

wwPDB EM Validation Summary Report (i)

Dec 18, 2022 – 10:18 am GMT

PDB ID	:	6YNY
EMDB ID	:	EMD-10860
Title	:	Cryo-EM structure of Tetrahymena thermophila mitochondrial ATP synthase
		- F1Fo composite dimer model
Authors	:	Kock Flygaard, R.; Muhleip, A.; Amunts, A.
Deposited on	:	2020-04-14
Resolution	:	2.70 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Percentile Ranks	Value
Ramachandran outliers		0.0%
Sidechain outliers		0.4%
Worse		Better
Percentile relat	ive to all structures	
Percentile relat	ive to all EM structures	
L		
Metric	Whole archive	EM structures

Metric	(# Entries)	(# Entries)
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	446	97%	•
1	a	446	97%	•
2	В	381	93%	7%
2	b	381	93%	7%
3	D	234	88%	12%
3	d	234	88%	12%
4	F	204	98%	•
4	f	204	98%	·
5	Ι	209	99%	•

Mol	Chain	Length	Quality of chain	
5	i	209	100%	
6	Κ	179	100%	
6	k	179	99%	•
7	С	100	95%	•••
7	с	100	95%	•••
8	G	286	89%	10%
8	g	286	89%	10%
9	Н	268	86%	14%
9	h	268	86%	14%
10	J	273	98%	
10	j	273	99%	
11	L	247	99%	•
11	1	247	99%	
12	М	221	100%	
12	m	221	100%	
13	Ν	179	66% 34%	
13	n	179	66% · 34%	
14	Ο	154	64% 36%	
14	0	154	64% 36%	
15	Р	152	99%	·
15	р	152	99%	•
16	Q	152	71% 29%	
16	q	152	71% 29%	
17	R	149	93%	• 6%
17	r	149	97%	•••

Continued from previous page...

Mol	Chain	Length	Quality of chain	
18	S	145	86%	14%
18	s	145	6% 84%	14%
19	Е	480	86%	13%
19	е	480	87%	13%
20	i1	108	63% 37%	
20	i2	108	31% 57% • 41%	
21	t	460	79%	21%
22	G1	219	86%	14%
22	G2	219	86%	14%
23	g1	299	40%	• 8%
23	g2	299	45% 91%	• 8%
24	A1	546	69% 93%	• 6%
24	A2	546	74% 93%	• 6%
24	B1	546	93%	• 6%
24	B2	546	93%	6%
24	C1	546	92% 94%	6%
24	C2	546	93% 94%	6%
25	D1	497	90%	5%
25	D2	497	91% 94%	5%
25	E1	497	85%	5%
25	E2	497	87%	5%
25	F1	497	90%	6%
25	F2	497	90%	6%
26	H1	76	99%	·
26	H2	76	9%	·

Mol	Chain	Length	Quality of chain	
26	I1	76	9%	· ·
26	I2	76	99%	
26	 I1	76	8%	
20	10	76	12%	•
20	JZ	70	99% 12%	•
26	KI	76	99%	•
26	K2	76	97%	••
26	L1	76	99%	•
26	L2	76	99%	
26	M1	76	99%	
26	M2	76	99%	
26	N1	76	8%	
26	N2	76	99%	<u> </u>
26	01	76	99%	
26	02	76	99%	
26	P1	76	8%	
20	тт D9	76	5%	•
20	F2	70	99%	•
26	QI	76	99%	
26	Q2	76	99%	•
27	d1	158	84%	15%
27	d2	158	84% •	15%
28	e1	71	96%	•
28	e2	71	94%	• •

2 Entry composition (i)

There are 37 unique types of molecules in this entry. The entry contains 285933 atoms, of which 143905 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms						AltConf	Trace
1	9	n 433	Total	С	Η	Ν	0	\mathbf{S}	0	Ο
1 I	a		7155	2453	3527	526	633	16	0	0
1	Δ	499	Total	С	Η	Ν	0	S	0	0
	A	455	7157	2453	3529	526	633	16	0	0

• Molecule 1 is a protein called subunit a.

• Molecule 2 is a protein called subunit b.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
2	h	354	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
2	2 D		5726	1845	2851	487	531	12	0	0
9	В	354	Total	С	Η	Ν	0	S	0	0
	D	554	5724	1845	2849	487	531	12	0	U

• Molecule 3 is a protein called subunit d.

Mol	Chain	Residues	Atoms						AltConf	Trace
2	d	206	Total	С	Η	Ν	Ο	S	0	0
5	u	200	3274	1065	1598	274	332	5	0	0
2	л	206	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
5	D	200	3274	1065	1598	274	332	5	0	0

• Molecule 4 is a protein called subunit f.

Mol	Chain	Residues			Atom	S			AltConf	Trace
4	f	f 200	Total	С	Η	Ν	0	\mathbf{S}	0	0
4	I	200	3373	1095	1691	299	278	10	0	0
4	Б	200	Total	С	Η	Ν	0	S	0	0
4	Г	200	3374	1095	1692	299	278	10		U

• Molecule 5 is a protein called subunit i/j.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
5	;	200	Total	С	Η	Ν	0	S	0	0
5	1	209	3462	1121	1742	304	285	10	0	0
5	т	200	Total	С	Η	Ν	Ο	S	0	0
5		209	3460	1121	1740	304	285	10	0	U

• Molecule 6 is a protein called subunit k.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
6	1.	170	Total	С	Η	Ν	0	S	0	0
0	K	179	2902	939	1429	257	266	11	0	0
6	K	170	Total	С	Η	Ν	Ο	S	0	0
0	Λ	179	2903	939	1430	257	266	11	0	0

• Molecule 7 is a protein called subunit 8.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
7	с	96	Total 1671	C 565	H 830	N 131	0 143	$\frac{S}{2}$	0	0
7	С	96	Total 1671	C 565	H 830	N 131	$\begin{array}{r} 143 \\ \hline 0 \\ 143 \end{array}$	$\frac{2}{S}$	0	0

• Molecule 8 is a protein called ATPTT3.

Mol	Chain	Residues			Atom	s			AltConf	Trace
0	C,	256	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
0	g	230	4338	1474	2118	348	388	10	0	0
8	С	256	Total	С	Η	Ν	Ο	S	0	0
8	G	230	4338	1474	2118	348	388	10	0	U

• Molecule 9 is a protein called ATPTT4.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
0	h	021	Total	С	Η	Ν	0	S	0	0
9	11	201	3836	1236	1883	361	350	6	0	0
0	Ц	021	Total	С	Н	Ν	0	S	0	0
9	11	231	3836	1236	1883	361	350	6	0	0

• Molecule 10 is a protein called ATPTT5.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
10	j	269	Total 4346	C 1381	Н 2147	N 406	0 404	S 8	0	0

Continued from previous page...

Mol	Chain	Residues			Atoms	5			AltConf	Trace
10	J	269	Total 4346	C 1381	Н 2147	N 406	O 404	S 8	0	0

• Molecule 11 is a protein called ATPTT6.

Mol	Chain	Residues			Atom	5			AltConf	Trace
11	1	246	Total	С	Η	Ν	Ο	S	0	0
11	1	240	4070	1344	1999	360	361	6	0	0
11	т	246	Total	С	Η	Ν	0	S	0	0
		240	4070	1344	1999	360	361	6		0

• Molecule 12 is a protein called ATPTT7.

Mol	Chain	Residues			Atom	5			AltConf	Trace
19	m	221	Total	С	Η	Ν	0	S	0	0
	111	221	3696	1205	1835	313	336	7	0	0
19	М	221	Total	С	Η	Ν	0	S	0	0
	IVI		3696	1205	1835	313	336	$\overline{7}$		

• Molecule 13 is a protein called ATPTT8.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
13	n	110	Total	С	Η	Ν	0	S	0	0
10	11	119	1960	655	962	164	173	6	0	0
19	N	110	Total	С	Η	Ν	Ο	S	0	0
15	IN	119	1960	655	962	164	173	6	0	0

• Molecule 14 is a protein called ATPTT9.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
14	0	00	Total	С	Η	Ν	0	S	0	0
14	0	99	1599	507	794	145	147	6	0	0
14	0	00	Total	С	Н	Ν	0	S	0	0
14	0	99	1599	507	794	145	147	6	0	0

• Molecule 15 is a protein called ATPTT10.

Mol	Chain	Residues			Atom	S			AltConf	Trace
15	n	150	Total	С	Η	Ν	0	\mathbf{S}	0	0
10	р	150	2413	788	1196	204	224	1	0	0
15	D	150	Total	С	Η	Ν	0	S	0	0
10	1	150	2413	788	1196	204	224	1	0	0

• Molecule 16 is a protein called ATPTT11.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
16		108	Total	С	Н	Ν	0	\mathbf{S}	0	0
10	q	108	1749	556	874	149	169	1	0	0
16	0	108	Total	С	Н	Ν	0	S	0	0
10	Q	100	1749	556	874	149	169	1		U

• Molecule 17 is a protein called ATPTT12.

