:H	1.68	0.58
1:A:457:ARG:NE	1:A:459:SER:O	2.37	0.58
1:B:502:GLY:O	1:B:506:GLN:NE2	2.36	0.57
1:B:724:THR:HG23	1:B:934:ILE:HD11	1.86	0.57
1:B:903:ALA:HB1	1:B:913:GLN:HG3	1.85	0.57
1:C:391:CYS:SG	1:C:544:ASN:ND2	2.75	0.57
1:C:564:GLN:HB2	1:C:577:ARG:HG2	1.86	0.57
1:B:139:PRO:HB2	1:B:241:LEU:HD21	1.86	0.57
1:A:617:CYS:N	1:A:644:GLN:OE1	2.37	0.57
1:A:896:ILE:HD11	1:A:900:MET:HG2	1.87	0.57
1:B:477:ASN:O	1:B:478:LYS:CG	2.48	0.57
1:B:439:ASN:ND2	1:B:506:GLN:OE1	2.37	0.57
1:A:564:GLN:HG2	1:A:565:PHE:HD1	1.69	0.57
1:A:990:GLU:HA	1:A:993:ILE:HG22	1.86	0.57
1:A:37:TYR:HB3	1:A:223:LEU:HD23	1.86	0.57
1:A:724:THR:CG2	1:A:725:GLU:N	2.68	0.57
1:C:98:SER:HA	1:C:180:GLU:H	1.69	0.57
1:C:379:CYS:HB3	1:C:384:PRO:HG3	1.87	0.57
1:C:726:ILE:HD11	1:C:947:LYS:HB3	1.87	0.57
1:A:731:MET:HG2	1:A:774:GLN:NE2	2.20	0.57
1:C:770:ILE:HD12	1:C:1015:ALA:HB2	1.87	0.57
1:B:328:ARG:HD2	1:B:580:GLN:HG3	1.86	0.57
1:A:1077:THR:OG1	1:A:1078:ALA:N	2.38	0.56
1:C:190:ARG:HH11	1:C:207:HIS:HD2	1.52	0.56
1:B:117:LEU:HA	1:B:130:VAL:HA	1.87	0.56
1:A:226:LEU:HG	1:A:227:VAL:HG12	1.86	0.56
1:A:973:ILE:HD11	1:A:980:ILE:HG13	1.86	0.56
1:B:69:HIS:HB2	1:B:77:LYS:HD2	1.88	0.56
1:C:261:GLY:O	1:C:262:ALA:C	2.43	0.56
1:B:758:SER:O	1:B:758:SER:OG	2.21	0.56
1:B:738:CYS:SG	1:B:739:THR:N	2.79	0.56
1:A:445:PRO:O	1:A:498:ARG:NH1	2.39	0.56
1:B:555:SER:HB2	1:B:584:ILE:HB	1.88	0.56
1:A:708:SER:HB3	1:A:711:SER:HB3	1.87	0.56

	in a second	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:343:ASN:HB3	1:C:371:PHE:HZ	1.69	0.56
1:A:250:THR:O	1:A:254:SER:OG	2.20	0.56
1:C:133:PHE:HB2	1:C:135:PHE:CZ	2.40	0.56
1:A:550:GLY:HA3	1:A:589:PRO:HA	1.88	0.55
1:C:212:LEU:HD21	1:C:217:PRO:HB3	1.88	0.55
1:C:473:TYR:O	1:C:474:GLN:NE2	2.39	0.55
1:C:817:PHE:CE2	1:C:935:GLN:HG3	2.41	0.55
1:B:435:ALA:HB2	1:B:510:VAL:HG13	1.87	0.55
1:B:445:PRO:O	1:B:498:ARG:NH1	2.40	0.55
1:A:712:ILE:HD13	1:A:1094:VAL:HG11	1.89	0.55
1:B:210:ILE:HD13	1:B:217:PRO:HG3	1.88	0.55
1:B:487:ASN:HA	1:B:489:TYR:CE1	2.41	0.55
1:C:708:SER:HB3	1:C:711:SER:HB3	1.88	0.55
1:C:726:ILE:HG22	1:C:1061:VAL:HG13	1.89	0.55
1:C:456:PHE:H	1:C:491:PRO:HB3	1.71	0.55
1:B:327:VAL:HB	1:B:528:LYS:HD2	1.88	0.55
1:A:904:TYR:HE1	1:A:913:GLN:HE22	1.53	0.55
1:C:553:THR:HB	1:C:586:ASP:HB3	1.88	0.55
1:B:720:ILE:H	1:B:926:GLN:NE2	2.05	0.54
1:A:282:ASN:N	1:A:282:ASN:OD1	2.40	0.54
1:C:758:SER:O	1:C:758:SER:OG	2.21	0.54
1:B:488:CYS:O	1:B:489:TYR:C	2.46	0.54
1:A:206:LYS:HB2	1:A:223:LEU:HD12	1.90	0.54
1:A:719:THR:HA	1:A:926:GLN:HE22	1.72	0.54
1:B:416:GLY:H	1:B:419:ALA:HB3	1.71	0.54
1:A:289:VAL:HB	1:A:306:PHE:CE1	2.42	0.54
1:B:353:TRP:CH2	1:B:466:ARG:HA	2.43	0.54
1:B:647:ALA:HA	1:A:862:PRO:HG3	1.89	0.54
1:A:707:TYR:HE1	1:C:897:PRO:HA	1.72	0.54
1:A:741:TYR:CD2	1:A:1004:LEU:HD22	2.42	0.54
1:A:1116:THR:HG22	1:A:1118:ASP:H	1.73	0.54
1:C:124:THR:HB	2:C:1302:NAG:H62	1.90	0.54
1:C:318:PHE:HB2	1:C:593:GLY:HA3	1.89	0.54
1:C:360:ASN:H	1:C:523:THR:HG23	1.73	0.54
1:B:755:GLN:HG3	1:C:969:LYS:O	2.07	0.53
1:A:329:PHE:HB3	1:A:330:PRO:CD	2.38	0.53
1:A:311:GLY:HA2	1:A:664:ILE:HG23	1.91	0.53
1:C:393:THR:OG1	1:C:516:GLU:O	2.20	0.53
1:B:78:ARG:HD2	1:B:261:GLY:HA3	1.91	0.53
1:B:318:PHE:HZ	1:B:635:VAL:HA	1.72	0.53
1:A:906:PHE:HE1	1:A:1049:LEU:HD11	1.73	0.53

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:662:CYS:HB2	1:B:697:MET:SD	2.49	0.53
1:B:707:TYR:HE1	1:A:897:PRO:HA	1.73	0.53
1:B:1043:CYS:HB3	1:B:1048:HIS:CD2	2.43	0.53
1:A:310:LYS:HE2	1:A:664:ILE:HD11	1.90	0.53
1:A:731:MET:H	1:A:774:GLN:NE2	2.07	0.53
1:C:906:PHE:HE1	1:C:1049:LEU:HD11	1.74	0.53
1:B:206:LYS:HE2	1:B:221:SER:CB	2.38	0.53
1:B:890:ALA:HA	1:C:1046:GLY:HA2	1.90	0.53
1:C:329:PHE:HB3	1:C:330:PRO:CD	2.38	0.53
1:A:67:ALA:HA	1:A:264:ALA:HB2	1.91	0.53
1:C:617:CYS:HA	1:C:633:TRP:HB2	1.91	0.53
1:B:386:LYS:O	1:B:390:LEU:HD21	2.09	0.53
1:A:200:TYR:O	1:A:202:LYS:HG3	2.08	0.53
1:A:553:THR:HB	1:A:586:ASP:HB2	1.91	0.53
1:A:851:CYS:O	1:A:855:PHE:CE2	2.62	0.53
1:C:487:ASN:HA	1:C:489:TYR:CE2	2.44	0.53
1:C:591:SER:O	1:C:634:ARG:NH2	2.32	0.53
1:C:596:SER:HB2	1:C:613:GLN:HE22	1.74	0.53
1:C:733:LYS:NZ	1:C:775:ASP:OD2	2.34	0.53
1:B:249:LEU:HG	1:B:251:PRO:HG2	1.91	0.52
1:C:374:PHE:HD1	1:C:436:TRP:HB3	1.74	0.52
1:B:523:THR:HG22	1:B:524:VAL:HG12	1.90	0.52
1:C:128:ILE:HB	1:C:170:TYR:HB3	1.91	0.52
1:B:226:LEU:HG	1:B:227:VAL:HG13	1.92	0.52
1:A:175:PHE:HE1	1:A:203:ILE:HD11	1.75	0.52
1:B:984:LEU:CD1	1:B:988:GLU:HG3	2.36	0.52
1:A:1026:ALA:O	1:A:1030:SER:OG	2.21	0.52
1:C:456:PHE:HB3	1:C:473:TYR:HE2	1.73	0.52
1:B:1006:THR:HG21	1:A:762:GLN:HE22	1.73	0.52
1:C:488:CYS:O	1:C:489:TYR:C	2.48	0.52
1:B:804:GLN:HA	1:B:817:PHE:CD2	2.44	0.52
1:B:437:ASN:HA	1:B:508:TYR:HD2	1.73	0.52
1:C:37:TYR:HB3	1:C:223:LEU:HB3	1.92	0.52
1:C:344:ALA:HB3	1:C:347:PHE:HE1	1.75	0.52
1:B:1107:ARG:HG2	1:A:904:TYR:HE2	1.75	0.52
1:C:357:ARG:NE	1:C:357:ARG:O	2.43	0.52
1:C:435:ALA:HB2	1:C:510:VAL:HG13	1.92	0.52
1:A:644:GLN:HE21	2:A:1309:NAG:H82	1.75	0.51
1:A:103:GLY:HA3	1:A:241:LEU:HB2	1.91	0.51
1:C:40:ASP:N	1:C:40:ASP:OD1	2.41	0.51
1:C:931:ILE:O	1:C:934:ILE:HG22	2.10	0.51

