

Full wwPDB X-ray Structure Validation Report (i)

Dec 17, 2023 – 05:38 pm GMT

PDB ID	:	2YFI
Title	:	Crystal Structure of Biphenyl dioxygenase variant RR41 (BPDO-RR41)
Authors	:	Kumar, P.; Bolin, J.T.
Deposited on	:	2011-04-06
Resolution	:	2.15 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution		
	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R _{free}	130704	1479 (2.16-2.16)		
Clashscore	141614	1585 (2.16-2.16)		
Ramachandran outliers	138981	1560 (2.16-2.16)		
Sidechain outliers	138945	1559 (2.16-2.16)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	459	86%	7%	6%
1	С	459	87%	6% •	6%
1	Е	459	88%	5%	6%
1	G	459	87%	7%	• 6%
1	Ι	459	88%	6%	6%
1	K	459	88%	6%	6%
2	В	188	88%	7%	••

Mol	Chain	Length	Quality of chain	
2	D	188	86%	10% • •
2	F	188	88%	7% • •
2	Н	188	88%	8% •
2	J	188	90%	6% •
2	L	188	88%	7% • •

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 30799 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	433	Total	С	Ν	0	\mathbf{S}	0	0	0
1	Л	455	3430	2182	602	622	24	0	0	0
1	С	433	Total	С	Ν	0	S	0	0	0
1	U	455	3430	2182	602	622	24	0	0	0
1	F	433	Total	С	Ν	0	S	0	0	0
1	Ľ		3430	2182	602	622	24	0	0	0
1	С	433	Total	С	Ν	0	S	0	0	Ο
1	G	400	3430	2182	602	622	24	0	0	0
1	т	422	Total	С	Ν	0	S	0	0	0
1		455	3430	2182	602	622	24	0	0	0
1	1 V	499	Total	С	Ν	0	S	0	0	0
	433	3430	2182	602	622	24	0	0	U	

• Molecule 1 is a protein called BIPHENYL DIOXYGENASE SUBUNIT ALPHA.

There are 30 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	335	ALA	THR	engineered mutation	UNP P37333
А	336	MET	PHE	engineered mutation	UNP P37333
А	338	GLN	ASN	engineered mutation	UNP P37333
А	341	VAL	ILE	engineered mutation	UNP P37333
А	409	PHE	LEU	engineered mutation	UNP P37333
С	335	ALA	THR	engineered mutation	UNP P37333
С	336	MET	PHE	engineered mutation	UNP P37333
С	338	GLN	ASN	engineered mutation	UNP P37333
С	341	VAL	ILE	engineered mutation	UNP P37333
С	409	PHE	LEU	engineered mutation	UNP P37333
Е	335	ALA	THR	engineered mutation	UNP P37333
E	336	MET	PHE	engineered mutation	UNP P37333
Е	338	GLN	ASN	engineered mutation	UNP P37333
E	341	VAL	ILE	engineered mutation	UNP P37333
E	409	PHE	LEU	engineered mutation	UNP P37333
G	335	ALA	THR	engineered mutation	UNP P37333
G	336	MET	PHE	engineered mutation	UNP P37333

Chain	Residue	Modelled	Actual	Comment	Reference
G	338	GLN	ASN	engineered mutation	UNP P37333
G	341	VAL	ILE	engineered mutation	UNP P37333
G	409	PHE	LEU	engineered mutation	UNP P37333
Ι	335	ALA	THR	engineered mutation	UNP P37333
Ι	336	MET	PHE	engineered mutation	UNP P37333
Ι	338	GLN	ASN	engineered mutation	UNP P37333
Ι	341	VAL	ILE	engineered mutation	UNP P37333
Ι	409	PHE	LEU	engineered mutation	UNP P37333
K	335	ALA	THR	engineered mutation	UNP P37333
K	336	MET	PHE	engineered mutation	UNP P37333
K	338	GLN	ASN	engineered mutation	UNP P37333
K	341	VAL	ILE	engineered mutation	UNP P37333
K	409	PHE	LEU	engineered mutation	UNP P37333