Mol	Chain	Residues			Atom	S			AltConf	Trace
17	r	145	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
11	1	140	2373	776	1180	201	212	4	0	0
17	D	140	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
11	n	140	2288	750	1134	194	206	4	0	0

• Molecule 18 is a protein called ATPTT13.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
18	g	194	Total	С	Η	Ν	0	S	0	0
10	ة	124	2025	648	1009	174	189	5	0	0
18	q	195	Total	С	Η	Ν	0	\mathbf{S}	0	0
10	C C	120	2039	652	1016	175	191	5	U	U

• Molecule 19 is a protein called ATPTT1.

Mol	Chain	Residues			Atom	s			AltConf	Trace
10	0	417	Total	С	Η	Ν	0	S	0	0
19	е	417	6681	2171	3286	602	614	8	0	0
10	F	417	Total	С	Η	Ν	0	S	0	0
19		11±	6681	2171	3286	602	614	8		

• Molecule 20 is a protein called Inhibitor of F1 (IF1).

Mol	Chain	Residues			Atom	IS			AltConf	Trace
20	i9	64	Total	С	Н	Ν	0	\mathbf{S}	0	0
20	12	04	1112	351	556	97	107	1	0	0
20	;1	68	Total	С	Η	Ν	0	\mathbf{S}	0	0
20	11	08	1167	368	582	103	113	1	0	0

• Molecule 21 is a protein called ATPTT2.

Mol	Chain	Residues			Atom	s			AltConf	Trace
21	+	265	Total	С	Η	Ν	0	\mathbf{S}	0	0
	U	305	5889	1925	2876	533	544	11	0	0

• Molecule 22 is a protein called Oligomycin sensitivity-conferring protein (OSCP).

Mol	Chain	Residues			Atom	IS			AltConf	Trace
	C1	199	Total	С	Η	Ν	0	S	0	0
	GI	100	3000	942	1515	252	287	4	0	0
	Co	100	Total	С	Н	Ν	0	S	0	0
	G2	100	3000	942	1515	252	287	4	0	0

• Molecule 23 is a protein called subunit gamma.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
- 0.2	c1	275	Total	С	Η	Ν	0	S	0	0
20	gı	275	4332	1343	2206	373	400	10	0	0
- 12	an D	275	Total	С	Η	Ν	0	S	0	0
20	g2	215	4332	1343	2206	373	400	10	0	0

• Molecule 24 is a protein called subunit alpha.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
24	C1	513	Total	С	Η	Ν	0	\mathbf{S}	0	0
24	01	515	7980	2481	4058	685	739	17	0	0
24	P1	511	Total	С	Η	Ν	0	S	0	0
24	DI	511	7934	2469	4030	681	737	17	0	0
24	Δ.1	519	Total	С	Η	Ν	0	\mathbf{S}	0	0
24	AI	512	7946	2472	4037	682	738	17	0	0
24	C2	513	Total	С	Η	Ν	0	\mathbf{S}	0	0
24	02	515	7980	2481	4058	685	739	17	0	0
24	BJ	511	Total	С	Η	Ν	0	S	0	0
24	D_{2}	511	7934	2469	4030	681	737	17	0	0
24	12	519	Total	С	Н	Ν	0	S	0	0
24	Π <i>Δ</i>	512	7946	2472	4037	682	738	17		U

• Molecule 25 is a protein called subunit beta.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
25	D1	470	Total	С	Η	Ν	0	\mathbf{S}	0	0
2.0	DI	470	7135	2243	3581	612	688	11	0	0
25	L 1	460	Total	С	Η	Ν	0	S	0	0
20	L I	409	7113	2237	3568	610	687	11	U	U

Mol	Chain	Residues			Atom	S			AltConf	Trace
25	F 1	470	Total	С	Η	Ν	0	\mathbf{S}	0	0
20	171	470	7135	2243	3581	612	688	11	0	0
25	DЭ	470	Total	С	Η	Ν	0	S	0	0
20	D^2	470	7135	2243	3581	612	688	11	0	0
25	ĿЭ	460	Total	С	Н	Ν	0	S	0	0
20	$\Gamma \Delta$	409	7113	2237	3568	610	687	11	0	0
25	FЭ	470	Total	С	Η	Ν	0	S	0	0
20		470	7135	2243	3581	612	688	11		0

• Molecule 26 is a protein called subunit c.

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
96	D1	75	Total	С	Н	Ν	0	S	0	0
20	P1	63	1148	377	587	84	94	6	0	0
00	01	75	Total	С	Η	Ν	Ο	S	0	0
26	OI	6)	1148	377	587	84	94	6	0	0
00	N1	75	Total	С	Η	Ν	Ο	S	0	0
20	IN I	63	1148	377	587	84	94	6	0	0
96	М 1	75	Total	С	Н	Ν	Ο	S	0	0
20	IVI I	63	1148	377	587	84	94	6	0	0
96	Τ1	75	Total	С	Н	Ν	Ο	S	0	0
20		63	1148	377	587	84	94	6	0	0
26	V1	75	Total	С	Η	Ν	Ο	S	0	0
20	K1	75	1148	377	587	84	94	6	0	0
26	T1	75	Total	С	Η	Ν	Ο	S	0	0
20	91	75	1148	377	587	84	94	6	0	0
26	T1	75	Total	С	Η	Ν	Ο	S	0	0
20	11	15	1148	377	587	84	94	6	0	0
26	Ц1	75	Total	С	Η	Ν	Ο	S	0	0
20	111	15	1148	377	587	84	94	6	0	0
26	01	75	Total	С	Η	Ν	Ο	S	0	0
20	Q1	10	1148	377	587	84	94	6	0	0
26	DЭ	75	Total	С	Η	Ν	Ο	S	0	0
20	1 2	10	1148	377	587	84	94	6	0	0
26	$\cap 2$	75	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
20	02	10	1148	377	587	84	94	6	0	0
26	N9	75	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
20	112	10	1148	377	587	84	94	6	0	0
26	M9	75	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
20	1112	10	1148	377	587	84	94	6	0	0
26	1.9	75	Total	С	Η	Ν	0	S	0	0
20		10	1148	377	587	84	94	6	0	

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
26	KO	75	Total	С	Η	Ν	0	S	0	0
20	1\2	15	1148	377	587	84	94	6	0	0
26	19	75	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
20	52	15	1148	377	587	84	94	6	0	0
26	19	75	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
20	12	15	1148	377	587	84	94	6	0	0
26	Но	75	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
20	112	15	1148	377	587	84	94	6	0	0
26	02	75	Total	С	Η	N	0	S	0	0
	Q2	10	1148	377	587	84	94	6	0	0

• Molecule 27 is a protein called subunit delta.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
97	d1	194	Total	С	Η	Ν	0	S	0	0
21	aı	104	2144	674	1082	185	200	3	0	0
97	40	194	Total	С	Η	Ν	0	S	0	0
21	02	104	2144	674	1082	185	200	3	0	0

• Molecule 28 is a protein called subunit epsilon.

Mol	Chain	Residues	Atoms						AltConf	Trace
28	01	68	Total	С	Η	Ν	Ο	S	0	0
20	er	00	1096	347	559	94	95	1	0	0
28	റി	68	Total	С	Η	Ν	Ο	S	0	0
20	ez	00	1096	347	559	94	95	1	0	U

• Molecule 29 is CARDIOLIPIN (three-letter code: CDL) (formula: $C_{81}H_{156}O_{17}P_2$).

Mol	Chain	Residues	Atoms		AltConf
- 20		1	Total C H	O P	0
29	a	1	512 162 312	34 4	0
20	_	1	Total C H	O P	0
29	а	1	512 162 312	34 4	0
20	1-	1	Total C H (O P	0
29	D	L	256 81 156 1	7 2	0
20	ſ	1	Total C H	O P	0
29	1	L	768 243 468	$51 \ 6$	0
20	ſ	1	Total C H	O P	0
29	1	L	768 243 468	$51 \ 6$	0
20	f	1	Total C H	O P	0
29	1	L	768 243 468	$51 \ 6$	0
20	:	1	Total C H (О Р	0
29	1	L	256 81 156 1	7 2	0
20	lr.	1	Total C H	O P	0
29	K	L	512 162 312	34 4	0
20	l,	1	Total C H	O P	0
29	K	L	512 162 312	34 4	0
20	;	1	Total C H	O P	0
29	J	L	512 162 312	34 4	0
20	;	1	Total C H	O P	0
29	J	L	512 162 312	34 4	0
20	1	1	Total C H	O P	0
29	1	L	512 162 312	34 4	0
20	1	1	Total C H	O P	0
	1	1	512 162 312	34 4	0
20	n	1	Total C H (O P	Ο
29	h	L	256 81 156 1	7 2	U