	h a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:34:ARG:NH1	1:B:219:GLY:O	2.44	0.51
1:C:767:LEU:HD21	1:C:1008:VAL:HG22	1.91	0.51
1:B:906:PHE:HE1	1:B:1049:LEU:HD11	1.76	0.51
1:A:79:PHE:CE2	1:A:138:ASP:HB2	2.46	0.51
1:C:822:LEU:HD23	1:C:945:LEU:HD11	1.93	0.51
1:C:909:ILE:HG21	1:C:1047:TYR:HB3	1.90	0.51
1:B:1091:ARG:NH1	1:B:1118:ASP:O	2.44	0.51
1:A:312:ILE:HG23	1:A:596:SER:OG	2.11	0.51
1:A:487:ASN:HA	1:A:489:TYR:CE2	2.46	0.51
1:A:574:ASP:HA	1:A:587:ILE:HB	1.93	0.51
1:C:312:ILE:HG23	1:C:596:SER:OG	2.11	0.51
1:A:78:ARG:HH21	1:A:261:GLY:HA3	1.77	0.50
1:A:724:THR:HG22	1:A:725:GLU:N	2.25	0.50
1:C:364:ASP:N	1:C:364:ASP:OD1	2.44	0.50
1:B:982:SER:HA	1:C:386:LYS:HE2	1.93	0.50
1:A:488:CYS:O	1:A:489:TYR:C	2.49	0.50
1:C:421:TYR:HD1	1:C:460:LYS:HA	1.76	0.50
1:B:280:ASN:OD1	1:B:284:THR:N	2.45	0.50
1:B:43:PHE:N	1:C:565:PHE:O	2.41	0.50
1:A:175:PHE:H	1:A:175:PHE:HD2	1.60	0.50
1:A:502:GLY:O	1:A:506:GLN:NE2	2.45	0.50
1:B:96:GLU:O	1:B:190:ARG:NH2	2.36	0.50
1:B:204:TYR:HB3	1:B:223:LEU:HG	1.94	0.50
1:B:911:VAL:HG22	1:B:1108:ASN:HB2	1.92	0.50
1:A:437:ASN:HB3	1:A:508:TYR:CZ	2.47	0.50
1:C:301:CYS:O	1:C:304:LYS:NZ	2.44	0.50
1:B:87:ASN:N	1:B:87:ASN:OD1	2.45	0.50
1:B:877:LEU:HD23	1:B:888:PHE:HE2	1.77	0.50
1:A:328:ARG:CG	1:A:579:PRO:HD2	2.42	0.50
1:A:394:ASN:OD1	1:A:394:ASN:N	2.45	0.50
1:C:327:VAL:HG21	1:C:528:LYS:HD3	1.93	0.50
1:A:761:THR:O	1:A:765:ARG:HB2	2.12	0.50
1:A:909:ILE:HG21	1:A:1047:TYR:HB3	1.93	0.50
1:A:393:THR:OG1	1:A:394:ASN:OD1	2.28	0.49
1:A:642:VAL:HG22	1:A:651:ILE:HG22	1.93	0.49
1:A:822:LEU:HD21	1:A:938:LEU:HD21	1.94	0.49
1:A:916:LEU:HD12	1:A:923:ILE:HG13	1.93	0.49
1:A:1006:THR:HG21	1:C:762:GLN:HE22	1.76	0.49
1:B:250:THR:N	1:B:251:PRO:HD2	2.27	0.49
1:B:708:SER:HB3	1:B:711:SER:CB	2.41	0.49
1:A:589:PRO:HD2	1:C:855:PHE:CE1	2.48	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:741:TYR:CD2	1:B:1004:LEU:HD22	2.48	0.49
1:A:104:TRP:C	1:A:105:ILE:HD13	2.33	0.49
1:A:327:VAL:HG11	1:A:528:LYS:HG2	1.93	0.49
1:C:815:ARG:HB2	1:C:819:GLU:HB2	1.94	0.49
1:B:565:PHE:O	1:A:43:PHE:HB3	2.13	0.49
1:C:79:PHE:HB2	1:C:258:TRP:CE3	2.47	0.49
1:B:505:HIS:CE1	1:A:503:VAL:HG11	2.48	0.49
1:B:737:ASP:OD2	1:C:317:ASN:ND2	2.46	0.49
1:B:781:VAL:HG22	1:B:1026:ALA:HB2	1.95	0.49
1:A:977:LEU:O	1:A:980:ILE:HG22	2.13	0.49
1:C:190:ARG:HD2	1:C:207:HIS:CD2	2.48	0.49
1:C:1105:THR:HG22	1:C:1112:PRO:HA	1.94	0.49
1:B:311:GLY:HA2	1:B:664:ILE:HG22	1.95	0.49
1:B:741:TYR:CE1	1:B:966:LEU:HD11	2.48	0.49
1:A:643:PHE:HD1	1:A:644:GLN:N	2.08	0.49
1:C:598:ILE:HB	1:C:609:ALA:HB3	1.95	0.49
1:B:330:PRO:O	1:B:331:ASN:HB2	2.12	0.49
1:B:724:THR:CG2	1:B:934:ILE:HD11	2.42	0.49
1:A:724:THR:HG23	1:A:1061:VAL:HG13	1.95	0.49
1:B:343:ASN:HB3	1:B:371:PHE:HZ	1.78	0.48
1:B:797:PHE:O	1:B:799:GLY:N	2.46	0.48
1:A:665:PRO:HB3	1:C:864:LEU:HD11	1.95	0.48
1:A:780:GLU:H	1:A:780:GLU:CD	2.10	0.48
1:C:104:TRP:HB2	1:C:119:ILE:HB	1.94	0.48
1:B:249:LEU:HB3	1:B:252:VAL:HG22	1.96	0.48
1:B:1139:ASP:OD1	1:B:1139:ASP:N	2.39	0.48
1:A:409:GLN:OE1	1:A:417:ASN:N	2.46	0.48
1:C:560:LEU:H	1:C:563:GLN:HB3	1.78	0.48
1:B:138:ASP:OD1	1:B:138:ASP:N	2.47	0.48
1:B:1126:CYS:HB3	1:B:1132:ILE:HD13	1.95	0.48
1:A:881:THR:HA	1:A:885:GLY:O	2.13	0.48
1:B:48:LEU:HB3	1:B:276:LEU:HD11	1.95	0.48
1:B:715:PRO:HD3	1:A:894:LEU:HD13	1.96	0.48
1:A:822:LEU:HD22	1:A:945:LEU:HD11	1.95	0.48
1:C:372:ALA:N	1:C:373:PRO:HD2	2.28	0.48
1:B:977:LEU:HD21	1:B:996:LEU:HD22	1.95	0.48
1:B:343:ASN:HB3	1:B:371:PHE:CZ	2.48	0.48
1:B:1115:ILE:HG22	1:B:1137:VAL:HG13	1.96	0.48
1:A:330:PRO:CD	1:A:544:ASN:HD21	2.22	0.48
1:A:713:ALA:HB3	1:C:894:LEU:HB3	1.95	0.48
1:C:735:SER:HB3	1:C:861:LEU:HD11	1.96	0.48

