

wwPDB EM Validation Summary Report (i)

Dec 19, 2022 – 03:52 pm GMT

PDB ID	:	6Z1P
EMDB ID	:	EMD-11032
Title	:	Structure of the mitochondrial ribosome from Tetrahymena thermophila
Authors	:	Tobiasson, V.; Amunts, A.
Deposited on	:	2020-05-14
Resolution	:	3.70 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	Aa	278	76%	23%
2	Ab	2314	• 77%	19% •
3	Ac	262	• 100%	
4	Ad	439	<u>5%</u> 85%	15%
5	Ae	358	94%	6%
6	Af	68	31%	
7	Ag	179	98%	·
8	Ah	106	67%	

Mol	Chain	Length	Quality of chain	
9	Ai	61	26%	
10	Aj	69	67%	
11	Ak	105	44%	
12	Al	223	▶ 	
13	Am	166	33%	
10	An	159	15%	
14	An	108	100%	
15	Ao	391	84%	16%
16	Ap	119	99%	•
17	Aq	305	90%	10%
18	Ar	143	100%	
19	As	237	99%	
20	At	242	75%	24%
21	Au	170	5% 99%	
22	Av	235	86%	• 12%
23	Aw	364	94%	6%
24	Ax	138	5% 	·
25	Av	234	–	19%
26	Δ	391	6%	26%
20		021	15%	20%
21	AA	237	74%	26%
28	AB	289	90%	• 9%
29	AC	307	93%	7%
30	AD	36	100%	
31	AE	64	89%	11%
32	AF	164	70%	30%
33	AG	93	41% 59%	

Continued from previous page...

Mol	Chain	Length	Quality of chain	
34	AH	199	31%	11%
35	AI	155	79%	21%
36	AJ	179	99%	••
97	A TZ	200	47%	
37	АК	309	79%	21%
38	AL	145	100%	
39	AM	184	68% 3	2%
40	AN	158	8% 61% 39%	
41	AO	155	77%	23%
42	AP	386	5% 94%	6%
43	AQ	109	46% 54%	
44	AR	348	26%	21%
45	AS	764	18%	5%
46	AT	299	18%	
17	ΔΠ	400	5%	
	110	400	90%	•
48	AV	160	80% •	19%
49	Ba	196	78%	22%
50	Bb	1395	81%	18% •
51	Bc	159	6% 100%	
52	Bd	330	24%	
53	Be	405	100%	
54	Bf	351	5% 95%	
	 D	1 / 1	÷	
- 55	Dg	141	96%	•
56	Bh	276	92%	7%
57	Bi	737	85%	15%
58	Bj	152	100%	

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
59	Bk	238	95%	5%
60	Bl	133	97%	
61	Bm	276	41% 80% • 1	.9%
62	Bn	101	100%	
63	Во	196	91%	• 9%
64	Вр	437	94%	6%
65	Bq	182	96%	
66	Br	549	95%	5%
67	Bs	98	89%	11%
68	Bt	102	100%	
69	Bu	567	99%	
70	Bv	579	80% 2	0%
71	Bw	703	94%	6%
72	Bx	719	74% 26%	
73	By	132	81% 1	.9%
74	Bz	147	83% .	16%
75	ВА	149	92%	• 7%
76	BB	112	98%	•
77	BC	37	100%	
78	BD	130	82%	18%
79	BE	464	96%	•
80	BF	23	100%	
81	BG	182	90%	• 10%
82	BH	63	100%	
83	BI	1451	97%	·

Mol	Chain	Length	Quality of chai	n
	DI	1700	9%	
84	BJ	1539	98%	•
85	BK	267	• 100%	
	DI	210	5%	
86	BL	310	58%	42%
87	BM	355	80%	20%
88	BN	283	••• 97%	
			73%	
89	BO	142	100%	
90	BP	100	23%	
			15%	
91	BQ	1032	60%	40%
92	\mathbf{BR}	143	99%	
93	BS	1086	21%	60%
	2.0	1000	34%	
94	BT	297	100%	
95	BU	439	27%	30%
			39%	
96	BV	310	100%	
97	BW	285	100%	
98	BX	151	20%	120/
30	DA	101	26%	12%
99	BY	327	100%	

Continued from previous page...

2 Entry composition (i)

There are 103 unique types of molecules in this entry. The entry contains 518719 atoms, of which 235830 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called LSU rRNA_1.

Mol	Chain	Residues			AltConf	Trace				
1	Aa	278	Total 8881	C 2659	Н 2963	N 1052	O 1929	Р 278	0	0

• Molecule 2 is a RNA chain called LSU rRNA_2.

Mol	Chain	Residues		Atoms						Trace
2	Ab	2237	Total 71421	C 21355	Н 23854	N 8399	O 15576	Р 2237	0	0

• Molecule 3 is a protein called Ribosomal protein L2.

Mol	Chain	Residues	Atoms						AltConf	Trace
3	Ac	262	Total 4332	C 1365	Н 2218	N 385	O 358	S 6	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		Atoms						Trace
4	Ad	374	Total	С	Η	Ν	0	\mathbf{S}	0	0
1	110	011	6024	1892	3035	538	546	13		0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
5	Ae	337	Total 5671	C 1770	Н 2890	N 505	O 500	S 6	0	0

• Molecule 6 is a protein called Ymf69.

Mol	Chain	Residues		A	Atom	s			AltConf	Trace
6	Af	68	Total 1232	C 409	Н 639	N 91	O 90	${ m S} { m 3}$	0	0

• Molecule 7 is a protein called Ymf60.

Mol	Chain	Residues			Atom	S			AltConf	Trace
7	Ag	176	Total 3072	$\begin{array}{c} \mathrm{C} \\ 997 \end{array}$	H 1555	N 265	O 253	${ m S} { m 2}$	0	0

• Molecule 8 is a protein called bL7/L12m.

Mol	Chain	Residues		Α	toms			AltConf	Trace
8	Ah	106	Total 641	C 318	H 111	N 106	O 106	0	0

• Molecule 9 is a protein called bL7/12m.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	Ai	61	Total 369	C 183	Н 64	N 61	0 61	0	0

• Molecule 10 is a protein called bL7/12m.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
10	Aj	69	Total 419	C 207	Н 74	N 69	O 69	0	0

• Molecule 11 is a protein called Ribosomal protein L7/L12 carboxy-terminal domain protein.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
11	Ak	105	Total 1705	C 564	Н 831	N 151	O 158	S 1	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ak	12	LYS	-	expression tag	UNP Q24IM4
Ak	13	UNK	-	expression tag	UNP Q24IM4
Ak	61	ALA	ARG	conflict	UNP Q24IM4

• Molecule 12 is a protein called Ribosomal protein L9, amine-terminal domain protein.

Mol	Chain	Residues		A	Atoms		AltConf	Trace		
12	Al	53	Total 869	C 278	Н 439	N 79	0 72	S 1	0	0

• Molecule 13 is a protein called Ymf74.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
13	Am	166	Total 2862	C 946	Н 1456	N 223	O 235	${ m S} { m 2}$	0	0

There are 9 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Am	-8	UNK	-	expression tag	UNP Q951B5
Am	-7	UNK	-	expression tag	UNP Q951B5
Am	-6	UNK	-	expression tag	UNP Q951B5
Am	-5	UNK	-	expression tag	UNP $Q951B5$
Am	-4	UNK	-	expression tag	UNP $Q951B5$
Am	-3	UNK	-	expression tag	UNP Q951B5
Am	-2	UNK	-	expression tag	UNP Q951B5
Am	-1	UNK	-	expression tag	UNP Q951B5
Am	0	UNK	-	expression tag	UNP Q951B5

• Molecule 14 is a protein called Ribosomal protein L11, amine-terminal domain protein.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
14	An	158	Total 2562	C 802	Н 1317	N 214	O 219	S 10	0	0

• Molecule 15 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
15	40	330	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
10	ЛО	000	5591	1788	2820	485	485	13	0	0

• Molecule 16 is a protein called Ribosomal protein L14.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
16	Ар	119	Total 2014	C 625	Н 1058	N 172	0 155	${S \atop 4}$	0	0

• Molecule 17 is a protein called Ribosomal protein L15, putative.

Mol	Chain	Residues			Atom	5			AltConf	Trace
17	Aq	273	Total 4477	C 1387	Н 2293	N 416	O 376	${S \atop 5}$	0	0

• Molecule 18 is a protein called Ribosomal protein L16.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
18	Ar	143	Total 2561	C 813	Н 1329	N 224	O 190	${ m S}{ m 5}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues			Atom	5			AltConf	Trace
19	As	236	Total 3953	C 1227	Н 2015	N 355	0 351	${ m S}{ m 5}$	0	0

• Molecule 20 is a protein called bL19m.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
20	At	183	Total 3069	C 987	Н 1531	N 273	O 273	${ m S}{ m 5}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
21	Au	169	Total	С	Н	Ν	0	S	0	0
	110	200	2888	904	1469	274	239	2	Ŭ	Ŭ

• Molecule 22 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
22	Av	206	Total 3434	C 1080	H 1722	N 307	O 322	$\frac{S}{3}$	0	0

• Molecule 23 is a protein called Ribosomal protein L22/L17e.