Mol	Chain	Residues		At	oms			AltConf
20		1	Total	С	Н	0	Р	0
29	r	1	256	81	156	17	2	0
- 20	٨	1	Total	С	Н	Ο	Р	0
29	А	1	256	81	156	17	2	0
20	D	1	Total	С	Н	Ο	Р	0
29	D	1	1024	324	624	68	8	0
20	р	1	Total	С	Η	Ο	Р	0
29	D	1	1024	324	624	68	8	0
20	В	1	Total	С	Η	Ο	Р	0
29	D	1	1024	324	624	68	8	0
20	В	1	Total	С	Н	Ο	Р	0
23	D	1	1024	324	624	68	8	0
20	F	1	Total	\mathbf{C}	Η	Ο	Р	0
25	Ľ	1	256	81	156	17	2	0
29	Т	1	Total	С	Η	Ο	Р	0
	1	I	512	162	312	34	4	0
29	Т	1	Total	С	Η	Ο	Р	0
20	1	1	512	162	312	34	4	0
29	K	1	Total	\mathbf{C}	Η	Ο	Р	0
	11	1	512	162	312	34	4	0
29	K	1	Total	С	Η	Ο	Р	0
		1	512	162	312	34	4	0
29	J	1	Total	\mathbf{C}	Η	Ο	Р	0
		1	512	162	312	34	4	Ŭ
29	J	1	Total	С	Η	Ο	Р	0
		-	512	162	312	34	4	Ŭ
29	L	1	Total	С	Н	Ο	Р	0
		-	512	162	312	34	4	
29	L	1	Total	С	Н	0	Р	0
		-	512	162	312	34	4	
29	Р	1	Total	С	Η	Ο	Р	0
	-		256	81	156	17	2	, v

Continued from previous page...

• Molecule 30 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (three-letter code: PC1) (formula: $C_{44}H_{88}NO_8P$).

Mol	Chain	Residues		I	Atom	s			AltConf
20	d	1	Total	С	Η	Ν	Ο	Р	0
30	u	1	142	44	88	1	8	1	0
30	ď	1	Total	С	Н	Ν	Ο	Р	0
- 50	ge	1	284	88	176	2	16	2	0
30	ď	1	Total	С	Η	Ν	Ο	Р	0
- 50	b	1	284	88	176	2	16	2	0
30	Л	1	Total	С	Η	Ν	Ο	Р	0
- 50	D	1	142	44	88	1	8	1	0
30	G	1	Total	С	Η	Ν	Ο	Р	0
50	ų	1	284	88	176	2	16	2	0
30	G	1	Total	C	Η	N	Ō	Р	0
00	9	1	284	88	176	2	16	2	

• Molecule 31 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

Mol	Chain	Residues	Atoms	AltConf
31	f	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0
31	F	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0

• Molecule 32 is Ubiquinone-8 (three-letter code: UQ8) (formula: $C_{49}H_{74}O_4$).

Mol	Chain	Residues	Atoms	AltConf
30	i	1	Total C H O	0
32	1	1	127 49 74 4	0
20	т	1	Total C H O	0
32	1	1	127 49 74 4	0

• Molecule 33 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		A	atom	ıs			AltConf
99	<i>c</i> r	1	Total	С	Η	Ν	Ο	Р	0
- 55	g	1	42	10	11	5	13	3	0
22	С	1	Total	С	Η	Ν	Ο	Р	0
55	G	1	42	10	11	5	13	3	0
22	C1	1	Total	С	Η	Ν	Ο	Р	0
55	01	1	42	10	11	5	13	3	0
22	R1	1	Total	С	Η	Ν	Ο	Р	0
- 55	DI	1	42	10	11	5	13	3	0
22	Δ.1	1	Total	С	Η	Ν	Ο	Р	0
- 55		1	42	10	11	5	13	3	0
22	C2	1	Total	С	Η	Ν	Ο	Р	0
- 55	02	1	42	10	11	5	13	3	0
22	BJ	1	Total	С	Η	Ν	Ο	Р	0
- JJ		L	42	10	11	5	13	3	U
22	1.2	1	Total	С	Η	Ν	Ο	Р	0
- JJ	AZ		42	10	11	5	13	3	0

• Molecule 34 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
34	g	1	Total Mg 1 1	0
34	G	1	Total Mg 1 1	0

Mol	Chain	Residues	Atoms	AltConf
34	C1	1	Total Mg 1 1	0
34	D1	1	Total Mg 1 1	0
34	B1	1	Total Mg 1 1	0
34	A1	1	Total Mg 1 1	0
34	E1	1	Total Mg 1 1	0
34	C2	1	Total Mg 1 1	0
34	D2	1	Total Mg 1 1	0
34	B2	1	Total Mg 1 1	0
34	A2	1	Total Mg 1 1	0
34	E2	1	Total Mg 1 1	0

Continued from previous page...

• Molecule 35 is 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (three-letter code: PEE) (formula: $C_{41}H_{78}NO_8P$).

Mol	Chain	Residues		AltConf					
25	m	1	Total	С	Η	Ν	Ο	Р	0
- 55	111	I	133	41	82	1	8	1	0

Mol	Chain	Residues	Atoms					AltConf	
25	٨	1	Total	С	Η	Ν	Ο	Р	0
30 A	A	1	123	38	75	1	8	1	0
25	т	1	Total	С	Η	Ν	Ο	Р	0
-99 - J	J		133	41	82	1	8	1	0
25	т	1	Total	С	Η	Ν	0	Р	0
30	L	1	123	38	75	1	8	1	0

• Molecule 36 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula: $C_{21}H_{27}N_7O_{14}P_2$).

Mol	Chain	Residues	Atoms					AltConf	
26	0	1	Total	С	Η	Ν	0	Р	0
50 e	1	70	21	26	7	14	2	0	
26	F	1	Total	С	Η	Ν	0	Р	0
30	E .	1	70	21	26	$\overline{7}$	14	2	0

• Molecule 37 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Atoms					AltConf
27	D1	1	Total	С	Η	Ν	Ο	Р	0
51	DI	1	38	10	11	5	10	2	0
27	P1	1	Total	С	Η	Ν	Ο	Р	0
51	DI	1	38	10	11	5	10	2	0
27	DЭ	1	Total	С	Η	Ν	Ο	Р	0
51	D^2	1	38	10	11	5	10	2	0
27	Bu	1	Total	С	Η	Ν	Ο	Р	0
51	DZ	1	38	10	11	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: subunit a

Chain I:	99%	
4 0 8		
E 47 H9 29		
• Molecule 6: subunit k		
Chain k:	99%	
1179 1179		
• Molecule 6: subunit k		
Chain K:	100%	
There are no outlier resi	dues recorded for this chain.	
• Molecule 7: subunit 8		
Chain c:	95%	• •
MET THR THT THT R19 K09 K09 K09		
• Molecule 7: subunit 8		
Chain C:	95%	•
NET THR 14 14 14 19 K89 ASN		
• Molecule 8: ATPTT3		
Chain g:	89%	10%
MET ASN ASN ASN ASN ASN THE PHE CITE ASN ALA ASN ALA ASN ASN	THR CLN SER SER LLC LLC LLT THR MET THR CLN THR CLN THR CLN THR CLN THR CLN THR CLN CLN THR CLN THR CLN THR CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
• Molecule 8: ATPTT3		
Chain G:	89%	10%
··· -	♦	1070
MET ILE ASN SER SER THR THR THR THR THR THR CAR CAR CAR CAR CAR CAR CAR CAR CAR CA	THR SER SER SER LEU LYS THR CLN THR CLN THR CLN THR CLN THR CLN THR THR CLN THR THR THR THR THR THR THR THR THR THR	
• Molecule 9: ATPTT4		
Chain h	060/	1 40/
		14%
	PROTEIN DATA BANK	

MET CLIN CLIN CLIN CLIN CLIN CLIN CLIN CLIN
• Molecule 9: ATPTT4
Chain H: 86% 14%
MET GLN GLN GLN GLN GLN GLN CLN GLN LLYS CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN
• Molecule 10: ATPTT5
Chain j: 99%
MET SER GLU ASN K5 H246 H246 H246 H248 F243 F249 F249 F273
• Molecule 10: ATPTT5
Chain J:
MET SER GLU ASN K5 R82 H245 H246 E247 K248 P250 Q253 Q253 Q253 Q253
• Molecule 11: ATPTT6
Chain l: 99%
MET 22
• Molecule 11: ATPTT6
Chain L: 99%
MET P2 N118 N118 N216 N118 N247
• Molecule 12: ATPTT7
Chain m: 100%
M1
• Molecule 12: ATPTT7
Chain M: 100%

WORLDWIDE PROTEIN DATA BANK

	There are no	outlier	residues	recorded	for	this	chain.
--	--------------	---------	----------	----------	-----	------	--------