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance $(Å)$	overlap (Å)
1:B:37:TYR:HA	1:B:223:LEU:HB3	1.95	0.48
1:A:233:ILE:HG12	1:A:234:ASN:H	1.79	0.48
1:C:738:CYS:SG	1:C:753:LEU:CD2	2.94	0.48
1:B:657:ASN:OD1	2:B:1310:NAG:N2	2.47	0.48
1:A:487:ASN:HA	1:A:489:TYR:CZ	2.49	0.48
1:A:560:LEU:HB2	1:A:563:GLN:HB2	1.96	0.48
1:A:805:ILE:HD12	1:A:878:LEU:HD11	1.96	0.48
1:C:378:LYS:HD3	1:C:380:TYR:CZ	2.48	0.48
1:B:736:VAL:HG22	1:B:767:LEU:HD12	1.96	0.48
1:A:98:SER:HA	1:A:179:LEU:HB2	1.95	0.48
1:A:372:ALA:N	1:A:373:PRO:HD2	2.29	0.48
1:A:856:ASN:HD22	1:A:966:LEU:HD12	1.79	0.48
1:A:858:LEU:HD22	1:A:959:LEU:HD22	1.95	0.48
1:B:80:ASP:HA	1:B:260:ALA:HA	1.95	0.47
1:B:617:CYS:SG	1:B:635:VAL:HG21	2.54	0.47
1:B:864:LEU:HD22	1:C:665:PRO:HB3	1.96	0.47
1:A:537:LYS:HA	1:A:537:LYS:HD3	1.58	0.47
1:A:552:LEU:HD12	1:A:585:LEU:HB3	1.96	0.47
1:C:798:GLY:C	1:C:800:PHE:H	2.17	0.47
1:B:50:SER:HA	1:B:276:LEU:HA	1.96	0.47
1:B:1081:ILE:HG13	1:B:1095:PHE:CD2	2.49	0.47
1:C:318:PHE:CZ	1:C:635:VAL:HA	2.48	0.47
1:B:200:TYR:O	1:B:202:LYS:HG3	2.13	0.47
1:B:421:TYR:O	1:B:457:ARG:NH1	2.35	0.47
1:A:175:PHE:N	1:A:175:PHE:CD2	2.82	0.47
1:A:733:LYS:HD2	1:A:771:ALA:HB1	1.95	0.47
1:C:280:ASN:OD1	1:C:284:THR:N	2.46	0.47
1:A:125:ASN:HA	1:A:174:PRO:HD3	1.95	0.47
1:C:671:CYS:SG	1:C:697:MET:HE3	2.54	0.47
1:C:714:ILE:HD11	1:C:1094:VAL:HG21	1.97	0.47
1:B:252:VAL:O	1:B:253:ASP:C	2.53	0.47
1:A:114:THR:O	1:A:132:GLU:HG3	2.14	0.47
1:C:131:CYS:HB3	1:C:166:CYS:HB3	1.74	0.47
1:C:742:ILE:HD11	1:C:1004:LEU:HD12	1.95	0.47
1:B:90:VAL:HG21	1:B:238:PHE:CZ	2.49	0.47
1:B:483:VAL:O	1:B:484:ALA:C	2.53	0.47
1:A:50:SER:HA	1:A:276:LEU:HA	1.95	0.47
1:A:663:ASP:OD1	1:A:663:ASP:N	2.47	0.47
1:A:1043:CYS:HB3	1:A:1048:HIS:CD2	2.49	0.47
1:C:330:PRO:HD3	1:C:544:ASN:ND2	2.30	0.47
1:C:777:ASN:O	1:C:781:VAL:HG23	2.15	0.47

Atom-1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:233:ILE:HD13	1:B:235:ILE:HD11	1.96	0.47
1:A:277:LEU:C	1:A:277:LEU:HD12	2.35	0.47
1:C:664:ILE:O	1:C:664:ILE:HG13	2.14	0.47
1:B:797:PHE:O	1:B:800:PHE:HD1	1.98	0.47
1:A:1094:VAL:HG22	1:C:904:TYR:OH	2.15	0.47
1:C:1097:SER:HB2	1:C:1102:TRP:CD2	2.50	0.47
1:B:113:LYS:HB3	1:B:113:LYS:HE3	1.78	0.47
1:C:560:LEU:HB2	1:C:563:GLN:HB2	1.97	0.47
1:B:106:PHE:HB3	1:B:235:ILE:HD12	1.96	0.46
1:B:328:ARG:HG2	1:B:579:PRO:HD2	1.98	0.46
1:B:730:SER:HB2	1:B:774:GLN:HG3	1.98	0.46
1:A:118:LEU:HD23	1:A:118:LEU:C	2.36	0.46
1:A:467:ASP:N	1:A:467:ASP:OD1	2.47	0.46
1:C:474:GLN:HE22	1:C:482:GLY:H	1.62	0.46
1:C:665:PRO:HA	1:C:671:CYS:SG	2.55	0.46
1:B:517:LEU:HD12	1:A:983:ARG:HD3	1.96	0.46
1:C:434:ILE:HB	1:C:511:VAL:HG23	1.97	0.46
1:B:79:PHE:HB2	1:B:258:TRP:HB3	1.96	0.46
1:A:713:ALA:HA	1:A:1074:ASN:HA	1.97	0.46
1:A:722:VAL:HG22	1:A:1065:VAL:HG22	1.97	0.46
1:A:741:TYR:CE1	1:A:966:LEU:HD21	2.50	0.46
1:A:1082:CYS:HB2	1:A:1132:ILE:HG12	1.97	0.46
1:B:129:LYS:HB3	1:B:131:CYS:SG	2.55	0.46
1:B:983:ARG:HD3	1:C:517:LEU:HD12	1.97	0.46
1:C:330:PRO:CD	1:C:544:ASN:HD21	2.27	0.46
1:A:50:SER:HB2	1:A:276:LEU:HD12	1.96	0.46
1:A:781:VAL:O	1:A:1029:MET:HG2	2.16	0.46
1:B:36:VAL:HG11	1:B:220:PHE:HZ	1.81	0.46
1:B:442:ASP:HB2	1:B:509:ARG:HH21	1.80	0.46
1:B:605:SER:OG	1:B:606:ASN:N	2.49	0.46
1:B:950:ASP:O	1:B:954:HIS:HB2	2.15	0.46
1:A:402:ILE:HD11	1:A:510:VAL:HG21	1.96	0.46
1:C:249:LEU:HG	1:C:251:PRO:HD2	1.97	0.46
1:A:970:PHE:HE1	1:C:756:TYR:HA	1.81	0.46
1:A:1009:THR:O	1:A:1013:ILE:HD12	2.15	0.46
1:C:190:ARG:HH11	1:C:207:HIS:CD2	2.32	0.46
1:A:210:ILE:HG21	1:A:217:PRO:HG2	1.97	0.46
1:C:77:LYS:HG3	1:C:78:ARG:HG2	1.97	0.46
1:B:894:LEU:HB3	1:C:713:ALA:HB3	1.96	0.46
1:B:969:LYS:HZ3	1:B:975:SER:H	1.63	0.46
1:B:1046:GLY:HA2	1:A:890:ALA:HA	1.98	0.46