Mol	Chain	Residues			Atom	5			AltConf	Trace
23	Aw	342	Total 5767	C 1788	Н 2943	N 514	0 514	S 8	0	0

• Molecule 24 is a protein called Ribosomal protein L23, putative.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
24	Ax	132	Total 2257	С 711	Н 1164	N 186	0 191	${ m S}{ m 5}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues			Atom	S			AltConf	Trace
25	Ay	190	Total 3124	C 960	H 1597	N 285	O 281	S 1	0	0

• Molecule 26 is a protein called bL25m.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
26	Az	237	Total 3934	C 1246	Н 1990	N 344	O 350	${S \over 4}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
27	AA	176	Total 2872	C 907	Н 1425	N 276	O 263	S 1	0	0

• Molecule 28 is a protein called Ribosomal protein L28.

Mol	Chain	Residues			Atom	S			AltConf	Trace
28	AB	264	Total 4599	C 1439	Н 2341	N 410	O 397	S 12	0	0

• Molecule 29 is a protein called 39-S ribosomal protein L47.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
29	AC	284	Total 4819	C 1494	Н 2434	N 442	0 446	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called bL32m.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	AD	36	Total 326	C 108	Н 146	N 36	O 36	0	0

• Molecule 31 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	AE	57	Total 935	C 296	Н 483	N 78	O 78	0	0

• Molecule 32 is a protein called bL35m.

Mol	Chain	Residues			Atom	S			AltConf	Trace
32	AF	115	Total 2028	C 618	Н 1054	N 209	0 145	$\frac{S}{2}$	0	0

• Molecule 33 is a protein called Ribosomal protein.

Mol	Chain	Residues		ŀ	AltConf	Trace				
33	AG	38	Total 673	C 201	Н 357	N 64	O 46	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called mL40.

Mol	Chain	Residues			Atom	S			AltConf	Trace
34	AH	177	Total 2989	C 942	Н 1496	N 264	O 282	${ m S}{ m 5}$	0	0

• Molecule 35 is a protein called Ribosomal protein L27.

Mol	Chain	Residues			.s			AltConf	Trace	
35	AI	122	Total 2088	C 662	Н 1052	N 190	0 182	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called Ribosomal protein L51/S25/CI-B8 domain protein.

Mol	Chain	Residues			Atom	S			AltConf	Trace
36	AJ	178	Total 2961	C 948	Н 1480	N 260	O 267	${f S}{6}$	0	0

• Molecule 37 is a protein called mL46.

Mol	Chain	Residues			AltConf	Trace				
37	ΛK	244	Total	С	Η	Ν	0	S	0	0
57	АК	244	4093	1340	2017	351	377	8	0	0

• Molecule 38 is a protein called Large subunit ribosomal protein.

Mol	Chain	Residues			IS			AltConf	Trace	
38	AL	145	Total 2406	C 748	Н 1225	N 224	O 203	S 6	0	0

• Molecule 39 is a protein called mL53.

Mol	Chain	Residues			AltConf	Trace				
39	AM	126	Total 2085	$\begin{array}{c} \mathrm{C} \\ 673 \end{array}$	Н 1026	N 185	O 198	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called mL54.

Mol	Chain	Residues			AltConf	Trace				
40	AN	96	Total 1629	C 524	Н 815	N 140	0 148	${ m S} { m 2}$	0	0

• Molecule 41 is a protein called mL64.

Mol	Chain	Residues			Atom	S			AltConf	Trace
41	AO	120	Total 2060	C 649	H 1049	N 191	O 169	${ m S} { m 2}$	0	0

• Molecule 42 is a protein called mL101.

Mol	Chain	Residues			Atom	S			AltConf	Trace
49		264	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
42	AI	304	6118	1976	3070	515	546	11	0	0

• Molecule 43 is a protein called mL102.

Mol	Chain	Residues		ŀ	Atom	S			AltConf	Trace
43	AQ	50	Total 863	C 262	Н 444	N 85	O 68	$\frac{S}{4}$	0	0

• Molecule 44 is a protein called mL103.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
44	AR	274	Total 4603	C 1492	Н 2253	N 405	0 447	S 6	0	0

• Molecule 45 is a protein called mL104.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
45	AS	728	Total 12114	C 3916	Н 6045	N 1028	O 1105	S 20	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AS	764	GLU	-	expression tag	UNP I7LTP6

• Molecule 46 is a protein called Signal peptide-binding domain protein.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
46	AT	166	Total 2811	C 875	Н 1434	N 247	0 252	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called mL106.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
47	AU	479	Total 7927	C 2508	H 4014	N 662	0 735	S 8	0	0

• Molecule 48 is a protein called Iron-binding zinc finger CDGSH type protein.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
48	AV	129	Total 2068	C 666	Н 1030	N 170	0 193	S 9	0	0

• Molecule 49 is a RNA chain called SSU rRNA_1.

Mol	Chain	Residues			Ator	ns			AltConf	Trace
49	Ba	196	Total 6269	C 1875	Н 2097	N 750	0 1351	Р 196	0	0

There are 11 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ba	14	А	-	expression tag	GB 15011465
Ba	15	А	-	expression tag	GB 15011465
Ba	16	А	-	expression tag	GB 15011465
Ba	17	А	-	expression tag	GB 15011465
Ba	18	U	-	expression tag	GB 15011465
Ba	19	А	-	expression tag	GB 15011465
Ba	20	А	-	expression tag	GB 15011465
Ba	21	А	-	expression tag	GB 15011465
Ba	22	А	-	expression tag	GB 15011465
Ba	23	А	-	expression tag	GB 15011465
Ba	24	А	-	expression tag	GB 15011465

• Molecule 50 is a RNA chain called SSU rRNA_2.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
50	Bb	1385	Total 44233	C 13212	H 14779	N 5192	O 9665	Р 1385	0	0

• Molecule 51 is a protein called Ymf73.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
51	Bc	159	Total 2838	C 925	Н 1465	N 217	0 224	${f S} 7$	0	0

• Molecule 52 is a protein called Ymf64.

Mol	Chain	Residues			Atom	s			AltConf	Trace
52	Bd	330	Total 5839	C 1868	Н 3013	N 477	O 468	S 13	0	0

• Molecule 53 is a protein called Ymf76.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
53	Be	405	Total 7533	C 2416	Н 3929	N 645	O 537	S 6	0	0

• Molecule 54 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues			Atom	S			AltConf	Trace
54	Bf	337	Total 5491	C 1745	Н 2735	N 483	0 515	S 13	0	0

• Molecule 55 is a protein called Ribosomal protein S6.

Mol	Chain	Residues			Atom	S			AltConf	Trace
55	Bg	136	Total 2204	C 681	Н 1124	N 197	O 200	${ m S} { m 2}$	0	0

• Molecule 56 is a protein called Ymf63.

Mol	Chain	Residues			Atom	5			AltConf	Trace
56	Bh	256	Total 4454	C 1459	Н 2250	N 350	O 386	S 9	0	0

• Molecule 57 is a protein called Ribosomal protein S9.

Mol	Chain	Residues			Atom	s			AltConf	Trace
57	Bi	626	Total 10472	C 3325	Н 5228	N 916	O 990	S 13	0	0

• Molecule 58 is a protein called Ymf59.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
58	Bi	152	Total	С	Н	Ν	Ο	\mathbf{S}	0	0
00	DJ	102	2652	870	1348	217	214	3	0	0

• Molecule 59 is a protein called Ymf61.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
59	Bk	226	Total 4012	C 1310	Н 2055	N 325	0 321	S 1	0	0

• Molecule 60 is a protein called Ribosomal protein S12.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
60	Bl	129	Total 2199	C 656	Н 1154	N 226	O 159	$\frac{S}{4}$	0	0

• Molecule 61 is a protein called Ribosomal protein S13.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
61	Bm	224	Total 3877	C 1268	Н 1946	N 328	O 330	${S \over 5}$	0	0

• Molecule 62 is a protein called Ribosomal protein S14.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
62	Bn	101	Total 1804	$\begin{array}{c} \mathrm{C} \\ 565 \end{array}$	Н 939	N 161	0 134	${ m S}{ m 5}$	0	0

• Molecule 63 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
63	Bo	179	Total 3003	C 944	Н 1515	N 273	0 264	${f S}{7}$	0	0

• Molecule 64 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
64	Вр	412	Total 6956	C 2214	Н 3499	N 611	0 624	S 8	0	0

• Molecule 65 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues			AltConf	Trace				
65	Bq	176	Total 2959	C 927	Н 1505	N 257	O 265	${ m S}{ m 5}$	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Bq	181	VAL	-	expression tag	UNP I7M6C7
Bq	182	ALA	-	expression tag	UNP I7M6C7
Bq	183	ALA	-	expression tag	UNP I7M6C7

• Molecule 66 is a protein called Ribosomal protein S18.

Mol	Chain	Residues			5			AltConf	Trace	
66	Br	523	Total 8589	C 2689	Н 4310	N 755	O 829	S 6	0	0

• Molecule 67 is a protein called Ribosomal protein S19.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
67	Bs	87	Total 1508	C 479	Н 786	N 123	0 118	${ m S} { m 2}$	0	0

• Molecule 68 is a protein called bS21m.