• Molecule 2 is a protein called BIPHENYL DIOXYGENASE SUBUNIT BETA.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	Р	180	Total	С	Ν	0	S	0	0	0
	D	160	1496	948	265	279	4	0	0	0
0	Л	180	Total	С	Ν	0	S	0	0	0
	D	160	1496	948	265	279	4	0	0	0
2	F	180	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	T,	160	1496	948	265	279	4	0	0	0
2	Ц	190	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	11	160	1496	948	265	279	4	0	0	0
2	Т	180	Total	С	Ν	Ο	S	0	0	0
2	2 5	160	1496	948	265	279	4	0	0	0
2	0 I	180	Total	С	Ν	0	S	0	0	0
	180	1496	948	265	279	4	0		0	

• Molecule 3 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	TotalFeS422	0	0
3	С	1	TotalFeS422	0	0
3	Е	1	TotalFeS422	0	0
3	G	1	TotalFeS422	0	0
3	Ι	1	TotalFeS422	0	0
3	K	1	TotalFeS422	0	0

• Molecule 4 is FE (II) ION (three-letter code: FE2) (formula: Fe).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Fe 1 1	0	0
4	С	1	Total Fe 1 1	0	0
4	Ε	1	Total Fe 1 1	0	0
4	G	1	Total Fe 1 1	0	0
4	Ι	1	Total Fe 1 1	0	0
4	K	1	Total Fe 1 1	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	210	Total O 210 210	0	0
5	В	94	Total O 94 94	0	0
5	С	212	Total O 212 212	0	0
5	D	99	Total O 99 99	0	0
5	Е	152	Total O 152 152	0	0
5	F	94	Total O 94 94	0	0
5	G	73	Total O 73 73	0	0
5	Н	79	Total O 79 79	0	0
5	Ι	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0	0
5	J	46	Total O 46 46	0	0
5	K	53	$\begin{array}{cc} \text{Total} & \text{O} \\ 53 & 53 \end{array}$	0	0
5	L	54	$\begin{array}{cc} {\rm Total} & {\rm O} \\ 54 & 54 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	86%	7% 6%
MET SER SER ALLA ALLA ILLA CLU VAL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	K94 R103 122 H123 H126 H123 H126 C12 C12 G1U G1U G1U G1U G1V G1V C12 C12	GLY F153 R164 V178 V178 P248 P249 P248 P249 P248 P248 P248 P248 P248 V278 V278
S283 V287 M287 0307 0321 6321 6321 1339 1339 1339 1339 1339 1339 1339 1	1356 D355 A362 A362 A413 A414 H444 H444 H444 H448 M448 M448 M448	
• Molecule 1: BIPHENYI	DIOXYGENASE SUBUN	IT ALPHA
Chain C:	87%	6% • 6%
MET SER SER SER ALA LLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	L48 R52 R52 R52 R107 F110 F128 H123 H123 H123 H123 L28 C14 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	ASP CUY F153 F154 R164 Q226 Q226 Q255 Q256 Q255 Q257 Q257 Q257 Q257 Q257 Q257 Q257
E280 P281 C282 C282 C283 C283 C283 C283 C283 C283	E349 1357 1457 1458 1458 1458 1458	
• Molecule 1: BIPHENYI	J DIOXYGENASE SUBUN	IT ALPHA
Chain E:	88%	5% 6%
MET SER SER SER ALA LUS CLU CLU CLU CLU CLU CLU CLU VAL LVS TLR TRP TRP TRP TRP VAL	L48 R103 R103 R103 R122 H122 H123 A142 CYS CYS CYS GLY GLY GLY GLY GLY GLY GLY	R164 V178 Q226 Q226 D230 D230 V316 V316 V316 V336 F332 F333 F333 F333
R340 V341 V341 V342 V345 C349 V355 C355 C355 C355 C355 C355 C355 C355	1466 P446	
• Molecule 1: BIPHENYI	DIOXYGENASE SUBUN	IT ALPHA
Chain G:	87%	7% • 6%
MET SER SER SER ALA LLS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	H63 W84 W84 W85 W85 M85 M85 M85 M85 M105 M105 M105 M105 M105 M125 H123 M126	N135 F143 F143 CF345 CF35 CF35 CF35 CF35 CF35 CF35 CF35 CF3
A 256 A 256 1225 P 259 P 259 P 281 P 283 P 286 P	1339 L357 V368 V368 0359 A362 A413 A413 A413 A437 A437 A437 A437 A437 A437 A437 A43	
	PROTEIN DATA BAN	E