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance (Å)	overlap (Å)
1:A:229:LEU:HB3	1:A:231:ILE:HD11	1.98	0.46
1:B:897:PRO:HB2	1:B:900:MET:HG2	1.97	0.46
1:B:931:ILE:O	1:B:934:ILE:HG22	2.16	0.46
1:A:993:ILE:O	1:A:997:ILE:HG12	2.15	0.46
1:B:54:LEU:HD12	1:B:195:LYS:HD3	1.98	0.45
1:B:797:PHE:CD2	1:B:802:PHE:HD2	2.35	0.45
1:A:533:LEU:HD22	1:A:585:LEU:HD11	1.97	0.45
1:A:596:SER:HB2	1:A:613:GLN:HE22	1.81	0.45
1:C:445:PRO:O	1:C:498:ARG:NH1	2.49	0.45
1:B:121:ASN:HD21	1:B:176:LEU:H	1.64	0.45
1:A:78:ARG:HB3	1:A:261:GLY:C	2.37	0.45
1:B:26:GLN:HG3	1:B:65:PHE:HA	1.99	0.45
1:B:786:LYS:HB2	1:B:786:LYS:HE2	1.77	0.45
1:B:864:LEU:O	1:C:669:GLY:N	2.43	0.45
1:A:456:PHE:HB3	1:A:473:TYR:HE2	1.81	0.45
1:B:81:ASN:N	1:B:81:ASN:OD1	2.48	0.45
1:B:327:VAL:HG13	1:B:542:ASN:HB3	1.98	0.45
1:A:1110:TYR:CZ	1:A:1112:PRO:HG3	2.52	0.45
1:C:343:ASN:HB3	1:C:371:PHE:CZ	2.50	0.45
1:C:598:ILE:HD12	1:C:664:ILE:HD12	1.97	0.45
1:C:642:VAL:HG12	1:C:651:ILE:HG22	1.99	0.45
1:B:118:LEU:N	1:B:129:LYS:O	2.49	0.45
1:B:384:PRO:HA	1:B:387:LEU:HD13	1.99	0.45
1:B:398:ASP:HB3	1:B:512:VAL:HG12	1.99	0.45
1:B:439:ASN:HA	1:B:507:PRO:HG2	1.98	0.45
1:A:43:PHE:HE1	1:A:283:GLY:HA3	1.82	0.45
1:A:175:PHE:CE1	1:A:203:ILE:HD11	2.51	0.45
1:A:804:GLN:HA	1:A:817:PHE:CD2	2.51	0.45
1:B:490:SER:O	1:B:493:GLN:NE2	2.49	0.45
1:B:541:PHE:CZ	1:B:587:ILE:HD13	2.51	0.45
1:A:176:LEU:HD12	1:A:190:ARG:HH11	1.82	0.45
1:C:87:ASN:OD1	1:C:87:ASN:N	2.48	0.45
1:C:736:VAL:HG11	1:C:1004:LEU:HD21	1.98	0.45
1:C:752:LEU:HD11	1:C:990:GLU:OE2	2.15	0.45
1:B:34:ARG:HH22	1:B:217:PRO:HB2	1.82	0.45
1:B:755:GLN:OE1	1:C:969:LYS:CB	2.64	0.45
1:B:850:ILE:O	1:B:853:GLN:HG2	2.17	0.45
1:A:79:PHE:HE2	1:A:138:ASP:HB2	1.79	0.45
1:B:777:ASN:HD21	1:B:1019:ARG:HA	1.81	0.45
1:A:87:ASN:OD1	1:A:87:ASN:N	2.47	0.45
1:A:896:ILE:HD12	1:A:897:PRO:HD2	1.98	0.45

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:A:382:VAL:HG21	1:A:387:LEU:HDII	1.98	0.45
1:A:550:GLY:CA	1:A:589:PRO:HA	2.46	0.45
1:B:104:TRP:CZ3	1:B:238:PHE:HD2	2.35	0.45
1:B:388:ASN:OD1	1:B:526:GLY:HA3	2.17	0.45
1:B:788:ILE:HD11	1:C:699:LEU:HB3	1.99	0.45
1:A:797:PHE:HD2	1:A:802:PHE:HD2	1.65	0.45
1:A:817:PHE:N	1:A:817:PHE:CD1	2.82	0.45
1:C:591:SER:H	1:C:634:ARG:HH12	1.64	0.45
1:C:664:ILE:HD11	1:C:672:ALA:HB3	1.98	0.45
1:C:394:ASN:OD1	1:C:394:ASN:O	2.35	0.44
1:A:26:GLN:OE1	1:A:66:HIS:NE2	2.50	0.44
1:A:591:SER:HG	1:A:634:ARG:NH2	2.16	0.44
1:B:328:ARG:HB3	1:B:543:PHE:CE1	2.53	0.44
1:A:565:PHE:O	1:C:43:PHE:N	2.46	0.44
1:C:452:LEU:HD11	1:C:492:LEU:HB2	1.98	0.44
1:B:719:THR:HA	1:B:926:GLN:HE22	1.83	0.44
1:B:811:LYS:H	1:B:811:LYS:HG2	1.53	0.44
1:A:353:TRP:HH2	1:A:418:ILE:HD11	1.81	0.44
1:A:505:HIS:HE2	1:C:503:VAL:HG11	1.82	0.44
1:A:858:LEU:HD21	1:A:962:LEU:HD23	1.98	0.44
1:B:882:ILE:HG23	1:B:898:PHE:CD2	2.52	0.44
1:C:34:ARG:HA	1:C:34:ARG:HD3	1.74	0.44
1:C:101:ILE:HD11	1:C:240:THR:OG1	2.18	0.44
1:C:662:CYS:HB2	1:C:671:CYS:HB3	1.69	0.44
1:B:434:ILE:HB	1:B:511:VAL:HG23	1.99	0.44
1:B:803:SER:OG	1:B:804:GLN:NE2	2.49	0.44
1:C:237:ARG:HG2	1:C:239:GLN:NE2	2.33	0.44
1:C:1027:THR:O	1:C:1031:GLU:HG3	2.18	0.44
1:B:29:THR:OG1	1:B:30:ASN:N	2.50	0.44
1:B:534:VAL:HG21	1:B:539:VAL:HG11	2.00	0.44
1:B:1129:VAL:HG22	1:A:917:TYR:HB3	1.99	0.44
1:A:328:ARG:HG3	1:A:579:PRO:HD2	2.00	0.44
1:A:905:ARG:HD2	1:A:1049:LEU:O	2.18	0.44
1:C:409:GLN:O	1:C:414:GLN:NE2	2.50	0.44
1:B:391:CYS:HA	1:B:525:CYS:HB3	2.00	0.44
1:B:635:VAL:HG12	1:B:635:VAL:O	2.18	0.44
1:B:1010:GLN:OE1	1:B:1010:GLN:HA	2.18	0.44
1:A:1028:LYS:HB2	1:A:1028:LYS:HE3	1.62	0.44
1:C:994:ASP:O	1:C:998:THR:HG23	2.18	0.44
1:B:347:PHE:CD1	1:B:509:ARG:HD2	2.53	0.44
1:B:379:CYS:HB2	1:B:384:PRO:HG3	1.99	0.44

