

Full wwPDB NMR Structure Validation Report (i)

May 7, 2024 – 03:29 pm BST

PDB ID	:	2Y4Q
BMRB ID	:	17621
Title	:	Solution structure of the EF-hand domain of Human Polycystin 2
Authors	:	Allen, M.D.; Qamar, S.; Sandford, R.N.
Deposited on	:	2011-01-07

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

Percentile statistics : 20191225.001 (using entries in the PDB archive December 25th 20. wwPDB-RCI : v_1n_11_5_13_A (Berjanski et al., 2005) PANAV : Wang et al. (2010) wwPDB-ShiftChecker : v1.2 Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.36.2	MolProbity	:	4.02b-467
wwPDB-RCI:v_1n_11_5_13_A (Berjanski et al., 2005)PANAV:Wang et al. (2010)wwPDB-ShiftChecker:v1.2Ideal geometry (proteins):Engh & Huber (2001)Ideal geometry (DNA, RNA):Parkinson et al. (1996)Validation Pipeline (wwPDB-VP):2.36.2	Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
PANAV : Wang et al. (2010) wwPDB-ShiftChecker : v1.2 Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.36.2	wwPDB-RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
wwPDB-ShiftChecker:v1.2Ideal geometry (proteins):Engh & Huber (2001)Ideal geometry (DNA, RNA):Parkinson et al. (1996)Validation Pipeline (wwPDB-VP):2.36.2	PANAV	:	Wang et al. (2010)
Ideal geometry (proteins):Engh & Huber (2001)Ideal geometry (DNA, RNA):Parkinson et al. (1996)Validation Pipeline (wwPDB-VP):2.36.2	wwPDB-ShiftChecker	:	v1.2
Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.36.2	Ideal geometry (proteins)	:	Engh & Huber (2001)
Validation Pipeline (wwPDB-VP) : 2.36.2	Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
	Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 73%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	(# Entries)	(#Entries)
Clashscore	158937	12864
Ramachandran outliers	154571	11451
Sidechain outliers	154315	11428

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Qu	ality of chain		
1	А	79	41%	38%	5%	16%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 1 is the overall representative, medoid model (most similar to other models).

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues					
Well-defined core Residue range (total) Backbone RMSD (Å) Medoid mode					
1	A:718-A:783 (66)	0.28	1		

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 3 clusters and 4 single-model clusters were found.

Cluster number	Models
1	1, 3, 5, 8, 9, 10, 11, 14, 16, 18, 20
2	6, 13, 17
3	15, 19
Single-model clusters	2; 4; 7; 12

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 1210 atoms, of which 574 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called POLYCYSTIN-2.

Mol	Chain	Residues			Aton	ns			Trace
1	٨	70	Total	С	Η	Ν	0	S	0
	A	19	1209	380	574	112	142	1	

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	714	GLY	-	expression tag	UNP Q13563
А	715	GLY	-	expression tag	UNP Q13563
А	716	SER	-	expression tag	UNP Q13563

• Molecule 2 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms
2	А	1	Total Ca 1 1

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: POLYCYSTIN-2

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1 (medoid)

4.2.2 Score per residue for model 2

• Molecule 1: POLYCYSTIN-2

Chain A:	39%	33%	11%	16%

G714 G715 B716 B726 B776 B778 B788 B788 B788 B788 B788

4.2.3 Score per residue for model 3

• Molecule 1: POLYCYSTIN-2

4.2.4 Score per residue for model 4

• Molecule 1: POLYCYSTIN-2

 Chain A:
 44%
 34%
 5%
 16%

 9155
 9255
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255
 9255

 9155
 9255
 9255
 9255
 9255
 9255

 <tr

4.2.5 Score per residue for model 5

• Molecule 1: POLYCYSTIN-2

4.2.6 Score per residue for model 6

• Molecule 1: POLYCYSTIN-2

4.2.7 Score per residue for model 7

• Molecule 1: POLYCYSTIN-2

4.2.8 Score per residue for model 8

• Molecule 1: POLYCYSTIN-2

4.2.9 Score per residue for model 9

• Molecule 1: POLYCYSTIN-2

4.2.10 Score per residue for model 10

39%

• Molecule 1: POLYCYSTIN-2

Chain A:

41%

• 16%

RT 86 RT 15 RT 25 RT

4.2.11 Score per residue for model 11

• Molecule 1: POLYCYSTIN-2

4.2.12 Score per residue for model 12

• Molecule 1: POLYCYSTIN-2

4.2.13 Score per residue for model 13

• Molecule 1: POLYCYSTIN-2

4.2.14 Score per residue for model 14

• Molecule 1: POLYCYSTIN-2

4.2.15 Score per residue for model 15

• Molecule 1: POLYCYSTIN-2

- 4.2.16 Score per residue for model 16
- Molecule 1: POLYCYSTIN-2

4.2.17 Score per residue for model 17

• Molecule 1: POLYCYSTIN-2

K784 E785 E786 E787 D788 L789 L790 L791 L791

4.2.18 Score per residue for model 18

• Molecule 1: POLYCYSTIN-2

- 4.2.19 Score per residue for model 19
- Molecule 1: POLYCYSTIN-2

4.2.20 Score per residue for model 20

• Molecule 1: POLYCYSTIN-2

Chain A:	42%	37%	5% 16%
6714 6715 8716 1717 8716 1717 1721 1721 1721 1723 1723 1724	1/25 L729 L729 Q731 G732 G734 G734 L736 L736 L736 L736	L741 R742 R745 L745 K746 B752 L755 E755 E756 F756 F756 F756 F756 F760 Y761 Y761 Y761	Q768 E769 L770 L771 E773 E773 E774 M778 M778 D781 D781 L782 D781 L782 D781 L782 D781 L782 B786 E785
N H O 0 8 3			

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: ANNEAL.INP.

Of the 25 calculated structures, 20 were deposited, based on the following criterion: NO VIOLA-TIONS > 0.25A.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CNS	refinement	1.2
CNS	structure solution	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	working_cs.cif
Number of chemical shift lists	1
Total number of shifts	760
Number of shifts mapped to atoms	740
Number of unparsed shifts	0
Number of shifts with mapping errors	20
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	73%

6 Model quality (i)

6.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	534	478	496	24 ± 3
All	All	10700	9560	9920	473

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 23.

All unique clashes are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	$Clash(\lambda)$	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:725:ILE:HD13	1:A:778:MET:HE2	0.85	1.48	13	1
1:A:722:VAL:HG21	1:A:782:LEU:HD12	0.81	1.51	17	6
1:A:738:PHE:CZ	1:A:759:PHE:HB3	0.78	2.14	18	20
1:A:722:VAL:CG2	1:A:782:LEU:HD13	0.78	2.08	13	3
1:A:738:PHE:HA	1:A:759:PHE:CE2	0.77	2.15	12	7
1:A:725:ILE:HD11	1:A:758:ILE:HD13	0.75	1.58	4	10
1:A:770:LEU:HD12	1:A:774:GLU:OE1	0.75	1.81	2	9
1:A:722:VAL:HG21	1:A:782:LEU:HD13	0.74	1.60	3	6
1:A:735:LYS:HG2	1:A:771:THR:HG23	0.74	1.60	13	3
1:A:729:LEU:HD21	1:A:734:GLY:O	0.73	1.84	16	5
1:A:721:THR:HG21	1:A:758:ILE:HD11	0.72	1.62	3	10
1:A:736:LEU:HB2	1:A:741:LEU:HD13	0.72	1.61	5	16