• Molecule 1: BIPHENYL DIOXYGENASE SUBUNIT ALPHA

• Molecule 1: BIPHENYL DIOXYGENASE SUBUNIT ALPHA

Chain I:	88%	6% 6%
MET SER SER SER SER ALA LLYS CLU CLY CLU CLY CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	L60 H103 M122 M125 M126 M126 M126 M126 M126 M126 M126 M126	S229 D230 S241 C262 M276 V277
L284 1293 4822 4822 1326 1326 1326 1326 1326 1326 1326 13	L 467 8 686 8 469	
• Molecule 1: BIPHENYL DIOX	YGENASE SUBUNIT ALPHA	
Chain K:	88%	6% 6%
MET SER SER ALA LLE LLS CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	A126 M135 F1 43 CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	A256 W276 L304 C304 C302 R340 R340
L357 V358 V358 A362 E385 E385 H422 P423 P423 P423 P423 F448 K468 F456 F456		

• Molecule 2: BIPHENYL DIOXYGENASE SUBUNIT BETA

Chain B:	88%	7% • •
MET THR ASN PRO PRO PRO PHE R9 K10 X10 X10 K10 K10 K10	756 657 M58 M58 M58 H81 H81 H81 H81 H115 E151 E151 E155 F143 F143 F143 F172 F188	
• Molecule 2: BIPHE	ENYL DIOXYGENASE SUBUNIT BETA	
Chain D:	86%	10% • •
MET THR PRO PRO PRO PRO PRO PRO PTE F9 F12 F12 F12 F12 F12 F12 F12 F12 F12 F12	L49 Y56 M58 M58 M58 M58 M58 M58 R141 R141 R146 R143 R146 R143 R143 R143 L174 L174 L173 L173 L173 L173 R143 R143 R143 R143 R143 R143 R143 R14	
• Molecule 2: BIPHE	ENYL DIOXYGENASE SUBUNIT BETA	
Chain F:	88%	7% • •
MET THR ASN PRO PRO PRO PHE 732 732 732 732 732 732 732	M58 L79 R111 R111 F148 F148 L175 D175 L163 L174 L174 L174 L178 L128	
• Molecule 2: BIPHE	ENYL DIOXYGENASE SUBUNIT BETA	
Chain H:	88%	8% •
MET THR ASIN PRO PRO PRO HIS PHE 732 133 133 133 133 133	R57 R94 F37 F34 F35 F11 F122 F123 F125 F125 F125 F125 F125 F125 F125 F125	
• Molecule 2: BIPHE	ENYL DIOXYGENASE SUBUNIT BETA	
Chain J:	90%	6% •

D W I D E

• Molecule 2: BIPHENYL DIOXYGENASE SUBUNIT BETA

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	86.97Å 277.81Å 92.93Å	Deperitor
a, b, c, α , β , γ	90.00° 117.61° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	138.68 - 2.15	Depositor
Resolution (A)	39.69 - 2.15	EDS
% Data completeness	99.0 (138.68-2.15)	Depositor
(in resolution range)	99.0 (39.69-2.15)	EDS
R_{merge}	0.06	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.17 (at 2.16Å)	Xtriage
Refinement program	REFMAC 5.2.0005	Depositor
D D	0.200 , 0.232	Depositor
Λ, Λ_{free}	0.271 , 0.291	DCC
R_{free} test set	10445 reflections $(5.02%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	41.7	Xtriage
Anisotropy	0.102	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34 , 43.5	EDS
L-test for $twinning^2$	$< L >=0.49, < L^2>=0.33$	Xtriage
Estimated twinning fraction	0.017 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	30799	wwPDB-VP
Average B, all atoms $(Å^2)$	45.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.84% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, FE2