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:591:SER:H	1:B:634:ARG:HH12	1.66	0.44
1:B:922:LEU:HD11	2:B:1312:NAG:H3	1.99	0.44
1:A:886:TRP:HZ3	1:A:901:GLN:HG3	1.83	0.44
1:C:80:ASP:HB2	1:C:262:ALA:H	1.83	0.44
1:C:546:LEU:HD21	1:C:565:PHE:HZ	1.83	0.44
1:C:802:PHE:CD1	1:C:805:ILE:HD11	2.53	0.44
1:C:1091:ARG:NH1	1:C:1118:ASP:O	2.50	0.44
1:B:669:GLY:N	1:A:864:LEU:O	2.46	0.43
1:C:1115:ILE:HG22	1:C:1137:VAL:HG23	2.00	0.43
1:B:133:PHE:HB2	1:B:135:PHE:CZ	2.53	0.43
1:B:666:ILE:HB	1:B:670:ILE:O	2.18	0.43
1:B:708:SER:HA	2:B:1311:NAG:H82	1.99	0.43
1:B:896:ILE:HD12	1:B:897:PRO:HD2	1.99	0.43
1:B:990:GLU:HA	1:B:993:ILE:HG22	2.00	0.43
1:A:110:LEU:HD12	1:A:135:PHE:HD2	1.83	0.43
1:A:517:LEU:HD12	1:C:983:ARG:NH1	2.33	0.43
1:C:80:ASP:H	1:C:262:ALA:HB2	1.83	0.43
1:C:698:SER:O	1:C:698:SER:OG	2.34	0.43
1:A:319:ARG:HH12	1:C:740:MET:HB2	1.82	0.43
1:A:536:ASN:O	1:A:537:LYS:HD3	2.18	0.43
1:C:591:SER:N	1:C:634:ARG:HH12	2.16	0.43
1:B:421:TYR:CD1	1:B:460:LYS:HD2	2.54	0.43
1:A:54:LEU:HB2	1:A:195:LYS:HE3	2.01	0.43
1:B:126:VAL:HB	1:B:174:PRO:HA	2.01	0.43
1:B:869:MET:H	1:B:869:MET:HG2	1.57	0.43
1:A:98:SER:HA	1:A:180:GLU:H	1.83	0.43
1:A:276:LEU:HD11	1:A:304:LYS:HD3	2.00	0.43
1:A:936:ASP:O	1:A:940:SER:N	2.51	0.43
1:C:34:ARG:HH21	1:C:217:PRO:HG2	1.84	0.43
1:C:318:PHE:O	1:C:319:ARG:HG3	2.19	0.43
1:C:708:SER:HA	2:C:1311:NAG:H82	1.99	0.43
1:C:969:LYS:NZ	1:C:975:SER:H	2.16	0.43
1:A:166:CYS:HB2	1:A:167:THR:H	1.60	0.43
1:C:206:LYS:HB2	1:C:223:LEU:HD13	2.01	0.43
1:C:240:THR:O	1:C:241:LEU:HD22	2.17	0.43
1:C:801:ASN:N	1:C:928:ASN:OD1	2.41	0.43
1:C:1098:ASN:OD1	1:C:1098:ASN:N	2.52	0.43
1:B:416:GLY:N	1:B:419:ALA:HB3	2.33	0.43
1:B:528:LYS:HD3	1:B:529:LYS:N	2.34	0.43
1:B:595:VAL:HG22	1:B:612:TYR:CE1	2.53	0.43
1:A:83:ALA:HA	1:A:237:ARG:HH21	1.84	0.43

	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:378:LYS:HD3	1:A:380:TYR:CZ	2.54	0.43	
1:B:767:LEU:HD23	1:B:767:LEU:HA	1.83	0.43	
1:A:570:ALA:HB2	1:C:852:ALA:HB1	2.01	0.43	
1:C:457:ARG:HH22	1:C:461:LEU:HB2	1.82	0.43	
1:C:477:ASN:C	1:C:478:LYS:HG3	2.38	0.43	
1:B:278:LYS:HB2	1:B:306:PHE:CE2	2.53	0.43	
1:B:342:PHE:HE1	1:B:511:VAL:HG21	1.83	0.43	
1:B:392:PHE:HD1	1:B:517:LEU:HD21	1.84	0.43	
1:A:355:ARG:CZ	1:A:396:TYR:HB3	2.49	0.43	
1:C:378:LYS:HD3	1:C:380:TYR:CE2	2.54	0.43	
1:B:353:TRP:HD1	1:B:398:ASP:OD1	2.02	0.43	
1:B:719:THR:O	1:B:1068:VAL:HG22	2.19	0.43	
1:B:737:ASP:OD1	1:B:737:ASP:N	2.51	0.43	
1:A:289:VAL:HB	1:A:306:PHE:HE1	1.84	0.43	
1:C:487:ASN:HA	1:C:489:TYR:CZ	2.54	0.43	
1:C:739:THR:HG22	1:C:753:LEU:HD23	2.01	0.43	
1:C:800:PHE:HD2	1:C:927:PHE:CD2	2.37	0.43	
1:C:819:GLU:OE1	1:C:1055:SER:HB2	2.19	0.43	
1:B:720:ILE:HD12	1:B:923:ILE:HG23	2.00	0.42	
1:A:406:GLU:OE1	1:A:495:TYR:OH	2.37	0.42	
1:A:552:LEU:HD12	1:A:585:LEU:HD22	2.01	0.42	
1:C:129:LYS:HA	1:C:129:LYS:HE2	2.01	0.42	
1:B:233:ILE:HG12	1:B:234:ASN:H	1.83	0.42	
1:A:121:ASN:OD1	1:A:175:PHE:HD2	2.02	0.42	
1:A:505:HIS:NE2	1:C:503:VAL:HG11	2.33	0.42	
1:A:1107:ARG:HD3	1:C:904:TYR:CD2	2.54	0.42	
1:C:117:LEU:HA	1:C:130:VAL:HA	2.01	0.42	
1:C:643:PHE:HD1	1:C:644:GLN:H	1.66	0.42	
1:A:34:ARG:NH1	1:A:217:PRO:O	2.52	0.42	
1:A:396:TYR:O	1:A:513:LEU:HA	2.20	0.42	
1:A:707:TYR:CE1	1:C:897:PRO:HA	2.53	0.42	
1:A:986:LYS:HA	1:A:986:LYS:HD3	1.88	0.42	
1:C:81:ASN:OD1	1:C:81:ASN:N	2.53	0.42	
1:B:382:VAL:HG13	1:A:983:ARG:HH11	1.85	0.42	
1:A:357:ARG:NE	1:C:231:ILE:O	2.52	0.42	
1:A:1106:GLN:H	1:A:1106:GLN:HG3	1.56	0.42	
1:C:128:ILE:HG12	1:C:170:TYR:CD1	2.55	0.42	
1:A:931:ILE:O	1:A:934:ILE:HG22	2.20	0.42	
1:C:81:ASN:HB3	1:C:138:ASP:CB	2.49	0.42	
1:C:131:CYS:HB2	1:C:133:PHE:CZ	2.54	0.42	
1:C:878:LEU:HD11	1:C:1052:PHE:HB3	2.01	0.42	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:424:LYS:HD3	1:B:424:LYS:HA	1.86	0.42	
1:A:90:VAL:HG21	1:A:238:PHE:CE1	2.54	0.42	
1:A:328:ARG:HG2	1:A:579:PRO:HD2	2.01	0.42	
1:A:376:ALA:HB3	1:A:435:ALA:HB3	2.00	0.42	
1:A:617:CYS:HA	1:A:633:TRP:N	2.35	0.42	
1:C:34:ARG:NH2	1:C:217:PRO:HG2	2.34	0.42	
1:C:854:LYS:HE3	1:C:854:LYS:HB3	1.90	0.42	
1:B:178:ASP:OD1	1:B:178:ASP:N	2.53	0.42	
1:B:768:THR:O	1:B:772:VAL:HG13	2.19	0.42	
1:A:118:LEU:CD2	1:A:120:VAL:HG23	2.46	0.42	
1:B:497:PHE:CE2	1:B:507:PRO:HB3	2.55	0.42	
1:A:126:VAL:HB	1:A:174:PRO:HA	2.02	0.42	
1:A:159:VAL:HG23	1:A:160:TYR:H	1.83	0.42	
1:A:438:SER:HB3	1:A:509:ARG:HG2	2.02	0.42	
1:A:536:ASN:O	1:A:537:LYS:CD	2.68	0.42	
1:A:1028:LYS:O	1:A:1032:CYS:HB2	2.19	0.42	
1:B:707:TYR:CE1	1:A:897:PRO:HA	2.53	0.42	
1:A:34:ARG:NH1	1:A:219:GLY:O	2.52	0.42	
1:A:122:ASN:O	1:A:124:THR:N	2.52	0.42	
1:A:295:PRO:HA	1:A:298:GLU:HB3	2.02	0.42	
1:C:50:SER:HA	1:C:276:LEU:HA	2.02	0.42	
1:C:159:VAL:HG13	1:C:160:TYR:CD1	2.51	0.42	
1:C:258:TRP:CD1	1:C:258:TRP:N	2.88	0.42	
1:B:247:SER:O	1:B:248:TYR:CB	2.68	0.42	
1:B:477:ASN:C	1:B:478:LYS:HG3	2.39	0.42	
1:A:131:CYS:HB2	1:A:133:PHE:CZ	2.54	0.42	
1:A:299:THR:HG22	1:A:308:VAL:HG11	2.02	0.42	
1:A:332:ILE:HG23	1:A:362:VAL:HG23	2.01	0.42	
1:A:349:SER:HB2	1:A:451:TYR:CD1	2.54	0.42	
1:A:355:ARG:HD3	1:A:398:ASP:OD1	2.20	0.42	
1:A:804:GLN:HG3	1:A:931:ILE:HG23	2.02	0.42	
1:C:557:LYS:HE2	1:C:557:LYS:HB3	1.88	0.41	
1:C:726:ILE:HG22	1:C:1061:VAL:HG22	2.01	0.41	
1:B:992:GLN:NE2	1:B:995:ARG:HH21	2.17	0.41	
1:C:541:PHE:CZ	1:C:548:GLY:HA3	2.56	0.41	
1:C:1094:VAL:HG23	1:C:1096:VAL:HG23	2.01	0.41	
1:B:140:PHE:HA	1:B:241:LEU:HD11	2.02	0.41	
1:B:715:PRO:HD3	1:A:894:LEU:CD1	2.50	0.41	
1:B:816:SER:OG	1:B:819:GLU:HG3	2.20	0.41	
1:B:983:ARG:O	1:C:383:SER:N	2.53	0.41	
1:A:565:PHE:HD2	1:A:567:ARG:HH21	1.66	0.41	