2Y4Q	
------	--

	ious puge			Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:732:GLY:HA3	1:A:736:LEU:HD11	0.71	1.62	12	16	
1:A:736:LEU:CB	1:A:741:LEU:HD13	0.71	2.14	7	19	
1:A:725:ILE:HD13	1:A:778:MET:CE	0.70	2.16	17	2	
1:A:742:ARG:HG3	1:A:755:ILE:HD13	0.70	1.61	12	2	
1:A:735:LYS:CG	1:A:771:THR:HG22	0.69	2.17	3	1	
1:A:736:LEU:HD13	1:A:741:LEU:CD1	0.68	2.19	9	5	
1:A:722:VAL:HG13	1:A:778:MET:SD	0.67	2.29	1	3	
1:A:721:THR:HG22	1:A:725:ILE:HD11	0.66	1.66	15	3	
1:A:721:THR:HG22	1:A:725:ILE:CD1	0.66	2.20	15	1	
1:A:752:ASP:HA	1:A:755:ILE:HD12	0.66	1.66	12	6	
1:A:725:ILE:CD1	1:A:745:LEU:HD11	0.64	2.21	19	2	
1:A:729:LEU:HA	1:A:736:LEU:HD13	0.64	1.69	19	10	
1:A:721:THR:CG2	1:A:758:ILE:HD11	0.64	2.23	2	11	
1:A:735:LYS:O	1:A:736:LEU:HD22	0.64	1.93	7	1	
1:A:770:LEU:HD12	1:A:774:GLU:OE2	0.63	1.93	17	6	
1:A:735:LYS:CG	1:A:771:THR:HG23	0.63	2.23	13	2	
1:A:719:LYS:HB3	1:A:782:LEU:HD21	0.62	1.71	2	1	
1:A:719:LYS:HG3	1:A:782:LEU:HD22	0.61	1.73	8	1	
1:A:741:LEU:HD23	1:A:759:PHE:CE1	0.61	2.31	9	7	
1:A:735:LYS:C	1:A:736:LEU:HD12	0.60	2.17	16	5	
1:A:735:LYS:HD3	1:A:771:THR:HG22	0.60	1.73	7	1	
1:A:718:LYS:C	1:A:782:LEU:HD11	0.59	2.18	14	2	
1:A:738:PHE:O	1:A:742:ARG:HB2	0.59	1.97	12	20	
1:A:738:PHE:CE1	1:A:759:PHE:HB3	0.59	2.33	4	2	
1:A:722:VAL:HG22	1:A:778:MET:HG2	0.59	1.74	2	6	
1:A:736:LEU:HD23	1:A:740:GLU:HB3	0.58	1.75	2	8	
1:A:759:PHE:HD1	1:A:770:LEU:HD22	0.58	1.58	4	2	
1:A:745:LEU:HD13	1:A:755:ILE:HG23	0.58	1.76	9	13	
1:A:738:PHE:CZ	1:A:759:PHE:CB	0.57	2.87	12	20	
1:A:729:LEU:C	1:A:729:LEU:HD13	0.57	2.19	3	5	
1:A:722:VAL:CG2	1:A:782:LEU:HD12	0.57	2.28	17	1	
1:A:735:LYS:HG2	1:A:771:THR:HG22	0.57	1.76	3	2	
1:A:732:GLY:HA3	1:A:736:LEU:HD21	0.57	1.76	7	3	
1:A:756:GLU:O	1:A:760:THR:HG23	0.57	2.00	13	10	
1:A:721:THR:HG22	1:A:758:ILE:CD1	0.56	2.31	13	1	
1:A:735:LYS:C	1:A:736:LEU:HD22	0.56	2.21	7	1	
1:A:759:PHE:CD1	1:A:770:LEU:HD22	0.55	2.36	4	2	
1:A:719:LYS:HA	1:A:782:LEU:HD11	0.55	1.79	9	1	
1:A:718:LYS:O	1:A:782:LEU:HD11	0.54	2.02	16	1	
1:A:725:ILE:HD13	1:A:745:LEU:HD21	0.54	1.79	8	1	
1:A:745:LEU:HD23	1:A:750:HIS:CD2	0.53	2.39	19	16	