• Molecule 13: ATPTT8

Chain n:	66%	• 34%	1
MET MET GLV GLV GLV GLV GLV GLV GLV GLV GLV GLV	LYS CUU LYS ARG CLN LYS CLN ASN ASN LYS CLN CLN CLN CLN CLU	GLU TYR TYR TYR GLN GLN GLN CYS CLNS CLNS CLNS CLNS TYR TYR TYR	GLN ARG LYS GLU MET
161 187 1.179			
• Molecule 13: ATPTT8			
Chain N:	66%	34%	
MET OLU OLU OLU OLU OLU ARG L'YS ARG L'YS OLU CLU OLU OLU OLU OLU OLU	LYS CUU LYS ARG CUU LYS CUN LYS CUN CUN CUN CUN CUN CUN CUN CUN	CLU LVS TVR TVR CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	GLN ARG LYS GLU MET
191 111 19			
• Molecule 14: ATPTT9			
Chain o:	64%	36%	
MET MET GLNS GLNS GLNS LLYS ASN LLYS LLYS LLYS CLNS GLN GLN GLN GLN GLN CLYS TYR TYR TYR	SER SER LYS LLYS LLEU LLEU LEU ASP ASP CLN CLN CLN CLN CLN CLN CLN CLYS CLY CLYS CLYS CLYS CLYS CLYS CLYS	LYS LYS LYS CLU CLU CLYS CLU CLU CLU CLU CLU CLU CLU CLU CLU	K153 ASN
• Molecule 14: ATPTT9			
Chain O:	64%	36%	
MET MET GLN GLN GLN ASN ASN LVS CLV CLV CLV CLV GLN GLV GLN CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	SER SER LLYS LLYS LLEU LLEU LLEU LLEU LLYS CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	ASN LYS LYS CLU CLYS CLU CLYS ASN ASN ASN CLU CLU CLU CLU CLU CLU	K153 ASN
• Molecule 15: ATPTT10			
Chain p:	99%		
MET 82 864 H 15 ASN			
• Molecule 15: ATPTT10			
Chain P:	99%		
MET S2 Q60 460 ASN			
• Molecule 16: ATPTT11			

Chain q:	71%	29%
MET PHE ARG ASN ILEU LEU VAL LEU VAL THR LEU CYS	L 195 L 195 C 195 L 195 C 195 L 195 L 195 L 195 L 195 L 195 C 11,0 C 11,	ALA ALA CLY CLY CLYS ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS
• Molecule 16: A	TPTT11	
Chain Q:	71%	29%
MET PHE ARG ASN ALSN TLE LLEU LLEU LLEU LLYS CVAL LYS CVAL	LEU LYS ELYS GLN TLYS GLN TLYS FHE FHE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA GLY GLY ARG ARG ASP LAS ASP ASP ASP
• Molecule 17: A	.TPTT12	
Chain r:	97%	
MET SER GLM ASP P5 Q28 L149		
• Molecule 17: A	TPTT12	
Chain R:	93%	• 6%
MET SER GLN ASP PRO PRO LLYS LLS ASL ASL ASL LL9 ASL		
• Molecule 18: A	TPTT13	
Chain s:	84%	• 14%
MET ASN SER LEU SER LYS LYS LYS ASN ASN SER SER SER	PHAL PHAE LLYS SLR ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	
• Molecule 18: A	TPTT13	
Chain S:	86%	14%
MET ASN SER SER SER LYS ALA ASN ASL VEU	Рид. LVS SER LVS ARG ARG ARG ARG A131 A131 A131 C138 C138 C138 C138 C138 C142 C144 C144 C144 C144	
• Molecule 19: A	TPTT1	
Chain e:	87%	13%
MET TLE HIS CYS CYS CYS CYS ASK ASK ASK ASK TLE TLE TLE TLE	LALA LALA LALA LALA SER LYS SER TILE CLFU CLY ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	Tyta Tyta HIS VAL LEU LEU LEU PRO GLU PRO GLU SER SER SER SER SER SER SER

• Molecule 23: subur	nit gamma				
Chain g2:	45%	91%	·	8%	
MET PHE CLUY CLUY ALA ALA CLUY CLUY CLUY CLUY CLUY CLUY CLUY CLUY	MET VAL PRO CLN MET ASN ASN CLY CLY CLY CL26	K27 Q28 L29 K30 K34 M33 K34 K34 K34 K34 K34 K34 K34	G38 139 142 143 143 143 844 844 844 848 ₩48	A50 A51 852 853 M54 855 859 859	
80 K84 K85 K86 K85 K86	L95 L96 S100 S101 D102 G104 G104 L105	S108 S111 S112 V114 K115 K115 K115 K115 K117 K119	L120 A121 L122 L122 N123 N124 R125 S126 S126 F128 F128 G129	L130 K136 G137 S139 G140 G140 S139 G140 S142 S142 S142 S142 S144	F145 P146 D147 L148 K150
8151 4157 4176 4176 4176 1183	K189 N190 A191 T192 S193 V194 V195 H185 H198	E200 1201 1202 0205 0205 1210 R215 R215	A268 A268 M269 K264 K264 A266 C267 C267 C267	1269 5271 5271 5271 1273 1273 1275 1276 1276 1276 1276 1277	A280 R281 Q282 A283 K284
1285 T286 M287 E288 L289 L289 E291 1290 E291 1292 S294 S295 G295 A296	2297 1298 VAL				
• Molecule 24: subur	nit alpha	92%			
Chain C1:		94%		6%	
MET ILE ILE ASN PHE HIS PHE HIS SER LEU VAL VAL VAL VAL PRO ARG	ALA LEU THR PRO PHE PHE PHE ARG SER SER SER SER	THR THR ALA ASP ASP ASP K33 K33 K33 S35 S35 S35 S35 S35 S35 S35 S35 S35 S	A39 840 V41 V42 L43 A44 E45 E45 E45 K46 K46 K48	649 150 151 652 953 853 855 155 155 157	
T61 V62 V62 163 S64 165 G66 G66 G68 A70 A70 K71 Y72	F73 G74 L75 T76 K77 V78 A80 A80 G81 G81	E82 M83 P84 E85 F86 K87 K87 S88 S88 G89 G89 G89 R91	G92 (993 (994 (995 (996 (996 (996 (996 (996 (996 (996	V102 6103 V104 V105 V105 C106 G106 N100 D110	1113 K114 E115 C116 D117 V118 V119 K120
R121 T122 G123 A124 A124 V126 V126 P127 P129 P129 T130 C131 C131 C131	A133 M134 C135 C135 G136 F135 F135 F139 F139 A141	L142 G143 F145 F145 G146 G147 G148 G148 G150 F151	L152 K153 T154 T155 Q155 A155 A155 A155 A155 C155 C155 C155 C	1162 K163 A164 A164 C165 C165 C166 P165 P169 R170 R170	V173 V173 R174 P175 M177 Q178 Q178 C179 C180
1181 K182 C183 C183 V184 D185 S186 S186 V188 P189 P189 C191 C191	C193 Q193 R195 E195 L197 1198 C199 C200 D201	R202 q203 q203 f204 f205 f205 f205 f205 f205 f210 f211	D212 1213 1214 1215 0217 0217 6217 6219 6219 6219 7220 7220	N222 1223 C224 D226 V226 K227 K228 K228 C229 C229 C231	1233 Y234 V235 A236 V237 C238 Q238 Q239 K240
R241 S242 S242 T243 I244 A245 N246 S249 S249 S249 S249 S249 S249 S249 S249	C255 4253 4255 5255 7255 7255 7255 7259 7260 1261	V282 V263 V263 A265 A265 A265 A267 A267 A267 A271 A271 A271	P272 L273 L273 P274 F275 A277 P276 P277 P278 P278 S280 S280 S280 S281	C282 A283 A283 C285 C285 F287 F287 F288 F288 F289 D290 D290	 4.22 4 4.295 4.296 1.297 1.298 7.299 7.299 0.300
D301 L302 S303 K304 Q305 A306 A306 R310 C11 M312 M312 S313	L314 L315 L315 R315 R316 P319 P320 P320 R322 R322 R322 R322	A324 A A325 A P326 A 0327 0328 A V329 A F330 A H333 A S334 A	A35 L336 L337 R339 A340 A341 K342 N343 N343 N343 N343	1345 3346 13346 3348 3351 3551 1352 1352 1352 1355 1355 1355	P356 V357 1358 1358 1360 0361 A362
G363 D364 V365 S366 A367 Y368 P366 P370 P370 T371 N372 V373 V373	5375 1376 1377 6379 6379 9380 9380 1381 F382 F382 L383	E384 T385 E386 E386 F388 Y389 Y389 G391 T392 R333	P394 A A395 A 1396 A N397 V398 A C399 A C399 A C403 A V402 A S403 A	R404 V405 G406 G406 A408 A408 A408 A408 A408 A410 K411 K412 K412	K415 K415 K415 A417 A418 A418 A419 K420 K422
L423 T424 L425 A426 A426 Y428 Y428 R429 R429 R429 E430 L431 A432 A432 A433	8435 9435 7437 8438 8438 8438 8433 8433 8443 1441 1441	K444 7445 9445 9447 9447 9447 1449 1449 1449 1445 1451 6452 6452	R454 + L455 + V456 + E457 + M458 + K460 + R466 + N462 + Q463 +	Y464 P465 P465 M467 K468 V469 E471 E471 Q472 V473	1475 1475 7477 7477 6479 6479 7480 8481 6482
		WORLDWIDE PROTEIN DATA BANK			

3489 R490 A491 D492 A493 LYS • Molecule 25: subunit beta 85% Chain E1: 5% 94% A28 N29 **G**30 N53 A54 L55 L55 E56 E56 V57 Q58 G59 G59 K27 **Q**31 q5C I51 L52 10 E207 R208 T209 R210 Y216 E2218 M2192 M2202 M2222 S2222 V2224 V2224 V2224 V2224 V2224 V2222 S2226 C2234 C2232 S2226 C2334 C2332 C2322 C232 C2322 C2 E21: G21: N21 L21 V20 F20 A20 2361 1361 1361 H386 A39C R391 L397 Q398 D399 F437 F437 M438 S446 E44: V445 F444 S44 S44 I44

• Molecule 25: subunit beta

91% Chain D2: 94% 5%

8%

Chain P1:

99%

• Molecule 26: subunit c

Chain I1:	96% •••
M1 K5 E42 H530 F63 F63 C67 A1A	
• Molecule 26: subunit c	
Chain H1:	99%
M1 E45 A75 ALA	
• Molecule 26: subunit c	
Chain Q1:	99%
M1 F30 E42 E45 G67 A75 ALA	
• Molecule 26: subunit c	
Chain P2:	99%
M1 L37 S38 S38 B42 A75 A15 A1A	
• Molecule 26: subunit c	
Chain O2:	99%
M1 L10 E42 E45 F63 M64 F63 M64 S65 G67 A75 A1A	
• Molecule 26: subunit c	
Chain N2:	99%
M1 L10 V11 M12 E42 B45 M49 C54 C54 C54 A75 A75 A75	
• Molecule 26: subunit c	
Chain M2:	99%
M1 L2 L3 K8 K8 F30 F33 F33 F33 F33 F34 F32 F45 K45 K75 K1A	

• Molecule 26: subunit c	
Chain L2:	99%
M1 1.2 1.3 1.3 1.4 1.10 1.10 1.10 1.10 1.10 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	A56 F63 M64 S65 G67 G67 A15 A15 A1A
• Molecule 26: subunit c	
Chain K2:	97%
M1 L2 L3 L10 (110 (119 (124 E42 E42 E45 E45 C54 C55 C55 L37 E45 C55 L57 C55 L57 C55 L55 L55 C55 L55 L55 L55 L55 L55 L55	
• Molecule 26: subunit c	
Chain J2:	99% .
M1 K5 K5 L37 E42 E42 E45 F63 C69 A15 A15	
• Molecule 26: subunit c	
Chain I2:	99% •
M1 K6 F30 F37 F37 F37 F37 F37 F37 F37 F37 F37 F37	
• Molecule 26: subunit c	
Chain H2:	99%
M1 K8 K8 E30 E42 E42 E45 E45 C47 L47 A1A	
• Molecule 26: subunit c	
Chain Q2:	99%
M1 E45 A75 A1A	
• Molecule 27: subunit delta	
Chain d1:	84% · 15%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	61157	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30.9	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	165000	Depositor
Image detector	GATAN K2 QUANTUM (4k x 4k)	Depositor
Maximum map value	0.155	Depositor
Minimum map value	-0.056	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	498.0, 498.0, 498.0	wwPDB
Map dimensions	600, 600, 600	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.83, 0.83, 0.83	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ATP, NAD, CDL, MG, UQ8, PO4, ADP, PC1, PEE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	l angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.36	0/3752	0.39	0/5109
1	a	0.36	0/3752	0.39	0/5109
2	В	0.30	0/2940	0.37	0/3969
2	b	0.30	0/2940	0.36	0/3969
3	D	0.30	0/1715	0.38	0/2321
3	d	0.30	0/1715	0.38	0/2321
4	F	0.36	0/1733	0.41	0/2327
4	f	0.35	0/1733	0.41	0/2327
5	Ι	0.35	0/1771	0.40	0/2394
5	i	0.35	0/1771	0.40	0/2394
6	К	0.31	0/1508	0.39	0/2024
6	k	0.31	0/1508	0.39	0/2024
7	С	0.35	0/866	0.40	0/1176
7	с	0.35	0/866	0.40	0/1176
8	G	0.36	0/2302	0.42	0/3115
8	g	0.36	0/2302	0.41	0/3115
9	Н	0.33	0/2006	0.40	0/2704
9	h	0.33	0/2006	0.40	0/2704
10	J	0.34	0/2256	0.41	0/3069
10	j	0.34	0/2256	0.41	0/3069
11	L	0.35	0/2140	0.40	0/2903
11	l	0.35	0/2140	0.40	0/2903
12	М	0.36	0/1912	0.38	0/2598
12	m	0.35	0/1912	0.38	0/2598
13	N	0.37	0/1030	0.41	0/1393
13	n	0.37	0/1030	0.42	0/1393
14	0	0.31	0/821	0.40	0/1104
14	0	0.30	0/821	0.41	0/1104
15	Р	0.29	0/1249	0.38	0/1695
15	р	0.29	0/1249	0.38	0/1695
16	Q	0.31	0/888	0.40	0/1200
16	q	0.32	0/888	0.40	0/1200

Mal	Chain	Bond lengths		Bond	l angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
17	R	0.35	0/1185	0.39	0/1594
17	r	0.35	0/1225	0.39	0/1649
18	S	0.32	0/1044	0.42	0/1414
18	s	0.33	0/1037	0.42	0/1404
19	Е	0.28	0/3492	0.41	0/4720
19	е	0.28	0/3492	0.40	0/4720
20	i1	0.23	0/593	0.34	0/795
20	i2	0.28	0/563	0.36	0/753
21	\mathbf{t}	0.33	0/3103	0.40	0/4200
22	G1	0.24	0/1507	0.37	0/2027
22	G2	0.24	0/1507	0.37	0/2027
23	g1	0.24	0/2156	0.38	0/2900
23	g2	0.24	0/2156	0.38	0/2900
24	A1	0.24	0/3961	0.40	0/5346
24	A2	0.24	0/3961	0.40	0/5346
24	B1	0.24	0/3956	0.40	0/5339
24	B2	0.24	0/3956	0.40	0/5339
24	C1	0.24	0/3974	0.40	0/5361
24	C2	0.24	0/3974	0.40	0/5361
25	D1	0.24	0/3613	0.39	0/4900
25	D2	0.24	0/3613	0.39	0/4900
25	E1	0.24	0/3613	0.40	0/4900
25	E2	0.24	0/3613	0.40	0/4900
25	F1	0.24	0/3604	0.40	0/4889
25	F2	0.24	0/3604	0.40	0/4889
26	H1	0.28	0/572	0.36	0/771
26	H2	0.28	0/572	0.37	0/771
26	I1	0.27	0/572	0.36	0/771
26	I2	0.28	0/572	0.41	0/771
26	J1	0.27	0/572	0.36	0/771
26	J2	0.27	0/572	0.36	0/771
26	K1	0.27	0/572	0.36	0/771
26	K2	0.27	0/572	0.36	0/771
26	L1	0.27	0/572	0.36	0/771
26	L2	0.27	0/572	0.35	0/771
26	M1	0.27	0/572	0.35	0/771
26	M2	0.27	0/572	0.36	0/771
26	N1	0.27	0/572	0.35	0/771
26	N2	0.26	0/572	0.35	0/771
26	01	0.27	0/572	0.35	0/771
26	O2	0.27	0/572	0.35	0/771
26	P1	0.27	0/572	0.35	0/771
26	P2	0.27	0/572	0.35	0/771

Mal	Chain	Bond lengths		Bond angles	
MOI	Ullalli	$RMSZ \mid \# Z > 5$		RMSZ	# Z > 5
26	Q1	0.27	0/572	0.35	0/771
26	Q2	0.27	0/572	0.35	0/771
27	d1	0.25	0/1081	0.45	0/1459
27	d2	0.25	0/1081	0.45	0/1459
28	e1	0.25	0/547	0.41	0/735
28	e2	0.25	0/547	0.42	0/735
All	All	0.29	0/140976	0.39	0/190583

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
25	F1	0	1
25	F2	0	1
28	e2	0	1
All	All	0	3

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
25	F1	364	TYR	Peptide
25	F2	364	TYR	Peptide
28	e2	46	TYR	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	431/446~(97%)	426 (99%)	5(1%)	0	100	100
1	a	431/446~(97%)	422 (98%)	9~(2%)	0	100	100
2	В	352/381~(92%)	341 (97%)	11 (3%)	0	100	100
2	b	352/381~(92%)	339~(96%)	13~(4%)	0	100	100
3	D	204/234~(87%)	199 (98%)	5(2%)	0	100	100
3	d	204/234~(87%)	198 (97%)	6 (3%)	0	100	100
4	F	198/204~(97%)	197 (100%)	1 (0%)	0	100	100
4	f	198/204~(97%)	196 (99%)	2(1%)	0	100	100
5	Ι	207/209~(99%)	199 (96%)	8 (4%)	0	100	100
5	i	207/209~(99%)	202 (98%)	5 (2%)	0	100	100
6	К	177/179~(99%)	166 (94%)	11 (6%)	0	100	100
6	k	177/179~(99%)	169 (96%)	8 (4%)	0	100	100
7	С	94/100~(94%)	90 (96%)	4 (4%)	0	100	100
7	с	94/100~(94%)	90 (96%)	4 (4%)	0	100	100
8	G	254/286~(89%)	246 (97%)	8 (3%)	0	100	100
8	g	254/286~(89%)	244 (96%)	10 (4%)	0	100	100
9	Н	229/268~(85%)	225 (98%)	4 (2%)	0	100	100
9	h	229/268~(85%)	226 (99%)	3 (1%)	0	100	100
10	J	267/273~(98%)	261 (98%)	6 (2%)	0	100	100
10	j	267/273~(98%)	262 (98%)	5 (2%)	0	100	100
11	L	244/247~(99%)	239 (98%)	5 (2%)	0	100	100
11	1	244/247~(99%)	241 (99%)	3 (1%)	0	100	100
12	М	219/221~(99%)	219 (100%)	0	0	100	100
12	m	219/221~(99%)	217 (99%)	2(1%)	0	100	100
13	Ν	117/179~(65%)	114 (97%)	3 (3%)	0	100	100
13	n	117/179~(65%)	115 (98%)	2(2%)	0	100	100
14	О	97/154~(63%)	95 (98%)	2(2%)	0	100	100
14	О	97/154~(63%)	96 (99%)	1 (1%)	0	100	100
15	Р	148/152~(97%)	140 (95%)	8 (5%)	0	100	100
15	р	148/152~(97%)	138 (93%)	10 (7%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	Q	106/152~(70%)	105 (99%)	1 (1%)	0	100	100
16	q	106/152~(70%)	105 (99%)	1 (1%)	0	100	100
17	R	138/149~(93%)	136 (99%)	2 (1%)	0	100	100
17	r	143/149~(96%)	142 (99%)	1 (1%)	0	100	100
18	S	123/145~(85%)	119 (97%)	4 (3%)	0	100	100
18	s	122/145~(84%)	122 (100%)	0	0	100	100
19	Ε	415/480~(86%)	406 (98%)	9 (2%)	0	100	100
19	е	415/480~(86%)	405 (98%)	10 (2%)	0	100	100
20	i1	64/108~(59%)	64 (100%)	0	0	100	100
20	i2	60/108~(56%)	60 (100%)	0	0	100	100
21	t	363/460~(79%)	360 (99%)	3 (1%)	0	100	100
22	G1	186/219~(85%)	176 (95%)	10 (5%)	0	100	100
22	G2	186/219~(85%)	176 (95%)	10 (5%)	0	100	100
23	g1	273/299~(91%)	265 (97%)	8 (3%)	0	100	100
23	g2	273/299~(91%)	265~(97%)	8 (3%)	0	100	100
24	A1	510/546~(93%)	503~(99%)	7 (1%)	0	100	100
24	A2	510/546~(93%)	503~(99%)	7 (1%)	0	100	100
24	B1	509/546~(93%)	498 (98%)	10 (2%)	1 (0%)	47	73
24	B2	509/546~(93%)	500 (98%)	8 (2%)	1 (0%)	47	73
24	C1	511/546~(94%)	509~(100%)	2 (0%)	0	100	100
24	C2	511/546~(94%)	507~(99%)	4 (1%)	0	100	100
25	D1	468/497~(94%)	461 (98%)	7 (2%)	0	100	100
25	D2	468/497~(94%)	463 (99%)	5 (1%)	0	100	100
25	E1	468/497~(94%)	459 (98%)	9 (2%)	0	100	100
25	E2	468/497~(94%)	459 (98%)	9 (2%)	0	100	100
25	F1	467/497~(94%)	454 (97%)	13 (3%)	0	100	100
25	F2	$\overline{467/497}~(94\%)$	455 (97%)	12 (3%)	0	100	100
26	H1	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	H2	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	I1	73/76~(96%)	73 (100%)	0	0	100	100
26	I2	$73/\overline{76}~(96\%)$	71 (97%)	2 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
26	J1	73/76~(96%)	73~(100%)	0	0	100	100
26	J2	73/76~(96%)	73 (100%)	0	0	100	100
26	K1	73/76~(96%)	73 (100%)	0	0	100	100
26	K2	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	L1	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	L2	73/76~(96%)	71 (97%)	2(3%)	0	100	100
26	M1	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	M2	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	N1	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	N2	73/76~(96%)	73 (100%)	0	0	100	100
26	01	73/76~(96%)	71 (97%)	2 (3%)	0	100	100
26	O2	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	P1	73/76~(96%)	72 (99%)	1 (1%)	0	100	100
26	P2	73/76~(96%)	71 (97%)	2(3%)	0	100	100
26	Q1	73/76~(96%)	71 (97%)	2(3%)	0	100	100
26	Q2	73/76~(96%)	70 (96%)	3 (4%)	0	100	100
27	d1	132/158~(84%)	126 (96%)	6 (4%)	0	100	100
27	d2	132/158~(84%)	127~(96%)	5 (4%)	0	100	100
28	e1	66/71~(93%)	60 (91%)	6 (9%)	0	100	100
28	e2	66/71~(93%)	60 (91%)	6 (9%)	0	100	100
All	All	17171/18866 (91%)	16800 (98%)	369 (2%)	2 (0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
24	B1	55	ASP
24	B2	55	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	397/409~(97%)	395~(100%)	2 (0%)	88	96
1	a	397/409~(97%)	395~(100%)	2 (0%)	88	96
2	В	306/331~(92%)	306 (100%)	0	100	100
2	b	306/331~(92%)	306 (100%)	0	100	100
3	D	183/206~(89%)	183 (100%)	0	100	100
3	d	183/206~(89%)	183 (100%)	0	100	100
4	F	175/178~(98%)	174 (99%)	1 (1%)	86	95
4	f	175/178~(98%)	174 (99%)	1 (1%)	86	95
5	Ι	182/182~(100%)	180 (99%)	2 (1%)	73	90
5	i	182/182~(100%)	181 (100%)	1 (0%)	88	96
6	К	152/152~(100%)	152 (100%)	0	100	100
6	k	152/152~(100%)	151 (99%)	1 (1%)	84	94
7	С	93/97~(96%)	92~(99%)	1 (1%)	73	90
7	с	93/97~(96%)	92~(99%)	1 (1%)	73	90
8	G	235/262~(90%)	234 (100%)	1 (0%)	91	97
8	g	235/262~(90%)	234 (100%)	1 (0%)	91	97
9	Н	208/245~(85%)	207~(100%)	1 (0%)	88	96
9	h	208/245~(85%)	207 (100%)	1 (0%)	88	96
10	J	235/239~(98%)	234 (100%)	1 (0%)	91	97
10	j	235/239~(98%)	235 (100%)	0	100	100
11	L	219/220~(100%)	217 (99%)	2 (1%)	78	92
11	1	219/220~(100%)	218 (100%)	1 (0%)	88	96
12	М	202/202~(100%)	202 (100%)	0	100	100
12	m	202/202~(100%)	201 (100%)	1 (0%)	88	96
13	Ν	104/162~(64%)	104 (100%)	0	100	100
13	n	104/162~(64%)	103 (99%)	1 (1%)	76	91
14	Ο	89/142~(63%)	89 (100%)	0	100	100
14	О	89/142~(63%)	89 (100%)	0	100	100
15	Р	131/133~(98%)	131 (100%)	0	100	100
15	р	131/133~(98%)	131 (100%)	0	100	100
16	Q	97/135~(72%)	97 (100%)	0	100	100

analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
16	q	97/135~(72%)	97~(100%)	0	100	100	
17	R	120/129~(93%)	119~(99%)	1 (1%)	81	93	
17	r	125/129~(97%)	124~(99%)	1 (1%)	81	93	
18	\mathbf{S}	112/131~(86%)	112 (100%)	0	100	100	
18	S	111/131~(85%)	109~(98%)	2 (2%)	59	83	
19	Е	359/414~(87%)	357~(99%)	2 (1%)	86	95	
19	е	359/414~(87%)	358 (100%)	1 (0%)	92	98	
20	i1	64/101~(63%)	64 (100%)	0	100	100	
20	i2	61/101~(60%)	59~(97%)	2 (3%)	38	67	
21	t	325/414~(78%)	322 (99%)	3 (1%)	78	92	
22	G1	166/195~(85%)	166 (100%)	0	100	100	
22	G2	166/195~(85%)	166 (100%)	0	100	100	
23	g1	234/254~(92%)	230 (98%)	4 (2%)	60	84	
23	g2	234/254~(92%)	231 (99%)	3 (1%)	69	87	
24	A1	422/453~(93%)	419 (99%)	3 (1%)	84	94	
24	A2	422/453~(93%)	419 (99%)	3 (1%)	84	94	
24	B1	422/453~(93%)	419 (99%)	3 (1%)	84	94	
24	B2	422/453~(93%)	421 (100%)	1 (0%)	93	98	
24	C1	424/453~(94%)	423 (100%)	1 (0%)	93	98	
24	C2	424/453~(94%)	423 (100%)	1 (0%)	93	98	
25	D1	381/402~(95%)	380 (100%)	1 (0%)	92	98	
25	D2	381/402~(95%)	380 (100%)	1 (0%)	92	98	
25	E1	381/402~(95%)	380 (100%)	1 (0%)	92	98	
25	E2	381/402~(95%)	380 (100%)	1 (0%)	92	98	
25	F1	380/402~(94%)	380 (100%)	0	100	100	
25	F2	380/402~(94%)	380 (100%)	0	100	100	
26	H1	59/59~(100%)	59 (100%)	0	100	100	
26	H2	59/59~(100%)	59 (100%)	0	100	100	
26	I1	59/59~(100%)	57~(97%)	2 (3%)	37	66	
26	I2	59/59~(100%)	59 (100%)	0	100	100	
26	J1	59/59~(100%)	59 (100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
26	J2	59/59~(100%)	59~(100%)	0	100	100
26	K1	59/59~(100%)	59 (100%)	0	100	100
26	K2	59/59~(100%)	58 (98%)	1 (2%)	60	84
26	L1	59/59~(100%)	59 (100%)	0	100	100
26	L2	59/59~(100%)	59 (100%)	0	100	100
26	M1	59/59~(100%)	59 (100%)	0	100	100
26	M2	59/59~(100%)	59 (100%)	0	100	100
26	N1	59/59~(100%)	59 (100%)	0	100	100
26	N2	59/59~(100%)	59 (100%)	0	100	100
26	01	59/59~(100%)	59 (100%)	0	100	100
26	O2	59/59~(100%)	59 (100%)	0	100	100
26	P1	59/59~(100%)	59 (100%)	0	100	100
26	P2	59/59~(100%)	59 (100%)	0	100	100
26	Q1	59/59~(100%)	59 (100%)	0	100	100
26	Q2	59/59~(100%)	59 (100%)	0	100	100
27	d1	117/139~(84%)	116 (99%)	1 (1%)	78	92
27	d2	117/139~(84%)	116 (99%)	1 (1%)	78	92
28	e1	57/60~(95%)	57 (100%)	0	100	100
28	e2	57/60~(95%)	57 (100%)	0	100	100
All	All	14800/16160 (92%)	14738 (100%)	62 (0%)	91	97

 $5~{\rm of}~62$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
19	Ε	391	LEU
24	B2	300	ASP
23	g1	194	TYR
25	D2	437	PHE
25	E2	386	HIS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 34 such side chains are listed below:

Mol	Chain	Res	Type
27	d1	63	ASN

Continued from previous page...

Mol	Chain	Res	Type
22	G2	161	GLN
25	E2	92	GLN
9	Н	101	GLN
5	Ι	209	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 70 ligands modelled in this entry, 12 are monoatomic - leaving 58 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	B	ond leng	gths	Bo	nd angle	es
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
29	CDL	К	202	-	99,99,99	0.88	7 (7%)	105,111,111	1.10	5 (4%)
29	CDL	k	201	6	99,99,99	0.89	8 (8%)	105,111,111	1.02	4 (3%)
30	PC1	g	303	-	53,53,53	0.96	4 (7%)	59,61,61	0.97	2 (3%)
33	ATP	g	301	34	26,33,33	4.78	7 (26%)	31,52,52	2.42	7 (22%)
33	ATP	B2	601	25,24,34	26,33,33	4.80	8 (30%)	31,52,52	2.45	8 (25%)
37	ADP	D2	501	34	24,29,29	3.68	9 (37%)	29,45,45	<mark>3.54</mark>	7 (24%)
29	CDL	L	301	-	99,99,99	0.89	7 (7%)	105,111,111	1.01	4 (3%)
29	CDL	Κ	201	-	99,99,99	0.88	8 (8%)	105,111,111	1.03	4 (3%)

Mal	Type	Chain	Dog	Link	B	ond leng	gths	Bond angles		
	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
30	PC1	G	303	-	53,53,53	0.96	4 (7%)	$59,\!61,\!61$	0.98	2 (3%)
29	CDL	В	403	-	99,99,99	0.88	7 (7%)	$105,\!111,\!111$	1.05	4 (3%)
31	PO4	f	301	-	4,4,4	1.04	0	6,6,6	0.44	0
37	ADP	B2	603	24,34	24,29,29	3.71	9 (37%)	29,45,45	<mark>3.57</mark>	7 (24%)
29	CDL	р	201	-	99,99,99	0.88	8 (8%)	105,111,111	1.04	4 (3%)
30	PC1	d	301	3	$53,\!53,\!53$	0.93	4 (7%)	$59,\!61,\!61$	1.07	2 (3%)
36	NAD	Е	900	-	42,48,48	3.82	19 (45%)	50,73,73	2.13	7 (14%)
29	CDL	J	301	-	99,99,99	0.89	6 (6%)	105,111,111	1.08	4 (3%)
29	CDL	А	502	-	99,99,99	0.88	7 (7%)	105,111,111	1.08	4 (3%)
32	UQ8	Ι	303	-	53,53,53	1.79	7 (13%)	64,67,67	1.68	17 (26%)
30	PC1	D	301	3	53,53,53	0.94	4 (7%)	59,61,61	1.10	2 (3%)
33	ATP	G	301	34	26,33,33	4.77	7 (26%)	31,52,52	2.44	7 (22%)
37	ADP	B1	603	24,34	24,29,29	3.70	9 (37%)	29,45,45	3.58	7 (24%)
29	CDL	L	302	-	99,99,99	0.88	7 (7%)	105,111,111	1.03	3 (2%)
37	ADP	D1	501	34	24,29,29	3.65	9 (37%)	29,45,45	3.77	7 (24%)
29	CDL	В	401	_	99,99,99	0.87	8 (8%)	105,111,111	0.99	4 (3%)
33	ATP	C2	601	34	26,33,33	4.79	8 (30%)	31,52,52	2.43	7 (22%)
29	CDL	j	301	_	99,99,99	0.88	7 (7%)	105,111,111	1.09	4 (3%)
29	CDL	j	302	_	99,99,99	0.88	7 (7%)	105,111,111	1.01	4 (3%)
33	ATP	B1	601	25,24,34	26,33,33	4.80	9 (34%)	31,52,52	2.45	8 (25%)
29	CDL	Р	201	_	99,99,99	0.88	7 (7%)	105,111,111	1.03	5 (4%)
35	PEE	m	301	_	50,50,50	1.15	6 (12%)	53,55,55	1.08	4 (7%)
29	CDL	f	302	_	99,99,99	0.87	7 (7%)	105,111,111	1.04	4 (3%)
29	CDL	f	304	-	99,99,99	0.89	7 (7%)	105,111,111	1.05	4 (3%)
36	NAD	e	900	-	42,48,48	3.83	19 (45%)	50,73,73	2.14	7 (14%)
30	PC1	G	304	8	53,53,53	0.95	4 (7%)	59,61,61	1.00	2 (3%)
29	CDL	Ι	302	_	99,99,99	0.88	8 (8%)	105,111,111	1.04	4 (3%)
35	PEE	J	303	-	50,50,50	1.15	6 (12%)	53,55,55	1.16	3 (5%)
29	CDL	r	201	-	99,99,99	0.87	8 (8%)	105,111,111	1.03	4 (3%)
29	CDL	b	401	4,2	99,99,99	0.87	8 (8%)	105,111,111	1.11	4 (3%)
33	ATP	C1	601	34	26,33,33	4.79	8 (30%)	31,52,52	2.40	7 (22%)
35	PEE	А	501	-	47,47,50	1.18	6 (12%)	50,52,55	1.16	2 (4%)
33	ATP	A1	601	34	26,33,33	4.82	8 (30%)	31,52,52	2.41	7 (22%)
29	CDL	В	402	2	99,99,99	0.87	7 (7%)	105,111,111	1.13	5 (4%)
33	ATP	A2	601	34	26,33,33	4.83	8 (30%)	31,52,52	2.40	7 (22%)

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bo	nd angl	es
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
29	CDL	В	404	2	99,99,99	0.88	8 (8%)	105,111,111	1.09	5 (4%)
35	PEE	L	303	-	47,47,50	1.17	6 (12%)	$50,\!52,\!55$	1.16	3 (6%)
29	CDL	k	202	-	99,99,99	0.88	7 (7%)	105,111,111	1.12	5 (4%)
29	CDL	F	302	-	99,99,99	0.88	8 (8%)	105,111,111	1.07	4 (3%)
29	CDL	1	301	-	99,99,99	0.88	<mark>6 (6%)</mark>	105,111,111	1.05	5 (4%)
29	CDL	i	301	-	99,99,99	0.88	8 (8%)	105,111,111	1.07	4 (3%)
31	PO4	F	301	-	4,4,4	1.04	0	6,6,6	0.44	0
29	CDL	1	302	-	99,99,99	0.89	8 (8%)	105,111,111	1.05	4 (3%)
29	CDL	J	302	-	99,99,99	0.87	8 (8%)	105,111,111	1.00	4 (3%)
29	CDL	f	303	-	99,99,99	0.88	8 (8%)	105,111,111	1.09	5 (4%)
32	UQ8	i	302	-	53,53,53	1.79	7 (13%)	64,67,67	1.65	16 (25%)
29	CDL	a	501	-	99,99,99	0.89	7 (7%)	105,111,111	1.05	5 (4%)
29	CDL	Ι	301	5	99,99,99	0.87	7 (7%)	105,111,111	0.99	4 (3%)
29	CDL	a	502	-	99,99,99	0.88	8 (8%)	105,111,111	1.09	<mark>6 (5%)</mark>
30	PC1	g	304	8	53,53,53	0.96	4 (7%)	59,61,61	0.93	2 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
29	CDL	К	202	-	-	36/110/110/110	-
29	CDL	k	201	6	-	37/110/110/110	-
30	PC1	g	303	-	-	22/57/57/57	-
33	ATP	g	301	34	-	0/18/38/38	0/3/3/3
33	ATP	B2	601	$25,\!24,\!34$	-	2/18/38/38	0/3/3/3
37	ADP	D2	501	34	-	2/12/32/32	0/3/3/3
29	CDL	L	301	-	-	38/110/110/110	-
29	CDL	К	201	-	-	27/110/110/110	-
30	PC1	G	303	-	-	29/57/57/57	-
29	CDL	В	403	-	-	33/110/110/110	-
37	ADP	B2	603	24,34	-	2/12/32/32	0/3/3/3
29	CDL	р	201	-	-	44/110/110/110	-
30	PC1	d	301	3	-	23/57/57/57	-
36	NAD	Е	900	_	_	7/26/62/62	0/5/5/5

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
29	CDL	J	301	-	-	42/110/110/110	-
29	CDL	А	502	-	-	46/110/110/110	-
32	UQ8	Ι	303	-	-	9/51/75/75	0/1/1/1
30	PC1	D	301	3	-	21/57/57/57	-
33	ATP	G	301	34	-	0/18/38/38	0/3/3/3
37	ADP	B1	603	24,34	-	1/12/32/32	0/3/3/3
29	CDL	L	302	-	-	45/110/110/110	-
37	ADP	D1	501	34	-	2/12/32/32	0/3/3/3
29	CDL	В	401	-	-	43/110/110/110	-
33	ATP	C2	601	34	-	4/18/38/38	0/3/3/3
29	CDL	j	301	-	-	40/110/110/110	-
29	CDL	j	302	-	-	41/110/110/110	-
33	ATP	B1	601	25,24,34	-	2/18/38/38	0/3/3/3
29	CDL	Р	201	_	_	36/110/110/110	-
35	PEE	m	301	-	-	24/54/54/54	-
29	CDL	f	302	_	_	54/110/110/110	-
29	CDL	f	304	-	-	49/110/110/110	-
36	NAD	е	900	_	-	6/26/62/62	0/5/5/5
30	PC1	G	304	8	-	19/57/57/57	-
29	CDL	Ι	302	-	-	38/110/110/110	-
35	PEE	J	303	-	-	29/54/54/54	-
29	CDL	r	201	-	-	36/110/110/110	-
29	CDL	b	401	4,2	-	44/110/110/110	-
33	ATP	C1	601	34	-	5/18/38/38	0/3/3/3
35	PEE	А	501	-	-	21/51/51/54	-
33	ATP	A1	601	34	-	5/18/38/38	0/3/3/3
29	CDL	В	402	2	-	40/110/110/110	_
33	ATP	A2	601	34	-	5/18/38/38	0/3/3/3
29	CDL	В	404	2	-	46/110/110/110	-
35	PEE	L	303	-	-	22/51/51/54	-
29	CDL	k	202	-	-	35/110/110/110	-
29	CDL	F	302	-	-	47/110/110/110	-
29	CDL	1	301	-	-	39/110/110/110	-
29	CDL	i	301	-	-	38/110/110/110	_

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
29	CDL	1	302	-	-	40/110/110/110	-
29	CDL	J	302	-	-	41/110/110/110	-
29	CDL	f	303	-	-	41/110/110/110	-
32	UQ8	i	302	-	-	8/51/75/75	0/1/1/1
29	CDL	a	501	-	-	33/110/110/110	-
29	CDL	Ι	301	5	-	42/110/110/110	-
29	CDL	a	502	-	-	39/110/110/110	-
30	PC1	g	304	8	-	19/57/57/57	-

The worst 5 of 421 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
33	A2	601	ATP	C2'-C1'	-17.27	1.27	1.53
33	B2	601	ATP	C2'-C1'	-17.23	1.27	1.53
33	A1	601	ATP	C2'-C1'	-17.22	1.27	1.53
33	B1	601	ATP	C2'-C1'	-17.21	1.27	1.53
33	g	301	ATP	C2'-C1'	-17.19	1.27	1.53

The worst 5 of 286 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
37	D1	501	ADP	C1'-N9-C4	15.98	154.72	126.64
37	B1	603	ADP	C1'-N9-C4	14.91	152.83	126.64
37	B2	603	ADP	C1'-N9-C4	14.89	152.81	126.64
37	D2	501	ADP	C1'-N9-C4	14.61	152.31	126.64
36	е	900	NAD	C1B-N9A-C4A	-8.49	111.73	126.64

There are no chirality outliers.

5 of 1499 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
29	а	501	CDL	OA5-CA3-CA4-OA6
29	а	501	CDL	CB3-OB5-PB2-OB4
29	a	501	CDL	OB7-CB5-OB6-CB4
29	a	501	CDL	C51-CB5-OB6-CB4
29	a	502	CDL	CA3-OA5-PA1-OA3

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and similar rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10860. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

Orthogonal projections (i) 6.1

6.1.1**Primary** map

Х

6.1.2Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 300

Y Index: 300

Z Index: 300

6.2.2 Raw map

X Index: 300

Y Index: 300

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 298

Z Index: 292

6.3.2 Raw map

X Index: 299

Y Index: 290

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{10860}msk_{1.map}$ (i) 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is $665~\mathrm{nm^3};$ this corresponds to an approximate mass of 600 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.70	-	-
Author-provided FSC curve	2.67	3.27	2.72
Unmasked-calculated*	3.42	7.00	3.52

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.42 differs from the reported value 2.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-10860 and PDB model 6YNY. Per-residue inclusion information can be found in section 3 on page 21.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

This section was not generated.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 58% of all backbone atoms, 57% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion
All	0.5700
А	0.9538
A1	0.2439
A2	0.2049
В	0.6040
B1	0.0903
B2	0.0880
С	0.9744
C1	0.0270
C2	0.0247
D	0.7475
D1	0.0542
D2	0.0468
E	0.8523
E1	0.1001
E2	0.0830
F	0.9581
F1	0.0494
F2	0.0605
G	0.9161
G1	0.0000
G2	0.0000
Н	0.9272
H1	0.7567
H2	0.7102
I	0.9041
I1	0.6834
I2	0.6744
J	0.8814
J1	0.6959
J2	0.6762
K	0.8497
K1	0.6673
K2	0.6154
	0.9209

Continued on next page...

Continued from previous page...

Chain	Atom inclusion
L1	0.6494
L2	0.6261
М	0.9686
M1	0.6941
M2	0.6637
Ν	0.9663
N1	0.7030
N2	0.6905
0	0.9431
01	0.6923
O2	0.6816
Р	0.8318
P1	0.7013
P2	0.6959
Q	0.9259
Q1	0.7317
Q2	0.7174
R	0.9469
S	0.8484
a	0.9430
b	0.6106
С	0.9793
d	0.7493
d1	0.4871
d2	0.4573
е	0.8564
e1	0.5152
e2	0.4527
f	0.9222
g	0.9183
g1	0.4623
g2	0.4179
h	0.9399
i	0.9136
i1	0.4316
i2	0.3789
j	0.8836
k	0.8442
1	0.9269
m	0.9652
n	0.9612
О	0.9368

Continued on next page...

Chain	Atom inclusion
р	0.8326
q	0.9294
r	0.9377
s	0.8443
t	0.9282

Continued from previous page...