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:813:SER:OG	1:A:868:GLU:OE2	2.30	0.41
1:C:28:TYR:CE2	2:C:1301:NAG:H62	2.56	0.41
1:B:133:PHE:HB3	1:B:160:TYR:HB3	2.02	0.41
1:B:428:ASP:OD1	1:B:429:PHE:N	2.53	0.41
1:B:557:LYS:HB3	1:B:557:LYS:HE2	1.83	0.41
1:B:560:LEU:N	1:B:563:GLN:HB3	2.26	0.41
1:B:713:ALA:HA	1:B:1074:ASN:HA	2.01	0.41
1:B:827:THR:O	1:B:827:THR:OG1	2.37	0.41
1:A:869:MET:H	1:A:869:MET:HG2	1.70	0.41
1:C:537:LYS:C	1:C:551:VAL:HG12	2.41	0.41
1:C:697:MET:HA	1:C:697:MET:CE	2.50	0.41
1:B:359:SER:HA	1:B:523:THR:HG23	2.02	0.41
1:B:446:SER:O	1:B:498:ARG:NH2	2.53	0.41
1:B:633:TRP:O	1:B:634:ARG:HG3	2.20	0.41
1:B:761:THR:CG2	1:B:762:GLN:N	2.83	0.41
1:B:121:ASN:OD1	1:B:174:PRO:HB3	2.21	0.41
1:B:537:LYS:C	1:B:551:VAL:HG12	2.40	0.41
1:B:790:LYS:HE2	1:C:704:SER:HB3	2.01	0.41
1:A:269:TYR:CD1	1:A:269:TYR:N	2.88	0.41
1:C:177:MET:H	1:C:190:ARG:HH12	1.68	0.41
1:B:43:PHE:CE2	1:C:557:LYS:HD3	2.55	0.41
1:B:877:LEU:HD23	1:B:888:PHE:CE2	2.55	0.41
1:A:356:LYS:HE2	1:A:356:LYS:HB2	1.77	0.41
1:A:364:ASP:N	1:A:364:ASP:OD1	2.54	0.41
1:A:1083:HIS:CG	1:A:1137:VAL:HG12	2.55	0.41
1:C:1023:ASN:O	1:C:1027:THR:HG23	2.21	0.41
1:C:1086:LYS:HA	1:C:1086:LYS:HD2	1.90	0.41
1:B:804:GLN:HA	1:B:817:PHE:HD2	1.86	0.41
1:A:65:PHE:CZ	1:A:84:LEU:HD21	2.55	0.41
1:A:644:GLN:HG3	2:A:1309:NAG:HN2	1.86	0.41
1:C:349:SER:HB3	1:C:351:TYR:CD1	2.56	0.41
1:C:726:ILE:CD1	1:C:947:LYS:HB3	2.49	0.41
1:B:304:LYS:HE3	1:B:304:LYS:HB3	1.89	0.41
1:B:349:SER:OG	1:B:350:VAL:N	2.54	0.41
1:B:487:ASN:HA	1:B:489:TYR:CZ	2.55	0.41
1:B:503:VAL:HG11	1:C:505:HIS:NE2	2.36	0.41
1:B:642:VAL:HG22	1:B:651:ILE:HG22	2.03	0.41
1:B:916:LEU:HD12	1:B:923:ILE:HG13	2.02	0.41
1:A:138:ASP:OD1	1:A:138:ASP:N	2.53	0.41
1:A:394:ASN:ND2	1:C:200:TYR:OH	2.53	0.41
1:A:424:LYS:HD3	1:A:424:LYS:HA	1.89	0.41

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:C:290:ASP:O	1:C:297:SER:OG	2.28	0.41
1:C:483:VAL:O	1:U:484:ALA:U	2.58	0.41
1:C:559:PHE:HD1	1:C:563:GLN:HG3	1.85	0.41
1:B:431:GLY:HA3	1:B:513:LEU:O	2.21	0.41
1:B:726:ILE:HG13	1:B:1061:VAL:HG22	2.02	0.41
1:B:969:LYS:O	1:A:755:GLN:HB3	2.21	0.41
1:C:424:LYS:HD3	1:C:424:LYS:HA	1.94	0.41
1:C:802:PHE:HD1	1:C:805:ILE:HD11	1.86	0.41
1:C:817:PHE:CZ	1:C:821:LEU:HD12	2.56	0.41
1:B:558:LYS:O	1:B:559:PHE:HB2	2.21	0.40
1:B:564:GLN:HG2	1:B:565:PHE:HD1	1.86	0.40
1:B:664:ILE:O	1:B:671:CYS:HB3	2.21	0.40
1:B:1006:THR:HG23	1:A:1005:GLN:HE22	1.86	0.40
1:B:1095:PHE:HD1	1:B:1095:PHE:HA	1.80	0.40
1:A:135:PHE:HE1	1:A:159:VAL:HB	1.86	0.40
1:A:204:TYR:HB2	1:A:223:LEU:HD21	2.03	0.40
1:A:483:VAL:O	1:A:484:ALA:C	2.59	0.40
1:C:304:LYS:HA	1:C:304:LYS:HD3	1.93	0.40
1:C:336:CYS:HB2	1:C:361:CYS:HB2	1.95	0.40
1:C:555:SER:HB2	1:C:584:ILE:HB	2.04	0.40
1:C:559:PHE:CD1	1:C:563:GLN:HG3	2.56	0.40
1:C:726:ILE:C	1:C:726:ILE:HD12	2.41	0.40
1:B:390:LEU:O	1:B:525:CYS:HB3	2.20	0.40
1:B:695:TYR:HD1	1:B:696:THR:O	2.04	0.40
1:A:797:PHE:HE2	1:A:806:LEU:HD11	1.87	0.40
1:C:347:PHE:CD2	1:C:509:ARG:HD2	2.56	0.40
1:C:380:TYR:HE2	1:C:412:PRO:HD3	1.87	0.40
1:C:714:ILE:HD12	1:C:1096:VAL:HG21	2.02	0.40
1:C:764:LYS:HB3	1:C:764:LYS:HE3	1.87	0.40
1:C:984:LEU:HD22	1:C:988:GLU:HG3	2.03	0.40
1:B:220:PHE:HE2	1:B:285:ILE:HG22	1.86	0.40
1:B:800:PHE:HD2	1:B:927:PHE:CD2	2.40	0.40
1:B:456:PHE:CE1	1:A:372:ALA:HB1	2.56	0.40
1:B:957:GLN:HA	1:B:960:ASN:HB3	2.03	0.40
1:A:375:PHE:CE2	1:A:407:VAL:HG11	2.57	0.40
1:A:375:PHE:HE2	1:A:407:VAL:HG11	1.86	0.40
1:A:636:TYR:HB3	1:A:637:SEB:H	1.69	0.40
1:C:28:TYR:CD2	2:C:1301:NAG:H62	2.57	0.40
1:C:167:THR:O	1:C:167:THR:OG1	2.39	0.40
1:B:409:GLN:OE1	1:B:417:ASN:N	2.55	0.40
1:A:105:ILE:HB	1:A:239:GLN:HG2	2.04	0.40