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.34	0/3533	0.48	0/4796
1	С	0.34	0/3533	0.48	0/4796
1	Е	0.32	0/3533	0.47	0/4796
1	G	0.31	0/3533	0.45	0/4796
1	Ι	0.31	0/3533	0.45	0/4796
1	Κ	0.31	0/3533	0.45	0/4796
2	В	0.33	0/1530	0.49	0/2068
2	D	0.35	0/1530	0.49	0/2068
2	F	0.33	0/1530	0.49	0/2068
2	Н	0.33	0/1530	0.47	0/2068
2	J	0.31	0/1530	0.47	0/2068
2	L	0.32	0/1530	0.48	0/2068
All	All	0.32	0/30378	0.47	0/41184

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3430	0	3274	20	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	С	3430	0	3274	17	0
1	Е	3430	0	3274	14	0
1	G	3430	0	3274	18	0
1	Ι	3430	0	3274	13	0
1	Κ	3430	0	3274	13	0
2	В	1496	0	1447	12	0
2	D	1496	0	1447	14	0
2	F	1496	0	1447	11	0
2	Н	1496	0	1447	12	0
2	J	1496	0	1447	8	0
2	L	1496	0	1447	9	0
3	А	4	0	0	1	0
3	С	4	0	0	1	0
3	Е	4	0	0	1	0
3	G	4	0	0	1	0
3	Ι	4	0	0	1	0
3	Κ	4	0	0	1	0
4	А	1	0	0	0	0
4	С	1	0	0	0	0
4	Е	1	0	0	0	0
4	G	1	0	0	0	0
4	Ι	1	0	0	0	0
4	Κ	1	0	0	0	0
5	А	210	0	0	1	0
5	В	94	0	0	0	0
5	С	212	0	0	1	0
5	D	99	0	0	0	0
5	Ε	152	0	0	0	0
5	F	94	0	0	0	0
5	G	73	0	0	2	0
5	Н	79	0	0	0	0
5	Ι	47	0	0	0	0
5	J	46	0	0	0	0
5	Κ	53	0	0	0	0
5	L	54	0	0	0	0
All	All	30799	0	28326	137	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (137) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	A + a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:413:MET:HG3	1:E:142:ALA:HB1	1.69	0.74	
2:F:58:MET:HE1	2:F:174:LEU:HD22	1.77	0.67	
1:C:339:ILE:HD11	1:C:357:LEU:HG	1.78	0.66	
1:G:86:VAL:HB	5:G:2017:HOH:O	1.97	0.64	
1:K:123:HIS:HB2	3:K:900:FES:S2	2.38	0.63	
1:A:123:HIS:HB2	3:A:900:FES:S2	2.40	0.61	
1:C:339:ILE:CD1	1:C:357:LEU:HG	2.30	0.60	
1:E:123:HIS:HB2	3:E:900:FES:S2	2.42	0.60	
1:G:259:PRO:HA	1:G:280:GLU:HG2	1.85	0.59	
1:C:123:HIS:HB2	3:C:900:FES:S2	2.44	0.57	
2:B:58:MET:HG3	2:B:172:ILE:HB	1.87	0.57	
1:A:257:GLN:NE2	1:A:258:ILE:O	2.38	0.57	
1:I:123:HIS:HB2	3:I:900:FES:S2	2.45	0.57	
1:C:52:ARG:HD3	5:C:2205:HOH:O	2.05	0.56	
1:G:123:HIS:HB2	3:G:900:FES:S2	2.45	0.56	
2:H:175:ASP:OD2	2:L:111:ARG:HB2	2.06	0.55	
1:C:448:MET:HA	1:C:457:LEU:HD11	1.89	0.55	
1:K:255:GLN:O	1:K:256:ALA:C	2.44	0.54	
1:E:339:ILE:HD11	1:E:357:LEU:HG	1.90	0.54	
1:K:448:MET:HA	1:K:457:LEU:HD11	1.88	0.54	
2:H:56:TYR:HB3	2:H:84:GLU:HB2	1.89	0.54	
1:K:226:GLN:HA	1:K:230:ASP:HB3	1.90	0.54	
2:L:54:ILE:HA	2:L:168:ALA:O	2.07	0.54	
1:A:414:GLY:HA2	1:A:417:ARG:HD2	1.89	0.53	
1:G:332:PHE:HB3	1:G:339:ILE:HG23	1.90	0.53	
2:B:56:TYR:HB3	2:B:84:GLU:HB2	1.89	0.53	
1:A:287:VAL:HG12	1:A:288:MET:HE3	1.91	0.53	
1:G:84:VAL:HG12	5:G:2017:HOH:O	2.08	0.53	
2:H:32:TYR:CD1	2:J:116:ASN:HA	2.44	0.53	
2:B:143:ARG:NH2	1:E:349:GLU:OE2	2.35	0.52	
2:D:116:ASN:HA	2:F:32:TYR:CD1	2.45	0.52	
1:C:333:LEU:HB2	1:C:336:MET:HG3	1.92	0.52	
2:D:58:MET:HE1	2:D:174:LEU:HD22	1.92	0.52	
1:A:287:VAL:HG12	1:A:288:MET:CE	2.38	0.52	
1:I:276:TRP:HB3	1:I:322:GLN:HG3	1.92	0.52	
1:K:413:MET:HG2	1:K:434:ALA:HA	1.91	0.51	
2:D:175:ASP:OD2	2:F:111:ARG:HB2	2.10	0.51	
2:B:175:ASP:OD2	2:D:111:ARG:HB2	2.10	0.51	
2:D:49:LEU:HD21	2:D:163:LEU:HD13	1.93	0.51	
1:G:126:ALA:HB3	1:G:135:ASN:HB3	1.93	0.51	
2:F:49:LEU:HD21	2:F:163:LEU:HD13	1.93	0.50	
2:J:49:LEU:HD21	2:J:163:LEU:HD13	1.94	0.50	

	Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:G:256:ALA:O	1:G:257:GLN:HB3	2.12	0.50
1:A:332:PHE:HB3	1:A:339:ILE:HG13	1.93	0.49
1:G:276:TRP:HB3	1:G:322:GLN:HG3	1.93	0.49
1:G:226:GLN:HA	1:G:230:ASP:HB3	1.93	0.49
1:A:349:GLU:OE2	2:D:143:ARG:NH2	2.41	0.49
2:J:32:TYR:CD1	2:L:116:ASN:HA	2.47	0.49
2:D:12:PHE:H	2:F:36:GLN:HE21	1.61	0.48
1:I:126:ALA:HB3	1:I:135:ASN:HB3	1.96	0.48
1:E:309:LEU:HD13	1:E:316:VAL:HG11	1.95	0.48
1:K:339:ILE:HD13	1:K:357:LEU:HG	1.96	0.48
2:B:151:GLU:OE2	2:D:40:HIS:NE2	2.47	0.48
2:H:49:LEU:HD21	2:H:163:LEU:HD13	1.96	0.47
1:G:359:ASP:HB2	1:G:362:ALA:HB2	1.95	0.47
1:E:332:PHE:HB3	1:E:339:ILE:HG23	1.96	0.47
1:K:185:THR:HG22	1:K:459:PRO:HG2	1.97	0.47
1:E:339:ILE:CD1	1:E:357:LEU:HG	2.45	0.47
1:K:276:TRP:HB3	1:K:322:GLN:HG3	1.97	0.47
1:E:448:MET:HA	1:E:466:LEU:HD11	1.96	0.47
1:I:226:GLN:HA	1:I:230:ASP:HB3	1.97	0.47
1:K:126:ALA:HB3	1:K:135:ASN:HB3	1.96	0.47
1:A:276:TRP:HB3	1:A:322:GLN:HG3	1.97	0.46
1:A:356:THR:HG23	2:B:79:LEU:HD11	1.96	0.46
1:I:262:GLY:HA2	1:I:278:VAL:HG23	1.98	0.46
1:K:359:ASP:HB2	1:K:362:ALA:HB2	1.97	0.46
1:A:283:SER:O	1:A:287:VAL:HG23	2.16	0.46
2:B:116:ASN:HA	2:D:32:TYR:CD1	2.51	0.46
2:L:49:LEU:HD21	2:L:163:LEU:HD13	1.97	0.46
2:B:116:ASN:HA	2:D:32:TYR:CG	2.51	0.46
1:C:332:PHE:HB3	1:C:339:ILE:HG23	1.98	0.46
1:I:448:MET:HA	1:I:457:LEU:HD11	1.97	0.46
1:C:226:GLN:HA	1:C:230:ASP:HB3	1.98	0.46
1:C:107:ILE:HG22	1:C:118:PHE:HB3	1.97	0.46
2:B:111:ARG:HB2	2:F:175:ASP:OD2	2.16	0.45
2:J:126:ASP:HB3	2:J:158:ARG:HB2	1.98	0.45
1:E:164:ARG:HD2	1:E:178:VAL:HA	1.98	0.45
1:A:164:ARG:HD2	1:A:178:VAL:HA	1.99	0.45
2:H:58:MET:HE1	2:H:174:LEU:HD22	1.99	0.45
1:G:63:HIS:CD2	1:G:357:LEU:HD21	2.52	0.45
1:G:107:ILE:HG22	1:G:118:PHE:HB3	1.98	0.45
1:A:444:HIS:HE1	5:A:2103:HOH:O	2.00	0.45
1:C:334:PRO:O	1:C:337:ASN:OD1	2.34	0.45

	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:F:179:LEU:HD21	2:F:184:LEU:HD11	1.99	0.44	
2:H:172:ILE:HD13	2:H:188:PHE:HB2	1.99	0.44	
2:D:56:TYR:HB3	2:D:84:GLU:HB2	1.99	0.44	
1:E:340:ARG:HD3	1:E:342:TRP:CH2	2.52	0.44	
2:H:116:ASN:HA	2:L:32:TYR:CG	2.53	0.44	
2:B:58:MET:HE2	2:B:81:HIS:CB	2.48	0.44	
1:C:262:GLY:HA2	1:C:278:VAL:HG23	1.99	0.44	
1:A:359:ASP:HB2	1:A:362:ALA:HB2	2.00	0.43	
2:L:56:TYR:HB3	2:L:84:GLU:HB2	1.99	0.43	
2:H:116:ASN:HA	2:L:32:TYR:CD1	2.53	0.43	
1:A:448:MET:HA	1:A:457:LEU:HD11	1.99	0.43	
2:J:56:TYR:HB3	2:J:84:GLU:HB2	2.00	0.43	
1:A:248:PRO:HA	1:A:249:PRO:HD3	1.95	0.43	
1:K:422:HIS:HA	1:K:423:PRO:HD3	1.85	0.43	
1:G:105:MET:HB3	1:G:120:CYS:SG	2.58	0.43	
2:H:111:ARG:HB2	2:J:175:ASP:OD2	2.19	0.42	
1:I:229:SER:HB2	1:I:437:ALA:HB3	2.00	0.42	
1:I:326:ILE:HB	1:I:330:CYS:HB3	2.01	0.42	
2:D:148:PHE:HB3	2:D:174:LEU:HD11	2.01	0.42	
1:K:340:ARG:HH12	1:K:385:GLU:CD	2.22	0.42	
2:H:49:LEU:HD11	2:H:163:LEU:HD22	2.01	0.42	
1:C:164:ARG:HD2	1:C:178:VAL:HA	2.01	0.42	
1:C:255:GLN:O	1:C:256:ALA:C	2.58	0.42	
1:E:356:THR:HG23	2:F:79:LEU:HD11	2.02	0.42	
1:G:413:MET:HG2	1:G:434:ALA:HA	2.02	0.42	
1:I:284:LEU:HD23	1:I:293:THR:HG23	2.00	0.42	
1:I:241:SER:HB2	2:J:95:LYS:HG3	2.02	0.42	
2:L:179:LEU:HD21	2:L:184:LEU:HD11	2.02	0.42	
2:H:122:THR:HG22	2:H:129:GLU:HG3	2.02	0.42	
2:D:58:MET:HE2	2:D:81:HIS:CB	2.50	0.42	
1:E:359:ASP:HB2	1:E:362:ALA:HB2	2.02	0.42	
2:F:148:PHE:HB3	2:F:174:LEU:HD11	2.02	0.42	
2:B:32:TYR:CD1	2:F:116:ASN:HA	2.55	0.42	
1:I:60:LEU:HD23	1:I:341:VAL:HG22	2.02	0.42	
1:C:280:GLU:HA	1:C:281:PRO:HD3	1.89	0.42	
1:A:413:MET:HG2	1:A:434:ALA:HA	2.02	0.41	
1:A:126:ALA:HB3	1:A:135:ASN:HB3	2.02	0.41	
1:G:280:GLU:HA	1:G:281:PRO:HD3	1.94	0.41	
1:K:201:THR:HG22	1:K:304:LEU:HD23	2.02	0.41	
1:A:208:ILE:HD12	1:A:356:THR:OG1	2.21	0.41	
1:C:326:ILE:HB	1:C:330:CYS:HB3	2.03	0.41	