	ious page			Models	
Atom-1	Atom-2	$\operatorname{Clash}(A)$	Distance(A)	Worst	Total
1:A:719:LYS:N	1:A:782:LEU:HD21	0.53	2.19	14	1
1:A:722:VAL:HA	1:A:725:ILE:HD12	0.53	1.80	18	1
1:A:722:VAL:CG2	1:A:782:LEU:HD23	0.53	2.34	12	1
1:A:745:LEU:HD13	1:A:755:ILE:HG12	0.52	1.81	2	2
1:A:759:PHE:O	1:A:763:ASP:CB	0.52	2.58	4	20
1:A:741:LEU:HD23	1:A:759:PHE:CZ	0.51	2.40	18	9
1:A:735:LYS:HG3	1:A:771:THR:HG22	0.50	1.81	3	1
1:A:725:ILE:HD13	1:A:778:MET:HE1	0.50	1.83	17	1
1:A:736:LEU:HB3	1:A:741:LEU:HD13	0.50	1.82	13	3
1:A:722:VAL:HG22	1:A:778:MET:SD	0.50	2.47	4	3
1:A:762:TYR:CD2	1:A:778:MET:HE3	0.49	2.43	11	1
1:A:745:LEU:CD1	1:A:755:ILE:HG23	0.49	2.37	9	8
1:A:722:VAL:HG22	1:A:778:MET:CG	0.48	2.39	14	4
1:A:775:HIS:HA	1:A:778:MET:HG3	0.48	1.85	5	3
1:A:726:SER:CB	1:A:775:HIS:CE1	0.48	2.97	6	5
1:A:745:LEU:CD2	1:A:750:HIS:CD2	0.47	2.97	2	2
1:A:719:LYS:HB2	1:A:782:LEU:HD21	0.47	1.86	19	1
1:A:729:LEU:HD23	1:A:734:GLY:HA2	0.47	1.86	2	5
1:A:725:ILE:CD1	1:A:758:ILE:HD13	0.47	2.37	4	1
1:A:742:ARG:HG2	1:A:755:ILE:HD13	0.47	1.86	17	2
1:A:742:ARG:CG	1:A:755:ILE:HD13	0.46	2.40	4	1
1:A:722:VAL:HG21	1:A:782:LEU:CD1	0.46	2.34	17	2
1:A:775:HIS:CD2	1:A:778:MET:CE	0.46	2.99	12	2
1:A:724:ASP:CB	1:A:750:HIS:NE2	0.46	2.79	19	2
1:A:721:THR:HG22	1:A:758:ILE:HD13	0.46	1.86	13	1
1:A:723:ASP:O	1:A:727:GLU:HG2	0.45	2.10	2	1
1:A:725:ILE:HD11	1:A:758:ILE:CD1	0.45	2.37	4	1
1:A:721:THR:O	1:A:725:ILE:HD12	0.45	2.10	13	3
1:A:724:ASP:OD2	1:A:745:LEU:HD22	0.45	2.11	17	1
1:A:722:VAL:HG21	1:A:782:LEU:HD23	0.45	1.87	12	1
1:A:721:THR:CG2	1:A:758:ILE:CD1	0.45	2.95	6	7
1:A:725:ILE:HD11	1:A:758:ILE:HG21	0.45	1.88	13	2
1:A:721:THR:HG23	1:A:758:ILE:HD13	0.44	1.89	19	1
1:A:765:ASP:OD1	1:A:765:ASP:N	0.44	2.49	12	1
1:A:736:LEU:HD22	1:A:741:LEU:CD1	0.44	2.43	16	1
1:A:759:PHE:O	1:A:763:ASP:HB2	0.44	2.13	15	17
1:A:732:GLY:CA	1:A:736:LEU:HD11	0.43	2.41	17	2
1:A:745:LEU:HD12	1:A:755:ILE:HG23	0.43	1.89	17	1
1:A:735:LYS:O	1:A:736:LEU:HD12	0.43	2.13	19	2
1:A:743:GLN:HG3	1:A:744:ASP:N	$0.\overline{43}$	2.27	5	1
1:A:729:LEU:HD12	1:A:741:LEU:HD11	0.43	1.90	7	2