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
Contracta	<i>J</i> ¹ <i>O</i> ¹¹⁰	proceeduo	pago

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:C:741:TYR:CE1	1:C:966:LEU:HD11	2.55	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	1026/1269~(81%)	911 (89%)	109 (11%)	6 (1%)	22	57
1	В	1026/1269~(81%)	923 (90%)	96 (9%)	7 (1%)	19	54
1	С	1026/1269~(81%)	936 (91%)	87 (8%)	3 (0%)	37	69
All	All	3078/3807 (81%)	2770 (90%)	292 (10%)	16 (0%)	27	60

All (16) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	331	ASN
1	В	253	ASP
1	В	788	ILE
1	В	798	GLY
1	А	788	ILE
1	С	788	ILE
1	В	330	PRO
1	В	489	TYR
1	А	177	MET
1	А	738	CYS
1	С	489	TYR
1	В	254	SER
1	А	330	PRO
1	А	489	TYR
1	А	888	PHE
1	С	166	CYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	908/1109~(82%)	877~(97%)	31 (3%)	32 63
1	В	908/1109~(82%)	883~(97%)	25 (3%)	38 68
1	С	908/1109~(82%)	884 (97%)	24 (3%)	41 70
All	All	2724/3327~(82%)	2644 (97%)	80 (3%)	39 67

All (80) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	В	79	PHE
1	В	81	ASN
1	В	88	ASP
1	В	97	LYS
1	В	104	TRP
1	В	116	SER
1	В	118	LEU
1	В	166	CYS
1	В	168	PHE
1	В	241	LEU
1	В	275	PHE
1	В	390	LEU
1	В	457	ARG
1	В	525	CYS
1	В	529	LYS
1	В	643	PHE
1	В	657	ASN
1	В	673	SER
1	В	718	PHE
1	В	758	SER
1	В	855	PHE
1	В	886	TRP
1	В	954	HIS
1	В	1082	CYS
1	В	1138	TYR
1	А	45	SER

Mol	Chain	Res	Type
1	А	60	SER
1	А	104	TRP
1	А	133	PHE
1	А	165	ASN
1	А	226	LEU
1	А	269	TYR
1	А	282	ASN
1	А	297	SER
1	А	303	LEU
1	А	338	PHE
1	А	342	PHE
1	А	371	PHE
1	А	383	SER
1	A	388	ASN
1	А	453	TYR
1	А	495	TYR
1	А	501	TYR
1	А	525	CYS
1	А	529	LYS
1	А	540	ASN
1	А	634	ARG
1	А	643	PHE
1	А	657	ASN
1	А	759	PHE
1	А	773	GLU
1	А	900	MET
1	А	947	LYS
1	А	1017	GLU
1	А	1074	ASN
1	А	1138	TYR
1	С	275	PHE
1	С	342	PHE
1	С	349	SER
1	С	357	ARG
1	С	462	LYS
1	С	492	LEU
1	C	525	CYS
1	С	536	ASN
1	С	538	CYS
1	С	633	TRP
1	C	643	PHE
1	С	657	ASN

Mol	Chain	Res	
1	С	759	PHE
1	C	775	ASP
1	С	784	GLN
1	С	820	ASP
1	С	823	PHE
1	С	873	TYR
1	С	900	MET
1	С	960	ASN
1	С	994	ASP
1	С	1104	VAL
1	С	1118	ASP
1	С	1127	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (42) such side chains are listed below:

Mol	Chain	Res	Type
1	В	121	ASN
1	В	317	ASN
1	В	439	ASN
1	В	774	GLN
1	В	804	GLN
1	В	926	GLN
1	В	955	ASN
1	В	957	GLN
1	В	1005	GLN
1	В	1011	GLN
1	В	1106	GLN
1	А	211	ASN
1	А	354	ASN
1	А	360	ASN
1	А	439	ASN
1	А	544	ASN
1	А	762	GLN
1	А	774	GLN
1	А	787	GLN
1	А	907	ASN
1	А	913	GLN
1	А	914	ASN
1	А	926	GLN
1	А	1010	GLN
1	А	1011	GLN
1	А	1048	HIS

	5	1	1 0
Mol	Chain	Res	Type
1	А	1135	ASN
1	С	207	HIS
1	С	239	GLN
1	С	339	HIS
1	С	544	ASN
1	С	613	GLN
1	С	710	ASN
1	С	751	ASN
1	С	755	GLN
1	С	762	GLN
1	С	774	GLN
1	С	777	ASN
1	С	872	GLN
1	С	901	GLN
1	С	926	GLN
1	С	1011	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

49 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

	т	<u> </u>	Ъ	τ・1	Bo	ond leng	\mathbf{ths}	Bond angles		
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	А	1308	1	14,14,15	0.22	0	17,19,21	0.42	0
2	NAG	В	1310	1	14,14,15	0.34	0	17,19,21	0.50	0
2	NAG	В	1309	1	14,14,15	0.21	0	17,19,21	0.40	0
2	NAG	В	1313	1	14,14,15	0.22	0	17,19,21	0.46	0
2	NAG	А	1307	1	14,14,15	0.25	0	17,19,21	0.47	0
2	NAG	В	1311	1	14,14,15	0.39	0	17,19,21	0.41	0
2	NAG	А	1304	1	14,14,15	0.24	0	17,19,21	0.44	0
2	NAG	С	1306	1	14,14,15	0.32	0	17,19,21	0.43	0
2	NAG	А	1303	1	14,14,15	0.38	0	17,19,21	0.38	0
2	NAG	С	1305	1	14,14,15	0.49	0	17,19,21	0.43	0
2	NAG	А	1306	1	14,14,15	0.27	0	17,19,21	0.45	0
2	NAG	С	1303	1	14,14,15	0.39	0	17,19,21	0.50	0
2	NAG	В	1314	1	14,14,15	0.38	0	17,19,21	0.64	0
2	NAG	С	1309	1	14,14,15	0.22	0	17,19,21	0.40	0
2	NAG	С	1310	1	14,14,15	0.26	0	17,19,21	0.48	0
2	NAG	В	1301	1	14,14,15	0.22	0	17,19,21	0.46	0
2	NAG	С	1313	1	14,14,15	0.24	0	17,19,21	0.49	0
2	NAG	С	1314	1	14,14,15	0.24	0	17,19,21	0.51	0
2	NAG	А	1302	1	14,14,15	0.28	0	17,19,21	0.49	0
2	NAG	С	1301	1	14,14,15	0.31	0	17,19,21	0.47	0
2	NAG	А	1312	1	14,14,15	0.21	0	17,19,21	0.49	0
2	NAG	В	1304	1	14,14,15	0.24	0	17,19,21	0.46	0
2	NAG	В	1316	1	14,14,15	0.22	0	17,19,21	0.45	0
2	NAG	С	1311	1	14,14,15	0.41	0	17,19,21	0.49	0
2	NAG	А	1314	1	14,14,15	0.24	0	17,19,21	0.48	0
2	NAG	С	1315	1	14,14,15	0.20	0	17,19,21	0.47	0
2	NAG	А	1315	1	14,14,15	0.20	0	17,19,21	0.49	0
2	NAG	В	1302	1	14,14,15	0.19	0	17,19,21	0.46	0
2	NAG	С	1307	1	14,14,15	0.26	0	17,19,21	0.49	0
2	NAG	В	1312	1	14,14,15	0.23	0	$17,\!19,\!21$	0.46	0
2	NAG	В	1308	1	14,14,15	0.18	0	$17,\!19,\!21$	0.43	0
2	NAG	С	1302	1	14,14,15	0.19	0	$17,\!19,\!21$	0.46	0
2	NAG	А	1310	1	14,14,15	0.39	0	$17,\!19,\!21$	0.35	0
2	NAG	А	1305	1	14,14,15	0.40	0	$17,\!19,\!21$	0.39	0
2	NAG	С	1316	1	$14,\!14,\!15$	0.23	0	$17,\!19,\!21$	0.45	0
2	NAG	В	1303	1	14,14,15	1.03	1 (7%)	$17,\!19,\!21$	1.29	1 (5%)
2	NAG	А	1309	1	14,14,15	0.21	0	17,19,21	0.40	0
2	NAG	В	1315	1	14,14,15	0.21	0	17,19,21	0.47	0
2	NAG	А	1316	1	14,14,15	0.19	0	17,19,21	0.42	0
2	NAG	А	1313	1	14,14,15	0.23	0	17,19,21	0.48	0
2	NAG	С	1312	1	14,14,15	0.20	0	17,19,21	0.46	0
2	NAG	А	1301	1	14,14,15	0.22	0	17,19,21	0.42	0
2	NAG	A	1311	1	14,14,15	0.41	0	17,19,21	0.48	0