Mol	Chain	Residues			AltConf	Trace				
68	Bt	102	Total 1760	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	Н 891	N 169	0 141	${S \atop 4}$	0	0

• Molecule 69 is a protein called mS23.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
69	Bu	559	Total	C	H 2620	N 777	0	S 16	0	0
			(883	2050	3030	(((804	10		

• Molecule 70 is a protein called mS26.

Mol	Chain	Residues			Atom	S			AltConf	Trace
70	Bv	465	Total 7896	C 2484	H 3977	N 686	O 736	S 13	0	0

• Molecule 71 is a protein called Ribosomal death-associated protein.

Mol	Chain	Residues			AltConf	Trace				
71	Bw	662	Total 10999	C 3589	Н 5447	N 937	O 1004	S 22	0	0

• Molecule 72 is a protein called mS31.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
72	Bx	530	Total 8568	C 2781	Н 4175	N 731	O 865	S 16	0	0

• Molecule 73 is a protein called mS33.

Mol	Chain	Residues			AltConf	Trace				
73	Ву	107	Total 1772	C 556	Н 903	N 155	0 152	S 6	0	0

• Molecule 74 is a protein called mS34.

Mol	Chain	Residues		A	AltConf	Trace			
74	Bz	123	Total 1999	C 644	Н 1000	N 176	O 179	0	0

• Molecule 75 is a protein called Ribosomal subunit protein.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
75	BA	138	Total 2335	С 743	Н 1167	N 205	0 212	S 8	0	0

• Molecule 76 is a protein called mS37.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
76	BB	110	Total 1864	C 596	Н 930	N 167	0 165	S 6	0	0

• Molecule 77 is a protein called mS38.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
77	BC	37	Total 226	C 111	Н 41	N 37	O 37	0	0

• Molecule 78 is a protein called IGR motif protein.

Mol	Chain	Residues			AltConf	Trace				
78	BD	107	Total 1791	$\begin{array}{c} \mathrm{C} \\ 569 \end{array}$	Н 908	N 152	O 158	$\frac{S}{4}$	0	0

• Molecule 79 is a protein called mS45.

Mol	Chain	Residues			Atom	s			AltConf	Trace
79	BE	447	Total 7339	C 2342	Н 3615	N 630	O 739	S 13	0	0

• Molecule 80 is a protein called mS75.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
80	BF	23	Total 147	C 69	Н 32	N 23	O 23	0	0

• Molecule 81 is a protein called mS76.

Mol	Chain	Residues			Atom	S			AltConf	Trace
81	BG	164	Total 2704	C 863	Н 1329	N 237	O 270	${S \atop 5}$	0	0

• Molecule 82 is a protein called mS77.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
82	BH	63	Total 382	C 189	Н 67	N 63	O 63	0	0

• Molecule 83 is a protein called Enoyl-CoA hydratase/isomerase.

Mol	Chain	Residues			AltConf	Trace				
83	BI	1413	Total 23519	C 7509	H 11719	N 1995	0 2263	S 33	0	0

• Molecule 84 is a protein called mS78.

Mol	Chain	Residues			AltConf	Trace				
84	BJ	1515	Total	C	H	N	0	S	0	0
-	_		24865	7913	12419	2110	2396	27	_	-

• Molecule 85 is a protein called mS79.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
85	BK	267	Total 4236	C 1356	Н 2106	N 366	0 401	${ m S} 7$	0	0

• Molecule 86 is a protein called SelR domain protein.

Mol	Chain	Residues			Atom	S			AltConf	Trace
86	BL	181	Total 2962	$\begin{array}{c} \mathrm{C} \\ 954 \end{array}$	Н 1461	N 267	O 272	S 8	0	0

• Molecule 87 is a protein called mS81.

Mol	Chain	Residues			Atom	S			AltConf	Trace
87	BM	284	Total 4692	C 1522	Н 2321	N 404	0 436	S 9	0	0

• Molecule 88 is a protein called mS82.

Mol	Chain	Residues			Atom	s			AltConf	Trace
88	BN	274	Total 4557	C 1481	Н 2253	N 389	O 424	S 10	0	0

• Molecule 89 is a protein called PARP alpha-helical domain-containing protein,mS83.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
89	BO	142	Total 1225	C 511	Н 397	N 151	0 164	${ m S} { m 2}$	0	0

• Molecule 90 is a protein called mS84,mS84.

Mol	Chain	Residues		Α	toms			AltConf	Trace
90	BP	100	Total 1259	C 428	Н 567	N 127	O 137	0	0

• Molecule 91 is a protein called mS85.

Mol	Chain	Residues			AltConf	Trace				
91	BQ	622	Total 10266	C 3281	Н 5095	N 853	O 1025	S 12	0	0

• Molecule 92 is a protein called Iron donor protein CyaY.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
92	BR	143	Total 2361	С 746	Н 1179	N 210	0 223	${ m S} { m 3}$	0	0

• Molecule 93 is a protein called mS87.

Mol	Chain	Residues			Atom	s			AltConf	Trace
93	BS	433	Total 7221	C 2298	Н 3602	N 611	O 697	S 13	0	0

• Molecule 94 is a protein called mS88.

Mol	Chain	Residues		Α	toms			AltConf	Trace
94	BT	297	Total 1815	C 891	Н 330	N 297	O 297	0	0

• Molecule 95 is a protein called mS89.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
95	BU	309	Total 5164	C 1667	Н 2568	N 441	0 481	S 7	0	0

• Molecule 96 is a protein called mS90.

Mol	Chain	Residues	Atoms					AltConf	Trace	
96	BV	310	Total 4185	C 1427	Н 1924	N 405	0 426	${ m S} { m 3}$	0	0

• Molecule 97 is a protein called mS91.

Mol	Chain	Residues	Atoms			AltConf	Trace		
97	BW	285	Total 1731	C 855	Н 306	N 285	O 285	0	0

• Molecule 98 is a protein called Ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace	
98	BX	133	Total 2351	C 776	Н 1195	N 190	O 182	S 8	0	0

 $\bullet\,$ Molecule 99 is a protein called mS93.

Mol	Chain	Residues	Atoms					AltConf	Trace	
99	BY	327	Total 5119	C 1667	Н 2528	N 446	0 472	S 6	0	0

• Molecule 100 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
100	Aa	28	TotalMg2828	0
100	Ab	270	Total Mg 270 270	0
100	Ad	1	Total Mg 1 1	0
100	Ae	1	Total Mg 1 1	0
100	Aq	1	Total Mg 1 1	0
100	AB	1	Total Mg 1 1	0
100	AF	1	Total Mg 1 1	0
100	AQ	1	Total Mg 1 1	0
100	Ba	10	TotalMg1010	0
100	Bb	76	TotalMg7676	0
100	Bi	1	Total Mg 1 1	0
100	Bw	1	Total Mg 1 1	0
100	Bz	1	Total Mg 1 1	0

 $\bullet\,$ Molecule 101 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
101	AG	1	Total Zn 1 1	0
101	BL	1	Total Zn 1 1	0

• Molecule 102 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
102	AV	1	TotalFeS844	0
102	AV	1	TotalFeS844	0

• Molecule 103 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms					AltConf	
109	D	1	Total	С	Η	Ν	Ο	Р	0
105	DW	L	35	10	4	5	13	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: LSU rRNA_1

MET PHE PHE LLEU CLIN CLIN CLIN CLIN CLIN PHE SER CYS SER CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	822 (143 (143 (143 (143 (143 (143) (
• Molecule 6: Ymf69		
Chain Af:	100%	
MI IL2 NI3 F8 F8 F8 F9 F1 IL1 L12 F3 F3 F3 F3 F3 F3 F3 F3 F3 F3	F36 F41 F41 F41 F41 F41 F51 F50 F51 F50 F60 F60 F60 F60 F60 F60 F60 F60 F60 F6	
• Molecule 7: Ymf60		
Chain Ag:	98%	
M1 N20 N21 N22 N22 A12 ALA SER GLN		
\bullet Molecule 8: bL7/L12m		
Chain Ah:	67%	
X1 X2 X3 X4 X4 X6 X15 X15 X10 X11 X11 X11 X11 X11 X11 X11 X11 X12 X13 X13 X13 X13 X13 X13 X13 X13 X13 X13	X13 X25 X25 X25 X25 X25 X25 X25 X25 X25 X28 X28 X28 X28 X28 X28 X33 X33 X34 X41 X41 X42 X43 X43 X43 X43	X45 X46 X47 X48 X61 X51 X52 X53 X53 X53 X53 X53 X53 X53 X53 X53 X53
X69 X70 X73 X74 X75 X775 X776 X776 X776 X776 X776 X775 X775	X101 X102 X102 X102 X103 X103 X105 X105 X105 X108 X110 X111 X1114 X1114 X1114 X1114	
\bullet Molecule 9: bL7/12m		
Chain Ai:	100%	
X1 X2 X3 X8 X8 X9 X10 X11 X11 X13 X13 X13 X16 X13 X13 X13 X14 X24	X38 X54 X55 X55 X50 X50	
\bullet Molecule 10: bL7/12m		
Chain Aj:	67%	
X1 X2 X3 X4 X5 X5 X10 X11 X11 X11 X12 X13 X14 X15 X15 X15 X15 X15 X16 X17 X18	X25 X26 X28 X28 X28 X30 X33 X33 X34 X35 X35 X35 X35 X35 X35 X35 X35 X40 X41 X41 X42 X42 X42 X43 X43 X43 X43 X43 X43 X43 X43 X43 X43	X56 X57 X57 X58 X58 X64 X61 X61 X64 X65 X64 X64 X64 X64 X64 X70 X70 X70 X71 X75 X75
• Molecule 11: Ribosomal pro	otein $L7/L12$ carboxy-terminal domain	n protein
Chain Ak:	100%	