<i>J</i> 1	1 5			
Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:G:241:SER:HB2	2:H:95:LYS:HG3	2.02	0.41	
1:C:349:GLU:OE2	2:F:143:ARG:NH2	2.44	0.41	
1:E:226:GLN:HA	1:E:230:ASP:HB3	2.02	0.41	
1:G:448:MET:HA	1:G:457:LEU:HD11	2.03	0.41	
2:J:111:ARG:HB2	2:L:175:ASP:OD2	2.21	0.41	
2:B:58:MET:HE2	2:B:81:HIS:HB2	2.02	0.41	
2:D:179:LEU:HD21	2:D:184:LEU:HD11	2.03	0.41	
1:A:262:GLY:HA2	1:A:278:VAL:HG23	2.02	0.40	
1:E:389:GLY:O	1:E:393:VAL:HG23	2.21	0.40	
1:I:36:ASP:HA	1:I:37:PRO:HD3	1.96	0.40	
1:G:229:SER:HB2	1:G:437:ALA:HB3	2.03	0.40	
1:C:283:SER:O	1:C:287:VAL:HG23	2.22	0.40	
1:I:413:MET:HG2	1:I:434:ALA:HA	2.03	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	429/459~(94%)	417 (97%)	12 (3%)	0	100	100
1	С	429/459~(94%)	411 (96%)	18 (4%)	0	100	100
1	Ε	429/459~(94%)	414 (96%)	15 (4%)	0	100	100
1	G	429/459~(94%)	411 (96%)	18 (4%)	0	100	100
1	Ι	429/459~(94%)	412 (96%)	17 (4%)	0	100	100
1	Κ	429/459~(94%)	409~(95%)	20 (5%)	0	100	100
2	В	178/188~(95%)	174 (98%)	4 (2%)	0	100	100
2	D	178/188~(95%)	172 (97%)	6 (3%)	0	100	100
2	F	178/188~(95%)	173 (97%)	5 (3%)	0	100	100
2	Н	178/188~(95%)	172 (97%)	6 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
2	J	178/188~(95%)	173~(97%)	5(3%)	0	100 100
2	L	178/188~(95%)	173~(97%)	5(3%)	0	100 100
All	All	3642/3882~(94%)	3511 (96%)	131 (4%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	350/372~(94%)	342 (98%)	8 (2%)	50	53
1	С	350/372~(94%)	343~(98%)	7 (2%)	55	59
1	Е	350/372~(94%)	342 (98%)	8 (2%)	50	53
1	G	350/372~(94%)	343~(98%)	7 (2%)	55	59
1	Ι	350/372~(94%)	345~(99%)	5 (1%)	67	72
1	Κ	350/372~(94%)	347~(99%)	3 (1%)	78	83
2	В	159/167~(95%)	156 (98%)	3(2%)	57	61
2	D	159/167~(95%)	156 (98%)	3 (2%)	57	61
2	F	159/167~(95%)	158 (99%)	1 (1%)	86	90
2	Н	159/167~(95%)	159 (100%)	0	100	100
2	J	159/167~(95%)	159 (100%)	0	100	100
2	L	159/167~(95%)	155 (98%)	4 (2%)	47	49
All	All	3054/3234~(94%)	3005 (98%)	49 (2%)	62	67

All (49) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	94	LYS
1	А	103	ARG
1	А	122	TYR
1	А	307	GLN

Mol	Chain	Res	Type
1	А	320	VAL
1	А	336	MET
1	А	356	THR
1	А	457	LEU
2	В	10	LYS
2	В	44	GLU
2	В	143	ARG
1	С	48	LEU
1	С	103	ARG
1	С	122	TYR
1	С	257	GLN
1	С	336	MET
1	С	339	ILE
1	С	457	LEU
2	D	94	ARG
2	D	140	ARG
2	D	179	LEU
1	Е	48	LEU
1	Е	103	ARG
1	Е	122	TYR
1	Е	258	ILE
1	Е	320	VAL
1	Е	336	MET
1	Е	339	ILE
1	Е	466	LEU
2	F	179	LEU
1	G	84	VAL
1	G	103	ARG
1	G	122	TYR
1	G	320	VAL
1	G	336	MET
1	G	339	ILE
1	G	457	LEU
1	I	48	LEU
1	Ι	103	ARG
1	I	122	TYR
1	Ι	336	MET
1	Ι	394	GLU
1	K	103	ARG
1	K	122	TYR
1	K	457	LEU
2	L	10	LYS

Continued from previous page...

Mol	Chain	Res	Type
2	L	52	LYS
2	L	140	ARG
2	L	179	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (8) such sidechains are listed below:

Mol	Chain	Res	Type
2	В	131	ASN
1	С	226	GLN
1	С	391	ASN
2	D	36	GLN
2	D	131	ASN
1	Е	422	HIS
2	F	36	GLN
1	Κ	226	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 12 ligands modelled in this entry, 6 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Dec	Dec	Dec	Dec		Bond lengths			Bond angles			
Moi Type	Unam	Ullalli	Chain	Unam	Unam	Chain	Unain	Chain	am res	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ # Z > 2
3	FES	С	900	1	0,4,4	-	-	-							
3	FES	А	900	1	0,4,4	-	-	-							
3	FES	K	900	1	0,4,4	-	-	-							
3	FES	Е	900	1	0,4,4	-	-	-							
3	FES	G	900	1	0,4,4	-	-	-							
3	FES	Ι	900	1	0,4,4	-	-	-							

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	FES	С	900	1	-	-	0/1/1/1
3	FES	А	900	1	-	-	0/1/1/1
3	FES	K	900	1	-	-	0/1/1/1
3	FES	Е	900	1	-	-	0/1/1/1
3	FES	G	900	1	-	-	0/1/1/1
3	FES	Ι	900	1	-	-	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

6 monomers are involved in 6 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	С	900	FES	1	0
3	А	900	FES	1	0
3	Κ	900	FES	1	0
3	Е	900	FES	1	0
3	G	900	FES	1	0
3	Ι	900	FES	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

