

wwPDB X-ray Structure Validation Summary Report (i)

Nov 28, 2023 – 02:36 PM EST

PDB ID	:	1YRQ
Title	:	Structure of the ready oxidized form of [NiFe]-hydrogenase
Authors	:	Volbeda, A.; Martin, L.; Cavazza, C.; Matho, M.; Faber, B.W.; Roseboom,
		W.; Albracht, S.P.; Garcin, E.; Rousset, M.; Fontecilla-Camps, J.C.
Deposited on	:	2005-02-04
Resolution	:	2.10 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	5197(2.10-2.10)
Clashscore	141614	5710 (2.10-2.10)
Ramachandran outliers	138981	5647 (2.10-2.10)
Sidechain outliers	138945	5648 (2.10-2.10)
RSRZ outliers	127900	5083 (2.10-2.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	1 A	264	2%		
	1-A	204	80%	19%	•
1	1-B	264	83%	16%	••
1	1.0	264	.%		
	1-0	204	.%	11%	••
1	1-D	264	83%	17%	·
- 1	1	264	2%		_
	1-F'	264	84%	14%	•

Mol	Chain	Length	Quality of chain		
_	1.0	264	95%		
1	1-G	264	67% 31%		•
1	2-A	264	81%	19%	<u> </u>
			15%		
1	2-B	264	83%	16%	••
1	2-C	264	[%] ■ 86%	11%	••
1	2-D	264	.%	17%	•
1	2-F	264	2% 8 3%	15%	
			95%		
1	2-G	264	66% 32%		
2	1-H	549	2% 8 4%	14%	
	4.1	F 10	5%		
2	1-1	549	85%	14%	•
2	1-J	549	82%	16%	
2	1-K	549	% • 83%	15%	
		010	<u>3%</u>		
2	1-M	549	81%	17%	
			91%		
2	1-N	549	81%	17%	
2	2-H	549	84%	14%	
	0 T	F 10	5%		
2	2-1	549	85%	14%	
2	2-J	549	82%	16%	
2	2-K	549	83%	15%	.]
2	2-M	549	81%	17%	
			91%		
2	2-N	549	81%	16%	•••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
7	FCO	1-N	550	-	-	Х	-
7	FCO	2-N	550	-	-	Х	-

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 77694 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	1 A	969	Total	С	Ν	0	S	0	0	0
1	1-A	202	1970	1254	330	371	15	0	0	0
1	2.4	262	Total	С	Ν	0	S	0	0	0
1	Z-A	202	1970	1254	330	371	15	0	0	0
1	1 P	262	Total	С	Ν	0	S	0	0	0
1	1-D	202	1971	1255	330	371	15	0	0	
1	ΩP	262	Total	С	Ν	0	S	0	0	0
1	2-D	202	1971	1255	330	371	15	0	0	
1	1 C	260	Total	С	Ν	0	S	0	0	0
1	1-0	200	1952	1243	325	369	15	0	0	
1	20	260	Total	С	Ν	0	S	0	0	0
1	2-0	200	1952	1243	325	369	15	0	0	
1	1 D	262	Total	С	Ν	0	S	0	0	0
1	1-12	202	1971	1255	330	371	15	0	0	
1	2.0	262	Total	С	Ν	0	S	0	0	0
1	2-D	202	1971	1255	330	371	15	0	0	
1	1 Г	260	Total	С	Ν	0	S	0	0	0
1	1-1,	200	1952	1243	325	369	15	0	0	
1	ን ፑ	260	Total	С	Ν	0	S	0	0	0
1	2-1 [,]	200	1952	1243	325	369	15	U	0	
1	1.0	262	Total	С	Ν	0	S	0	0	0
1	1-0	202	1970	1254	330	371	15	0	0	
1	20	262	Total	С	Ν	0	S	0	0	0
	2-G	202	1970	1254	330	371	15	0	U	U

• Molecule 1 is a protein called Periplasmic [NiFe] hydrogenase small subunit.

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	171	SER	GLU	conflict	UNP P18187
В	171	SER	GLU	conflict	UNP P18187
С	171	SER	GLU	conflict	UNP P18187
D	171	SER	GLU	conflict	UNP P18187
F	171	SER	GLU	conflict	UNP P18187

Chain	Residue	Modelled	Actual	Comment	Reference
G	171	SER	GLU	conflict	UNP P18187

• Molecule 2 is a protein called Periplasmic [NiFe] hydrogenase large subunit.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	1 U	545	Total	С	Ν	Ο	S	0	0	0
	1-П	040	4167	2654	725	766	22	0	0	0
0	ி	515	Total	С	Ν	0	S	0	0	0
	2-Π	040	4167	2654	725	766	22	0	0	0
0	1 T	545	Total	С	Ν	0	S	0	0	0
	1-1	040	4166	2653	725	766	22	0	0	0
0	<u>от</u>	545	Total	С	Ν	0	S	0	0	0
	2-1	040	4166	2653	725	766	22	0	0	0
0	1 T	544	Total	С	Ν	0	S	0	0	0
	1-J	044	4162	2651	724	765	22	0	0	0
0	9 I	544	Total	С	Ν	0	S	0	0	0
	Z-J	044	4162	2651	724	765	22		0	0
0	1 K	544	Total	С	Ν	0	S	0	0	0
	1-17	044	4162	2651	724	765	22	0	0	0
9	2 K	544	Total	С	Ν	0	S	0	0	0
	2-11	044	4162	2651	724	765	22	0	0	0
9	1 M	545	Total	С	Ν	0	S	0	0	0
	1-1/1	040	4166	2653	725	766	22	0	0	0
9	<u>э</u> м	545	Total	С	Ν	0	S	0	0	0
	2-1VI	040	4166	2653	725	766	22	0	0	0
0	1 N	545	Total	С	Ν	0	S	4	0	0
	1-11	040	4167	2654	725	766	22	4	0	0
9	2 N	545	Total	С	Ν	Ο	S	0	0	0
	∠-1N	040	4167	2654	725	766	22	U	U	