Chain Ap: 99%
\bullet Molecule 17: Ribosomal protein L15, putative
Chain Aq: 90% 10%
MET ASN LLEU LLEU LLEU LLEU LLEU LLA SER ALA SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
• Molecule 18: Ribosomal protein L16
Chain Ar: 100%
There are no outlier residues recorded for this chain.
\bullet Molecule 19: 50S ribosomal protein L17
Chain As: 99%
MET G2 N68 A171 A172 A190 A190 A191 A191 A191 A191 A192 A194 A194 A194 A194 A194 A194 A194 A194 A194 A194 A194 A195 A194 A194 A194 A194 A194 A194 A194 A195
• Molecule 20: bL19m
Chain At: 75% 24%
MET LEU ARG CIN CIN CIN CIN CIN CIN CIN CIN CIN CIN
ASP ARG GLU ASP ASN TYR TYR
• Molecule 21: 50S ribosomal protein L20
Chain Au: 99%
MET 12-1 14-1 14-1 14-4 1
\bullet Molecule 22: 50S ribosomal protein L21
Chain Av: 86% · 12%

MET TLE ALA ALA ALA ALA ALA SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
\bullet Molecule 23: Ribosomal protein L22/L17e	
Chain Aw: 94% 6%	I
MET ILLE ARG CLN CLVS SER ASC CLVS CLVS CLVS CLVS CLVS CLVS CLVS CL	
• Molecule 24: Ribosomal protein L23, putative	
Chain Ax: 96% ·	
MET ASN ASN IJLE VAL R6 L11 P17 P17 C111 C111 ALA Q33 Q33 Q33 Q33 Q33 Q33 Q33 Q33 Q33 Q3	
• Molecule 25: 50S ribosomal protein L24	
Chain Ay: 81% 19%	
MET PHE LVYS VAL SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	K228 ♦
• Molecule 26: bL25m	
Chain Az: 73% • 26%	
MET ILEU CYS CYS CYS CYS CYS CYS CYS CAS CYS CYS CYS CYS CYS CYS CYS CYS CYS CY	D209
K253 E254 E254 E254 E256 E256 A260 C126 C260 C126 C260 C126 C260 C120 C262 C260 C120 C120 C120 C120 C120 C120 C120 C12	GLN VAL LYS GLU LYS
LEU ALA GLN GLN ALA SER	
\bullet Molecule 27: 50S ribosomal protein L27	
Chain AA: 74% 26%	I
MET THR SERR A SIN A LIA A SIN A LIA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	VAL GLU VAL SER
GLN SER LLYS	

• Molecule	28: Ribosomal protein L28			
Chain AB:	-	90%		9%
MET PHE SER LEU LLEU LLE LLS GLN TLE	ALA PRO VALE LLY CLEU CLEU CLEU CLEU CLE ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	P182 1183 0194 D230 E239 K265	q286 ASN VAL LYS	
• Molecule	29: 39-S ribosomal protein	L47		
Chain AC:	7%	93%		7%
MET ASN PHE LEU PHE ARG GLN THR	ASN SER ILLS LLYS FTR SER GLA ALA ALA ARG C24 Q24 Q24 AG2	F57 L141 N148 A152 E198	NJ04 N211 Q212 E213 V214 E215 E215 E215 E217	R222 +
1304 GLY LYS ILE				
• Molecule	30: bL32m			
Chain AD:		100%		
There are n	o outlier residues recorded	for this chain.		
• Molecule	31: 50S ribosomal protein	L33		
Chain AE:	6%	89%		11%
MET ALA K6 E32 V33 I34	K61 M62 GLN GLN GLN GLN LYS LYS LYS			
• Molecule	32: bL35m			
Chain AF:	70%		30%	
MET PHE LEU LEU LYS LYS VAL GLY GLY	ALA CYS CYS CYS LEU CYS THR THR TILE CYS GLN CVAL CYS GLN GLN GLN SER SER	LYS MET TLE CLN GLN GLN PHE ASP ASP ASN SER LEU	ILE PHE MET PRO TYR GLN THR THR ASO	2
• Molecule	33: Ribosomal protein			
Chain AG:	41%		59%	
M1 PHE CYS SER GLIN	MET GLN GLN GLN GLU GLN GLN GLN GLN GLN GLN GLN GLN ASN MSN MSN MSN MSN MSN	ASN MET ASP ASP GLN TTR TTR TTR TLE SER CLY SER CLN SER ASN	ASP CYS MET MET THR TYR TYR SER SER SER ASP	TYR ASN LYS ILE ILE ILE GLN
• Molecule	34: mL40			
Chain AH:	31%	89%		11%

MET SER GLN PHE LEU LU LU ALA ALA ALA ALA ALA ALA CLU CLU CVS CVS SER SER CVS CVS CVS	THR LEU ARG V23 K41 K41 E45 C44 C44 C44 C44 C44 C44 C44 C44 C44 C	65 1 154 155 655 855 857 H60 H60 853 854	A65 K66 K91 E102 H106	● 911N
N1.22 D1.26 N1.29 E1.33 E1.37 N1.39 N1.39 N1.39 N1.39 N1.39 N1.39 N1.39 N1.39 N1.39 N1.39 N1.39 N1.39 N1.20 N1.20	N145 N145 K150 T151 Y152 N153 F154 N155 S156 S156 S158	F166 E167 Q168 Q169 F173 F173 E174 E175 E176 H177	K180 L181 S184 Q188 K189 L190	A191 K194 C195 C195 E197 N198 D199
• Molecule 35: Ribosoma	l protein L27			
Chain AI:	79%		21%	
MET GLU ASN ASN ASN FHE PHE ASLA ARA ARA ARA ARA ARA ARA ARA ARA ARA A	TYR TYR GLM GLM ASP ASP ASP SER CLU CLU CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU	ALA GLU SER SER ALA GLN ASN		
• Molecule 36: Ribosomal	l protein $L51/S25/CI-I$	B8 domain protein		
Chain AJ:	99%			
MET C2 D70 F123 E133 E133 E133 K123 K123 K123 K123 K165 K165	1 19 ◆			
• Molecule 37: mL46	47%			
Chain AK:	79%		21%	
MET TILE ALA ARA ARA ARA CLEU CLEU CLEU CLEU CLEU CLEU ASN SER ASN LEU ASN LEU ASN LEU ASN CLEU ASN ASN ASN ASN ASN ASN ARA ARA ARA ARA ARA ARA ARA ARA ARA AR	SER VAL ASN MET SER SER MET ALA ALA ALA ALA SER TILE SER TILE LYS	LYS LYS LYS LYS SER ASP ASP ASP ASP LYS LYS LYS ARG	LEU GLU ASP ASP ASP GLN GLN LEU LEU LEU LEU LEU LEU LEU	
PHE LYS GLYS GLYS LYS TG6 TG6 YG6 YG6 YG6 YG6 YG7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	G81 L82 V83 T84 N85 R86 F90 F90 F91 L91 L91 K96 Y96	E97 R100 M101 K102 K112 K112 M115	E119 D120 D122 T122 D123 F124 F124 F126 F126 F126	D128 P129 Q130 Q130 E132 A133 E134 E135 T136
N137 1138 D139 N140 A142 A142 F145 F145 F145 L148 C148 A150 A150 A150	E152 K153 L154 E155 Y155 C157 E157 E158 S150 Y161 Y161 Y163 R164	P168 P168 E169 8171 8171 8172 A173 A173 8175 1176	A179 P180 C181 Y185 L187 M186 M188 M188	D190 P191 T192 1192 N194 Q195 Y196 F198 V197 F198 V1204
D205 R206 E207 V208 V208 N210 E211 A212 K213 W217 K213 K213 K213 K213 K213 K213 K214 K224	F225 V227 V227 S228 H229 H229 A231 F236 R236 R236 R236 R241 P241	Y243 F244 H245 E246 L247 S248 N249 N249 N262 N262 N263	1264 F261	1271 P272 W273 W275 W276 P276 C277 V279 Y279 C280 C280 C281
Y282 L283 K287 K287 R288 F290 F290 F290 F290 A305 H307 H307	600X			

• Molecule 38: Large subunit ribosomal protein

Chain AL:

100%

There are no outlier residues recorded for this chain.