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
WIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	В	1305	1	14,14,15	0.31	0	17,19,21	0.42	0
2	NAG	С	1304	1	14,14,15	0.24	0	17,19,21	0.43	0
2	NAG	В	1307	1	$14,\!14,\!15$	0.21	0	17,19,21	0.48	0
2	NAG	С	1308	1	14,14,15	0.22	0	17,19,21	0.41	0
3	IDU	A	1317	-	15,15,17	0.92	1 (6%)	15,22,26	1.17	1 (6%)
2	NAG	В	1306	1	14,14,15	0.33	0	17,19,21	0.40	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	А	1308	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1310	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1309	1	-	0/6/23/26	0/1/1/1
2	NAG	В	1313	1	-	2/6/23/26	0/1/1/1
2	NAG	А	1307	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1311	1	-	0/6/23/26	0/1/1/1
2	NAG	А	1304	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1306	1	-	2/6/23/26	0/1/1/1
2	NAG	А	1303	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1305	1	-	3/6/23/26	0/1/1/1
2	NAG	А	1306	1	-	2/6/23/26	0/1/1/1
2	NAG	С	1303	1	-	1/6/23/26	0/1/1/1
2	NAG	В	1314	1	-	1/6/23/26	0/1/1/1
2	NAG	С	1309	1	-	2/6/23/26	0/1/1/1
2	NAG	С	1310	1	-	0/6/23/26	0/1/1/1
2	NAG	В	1301	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1313	1	-	2/6/23/26	0/1/1/1
2	NAG	С	1314	1	-	3/6/23/26	0/1/1/1
2	NAG	А	1302	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1301	1	-	0/6/23/26	0/1/1/1
2	NAG	А	1312	1	-	0/6/23/26	0/1/1/1
2	NAG	В	1304	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1316	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1311	1	-	2/6/23/26	0/1/1/1
2	NAG	A	1314	1	-	1/6/23/26	0/1/1/1
2	NAG	C	1315	1	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	А	1315	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1302	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1307	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1312	1	-	0/6/23/26	0/1/1/1
2	NAG	В	1308	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1302	1	-	2/6/23/26	0/1/1/1
2	NAG	А	1310	1	-	0/6/23/26	0/1/1/1
2	NAG	А	1305	1	-	2/6/23/26	0/1/1/1
2	NAG	С	1316	1	-	0/6/23/26	0/1/1/1
2	NAG	В	1303	1	-	2/6/23/26	0/1/1/1
2	NAG	А	1309	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1315	1	-	2/6/23/26	0/1/1/1
2	NAG	А	1316	1	-	2/6/23/26	0/1/1/1
2	NAG	А	1313	1	-	0/6/23/26	0/1/1/1
2	NAG	С	1312	1	-	0/6/23/26	0/1/1/1
2	NAG	А	1301	1	-	0/6/23/26	0/1/1/1
2	NAG	А	1311	1	-	3/6/23/26	0/1/1/1
2	NAG	В	1305	1	-	3/6/23/26	0/1/1/1
2	NAG	С	1304	1	-	2/6/23/26	0/1/1/1
2	NAG	В	1307	1	-	2/6/23/26	0/1/1/1
2	NAG	С	1308	1	-	0/6/23/26	0/1/1/1
3	IDU	А	1317	-	-	4/9/22/29	1/1/1/1
2	NAG	В	1306	1	-	3/6/23/26	0/1/1/1

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	В	1303	NAG	O5-C1	3.72	1.49	1.43
3	А	1317	IDU	O6-C6	-2.88	1.21	1.30

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	В	1303	NAG	C1-O5-C5	5.07	119.06	112.19
3	А	1317	IDU	O6-C6-C5	2.26	119.49	113.03

There are no chirality outliers.

All (64) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	1317	IDU	C1-C2-O2-S
3	А	1317	IDU	C3-C2-O2-S
2	С	1307	NAG	C4-C5-C6-O6
2	В	1307	NAG	C4-C5-C6-O6
2	В	1315	NAG	O5-C5-C6-O6
2	С	1314	NAG	O5-C5-C6-O6
2	В	1304	NAG	O5-C5-C6-O6
2	A	1315	NAG	O5-C5-C6-O6
2	С	1315	NAG	O5-C5-C6-O6
2	A	1307	NAG	C4-C5-C6-O6
2	С	1307	NAG	O5-C5-C6-O6
2	C	1313	NAG	O5-C5-C6-O6
2	A	1308	NAG	C4-C5-C6-O6
2	В	1303	NAG	O5-C5-C6-O6
2	В	1315	NAG	C4-C5-C6-O6
2	B	1307	NAG	O5-C5-C6-O6
2	А	1307	NAG	O5-C5-C6-O6
2	C	1314	NAG	C4-C5-C6-O6
2	B	1306	NAG	O5-C5-C6-O6
2	A	1306	NAG	O5-C5-C6-O6
2	В	1304	NAG	C4-C5-C6-O6
2	С	1315	NAG	C4-C5-C6-O6
2	A	1311	NAG	C8-C7-N2-C2
2	A	1315	NAG	C4-C5-C6-O6
2	A	1306	NAG	C4-C5-C6-O6
2	В	1306	NAG	C4-C5-C6-O6
2	С	1313	NAG	C4-C5-C6-O6
2	В	1305	NAG	C8-C7-N2-C2
2	В	1305	NAG	07-C7-N2-C2
2	A	1305	NAG	C8-C7-N2-C2
2	A	1305	NAG	07-C7-N2-C2
2	A	1311	NAG	07-C7-N2-C2
2	С	1305	NAG	C8-C7-N2-C2
2	С	1305	NAG	07-C7-N2-C2
2	C	1311	NAG	C8-C7-N2-C2
2	A	1308	NAG	O5-C5-C6-O6
2	С	1304	NAG	O5-C5-C6-O6
2	B	1313	NAG	O5-C5-C6-O6
2	С	1306	NAG	C4-C5-C6-O6
2	C	1304	NAG	C4-C5-C6-O6
2	B	1313	NAG	C4-C5-C6-O6
2	А	1316	NAG	O5-C5-C6-O6
2	В	1303	NAG	C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
2	С	1311	NAG	O7-C7-N2-C2
2	В	1310	NAG	C4-C5-C6-O6
2	А	1316	NAG	C4-C5-C6-O6
2	С	1306	NAG	O5-C5-C6-O6
2	С	1302	NAG	C4-C5-C6-O6
2	А	1311	NAG	O5-C5-C6-O6
2	С	1303	NAG	O5-C5-C6-O6
2	В	1310	NAG	O5-C5-C6-O6
2	С	1309	NAG	C4-C5-C6-O6
2	А	1309	NAG	C4-C5-C6-O6
2	С	1302	NAG	O5-C5-C6-O6
2	А	1309	NAG	O5-C5-C6-O6
2	В	1306	NAG	C1-C2-N2-C7
2	С	1309	NAG	O5-C5-C6-O6
2	В	1305	NAG	C4-C5-C6-O6
3	А	1317	IDU	O5-C5-C6-O61
2	В	1314	NAG	C3-C2-N2-C7
2	А	1314	NAG	C3-C2-N2-C7
2	С	1314	NAG	C3-C2-N2-C7
2	С	1305	NAG	C4-C5-C6-O6
3	А	1317	IDU	C4-C5-C6-O61

Continued from previous page...

All (1) ring outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	1317	IDU	C1-C2-C3-C4-C5-O5

9 monomers are involved in 11 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	1310	NAG	1	0
2	В	1311	NAG	1	0
2	С	1301	NAG	2	0
2	С	1311	NAG	1	0
2	В	1302	NAG	1	0
2	В	1312	NAG	1	0
2	С	1302	NAG	1	0
2	А	1309	NAG	2	0
2	В	1306	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