A 4 amo 1	A 4 ama 2	$C = c \left(\frac{\lambda}{\lambda} \right)$	\mathbf{D} : \mathbf{D}	Models		
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:729:LEU:HD13	1:A:729:LEU:O	0.43	2.14	9	2	
1:A:721:THR:CG2	1:A:758:ILE:HD13	0.43	2.44	19	1	
1:A:729:LEU:HD22	1:A:736:LEU:HD12	0.43	1.91	20	2	
1:A:719:LYS:CG	1:A:782:LEU:HD22	0.43	2.43	8	1	
1:A:721:THR:HA	1:A:724:ASP:OD1	0.43	2.13	2	1	
1:A:735:LYS:HG3	1:A:771:THR:HG23	0.43	1.88	8	1	
1:A:738:PHE:CE2	1:A:768:GLN:NE2	0.42	2.87	3	2	
1:A:762:TYR:O	1:A:764:GLN:N	0.42	2.52	5	1	
1:A:738:PHE:CD2	1:A:768:GLN:OE1	0.42	2.73	20	3	
1:A:721:THR:HG23	1:A:758:ILE:CD1	0.42	2.44	19	1	
1:A:758:ILE:CG2	1:A:778:MET:CE	0.42	2.98	11	1	
1:A:736:LEU:HD22	1:A:741:LEU:HD12	0.42	1.91	16	1	
1:A:762:TYR:CE1	1:A:778:MET:HG2	0.41	2.50	5	2	
1:A:741:LEU:HB3	1:A:759:PHE:CZ	0.41	2.50	9	1	
1:A:741:LEU:CB	1:A:759:PHE:HZ	0.41	2.29	12	1	
1:A:738:PHE:CE2	1:A:768:GLN:OE1	0.41	2.73	6	1	
1:A:762:TYR:CZ	1:A:778:MET:SD	0.41	3.14	17	1	
1:A:751:THR:O	1:A:755:ILE:HD12	0.41	2.16	6	1	
1:A:761:LYS:HG3	1:A:762:TYR:CD2	0.41	2.51	18	1	
1:A:726:SER:OG	1:A:775:HIS:CE1	0.40	2.74	10	1	
1:A:723:ASP:O	1:A:727:GLU:CG	0.40	2.70	19	1	
1:A:740:GLU:O	1:A:743:GLN:CG	0.40	2.70	1	1	
1:A:762:TYR:CZ	1:A:778:MET:HG2	0.40	2.52	10	1	

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	66/79~(84%)	65 ± 0 (98 $\pm1\%$)	1±0 (2±1%)	0±0 (0±0%)	100	100
All	All	1320/1580~(84%)	1296 (98%)	24 (2%)	0 (0%)	100	100

There are no Ramachandran outliers.

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the side chain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Pe	rce	entil	\mathbf{es}
1	А	58/69~(84%)	42 ± 3 (72 $\pm4\%$)	$16\pm3 (28\pm4\%)$		2	19	
All	All	1160/1380 (84%)	834 (72%)	326 (28%)		2	19	

All 43 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	А	723	ASP	18
1	А	738	PHE	18
1	А	782	LEU	17
1	А	780	ASP	16
1	А	779	ARG	16
1	А	729	LEU	15
1	А	746	LYS	15
1	А	721	THR	14
1	А	744	ASP	14
1	А	748	LYS	14
1	А	719	LYS	13
1	А	730	ARG	11
1	А	718	LYS	10
1	А	735	LYS	10
1	А	781	ASP	10
1	А	752	ASP	9
1	А	754	GLU	7
1	А	772	GLU	7
1	А	727	GLU	7
1	А	736	LEU	7
1	А	731	GLN	7
1	А	739	ASP	6
1	А	756	GLU	6
1	А	776	GLN	6
1	А	764	GLN	5
1	А	761	LYS	4
1	А	768	GLN	4
1	А	740	GLU	4
1	A	759	PHE	4

Mol	Chain	Res	Type	Models (Total)
1	А	742	ARG	4
1	А	724	ASP	3
1	А	751	THR	3
1	А	726	SER	3
1	А	720	ASN	3
1	А	773	HIS	3
1	А	771	THR	2
1	А	774	GLU	2
1	А	777	GLN	2
1	А	783	GLU	2
1	А	778	MET	2
1	А	743	GLN	1
1	А	769	GLU	1
1	А	775	HIS	1

Continued from previous page...