 \bullet Molecule 39: mL53

Chain AM:	68%	32%	
MET ASP ALA ALA ILE ILE ILE ILE ILE ILE ILE ILYS ILYS ILYS ILYS ARG ASN	TLE PHE PHE PHE PHE CLU CLU TLE CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	CYS CYS TYR TYR SER SER CLN TLE VLL SER ASP ASP ASP ASP ASP ASP ASP ASP ASP TYS TYS TYR TYS TYR	GLN MET C59
F101 R108 D115 E125 D175 L184			
• Molecule 40: mL54			
Chain AN:	61%	39%	
MET PHE PHE ALM ALA ARG VAL ARG ASN ALA ASN SER ASN SER ALA ASN LEU	ALU ALA VAL ILE ILE ARG ALY CLY CLY GLY ALA ALA GLU	ILE THR 540 E-41 E-41 F151 F151 F151 F151 F151 F170 F170 F170 F170 F170 F170 F170 F17	A84 D85 E86 L88 L89 L89
D133 L134 F135 F135 F135 F135 F135 F135 G10 G10 G10 G10 G10 G10 G10 G10 G10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C	duu duu duu duu dsp Asp Asp		
\bullet Molecule 41: mL64			
Chain AO:	77%	23%	1
M1 A6 R25 R25 R25 A12 A12 A12 A12 A12 A12 A12 A12 A12 A12	THR CLY CLY SER SER SER SER VAL VAL CLU CLU CLU CLU CLU CLU CLY CLY CLY CLY CLY CLY CLY CLU CLU	ALA ALA LYS LYS LYS LYS	
• Molecule 42: mL101			
Chain AP:	94%	6%	I
MET PHE GLN ALA ALA ALA ALA ALA ALA ALA CYS SER CUU CLU CLU CLU CLU CVS CYS CVS	LEU GLM ASN ASN ASN F23 F23 F23 F23 E136 E136 E212 E212	E277 E277 M283 D286 E322 K377 K377 K380 C381 A382 E383 K34	1385 1386
\bullet Molecule 43: mL102			
Chain AQ:	46%	54%	
MET ASN LELU LLL LLL LLL PHE ASN ASN PHE ASN PHE ASN TRP TRP TRP TRP CLL SER SCLN	SER SER SER MET LEU CLY CLY CLY ARG ASN MET SER ASN ASN ASN ASN ASN ASN ASN CLU CLU CLU CLU CLU	GLU THR ALA ALA GLU CLU CLU CLU CLN CLN CLN CLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PHE ASP PHE T60
◆ 100			
• Molecule 44: mL103			
Chain AR:	79%	21%	I

• Molecule 58: Ymf59		
Chain Bj:	100%	
M1 N2 N3 N24 F48 F48 N110 L119 L119 T151		
• Molecule 59: Ymf61		
Chain Bk:	95%	5%
MET VAL CYAL CYS LYS LYS PHE ASN ASN ASN ASP F13 F13 F13 F13 F14 F13 F13 F14 F13 F14 F13 F13 H20 H20 H20 H20 H20 H20 H20 H20 H20 H20	D29 130 Q31 Q32 M41 M41 M51 Y72 Y83 Y83 F96	N135
1164 E187 R224 N237 F238		
• Molecule 60: Ribosomal protein	S12	
Chain Bl:	97%	·
MET GLY SER LEU CG CG CG K1 K12 K12 K12 K123 K123 V133		
• Molecule 61: Ribosomal protein	S13	
Chain Bm:	80% •	19%
MET LVS E3 F4 F5 F5 F4 F1 111 F11 F116 F116 F116 F116 F116	Nase R46 N47 L48 S50 S50 S50 S50 S51 S51 S51 S51 S61 S51 S61 S51 S61 S52 S61 S52 S61 S52 S61 S52 S61 S52 S61 S52 S61 S52 S61 S52 S62 S62 S63 S63 S63 S63 S63 S63 S63 S63 S63 S63	R71 872 173 772 184 188 188 188 188 692 692 692 692
R102 L118 R121 K122 L125 E126 E126 C133 A128 G133 R127 A128 R134 P136 P136 P136 P138 R137 P138 R137 P138	L145 A146 E147 E147 P1149 N150 N151 L152 V153 C155 P155 P156 P156 P156 C169 R165 R165 R165 R165 R165 R165	M172 Q173 C175 C175 C177 A177 A177 A177 A177 A177 A178 A177 C178 A178 C181 C181 C181 C181 C181 C182 C182 C18
G189 D192 F194 F194 C193 F195 K197 K197 K198 E199 L175 L175 L175 L175 L175 L175 L175 L175	T214 F215 T216 T216 F219 F221 F221 F221 F222 F222 F225 F225 F225	ALA LYS GUU ARG N240 K241 1242 K243 1244 V245 K243 1246 N247 E248 C1U GUU
LYS VAL LYS LIYS LYS LYS LYS LYS LYS LYS LYS LYS LYS L	01U	
• Molecule 62: Ribosomal protein	S14	
Chain Bn:	100%	
M1 L2 B8 K15 B8 119 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5		

• Molecule 63: 30S ribosomal	protein S15	
Chain Bo:	91%	• 9%
MET PAEN PAEN ASN ASN ASN ASN AET CEU VAL VAL VAL VAL VAL VAL VAL CVAL CVAL C		
• Molecule 64: 30S ribosomal	protein S16	
Chain Bp:	94%	6%
M1 K132 F189 F189 F189 A202 A204 E205 B228 E277 E277	E305 E310 E310 E310 E310 E310 E310 E310 E310	GLY PHE ASN
• Molecule 65: 30S ribosomal	protein S17	
Chain Bq:	96%	••
S2 E56 E10 C111 C112 C112 C112 C112 C112 C112 C1	V125 V125 V127 V129 V129 V129 V129 V129 V129 V129 V133 E134 V133 E134 R133 E134 R133 R136 R136 R136 R136 R136 R136 R136 R136 R137 R136 R136 R137 R136 R137 R136 R137 R137 R137 R136 R137 R136 R137 R137 R137 R137 R137 R137 R136 R137 R136 R137 R137 R137 R136 R137 R136 R137 R136 R137 R136 R136 R136 R136 R136 R136 R136 R136 R136 R136 R136 R136 R136 R136 R136 R136 R137 R136 R137 R136 R137 R136 R137 R136 R137 R136 R137 R	E148 K152 K152 K155 K155 K155 K155 A157 K156 A157 A157 A157 A156 A163 A164 A163 A164 A164 A164 A164 A164 A164 A164 A164 A164 A164 A164 A165 A164 A164 A164 A166 A164 A166
V170 E171 S172 Q174 Q174 K175 K175 K175 K175 K175 V180 V180 V181 A182		
• Molecule 66: Ribosomal pro	tein S18	
Chain Br:	95%	5%
MET GLN VAL TILE TILE ASN ASN ASN CLEU GLN GLN GLN CLEU FHE FHE CLEU ALG AAG	HIS SER SER SER 127 SER 528 E23 E23 E23 E55 E55 E55 E55 E55 E55 E55 E55 E55 E5	R76 889 889 889 889 889 8116 8119 8119 811
D189 K206 E349 E345 B347 E345 B347 E349 B347 E349 B347 E346 €366 B347 E370	A388 E392 (3993 (3999 (3999 (3999 (3999 (3999 (3999 (3999 (3999 (3999 (3999) (3	D455 D455 5459 5459 1460 465 1465 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1466 1490 1490 1490
E501 E508 E508 E517 E522 K648 K648 K648 K649		
• Molecule 67: Ribosomal pro	tein S19	
Chain Bs:	89%	11%
M1 115 1115 1116 1116 1116 1116 1128 1128 1128 1128	II53 V57 V57 E81 L62 K63 C74 E75 E75 E75 K81 N83 K87 L1XS SER L1XS ASN	LIYS SER LIYS ASW PHE ARG ARG
\bullet Molecule 68: bS21m		

 \bullet Molecule 84: mS78

• Molecule 93: mS87

Chain BS: 40% 60%

HHE LEUVALLEVAL ASSISTED ASSIS

NERVISION CONTRACTOR OF CONTACTOR OF CONTRACTOR OF CONTRAC

GLU GLU GLU GLU SER ASP ASP SER SER SER CLN

wwPDB EM Validation Summary Report

Page 47

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	99300	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30	Depositor
Minimum defocus (nm)	200	Depositor
Maximum defocus (nm)	3200	Depositor
Magnification	92000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.198	Depositor
Minimum map value	-0.109	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.009	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	588.5, 588.5, 588.5	wwPDB
Map dimensions	550, 550, 550	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.07, 1.07, 1.07	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FES, MG, ZN, ATP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	Bond lengths		Bond angles	
MOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	Aa	0.71	0/6630	0.87	3/10321~(0.0%)	
2	Ab	0.74	0/53260	0.87	22/82922~(0.0%)	
3	Ac	0.49	0/2161	0.64	0/2897	
4	Ad	0.49	0/3051	0.60	0/4097	
5	Ae	0.50	0/2836	0.60	0/3817	
6	Af	0.39	0/608	0.50	0/811	
7	Ag	0.48	0/1553	0.61	0/2081	
11	Ak	0.35	0/890	0.52	0/1205	
12	Al	0.45	0/440	0.61	0/596	
13	Am	0.43	0/1389	0.53	0/1861	
14	An	0.41	0/1268	0.54	0/1709	
15	Ao	0.49	0/2842	0.58	0/3820	
16	Ap	0.53	1/975~(0.1%)	0.66	0/1303	
17	Aq	0.49	0/2232	0.61	0/2998	
18	Ar	0.51	0/1261	0.65	0/1682	
19	As	0.44	0/1964	0.59	0/2620	
20	At	0.53	1/1579~(0.1%)	0.63	0/2128	
21	Au	0.54	0/1449	0.64	0/1949	
22	Av	0.51	0/1744	0.64	0/2350	
23	Aw	0.46	0/2866	0.59	1/3840~(0.0%)	
24	Ax	0.47	0/1115	0.59	0/1498	
25	Ay	0.45	0/1548	0.63	0/2068	
26	Az	0.46	0/1984	0.60	1/2680~(0.0%)	
27	AA	0.48	0/1482	0.62	0/2003	
28	AB	0.48	0/2304	0.60	0/3082	
29	AC	0.45	0/2416	0.56	0/3227	
31	AE	0.47	0/459	0.63	0/612	
32	AF	0.49	0/997	0.70	0/1321	
33	AG	0.54	0/320	0.58	0/418	
34	AH	0.37	0/1520	0.47	0/2038	
35	AI	0.48	0/1059	0.56	0/1416	
36	AJ	0.52	$0/1\overline{513}$	0.58	0/2031	

Mal	Chain Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
37	AK	0.35	0/2136	0.56	0/2895
38	AL	0.50	0/1208	0.58	0/1630
39	AM	0.51	0/1083	0.52	0/1458
40	AN	0.45	0/833	0.61	0/1129
41	AO	0.47	0/1037	0.60	0/1403
42	AP	0.48	0/3125	0.54	0/4220
43	AQ	0.57	0/428	0.64	0/567
44	AR	0.40	0/2415	0.54	0/3250
45	AS	0.41	0/6212	0.53	0/8373
46	AT	0.34	0/1398	0.49	0/1867
47	AU	0.40	0/3979	0.50	0/5353
48	AV	0.57	0/1067	0.58	0/1439
49	Ba	0.52	0/4674	0.80	0/7275
50	Bb	0.52	0/32970	0.80	8/51341~(0.0%)
51	Bc	0.47	0/1403	0.58	0/1880
52	Bd	0.35	0/2883	0.53	0/3843
53	Be	0.46	0/3693	0.55	0/4907
54	Bf	0.45	1/2814~(0.0%)	0.56	0/3788
55	Bg	0.39	0/1095	0.62	0/1471
56	Bh	0.32	0/2259	0.49	0/3043
57	Bi	0.38	0/5344	0.53	0/7174
58	Bj	0.43	0/1339	0.60	0/1801
59	Bk	0.37	0/2006	0.51	0/2685
60	Bl	0.41	0/1062	0.70	0/1415
61	Bm	0.38	0/1983	0.54	1/2661~(0.0%)
62	Bn	0.44	0/881	0.55	0/1168
63	Bo	0.42	0/1519	0.56	0/2038
64	Bp	0.42	0/3537	0.53	0/4761
65	Bq	0.41	0/1480	0.54	0/1982
66	Br	0.37	0/4353	0.54	0/5860
67	Bs	0.42	0/739	0.56	0/983
68	Bt	0.42	0/891	0.52	0/1195
69	Bu	0.38	0/3548	0.54	0/4746
70	Bv	0.35	0/3981	0.48	0/5335
71	Bw	0.40	0/5700	0.52	0/7694
72	Bx	0.36	0/4504	0.49	0/6108
73	By	0.36	0/887	0.47	0/1185
74	Bz	0.37	0/1025	0.54	0/1388
75	BA	0.40	0/1193	0.57	0/1601
76	BB	0.39	0/959	0.52	0/1290
78	BD	0.38	0/903	0.59	0/1214
79	BE	0.42	0/3795	0.53	0/5084
81	BG	0.37	$0/140\overline{2}$	0.50	$0/187\overline{8}$

Mal	Chain	Bo	ond lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
83	BI	0.41	0/12014	0.53	0/16144
84	BJ	0.40	0/12675	0.48	0/17091
85	BK	0.42	0/2176	0.54	0/2937
86	BL	0.39	0/1542	0.53	0/2078
87	BM	0.34	0/2428	0.51	0/3263
88	BN	0.40	0/2359	0.50	0/3168
89	BO	0.36	0/306	0.48	0/414
90	BP	0.38	0/489	0.56	0/647
91	BQ	0.35	0/5264	0.49	0/7086
92	BR	0.35	0/1204	0.52	0/1623
93	BS	0.31	0/3682	0.44	0/4953
94	BT	0.22	0/19	0.46	0/25
95	BU	0.37	0/2655	0.50	0/3578
96	BV	0.30	0/1868	0.44	0/2523
98	BX	0.42	0/1189	0.54	0/1591
99	BY	0.30	0/2465	0.48	0/3331
All	All	0.51	3/289793~(0.0%)	0.67	36/410231~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	Ac	0	1
15	Ao	0	1
19	As	0	1
20	At	0	1
22	Av	0	1
26	Az	0	2
28	AB	0	2
36	AJ	0	1
47	AU	0	1
48	AV	0	1
53	Be	0	1
56	Bh	0	1
57	Bi	0	1
63	Bo	0	1
65	Bq	0	1
71	Bw	0	1
75	BA	0	1
83	BI	0	1

α \cdots 1	e		
Continued	from	previous	page
	9	1	1 0

Mol	Chain	#Chirality outliers	#Planarity outliers
84	BJ	0	2
90	BP	0	1
91	BQ	0	1
All	All	0	24

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
20	At	32	ARG	C-N	-5.63	1.21	1.34
54	Bf	238	CYS	CB-SG	-5.26	1.73	1.81
16	Ap	19	VAL	CB-CG2	-5.03	1.42	1.52

The worst 5 of 36 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Ab	1015	U	C2-N1-C1'	8.29	127.65	117.70
2	Ab	1149	С	N1-C2-O2	7.27	123.26	118.90
2	Ab	624	C	N1-C2-O2	7.14	123.18	118.90
2	Ab	359	С	C2-N1-C1'	7.07	126.58	118.80
2	Ab	1410	G	O4'-C1'-N9	6.66	113.53	108.20

There are no chirality outliers.

5 of 24 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	Ac	124	PHE	Mainchain
15	Ao	211	GLN	Peptide
19	As	124	ILE	Peptide
20	At	46	TRP	Peptide
22	Av	170	ARG	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	Ac	260/262~(99%)	244 (94%)	16 (6%)	0	100	100
4	Ad	368/439~(84%)	344 (94%)	24 (6%)	0	100	100
5	Ae	335/358~(94%)	319 (95%)	16 (5%)	0	100	100
6	Af	66/68~(97%)	63~(96%)	3 (4%)	0	100	100
7	Ag	174/179~(97%)	165 (95%)	9 (5%)	0	100	100
11	Ak	102/105~(97%)	96 (94%)	6 (6%)	0	100	100
12	Al	51/223~(23%)	49 (96%)	2 (4%)	0	100	100
13	Am	156/166~(94%)	145 (93%)	11 (7%)	0	100	100
14	An	156/158~(99%)	150 (96%)	6 (4%)	0	100	100
15	Ao	328/391~(84%)	309 (94%)	19 (6%)	0	100	100
16	Ар	117/119~(98%)	109 (93%)	8 (7%)	0	100	100
17	Aq	271/305~(89%)	251 (93%)	20 (7%)	0	100	100
18	Ar	141/143~(99%)	126 (89%)	15 (11%)	0	100	100
19	As	234/237~(99%)	215 (92%)	19 (8%)	0	100	100
20	At	181/242~(75%)	170 (94%)	10 (6%)	1 (1%)	25	62
21	Au	167/170~(98%)	161 (96%)	6 (4%)	0	100	100
22	Av	204/235~(87%)	193 (95%)	9 (4%)	2 (1%)	15	51
23	Aw	340/364~(93%)	323 (95%)	17 (5%)	0	100	100
24	Ax	130/138~(94%)	124 (95%)	6 (5%)	0	100	100
25	Ay	188/234~(80%)	180 (96%)	8 (4%)	0	100	100
26	Az	235/321~(73%)	223 (95%)	11 (5%)	1 (0%)	34	69
27	AA	174/237~(73%)	162 (93%)	12 (7%)	0	100	100
28	AB	262/289~(91%)	247 (94%)	14 (5%)	1 (0%)	34	69
29	AC	282/307~(92%)	269 (95%)	13 (5%)	0	100	100
31	AE	55/64~(86%)	51 (93%)	4 (7%)	0	100	100
					Continued a	on next	page

PROTEIN DATA BANK

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
32	AF	113/164~(69%)	110 (97%)	3~(3%)	0	100	100
33	AG	36/93~(39%)	35 (97%)	1 (3%)	0	100	100
34	AH	175/199~(88%)	169 (97%)	6 (3%)	0	100	100
35	AI	120/155~(77%)	113 (94%)	7 (6%)	0	100	100
36	AJ	176/179~(98%)	165 (94%)	11 (6%)	0	100	100
37	AK	242/309~(78%)	230 (95%)	12 (5%)	0	100	100
38	AL	143/145~(99%)	136 (95%)	7 (5%)	0	100	100
39	AM	124/184~(67%)	121 (98%)	3 (2%)	0	100	100
40	AN	94/158~(60%)	91 (97%)	3 (3%)	0	100	100
41	AO	118/155~(76%)	117 (99%)	1 (1%)	0	100	100
42	AP	362/386~(94%)	351 (97%)	11 (3%)	0	100	100
43	AQ	48/109~(44%)	41 (85%)	7 (15%)	0	100	100
44	AR	272/348~(78%)	256 (94%)	16 (6%)	0	100	100
45	AS	724/764~(95%)	696 (96%)	28 (4%)	0	100	100
46	AT	164/299~(55%)	155 (94%)	9 (6%)	0	100	100
47	AU	477/499~(96%)	454 (95%)	23 (5%)	0	100	100
48	AV	127/160~(79%)	116 (91%)	11 (9%)	0	100	100
51	Bc	157/159~(99%)	147 (94%)	10 (6%)	0	100	100
52	Bd	328/330~(99%)	316 (96%)	12 (4%)	0	100	100
53	Be	403/405~(100%)	387 (96%)	16 (4%)	0	100	100
54	Bf	335/351~(95%)	314 (94%)	21 (6%)	0	100	100
55	Bg	134/141~(95%)	124 (92%)	10 (8%)	0	100	100
56	Bh	254/276~(92%)	237 (93%)	17 (7%)	0	100	100
57	Bi	620/737~(84%)	593 (96%)	26 (4%)	1 (0%)	47	78
58	Bj	150/152~(99%)	143 (95%)	7 (5%)	0	100	100
59	Bk	224/238~(94%)	208 (93%)	16 (7%)	0	100	100
60	Bl	127/133~(96%)	115 (91%)	12 (9%)	0	100	100
61	Bm	218/276~(79%)	205 (94%)	13 (6%)	0	100	100
62	Bn	99/101~(98%)	98 (99%)	1 (1%)	0	100	100
63	Во	177/196~(90%)	170 (96%)	7 (4%)	0	100	100
64	Bp	410/437~(94%)	386 (94%)	24 (6%)	0	100	100

-			
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
65	Bq	172/182~(94%)	164 (95%)	7 (4%)	1 (1%)	25	62
66	Br	521/549~(95%)	498 (96%)	23~(4%)	0	100	100
67	Bs	85/98~(87%)	78 (92%)	7 (8%)	0	100	100
68	Bt	100/102~(98%)	99 (99%)	1 (1%)	0	100	100
69	Bu	400/567~(70%)	385 (96%)	15 (4%)	0	100	100
70	Bv	461/579~(80%)	450 (98%)	11 (2%)	0	100	100
71	Bw	656/703~(93%)	630 (96%)	26 (4%)	0	100	100
72	Bx	526/719~(73%)	505 (96%)	21 (4%)	0	100	100
73	By	105/132~(80%)	104 (99%)	1 (1%)	0	100	100
74	Bz	121/147~(82%)	111 (92%)	10 (8%)	0	100	100
75	BA	136/149~(91%)	127 (93%)	9 (7%)	0	100	100
76	BB	108/112~(96%)	103 (95%)	5 (5%)	0	100	100
78	BD	105/130~(81%)	100 (95%)	5 (5%)	0	100	100
79	BE	445/464~(96%)	418 (94%)	27 (6%)	0	100	100
81	BG	162/182~(89%)	156 (96%)	6 (4%)	0	100	100
83	BI	1409/1451~(97%)	1337 (95%)	72 (5%)	0	100	100
84	BJ	1513/1539~(98%)	1438 (95%)	75 (5%)	0	100	100
85	BK	265/267~(99%)	253 (96%)	12 (4%)	0	100	100
86	BL	179/310~(58%)	170 (95%)	9~(5%)	0	100	100
87	BM	282/355~(79%)	265 (94%)	17 (6%)	0	100	100
88	BN	272/283~(96%)	257 (94%)	15~(6%)	0	100	100
89	BO	34/142~(24%)	30 (88%)	4 (12%)	0	100	100
90	BP	58/100~(58%)	49 (84%)	9 (16%)	0	100	100
91	BQ	618/1032~(60%)	578 (94%)	40 (6%)	0	100	100
92	BR	141/143~(99%)	136 (96%)	5 (4%)	0	100	100
93	BS	429/1086~(40%)	416 (97%)	13 (3%)	0	100	100
94	BT	4/297~(1%)	4 (100%)	0	0	100	100
95	BU	$\overline{307/439}~(70\%)$	298~(97%)	9(3%)	0	100	100
96	BV	$\overline{222/310}~(72\%)$	210 (95%)	12 (5%)	0	100	100
98	BX	127/151 (84%)	121 (95%)	6 (5%)	0	100	100
99	BY	$290/32\overline{7}~(89\%)$	279 (96%)	11 (4%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
All	All	22381/27039~(83%)	21256 (95%)	1118 (5%)	7~(0%)	100	100

5 of 7 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
20	At	46	TRP
22	Av	114	ALA
26	Az	138	ASP
57	Bi	565	VAL
65	Bq	143	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	Ac	235/235~(100%)	235~(100%)	0	100 100
4	Ad	330/391~(84%)	328~(99%)	2(1%)	86 93
5	Ae	306/326~(94%)	306 (100%)	0	100 100
6	Af	68/68~(100%)	68~(100%)	0	100 100
7	Ag	170/172~(99%)	170 (100%)	0	100 100
11	Ak	93/93~(100%)	93~(100%)	0	100 100
12	Al	46/203~(23%)	46 (100%)	0	100 100
13	Am	156/156~(100%)	156 (100%)	0	100 100
14	An	138/138~(100%)	138 (100%)	0	100 100
15	Ao	309/345~(90%)	309~(100%)	0	100 100
16	Ap	110/110~(100%)	110 (100%)	0	100 100
17	Aq	239/269~(89%)	239~(100%)	0	100 100
18	Ar	135/135~(100%)	135~(100%)	0	100 100
19	As	208/209~(100%)	208 (100%)	0	100 100
20	At	168/224~(75%)	168 (100%)	0	100 100
21	Au	150/151~(99%)	150 (100%)	0	100 100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
22	Av	187/211~(89%)	187~(100%)	0	100	100
23	Aw	309/331~(93%)	309 (100%)	0	100	100
24	Ax	125/130~(96%)	125 (100%)	0	100	100
25	Ay	168/208~(81%)	168 (100%)	0	100	100
26	Az	218/295~(74%)	218 (100%)	0	100	100
27	AA	157/212~(74%)	157 (100%)	0	100	100
28	AB	255/278~(92%)	255 (100%)	0	100	100
29	AC	256/277~(92%)	256 (100%)	0	100	100
31	AE	49/55~(89%)	49 (100%)	0	100	100
32	AF	103/150~(69%)	103 (100%)	0	100	100
33	AG	35/89~(39%)	35 (100%)	0	100	100
34	AH	164/184~(89%)	164 (100%)	0	100	100
35	AI	115/144~(80%)	115 (100%)	0	100	100
36	AJ	164/165~(99%)	164 (100%)	0	100	100
37	AK	226/286~(79%)	226 (100%)	0	100	100
38	AL	132/132~(100%)	132 (100%)	0	100	100
39	AM	113/170~(66%)	113 (100%)	0	100	100
40	AN	91/139~(66%)	91 (100%)	0	100	100
41	AO	109/138~(79%)	109 (100%)	0	100	100
42	AP	339/359~(94%)	339 (100%)	0	100	100
43	AQ	45/98~(46%)	45 (100%)	0	100	100
44	AR	258/324~(80%)	258 (100%)	0	100	100
45	AS	657/691~(95%)	657~(100%)	0	100	100
46	AT	151/273~(55%)	151 (100%)	0	100	100
47	AU	443/461~(96%)	442 (100%)	1 (0%)	93	97
48	AV	119/149~(80%)	119 (100%)	0	100	100
51	Bc	158/158~(100%)	158 (100%)	0	100	100
52	Bd	319/319~(100%)	319 (100%)	0	100	100
53	Be	396/396~(100%)	396 (100%)	0	100	100
54	Bf	304/317~(96%)	303 (100%)	1 (0%)	92	96
55	Bg	117/122~(96%)	117 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
56	Bh	249/269~(93%)	249 (100%)	0	100	100
57	Bi	582/683~(85%)	582 (100%)	0	100	100
58	Bj	148/148~(100%)	148 (100%)	0	100	100
59	Bk	216/228~(95%)	216 (100%)	0	100	100
60	Bl	113/116~(97%)	113 (100%)	0	100	100
61	Bm	209/258~(81%)	208 (100%)	1 (0%)	88	94
62	Bn	94/94~(100%)	94 (100%)	0	100	100
63	Bo	161/177~(91%)	161 (100%)	0	100	100
64	Bp	382/406~(94%)	382 (100%)	0	100	100
65	Bq	161/167~(96%)	161 (100%)	0	100	100
66	Br	481/506~(95%)	481 (100%)	0	100	100
67	Bs	82/93~(88%)	82 (100%)	0	100	100
68	Bt	93/93~(100%)	93 (100%)	0	100	100
69	Bu	378/386~(98%)	378 (100%)	0	100	100
70	Bv	433/540~(80%)	433 (100%)	0	100	100
71	Bw	609/647~(94%)	608 (100%)	1 (0%)	93	97
72	Bx	491/660~(74%)	491 (100%)	0	100	100
73	By	96/116~(83%)	96~(100%)	0	100	100
74	Bz	107/126~(85%)	106 (99%)	1 (1%)	78	88
75	BA	130/141~(92%)	130 (100%)	0	100	100
76	BB	101/102~(99%)	101 (100%)	0	100	100
78	BD	98/120~(82%)	98 (100%)	0	100	100
79	BE	404/420~(96%)	403 (100%)	1 (0%)	93	97
81	BG	153/171~(90%)	152 (99%)	1 (1%)	84	91
83	BI	1306/1335~(98%)	1306 (100%)	0	100	100
84	BJ	1405/1426~(98%)	1405 (100%)	0	100	100
85	BK	235/235~(100%)	235 (100%)	0	100	100
86	BL	168/291~(58%)	168 (100%)	0	100	100
87	BM	256/322~(80%)	256 (100%)	0	100	100
88	BN	$\overline{249/256}~(97\%)$	249 (100%)	0	100	100
89	BO	35/35~(100%)	35 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
90	BP	57/57~(100%)	57~(100%)	0	100	100
91	BQ	582/958~(61%)	582 (100%)	0	100	100
92	BR	133/133~(100%)	132~(99%)	1 (1%)	81	89
93	BS	399/1002~(40%)	399~(100%)	0	100	100
95	BU	285/403~(71%)	285~(100%)	0	100	100
96	BV	197/197~(100%)	197~(100%)	0	100	100
98	BX	126/142~(89%)	126 (100%)	0	100	100
99	BY	280/280~(100%)	279 (100%)	1 (0%)	91	95
All	All	20827/24225~(86%)	20816 (100%)	11 (0%)	93	98

5 of 11 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
79	BE	421	ARG
81	BG	24	ARG
99	BY	229	ASN
92	BR	96	ARG
61	Bm	184	ASN

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 65 such side chains are listed below:

Mol	Chain	Res	Type
88	BN	168	ASN
91	BQ	433	ASN
53	Be	210	ASN
52	Bd	167	ASN
92	BR	50	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	Aa	277/278~(99%)	64 (23%)	0
2	Ab	2234/2314~(96%)	447 (20%)	0
49	Ba	195/196~(99%)	43 (22%)	0
50	Bb	1384/1395~(99%)	256 (18%)	0
All	All	4090/4183~(97%)	810 (19%)	0

Mol	Chain	Res	Type
1	Aa	6	U
1	Aa	7	G
1	Aa	13	А
1	Aa	35	А
1	Aa	47	U

5 of 810 RNA backbone outliers are listed below:

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 398 ligands modelled in this entry, 395 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Tuno		Chain I	Dog	Dog	Dec	Dec	Dec	Dec	Dec	Dec	in Dec	Tink	Bo	ond leng	ths	В	ond ang	les
MOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2								
102	FES	AV	202	48	0,4,4	-	-	-										
103	ATP	Bw	801	100	26,33,33	0.98	2 (7%)	31,52,52	1.72	7 (22%)								
102	FES	AV	201	48	0,4,4	-	-	-										

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
102	FES	AV	202	48	-	-	0/1/1/1
102	FES	AV	201	48	-	-	0/1/1/1
103	ATP	Bw	801	100	-	5/18/38/38	0/3/3/3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
103	Bw	801	ATP	C5-C4	2.15	1.46	1.40
103	Bw	801	ATP	O4'-C1'	2.14	1.44	1.41

The worst 5 of 7 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
103	Bw	801	ATP	N3-C2-N1	-3.68	122.93	128.68
103	Bw	801	ATP	PB-O3B-PG	-3.55	120.65	132.83
103	Bw	801	ATP	C4-C5-N7	-3.04	106.23	109.40
103	Bw	801	ATP	PA-O3A-PB	-2.72	123.49	132.83
103	Bw	801	ATP	O4'-C1'-C2'	-2.63	103.08	106.93

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
103	Bw	801	ATP	O4'-C4'-C5'-O5'
103	Bw	801	ATP	C3'-C4'-C5'-O5'
103	Bw	801	ATP	PG-O3B-PB-O1B
103	Bw	801	ATP	PB-O3A-PA-O2A
103	Bw	801	ATP	PG-O3B-PB-O2B

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier.

The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
97	BW	18
89	BO	8
99	BY	4
96	BV	4
69	Bu	2
10	Aj	1
8	Ah	1
94	BT	1

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	BO	142:CYS	С	147:UNK	Ν	25.16
1	BW	47:UNK	С	49:UNK	Ν	20.28
1	Bu	448:UNK	С	457:GLU	Ν	19.30
1	BW	201:UNK	С	202:UNK	Ν	19.15
1	BW	83:UNK	С	84:UNK	Ν	18.63

The worst 5 of 39 chain breaks are listed below:

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11032. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 275

Z Index: 275

6.2.2 Raw map

X Index: 275

Y Index: 275

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 325

Z Index: 275

6.3.2 Raw map

X Index: 325

Y Index: 255

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{11032}_{msk_{1.map}}$ 6.5.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1885 $\rm nm^3;$ this corresponds to an approximate mass of 1703 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.70	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	4.60	7.62	4.79

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.60 differs from the reported value 3.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11032 and PDB model 6Z1P. Per-residue inclusion information can be found in section 3 on page 25.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 69% of all backbone atoms, 70% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7010	0.3830
AA	0.7606	0.4440
AB	0.7120	0.4090
AC	0.6715	0.3650
AD	0.9000	0.5190
AE	0.6906	0.4150
AF	0.7748	0.4570
AG	0.7702	0.4630
AH	0.5038	0.2540
AI	0.6988	0.3960
AJ	0.7348	0.4430
AK	0.3641	0.1780
AL	0.7863	0.4570
AM	0.6827	0.3790
AN	0.6474	0.3750
AO	0.7150	0.3930
AP	0.7073	0.3860
AQ	0.7822	0.4570
AR	0.5124	0.2630
AS	0.5915	0.3190
AT	0.5240	0.2980
AU	0.6745	0.3660
AV	0.7623	0.4500
Aa	0.8761	0.4320
Ab	0.8931	0.4460
Ac	0.7561	0.4580
Ad	0.7238	0.4340
Ae	0.7371	0.4290
Af	0.5025	0.2960
Ag	0.7409	0.4160
Ah	0.3774	0.2760
Ai	0.5967	0.2870
Aj	0.3768	0.2440
Ak	0.4289	0.2720
Al	0.6995	0.3830

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
Am	0.5014	0.3110
An	0.6150	0.3510
Ao	0.7227	0.4260
Ap	0.7455	0.4650
Aq	0.7382	0.4290
Ar	0.7467	0.4510
As	0.6911	0.3850
At	0.7580	0.4460
Au	0.7380	0.4330
Av	0.7536	0.4390
Aw	0.7332	0.4300
Ax	0.6957	0.4060
Ay	0.7381	0.4240
Az	0.6721	0.3820
BA	0.5616	0.3540
BB	0.6231	0.3650
BC	0.8865	0.4930
BD	0.6725	0.3790
BE	0.6721	0.4120
BF	0.7826	0.4430
BG	0.5394	0.3170
BH	0.7143	0.3560
BI	0.6642	0.3950
BJ	0.6599	0.3690
BK	0.7417	0.4310
BL	0.6967	0.4100
BM	0.3524	0.2350
BN	0.7116	0.3860
BO	0.3006	0.2350
BP	0.5723	0.2930
BQ	0.5206	0.2920
BR	0.5924	0.3300
BS	0.3966	0.2270
BT	0.6088	0.3160
BU	0.4715	0.2790
BV	0.5002	0.2710
BW	0.2189	0.2080
BX	0.5665	0.3580
BY	0.5390	0.2720
Ba	0.8742	0.4210
Bb	0.8428	0.4080
Bc	0.6981	0.4420

Continued on next page...

Chain	Atom inclusion	Q-score
Bd	0.5334	0.3400
Be	0.6934	0.4220
Bf	0.7072	0.4390
Bg	0.6853	0.4030
Bh	0.4651	0.3010
Bi	0.6010	0.3720
Bj	0.6396	0.3880
Bk	0.5932	0.3520
Bl	0.7120	0.4240
Bm	0.3903	0.2720
Bn	0.6311	0.3780
Bo	0.7266	0.4180
Bp	0.6986	0.4030
Bq	0.5595	0.3700
Br	0.6388	0.3620
Bs	0.5134	0.3060
Bt	0.6913	0.4000
Bu	0.6137	0.3590
Bv	0.5986	0.3290
Bw	0.5103	0.3060
Bx	0.4969	0.3070
By	0.5482	0.3250
Bz	0.6656	0.3690

Continued from previous page...