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	198	ASN	ASP	conflict	UNP P18188
Н	303	SER	GLU	conflict	UNP P18188
Ι	198	ASN	ASP	conflict	UNP P18188
Ι	303	SER	GLU	conflict	UNP P18188
J	198	ASN	ASP	conflict	UNP P18188
J	303	SER	GLU	conflict	UNP P18188
K	198	ASN	ASP	conflict	UNP P18188
K	303	SER	GLU	conflict	UNP P18188
М	198	ASN	ASP	conflict	UNP P18188

Continu	Continueu from previous page										
Chain	Residue	Modelled	Actual	Comment	Reference						
М	303	SER	GLU	conflict	UNP P18188						
N	198	ASN	ASP	conflict	UNP P18188						
N	303	SER	GLU	conflict	UNP P18188						

- Continued from previous page
 - $\bullet\,$ Molecule 3 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	1-A	1	TotalFeS844	0	0
3	2-A	1	TotalFeS844	0	0
3	1-A	1	TotalFeS844	0	0
3	2-A	1	TotalFeS844	0	0
3	1-B	1	TotalFeS844	0	0
3	2-B	1	TotalFeS844	0	0
3	1-B	1	TotalFeS844	0	0
3	2-B	1	TotalFeS844	0	0
3	1-C	1	TotalFeS844	0	0
3	2-C	1	TotalFeS844	0	0

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf
3	1-C	1	Total Fe 8 4	S 4	0	0
3	2-C	1	Total Fe 8 4	S 4	0	0
3	1-D	1	Total Fe 8 4	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0
3	2-D	1	Total Fe 8 4	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0
3	1-D	1	Total Fe 8 4	S 4	0	0
3	2-D	1	Total Fe 8 4	S 4	0	0
3	1-F	1	Total Fe 8 4	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0
3	2-F	1	Total Fe 8 4	S 4	0	0
3	1-F	1	Total Fe 8 4	$\frac{S}{4}$	0	0
3	2-F	1	Total Fe 8 4	S 4	0	0
3	1-G	1	Total Fe 8 4	$\frac{S}{4}$	0	0
3	2-G	1	Total Fe 8 4	S 4	0	0
3	1-G	1	Total Fe 8 4	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0
3	2-G	1	Total Fe 8 4	$\frac{S}{4}$	0	0

Continued from previous page...

• Molecule 4 is FE3-S4 CLUSTER (three-letter code: F3S) (formula: Fe_3S_4).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	1-A	1	TotalFeS734	0	0
4	2-A	1	TotalFeS734	0	0
4	1-B	1	TotalFeS734	0	0
4	2-B	1	TotalFeS734	0	0
4	1-C	1	TotalFeS734	0	0
4	2-C	1	TotalFeS734	0	0
4	1-D	1	TotalFeS734	0	0
4	2-D	1	$\begin{array}{ccc} \text{Total} & \text{Fe} & \text{S} \\ 7 & 3 & 4 \end{array}$	0	0
4	1-F	1	$\begin{array}{ccc} \text{Total} & \text{Fe} & \text{S} \\ 7 & 3 & 4 \end{array}$	0	0
4	2-F	1	TotalFeS734	0	0
4	1-G	1	TotalFeS734	0	0
4	2-G	1	TotalFeS734	0	0

• Molecule 5 is NICKEL (II) ION (three-letter code: NI) (formula: Ni).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	1-H	1	Total Ni 1 1	0	0
5	2-H	1	Total Ni 1 1	0	0
5	1-I	1	Total Ni 1 1	0	0
5	2-I	1	Total Ni 1 1	0	0
5	1-J	1	Total Ni 1 1	0	0
5	2-J	1	Total Ni 1 1	0	0
5	1-K	1	Total Ni 1 1	0	0
5	2-K	1	Total Ni 1 1	0	0
5	1-M	1	Total Ni 1 1	0	0
5	2-M	1	Total Ni 1 1	0	0
5	1-N	1	Total Ni 1 1	0	0
5	2-N	1	Total Ni 1 1	0	0

• Molecule 6 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	1-H	1	Total Mg 1 1	0	0
6	2-H	1	Total Mg 1 1	0	0
6	1-I	1	Total Mg 1 1	0	0
6	2-I	1	Total Mg 1 1	0	0
6	1-J	1	Total Mg 1 1	0	0
6	2-J	1	Total Mg 1 1	0	0
6	1-K	1	Total Mg 1 1	0	0
6	2-K	1	Total Mg 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	1-M	1	Total Mg 1 1	0	0
6	2-M	1	Total Mg 1 1	0	0
6	1-N	1	Total Mg 1 1	0	0
6	2-N	1	Total Mg 1 1	0	0

• Molecule 7 is CARBONMONOXIDE-(DICYANO) IRON (three-letter code: FCO) (formula: C_3FeN_2O).

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf
7	1 U	1	Total	С	Fe	Ν	0	0	0
1	1-11	1	7	3	1	2	1	0	0
7	эн	1	Total	С	Fe	Ν	0	0	0
1	2-11	1	7	3	1	2	1	0	0
7	1 T	1	Total	С	Fe	Ν	0	0	0
1	1-1	1	7	3	1	2	1	0	0
7	9 I	1	Total	С	Fe	Ν	0	0	0
1	2-1	1	7	3	1	2	1		0
7	1 T	1	Total	С	Fe	Ν	0	0	0
1	1-0	1	7	3	1	2	1	0	0
7	9 T	1	Total	С	Fe	Ν	0	0	0
1	2-0	1	7	3	1	2	1	U	0
7	1 K	1	Total	С	Fe	Ν	0	0	0
'	1-17	1	7	3	1	2	1		0

Mol	Chain	Residues		At	\mathbf{oms}			ZeroOcc	AltConf
7	9 K	9 K 1	Total	С	Fe	Ν	Ο	0	0
<i>'</i>	2-11	I	7	3	1	2	1	0	0
7	1 M	1	Total	С	Fe	Ν	0	0	0
(1-1/1	L	7	3	1	2	1		0
7	эм	1	Total	С	Fe	Ν	0	0	0
(2-111	1	7	3	1	2	1	0	
7	1 N	1	Total	С	Fe	Ν	0	0	0
(1-11	L	7	3	1	2	1	0	0
7	2 N	1	Total	С	Fe	Ν	Ο	0	0
	∠-1N		7	3	1	2	1	0	

Continued from previous page...

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	1-A	122	Total O 122 122	0	0
8	2-A	122	Total O 122 122	0	0
8	1-H	245	Total O 245 245	0	0
8	2-H	245	Total O 245 245	0	0
8	1-B	83	Total O 83 83	0	0
8	2-B	84	Total O 84 84	0	0
8	1-I	218	Total O 218 218	0	0
8	2-I	218	Total O 218 218	0	0
8	1-C	120	Total O 120 120	0	0
8	2-C	120	Total O 120 120	0	0
8	1-J	208	Total O 208 208	0	0
8	2-J	208	Total O 208 208	0	0
8	1-D	149	Total O 149 149	0	0
8	2-D	148	Total O 148 148	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	1-K	253	Total O 253 253	0	0
8	2-K	253	Total O 253 253	0	0
8	1-F	108	Total O 108 108	0	0
8	2-F	109	Total O 109 109	0	0
8	1-M	183	Total O 183 183	0	0
8	2-M	183	Total O 183 183	0	0
8	1-G	59	Total O 59 59	0	0
8	2-G	58	Total O 58 58	0	0
8	1-N	138	Total O 138 138	0	0
8	2-N	124	Total O 124 124	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Periplasmic [NiFe] hydrogenase small subunit

• Molecule 1: Periplasmic [NiFe] hydrogenase small subunit

• Molecule 1: Periplasmic [NiFe] hydrogenase small subunit

• Molecule 1: Periplasmic [NiFe] hydrogenase small subunit

• Molecule 2: Periplasmic [NiFe] hydrogenase large subunit

• Molecule 2: Periplasmic [NiFe] hydrogenase large subunit

• Molecule 2: Periplasmic [NiFe] hydrogenase large subunit

• Molecule 2: Periplasmic [NiFe] hydrogenase large subunit

Chain 2-N:		91% 81%	16%	•••
MET ALA GLU SER Y5 P8 P8	849 111 111 111 112 113 114 114 114 114 114 112 112 112 112 112	H27 L28 L28 N31 N31 V32 V33 E35 A37 K38 K38	K40 D41 A42 S44 S45 S45 S45 S45 C47 C47 C47 C47 C47 C47 C47 C47 C47 C47	E53 154 155 155 155 857 858 858 858 859 960
61 63 64 65 66 66 66 68 66	201 1 1 7 2 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8	888 99 99 99 99 99 99 99 99 99 99 99 99	100 101 101 105 106 107 107 111 111 111 111 111	113 114 115 117 117 119 119
H12 1122 1122 1122 1122 1122	UIC: 113: 113: 113: 113: 114: 114: 114: 114	P155 P155 P155 P155 P155 P155 P155 P155	010 1160 1160 1160 1171 1171 1171 1171 1	L17 G177 F177 T18 T18 T18 A18 V18 V18 V18
F184 L185 C186 C186 C187 C187 H188 K189 A190 Y191	1192 1192 1193 1195 1196 1199 1199 1199 1199 1199 1199	H210 M211 M211 M212 V213 V214 A216 S215 S217 A218 M219 M219 M220 1221	0223 0224 8224 8225 8225 8226 8226 0230 0230 1232 1232 1232 1232 1232 1232	6236 C237 S238 N239 N239 C241 C241 C241 C241 C242 C242
1244 K245 D246 P247 L248 A249 N250 Y251	L252 A553 L254 L254 S555 K255 C255 C255 C255 C255 C255 C265 C265 C	L270 L271 L271 A272 V275 A274 A274 F276 F276 F277 V278 V282 V281 C282 C282	1283 6284 6284 6285 7286 7286 7286 7288 7289 7290 6294 6294 6294 6294	A296 T297 D298 S300 S301 P302 S303
K304 H305 L306 A307 A307 T308 S309 Q310 Q310	5-312 6-314 1315 1315 1316 1316 13319 1321 1322 1322 1325 1328 1328 1328 1328	6330 6331 7332 7332 7333 7333 8334 8335 8339 8339 8339 8339 8339 8339 8339	0345 0345 0345 0345 0345 0345 1349 1355 0355 0355 0355 0355 0355	D356 P357 X358 X356 X356 X361 K361 L362 L362 D363
D364 K365 D366 H367 Y368 X369 W370 W371	Amira 1874 1877 1877 1877 1877 1877 1877 1877	F390 1391 44322 1391 4432 7393 7393 7393 7400 7400 7400 7400 7400 7400	D405 4406 14406 6408 6408 6408 6408 6411 1411 1411 1415 8412 8415 8415 8415 8415 8415 8417	L418 H419 S420 L422 G423 G423 T425 T425
226 227 228 229 233 231 233 231 233 233 233 233 233 233	111111111111111111111111111111111111	552 553 555 555 555 555 555 555 555 555	199 199 199 199 199 199 199 199 199 199	179 180 181 182 183 185 185
	- 5 0 4 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1			
G487 K488 K488 D491 N492 F493 C494 L495	V4990 V4990 V4997 V4997 V4997 V4997 V4997 V5003 V5003 V5003 V5003 V5003 V510 V5103 V5100 V510 V510 V510 V500 V500 V500 V50	P514 V515 E516 E517 E517 E519 E518 E517 E529 C521 F523 F523 F523 F523 F523 F523 F523 F523	P527 K528 K528 R529 P530 P530 P530 L534 L534 L534 L534 R535 R535 H538 R539 R539	F540 D541 D542 D542 D542 D542 D542 C543 C543 C543 C543 C543 C543 C543 C544 C543 C543 C5445 C5445 C5445 C5445 C5445 C5445 C5445 C5445 C5445 C5445

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	127.50Å 99.70Å 183.20Å	Deperitor
a, b, c, α , β , γ	90.00° 91.80° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	20.00 - 2.10	Depositor
Resolution (A)	$29.51 \ - \ 2.10$	EDS
% Data completeness	87.6 (20.00-2.10)	Depositor
(in resolution range)	87.7 (29.51-2.10)	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	0.08	Depositor
$< I/\sigma(I) > 1$	$3.22 (at 2.10 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.1.27	Depositor
D D.	0.171 , 0.220	Depositor
Π, Π_{free}	0.192 , 0.236	DCC
R_{free} test set	11812 reflections (5.05%)	wwPDB-VP
Wilson B-factor $(Å^2)$	16.8	Xtriage
Anisotropy	0.740	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.59 , 44.8	EDS
L-test for $twinning^2$	$< L > = 0.43, < L^2 > = 0.25$	Xtriage
Estimated twinning fraction	0.000 for h,-k,-l	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	77694	wwPDB-VP
Average B, all atoms $(Å^2)$	10.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 75.05 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.3614e-06. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FCO, MG, NI, F3S, SF4 $\,$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1-A	0.58	0/2024	0.76	3/2755~(0.1%)
1	1-B	0.46	0/2025	0.70	6/2757~(0.2%)
1	1-C	0.52	0/2005	0.73	5/2731~(0.2%)
1	1-D	0.63	0/2025	0.78	8/2757~(0.3%)
1	1-F	0.52	0/2005	0.73	4/2731~(0.1%)
1	1-G	0.31	0/2024	0.63	8/2755~(0.3%)
1	2-A	0.58	0/2024	0.76	3/2755~(0.1%)
1	2-B	0.46	0/2025	0.70	6/2757~(0.2%)
1	2-C	0.52	0/2005	0.73	5/2731~(0.2%)
1	2-D	0.63	0/2025	0.78	8/2757~(0.3%)
1	2-F	0.52	0/2005	0.73	4/2731~(0.1%)
1	2-G	0.27	0/2024	0.61	8/2755~(0.3%)
2	1-H	0.57	0/4272	0.81	16/5800~(0.3%)
2	1-I	0.53	0/4271	0.78	11/5798~(0.2%)
2	1-J	0.51	0/4267	0.78	13/5792~(0.2%)
2	1-K	0.56	0/4267	0.81	19/5792~(0.3%)
2	1-M	0.50	0/4271	0.77	18/5798~(0.3%)
2	1-N	0.39	2/4272~(0.0%)	0.69	25/5800~(0.4%)
2	2-H	0.57	0/4272	0.81	16/5800~(0.3%)
2	2-I	0.53	0/4271	0.78	11/5798~(0.2%)
2	2-J	0.51	0/4267	0.78	13/5792~(0.2%)
2	2-K	0.56	0/4267	0.81	19/5792~(0.3%)
2	2-M	0.50	0/4271	0.77	18/5798~(0.3%)
2	2-N	0.30	1/4272~(0.0%)	0.68	22/5800~(0.4%)
All	All	0.51	3/75456~(0.0%)	0.76	269/102532~(0.3%)

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	1-N	361	LYS	CB-CG	10.38	1.80	1.52
2	1-N	459	LYS	C-O	5.89	1.34	1.23

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2-N	75	CYS	CB-SG	5.08	1.90	1.82

The worst 5 of 269 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1-A	185	ASP	CB-CG-OD2	8.28	125.75	118.30
1	2-A	185	ASP	CB-CG-OD2	8.28	125.75	118.30
2	1-H	279	ASP	CB-CG-OD2	8.05	125.54	118.30
2	2-H	279	ASP	CB-CG-OD2	8.05	125.54	118.30
2	1-K	129	ASP	CB-CG-OD2	8.00	125.50	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1-A	1970	0	1910	30	1
1	1-B	1971	0	1914	22	0
1	1-C	1952	0	1891	14	0
1	1-D	1971	0	1914	26	0
1	1-F	1952	0	1891	25	0
1	1-G	1970	0	1910	62	0
1	2-A	1970	0	1910	30	0
1	2-B	1971	0	1914	21	0
1	2-C	1952	0	1891	14	0
1	2-D	1971	0	1914	26	0
1	2-F	1952	0	1891	28	0
1	2-G	1970	0	1910	67	0
2	1-H	4167	0	4140	52	0
2	1-I	4166	0	4139	45	0
2	1-J	4162	0	4139	57	0
2	1-K	4162	0	4139	52	0
2	1-M	4166	0	4139	57	0
2	1-N	4167	0	4140	60	1
2	2-H	4167	0	4140	52	0

1YRQ	
------	--

	Chain	Non H	puye	II(addad)	Clashag	Summe Clashes
	Chain	INON-H	H(model)	H(added)	Clasnes	Symm-Clasnes
2	2-1	4100	0	4139	45	0
2	Z-J	4102	0	4139	57	0
2	2-K	4102	0	4139	52	0
2	2-M	4100	0	4139	01	0
2	2-N	4107	0	4140	80	0
3	I-A	10	0	0	0	0
3	I-B	16	0	0	0	0
3	I-C	16	0	0	0	0
3	I-D	16	0	0	0	0
3	I-F	16	0	0	0	0
3	1-G	16	0	0	0	0
3	2-A	16	0	0	0	0
3	2-B	16	0	0	0	0
3	2-C	16	0	0	0	0
3	2-D	16	0	0	0	0
3	2-F	16	0	0	0	0
3	2-G	16	0	0	1	0
4	1-A	7	0	0	0	0
4	1-B	7	0	0	0	0
4	1-C	7	0	0	0	0
4	1-D	7	0	0	0	0
4	1-F	7	0	0	0	0
4	1-G	7	0	0	0	0
4	2-A	7	0	0	0	0
4	2-B	7	0	0	0	0
4	2-C	7	0	0	0	0
4	2-D	7	0	0	0	0
4	2-F	7	0	0	0	0
4	2-G	7	0	0	0	0
5	1-H	1	0	0	0	0
5	1-I	1	0	0	0	0
5	1-J	1	0	0	0	0
5	1-K	1	0	0	0	0
5	1-M	1	0	0	0	0
5	1-N	1	0	0	0	0
5	2-H	1	0	0	0	0
5	2-I	1	0	0	0	0
5	2-J	1	0	0	0	0
5	2-K	1	0	0	0	0
5	2-M	1	0	0	0	0
5	2-N	1	0	0	0	0
6	1-H	1	0	0	0	0

Mol	Chain	Non-H	$\mathbf{H}(\mathbf{model})$	H(added)	Clashes	Symm-Clashes
6	1-T	1	0	0	0	0
6	1J	1	0	0	0	0
6	1-K	1	0	0	0	0
6	1-M	1	0	0	0	0
6	1-N	1	0	0	0	0
6	2-H	1	0	0	0	0
6	2-I	1	0	0	0	0
6	2-J	1	0	0	0	0
6	2-K	1	0	0	0	0
6	2-M	1	0	0	0	0
6	2-N	1	0	0	0	0
7	1-H	7	0	0	0	0
7	1-I	7	0	0	0	0
7	1-J	7	0	0	0	0
7	1-K	7	0	0	0	0
7	1-M	7	0	0	1	0
7	1-N	7	0	0	2	0
7	2-H	7	0	0	0	0
7	2-I	7	0	0	0	0
7	2-J	7	0	0	0	0
7	2-K	7	0	0	0	0
7	2-M	7	0	0	1	0
7	2-N	7	0	0	3	0
8	1-A	122	0	0	3	0
8	1-B	83	0	0	1	0
8	1-C	120	0	0	1	0
8	1-D	149	0	0	4	0
8	1-F	108	0	0	2	0
8	I-G	59	0	0	10	0
8	1-H	245	0	0	2	0
8	1-I	218	0	0	3	0
8	I-J	208	0	0	3	0
8	I-K	253	0	0	6	0
8	1-M	183	0	0	2	0
8	1-N	138	0	0	1	0
8	2-A	122	0	0	<u>ර</u> 1	0
8	2-B	84	0	0		0
8	2-U	120	0	0		0
0 0	2-D	148	0	0	4	0
0 0	2-F	109	0	0	2 0	0
0	2-G 9 U	00 245	0	0	0	0
0	2-11	240	U	U	Contine	ued on nert nage

WORLDWIDE PROTEIN DATA BANK

	J	1	1			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
8	2-I	218	0	0	3	0
8	2-J	208	0	0	3	0
8	2-K	253	0	0	6	0
8	2-M	183	0	0	2	0
8	2-N	124	0	0	2	0
All	All	77694	0	72532	977	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

The worst 5 of 977 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:N:342:ALA:HB1	2:N:343:PRO:CD	1.55	1.33
1:G:177:LEU:HD23	1:G:178:PHE:CE2	1.78	1.17
1:G:177:LEU:HD23	1:G:178:PHE:CZ	1.79	1.16
2:N:342:ALA:CB	2:N:343:PRO:HD2	1.79	1.12
2:N:43:TRP:CZ2	2:N:365:LYS:HE2	1.84	1.10

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:196:SER:OG	2:N:528:LYS:NZ[2_656]	1.95	0.25

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1-A	260/264~(98%)	254 (98%)	6 (2%)	0	100	100
1	1-B	260/264~(98%)	250 (96%)	10 (4%)	0	100	100

1	Y	RQ
---	---	----

Mol	Chain	Analysed	Favoured	Favoured Allowed		Perce	ntiles
1	1-C	258/264~(98%)	247~(96%)	11 (4%)	0	100	100
1	1-D	260/264~(98%)	251 (96%)	9 (4%)	0	100	100
1	1-F	258/264~(98%)	245~(95%)	12 (5%)	1 (0%)	34	32
1	1-G	260/264~(98%)	250 (96%)	10 (4%)	0	100	100
1	2-A	260/264~(98%)	254 (98%)	6 (2%)	0	100	100
1	2-B	260/264~(98%)	250 (96%)	10 (4%)	0	100	100
1	2-C	258/264~(98%)	247 (96%)	11 (4%)	0	100	100
1	2-D	260/264~(98%)	251 (96%)	9 (4%)	0	100	100
1	2-F	258/264~(98%)	245~(95%)	12 (5%)	1 (0%)	34	32
1	2-G	260/264~(98%)	249 (96%)	11 (4%)	0	100	100
2	1-H	543/549~(99%)	527 (97%)	16 (3%)	0	100	100
2	1-I	543/549~(99%)	526 (97%)	17 (3%)	0	100	100
2	1-J	542/549~(99%)	525 (97%)	17 (3%)	0	100	100
2	1-K	542/549~(99%)	530 (98%)	12 (2%)	0	100	100
2	1-M	543/549~(99%)	523 (96%)	20 (4%)	0	100	100
2	1-N	543/549~(99%)	524 (96%)	18 (3%)	1 (0%)	47	49
2	2-H	543/549~(99%)	527 (97%)	16 (3%)	0	100	100
2	2-I	543/549~(99%)	526 (97%)	17 (3%)	0	100	100
2	2-J	542/549~(99%)	525 (97%)	17 (3%)	0	100	100
2	2-K	542/549~(99%)	530 (98%)	12 (2%)	0	100	100
2	2-M	543/549~(99%)	523 (96%)	20 (4%)	0	100	100
2	2-N	543/549~(99%)	521 (96%)	19 (4%)	3 (1%)	25	21
All	All	9624/9756~(99%)	9300 (97%)	318 (3%)	6 (0%)	51	54

5 of 6 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	2-N	343	PRO
2	2-N	342	ALA
1	1-F	231	LEU
1	2-F	231	LEU
2	1-N	148	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	1-A	208/210~(99%)	204~(98%)	4(2%)	57	63	
1	1-B	208/210~(99%)	204~(98%)	4(2%)	57	63	
1	1-C	206/210~(98%)	200~(97%)	6 (3%)	42	46	
1	1-D	208/210~(99%)	206~(99%)	2(1%)	76	82	
1	1-F	206/210~(98%)	203~(98%)	3(2%)	65	71	
1	1-G	208/210~(99%)	207 (100%)	1 (0%)	88	92	
1	2-A	208/210~(99%)	204 (98%)	4 (2%)	57	63	
1	2-B	208/210~(99%)	204 (98%)	4 (2%)	57	63	
1	2-C	206/210~(98%)	200~(97%)	6 (3%)	42	46	
1	2-D	208/210~(99%)	206 (99%)	2 (1%)	76	82	
1	2-F	206/210~(98%)	203~(98%)	3(2%)	65	71	
1	2-G	208/210~(99%)	206 (99%)	2(1%)	76	82	
2	1-H	435/439~(99%)	429 (99%)	6 (1%)	67	73	
2	1-I	435/439~(99%)	431 (99%)	4 (1%)	78	84	
2	1-J	435/439~(99%)	424 (98%)	11 (2%)	47	52	
2	1-K	435/439~(99%)	428 (98%)	7 (2%)	62	69	
2	1-M	435/439~(99%)	421 (97%)	14 (3%)	39	41	
2	1-N	435/439~(99%)	426 (98%)	9(2%)	53	59	
2	2-H	435/439~(99%)	429 (99%)	6 (1%)	67	73	
2	2-I	435/439~(99%)	431 (99%)	4 (1%)	78	84	
2	2-J	435/439~(99%)	424 (98%)	11 (2%)	47	52	
2	2-K	435/439~(99%)	428 (98%)	7 (2%)	62	69	
2	2-M	435/439~(99%)	421 (97%)	14 (3%)	39	41	
2	2-N	435/439~(99%)	426 (98%)	9 (2%)	53	59	
All	All	7708/7788~(99%)	7565 (98%)	143 (2%)	57	63	

5 of 143 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	2-F	16	GLU
2	2-M	135	LYS
2	2-M	473	ASP
2	1-M	135	LYS
2	1-M	33	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 48 such sidechains are listed below:

Mol	Chain	Res	Type
2	2-H	454	ASN
1	2-C	172	ASN
2	2-H	509	GLN
1	2-B	172	ASN
1	2-D	14	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 72 ligands modelled in this entry, 24 are monoatomic - leaving 48 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	True	Chain	Dec	Tinle	B	ond leng	gths	E	ond angles
IVIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	$ \operatorname{RMSZ} \# Z > 2$
3	SF4	1-F	267	1	0,12,12	-	-	-	
3	SF4	1-D	265	1	0,12,12	-	-	-	
4	F3S	1-A	266	1	0,9,9	-	-	-	
7	FCO	1-K	550	8,2	0,6,6	-	-	-	
3	SF4	1-F	265	1	0,12,12	-	-	-	
7	FCO	1-N	550	8,2	0,6,6	-	-	-	
4	F3S	2-D	266	1	0,9,9	-	-	-	
4	F3S	1-D	266	1	0,9,9	-	-	-	
3	SF4	2-F	265	1	0,12,12	-	-	-	
3	SF4	1-C	267	1	0,12,12	-	-	-	
7	FCO	2-M	550	8,2	0,6,6	-	-	-	
3	SF4	2-B	267	1	0,12,12	-	-	-	
4	F3S	2-A	266	1	0,9,9	-	-	-	
7	FCO	1-I	550	8,2	0,6,6	-	-	-	
4	F3S	1-B	266	1	0,9,9	-	-	-	
3	SF4	2-B	265	1	0,12,12	-	-	-	
4	F3S	1-C	266	1	0,9,9	-	-	-	
4	F3S	1-G	266	1	0,9,9	-	_	-	
4	F3S	2-B	266	1	0,9,9	-	-	-	
3	SF4	2-A	267	1	0,12,12	-	_	-	
4	F3S	1-F	266	1	0,9,9	-	-	-	
3	SF4	2-A	265	1	0,12,12	-	-	-	
3	SF4	1-B	267	1	0,12,12	-	_	-	
4	F3S	2-C	266	1	0,9,9	-	-	-	
4	F3S	2-G	266	1	0,9,9	-	-	-	
3	SF4	1-G	267	1	0,12,12	-	_	-	
3	SF4	2-D	267	1	0,12,12	-	_	-	
7	FCO	2-N	550	8,2	0,6,6	-	-	-	
7	FCO	2-K	550	8,2	0,6,6	-	-	-	
7	FCO	2-I	550	8,2	0,6,6	-	-	-	
3	SF4	2-F	267	1	0,12,12	-	_	-	
7	FCO	1-J	550	8,2	0,6,6	-	-	-	
7	FCO	2-J	550	8,2	0,6,6	-	-	-	
3	SF4	1-B	265	1	0,12,12	-	-	-	
3	SF4	2-G	267	1	0,12,12	-	-	-	
3	SF4	1-A	267	1	0,12,12	-	-	-	
3	SF4	1-G	265	1	0,12,12	-	-	-	
7	FCO	1-M	550	8,2	0,6,6	-	-	-	
3	SF4	1-D	267	1	0,12,12	-	-	-	
3	SF4	1-C	265	1	0,12,12	-	-	-	
3	SF4	1-A	265	1	0,12,12	-	-	-	
4	F3S	2-F	266	1	0,9,9	-	-	-	
3	SF4	2-G	265	1	0,12,12	-	-	-	

Mol Type	Tuno	Chain	Dec	Tink	B	Bond lengths			Bond angles		
IVIOI	Type	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ # Z > 2		
3	SF4	2-D	265	1	0,12,12	-	-	-			
3	SF4	2-C	267	1	0,12,12	-	-	-			
7	FCO	1-H	550	8,2	0,6,6	-	-	-			
7	FCO	2-H	550	8,2	0,6,6	-	-	-			
3	SF4	2-C	265	1	0,12,12	-	-	-			

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	SF4	1-F	267	1	-	-	0/6/5/5
3	SF4	1-D	265	1	-	-	0/6/5/5
4	F3S	1-A	266	1	-	-	0/3/3/3
3	SF4	1-F	265	1	-	-	0/6/5/5
4	F3S	2-D	266	1	-	-	0/3/3/3
4	F3S	1-D	266	1	-	-	0/3/3/3
3	SF4	2-F	265	1	-	-	0/6/5/5
3	SF4	1-C	267	1	-	-	0/6/5/5
3	SF4	2-B	267	1	-	-	0/6/5/5
4	F3S	2-A	266	1	-	-	0/3/3/3
4	F3S	1-B	266	1	-	-	0/3/3/3
3	SF4	2-B	265	1	-	-	0/6/5/5
4	F3S	1-C	266	1	-	-	0/3/3/3
4	F3S	1-G	266	1	-	-	0/3/3/3
4	F3S	2-B	266	1	-	-	0/3/3/3
3	SF4	2-A	267	1	-	-	0/6/5/5
4	F3S	1-F	266	1	-	-	0/3/3/3
3	SF4	2-A	265	1	-	-	0/6/5/5
3	SF4	1-B	267	1	-	-	0/6/5/5
4	F3S	2-C	266	1	-	-	0/3/3/3
4	F3S	2-G	266	1	-	-	0/3/3/3
3	SF4	1-G	267	1	-	-	0/6/5/5
3	SF4	2-D	267	1	-	-	0/6/5/5
3	SF4	2-F	267	1	-	-	0/6/5/5
3	SF4	1-B	265	1	-	-	0/6/5/5
3	SF4	2-G	267	1	-	-	0/6/5/5
3	SF4	1-A	267	1	-	-	0/6/5/5
3	SF4	1-G	265	1	-	-	0/6/5/5
3	SF4	1-D	267	1	-	-	0/6/5/5
3	SF4	1-C	265	1	-	-	0/6/5/5
3	SF4	1-A	265	1	-	-	0/6/5/5

00.000	f = f = f = f = f = f = f = f = f = f =									
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings			
4	F3S	2-F	266	1	-	-	0/3/3/3			
3	SF4	2-G	265	1	-	-	0/6/5/5			
3	SF4	2-D	265	1	-	-	0/6/5/5			
3	SF4	2-C	267	1	-	-	0/6/5/5			
3	SF4	2-C	265	1	-	-	0/6/5/5			

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

5 monomers are involved in 8 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	1-N	550	FCO	2	0
7	2-M	550	FCO	1	0
7	2-N	550	FCO	3	0
7	1-M	550	FCO	1	0
3	2-G	265	SF4	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	# RSRZ > 2	$OWAB(Å^2)$	$\mathbf{Q}{<}0.9$
1	1-A	262/264~(99%)	-0.24	6 (2%) 60 65	5, 9, 18, 28	8~(3%)
1	1-B	262/264~(99%)	0.57	40 (15%) 2 3	4, 10, 18, 25	6 (2%)
1	1-C	260/264~(98%)	-0.36	2 (0%) 86 88	4, 9, 16, 23	6 (2%)
1	1-D	262/264~(99%)	-0.48	2 (0%) 86 88	3, 9, 16, 30	5 (1%)
1	1-F	260/264~(98%)	-0.14	5 (1%) 66 71	4, 10, 17, 24	6 (2%)
1	1-G	262/264~(99%)	5.25	251 (95%) 0 0	6, 10, 10, 11	262 (100%)
1	2-A	262/264~(99%)	-0.24	6 (2%) 60 65	5, 9, 18, 28	8 (3%)
1	2-B	262/264~(99%)	0.57	40 (15%) 2 3	4, 10, 18, 25	6 (2%)
1	2-C	260/264~(98%)	-0.36	2 (0%) 86 88	4, 9, 16, 23	6 (2%)
1	2-D	262/264~(99%)	-0.48	2 (0%) 86 88	3, 9, 16, 30	5(1%)
1	2-F	260/264~(98%)	-0.14	5 (1%) 66 71	4, 10, 17, 24	6(2%)
1	2-G	262/264~(99%)	5.25	251 (95%) 0 0	6, 10, 10, 11	262 (100%)
2	1-H	545/549~(99%)	-0.25	9 (1%) 70 74	4, 9, 16, 27	11 (2%)
2	1-I	545/549~(99%)	-0.01	27 (4%) 28 34	3, 9, 16, 24	6 (1%)
2	1-J	544/549~(99%)	-0.11	16 (2%) 51 57	4, 9, 17, 23	12 (2%)
2	1-K	544/549~(99%)	-0.23	8 (1%) 73 77	3, 9, 17, 24	12 (2%)
2	1-M	545/549~(99%)	0.03	19 (3%) 44 50	3, 10, 16, 31	12 (2%)
2	1-N	545/549~(99%)	4.35	502 (92%) 0 0	6, 10, 11, 12	545 (100%)
2	2-H	545/549~(99%)	-0.25	9 (1%) 70 74	4, 9, 16, 27	11 (2%)
2	2-I	545/549~(99%)	-0.01	27 (4%) 28 34	3, 9, 16, 24	6 (1%)
2	2-J	544/549~(99%)	-0.11	16 (2%) 51 57	4, 9, 17, 23	12 (2%)
2	2-K	544/549~(99%)	-0.23	8 (1%) 73 77	3, 9, 17, 24	12 (2%)
2	2-M	545/549~(99%)	0.03	19 (3%) 44 50	3, 10, 16, 31	12 (2%)
2	2-N	545/549~(99%)	4.35	502 (92%) 0 0	6, 10, 11, 12	545 (100%)

Mol	Chain	Analysed	<RSRZ $>$	# RSRZ > 2			$OWAB(Å^2)$	$\mathbf{Q}{<}0.9$
All	All	9672/9756~(99%)	0.67	1774 (18%)	1	1	3, 9, 16, 31	1782~(18%)

The worst 5 of 1774 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	1-N	171	VAL	15.6
2	2-N	171	VAL	15.6
2	1-N	186	GLY	15.1
2	2-N	186	GLY	15.1
1	1-G	137	LEU	13.5

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
3	SF4	1-G	265	8/8	0.85	0.32	4,6,7,8	8
3	SF4	2-G	265	8/8	0.85	0.32	8,10,11,12	8
6	MG	1-N	553	1/1	0.86	0.27	8,8,8,8	1
6	MG	2-N	553	1/1	0.86	0.27	8,8,8,8	1
4	F3S	1-G	266	7/7	0.92	0.36	8, 9, 11, 11	7
4	F3S	2-G	266	7/7	0.92	0.36	10,10,11,11	7
6	MG	1-M	553	1/1	0.95	0.13	8,8,8,8	0
6	MG	2-M	553	1/1	0.95	0.13	8,8,8,8	0
3	SF4	1-G	267	8/8	0.96	0.41	$7,\!10,\!10,\!12$	8
3	SF4	2-G	267	8/8	0.96	0.41	$7,\!10,\!10,\!12$	8
6	MG	1-H	553	1/1	0.96	0.06	8,8,8,8	0
6	MG	2-H	553	1/1	0.96	0.06	8,8,8,8	0
6	MG	1-K	553	1/1	0.97	0.07	3,3,3,3	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
6	MG	2-K	553	1/1	0.97	0.07	3,3,3,3	0
3	SF4	1-A	265	8/8	0.97	0.05	7,9,10,12	0
3	SF4	2-A	265	8/8	0.97	0.05	7,9,10,12	0
6	MG	1-J	553	1/1	0.97	0.09	5,5,5,5	0
6	MG	2-J	553	1/1	0.97	0.09	5, 5, 5, 5	0
7	FCO	1-N	550	7/7	0.97	0.37	$5,\!6,\!7,\!9$	7
7	FCO	2-N	550	7/7	0.97	0.37	$5,\!6,\!7,\!9$	7
4	F3S	1-D	266	7/7	0.98	0.04	7,8,10,10	0
4	F3S	2-D	266	7/7	0.98	0.04	7,8,10,10	0
4	F3S	1-F	266	7/7	0.98	0.05	7,9,12,12	0
4	F3S	2-F	266	7/7	0.98	0.05	7,9,12,12	0
3	SF4	1-B	267	8/8	0.98	0.05	4,8,9,10	0
3	SF4	2-B	267	8/8	0.98	0.05	4,8,9,10	0
3	SF4	1-F	265	8/8	0.98	0.06	6,7,10,10	0
3	SF4	2-F	265	8/8	0.98	0.06	6,7,10,10	0
3	SF4	1-F	267	8/8	0.98	0.05	4,8,9,10	0
3	SF4	2-F	267	8/8	0.98	0.05	4,8,9,10	0
3	SF4	1-A	267	8/8	0.98	0.05	7,8,10,11	0
3	SF4	2-A	267	8/8	0.98	0.05	7,8,10,11	0
3	SF4	1-B	265	8/8	0.98	0.09	$5,\!6,\!9,\!9$	0
3	SF4	2-B	265	8/8	0.98	0.09	5, 6, 9, 9	0
4	F3S	1-A	266	7/7	0.98	0.05	6,7,10,13	0
4	F3S	2-A	266	7/7	0.98	0.05	6,7,10,13	0
4	F3S	1-B	266	7/7	0.98	0.06	9,10,10,10	0
4	F3S	2-B	266	7/7	0.98	0.06	9,10,10,10	0
5	NI	1-N	551	1/1	0.99	0.32	13,13,13,13	1
5	NI	2-N	551	1/1	0.99	0.32	12,12,12,12	1
3	SF4	1-C	267	8/8	0.99	0.04	5, 9, 10, 10	0
3	SF4	2-C	267	8/8	0.99	0.04	5, 9, 10, 10	0
6	MG	1-I	553	1/1	0.99	0.07	6, 6, 6, 6	0
6	MG	2-I	553	1/1	0.99	0.07	$6,\!6,\!6,\!6$	0
4	F3S	1-C	266	7/7	0.99	0.04	9,10,11,12	0
4	F3S	2-C	266	7/7	0.99	0.04	$9,\!10,\!11,\!12$	0
3	SF4	1-D	265	8/8	0.99	0.03	6, 8, 9, 9	0
3	SF4	2-D	265	8/8	0.99	0.03	6, 8, 9, 9	0
3	SF4	1-D	267	8/8	0.99	0.04	3,7,9,9	0
3	SF4	2-D	267	8/8	0.99	0.04	3,7,9,9	0
3	SF4	1-C	265	8/8	0.99	0.04	6,6,8,9	0
3	SF4	2-C	265	8/8	0.99	0.04	6,6,8,9	0
7	FCO	1-H	550	7/7	0.99	0.06	8,9,11,13	0
7	FCO	2-H	550	7/7	0.99	0.06	8,9,11,13	0
7	FCO	1-K	550	7/7	0.99	0.07	6,8,10,12	0

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q < 0.9	
7	FCO	2-K	550	7/7	0.99	0.07	6,8,10,12	0	
7	FCO	1-M	550	7/7	0.99	0.10	$4,\!6,\!7,\!12$	0	
7	FCO	2-M	550	7/7	0.99	0.10	4,6,7,12	0	
5	NI	1-I	551	1/1	0.99	0.03	10, 10, 10, 10	0	
5	NI	2-I	551	1/1	0.99	0.03	10,10,10,10	0	
5	NI	1-M	551	1/1	1.00	0.06	8,8,8,8	0	
5	NI	2-M	551	1/1	1.00	0.06	8,8,8,8	0	
7	FCO	1-I	550	7/7	1.00	0.06	$3,\!5,\!8,\!9$	0	
7	FCO	2-I	550	7/7	1.00	0.06	$3,\!5,\!8,\!9$	0	
7	FCO	1-J	550	7/7	1.00	0.08	7,7,11,12	0	
7	FCO	2-J	550	7/7	1.00	0.08	7,7,11,12	0	
5	NI	1-H	551	1/1	1.00	0.02	$9,\!9,\!9,\!9$	0	
5	NI	2-H	551	1/1	1.00	0.02	9,9,9,9	0	
5	NI	1-J	551	1/1	1.00	0.05	$9,\!9,\!9,\!9$	0	
5	NI	2-J	551	1/1	1.00	0.05	9,9,9,9	0	
5	NI	1-K	551	1/1	1.00	0.04	11,11,11,11	0	
5	NI	2-K	551	1/1	1.00	0.04	11,11,11,11	0	

6.5 Other polymers (i)

There are no such residues in this entry.