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 73% for the well-defined parts and 72% for the entire structure.

7.1 Chemical shift list 1

File name: working_cs.cif

Chemical shift list name: $2y4q_edited_cs_input_P1.csd$

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	760
Number of shifts mapped to atoms	740
Number of unparsed shifts	0
Number of shifts with mapping errors	20
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	1

The following assigned chemical shifts were not mapped to the molecules present in the coordinate file.

• No matching atom found in the structure. All 20 occurrences are reported below.

List ID	Chain	in Bos	Type	e Atom	Shift Data		
		nes			Value	Uncertainty	Ambiguity
1	А	722	VAL	HG11	0.848	0.001	2
1	A	722	VAL	HG12	0.848	0.001	2
1	A	722	VAL	HG13	0.848	0.001	2
1	A	722	VAL	HG21	0.934	0.001	2
1	A	722	VAL	HG22	0.934	0.001	2
1	A	722	VAL	HG23	0.934	0.001	2
1	A	725	ILE	HG21	0.516	0.001	2
1	А	725	ILE	HG22	0.516	0.001	2
1	А	725	ILE	HG23	0.516	0.001	2
1	A	725	ILE	HG12	1.967	0.001	2
1	А	755	ILE	HG12	1.789	0.001	2
1	A	755	ILE	HG13	0.683	0.001	2
1	A	755	ILE	HG21	0.446	0.001	2
1	A	755	ILE	HG22	0.446	0.001	2

List ID Chain Res Type	Chain	Dec	Turne	Atom	Shift Data		
	туре	Atom	Value	Uncertainty	Ambiguity		
1	A	755	ILE	HG23	0.446	0.001	2
1	А	758	ILE	HG12	1.845	0.001	2
1	А	758	ILE	HG13	1.271	0.001	2
1	А	758	ILE	HG21	0.936	0.001	2
1	А	758	ILE	HG22	0.936	0.001	2
1	А	758	ILE	HG23	0.936	0.001	2

7.1.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\rm Correction}\pm{\rm precision},ppm$	Suggested action
$^{13}C_{\alpha}$	74	-0.03 ± 0.04	None needed (< 0.5 ppm)
$^{13}C_{\beta}$	62	0.35 ± 0.09	None needed (< 0.5 ppm)
$^{13}C'$	0		None (insufficient data)
^{15}N	69	0.51 ± 0.26	None needed (imprecise)

7.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 73%, i.e. 641 atoms were assigned a chemical shift out of a possible 884. 0 out of 7 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	257/336~(76%)	138/138~(100%)	62/132~(47%)	57/66~(86%)
Sidechain	364/495~(74%)	297/310~(96%)	67/162~(41%)	0/23~(0%)
Aromatic	20/53~(38%)	20/26~(77%)	0/21~(0%)	0/6~(0%)
Overall	641/884 (73%)	455/474 (96%)	129/315~(41%)	57/95~(60%)

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 72%, i.e. 759 atoms were assigned a chemical shift out of a possible 1050. 0 out of 10 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathbf{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$
Backbone	306/403~(76%)	163/166~(98%)	74/158~(47%)	69/79~(87%)
Sidechain	433/594~(73%)	355/372~(95%)	78/195~(40%)	0/27~(0%)
Aromatic	20/53~(38%)	20/26~(77%)	0/21~(0%)	0/6~(0%)
Overall	759/1050~(72%)	538/564~(95%)	152/374~(41%)	69/112~(62%)

7.1.4 Statistically unusual chemical shifts (i)

The following table lists the statistically unusual chemical shifts. These are statistical measures, and large deviations from the mean do not necessarily imply incorrect assignments. Molecules containing paramagnetic centres or hemes are expected to give rise to anomalous chemical shifts.

List Id	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
1	А	714	GLY	H1	7.25	7.45 - 9.60	-5.9

7.1.5 Random Coil Index (RCI) plots (i)

The image below reports *random coil index* values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition. If well-defined core and ill-defined regions are not identified then it is shown as gray bars.

Random coil index (RCI) for chain A:

