

Full wwPDB X-ray Structure Validation Report (i)

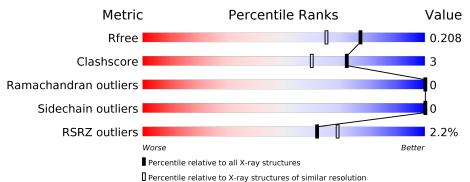
May 25, 2020 - 05:04 pm BST

PDB ID	:	4Z8A
Title	:	SH3-III of Drosophila Rim-binding protein bound to a Cacophony derived
		peptide
Authors	:	Driller, J.H.; Holton, N.; Siebert, M.; Boehme, A.M.; Wahl, M.C.; Sigrist, S.J.;
		Loll, B.
Deposited on	:	2015-04-08
Resolution	:	1.76 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:


MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.11
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25 th 2019)
Refmac	:	5.8.0158
CCP4	:	$7.0.044 (\mathrm{Gargrove})$
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.11

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.76 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries},{ m resolution\ range}({ m \AA}))$
R_{free}	130704	2340(1.76-1.76)
Clashscore	141614	2466 (1.76-1.76)
Ramachandran outliers	138981	2437(1.76-1.76)
Sidechain outliers	138945	2437 (1.76-1.76)
RSRZ outliers	127900	2298 (1.76-1.76)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	75	3% 	11%
2	В	17	100%	

4Z8A

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 850 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called RIM-binding protein, isoform F.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	А	75	Total 623	C 399	N 96	O 123	${ m S}{ m 5}$	0	6	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	1433	GLY	-	expression tag	UNP A0A0B4JDC9
А	1434	PRO	-	expression tag	UNP A0A0B4JDC9
А	1435	LEU	-	expression tag	UNP A0A0B4JDC9
А	1436	GLY	-	expression tag	UNP A0A0B4JDC9
A	1437	SER	-	expression tag	UNP A0A0B4JDC9
А	1438	PRO	-	expression tag	UNP A0A0B4JDC9
А	1439	GLU	-	expression tag	UNP A0A0B4JDC9
A	1440	PHE	-	expression tag	UNP A0A0B4JDC9
А	1441	ASN	-	expression tag	UNP A0A0B4JDC9
A	1442	ARG	-	expression tag	UNP A0A0B4JDC9

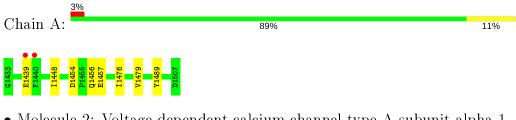
• Molecule 2 is a protein called Voltage-dependent calcium channel type A subunit alpha-1.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
2	В	17	Total 117		N 23	O 20	0	0	1

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	1684	ACE	-	acetylation	UNP P91645
В	1700	NH2	-	amidation	UNP P91645

• Molecule 3 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	78	Total O 78 78	0	0
3	В	32	$\begin{array}{cc} \text{Total} & \text{O} \\ 32 & 32 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RIM-binding protein, isoform F

• Molecule 2: Voltage-dependent calcium channel type A subunit alpha-1

Chain B:

100%

There are no outlier residues recorded for this chain.

4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 2 2 2	Depositor
Cell constants	52.13Å 54.25 Å 73.58 Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	43.66 - 1.76	Depositor
Resolution (A)	43.66 - 1.76	EDS
% Data completeness	$97.8 \ (43.66-1.76)$	Depositor
(in resolution range)	$97.8 \ (43.66-1.76)$	EDS
R _{merge}	0.12	Depositor
$\frac{\mathbf{R}_{sym}}{< I/\sigma(I) > 1}$	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.81 (at 1.76 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.9_1692	Depositor
D D .	0.159 , 0.208	Depositor
R, R_{free}	0.160 , 0.208	DCC
R_{free} test set	523 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	15.5	Xtriage
Anisotropy	0.773	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.37 , 51.8	EDS
L-test for twinning ²	$< L > = 0.48, < L^2 > = 0.32$	Xtriage
Estimated twinning fraction	$\begin{array}{c} 0.000 \; {\rm for}\; -1/2^{*}{\rm h} +1/2^{*}{\rm k} +1/2^{*}{\rm l}, 1/2^{*}{\rm h} -1/2^{*}{\rm k} \\ \qquad +1/2^{*}{\rm l}, {\rm h} +{\rm k} \\ 0.035 \; {\rm for}\; -1/2^{*}{\rm h} +1/2^{*}{\rm k} -1/2^{*}{\rm l}, 1/2^{*}{\rm h} -1/2^{*}{\rm k} -1/2^{*}{\rm l}, {\rm h} -{\rm k} \\ 0.017 \; {\rm for}\; {\rm k}, {\rm h}, {\rm l} \\ 0.037 \; {\rm for}\; -1/2^{*}{\rm h} -1/2^{*}{\rm k} +1/2^{*}{\rm l}, {\rm l}, {\rm l} -1/2^{*}{\rm k} -1/2^{*}{\rm k} +1/2^{*}{\rm l}, {\rm h} -{\rm k} \\ 0.024 \; {\rm for}\; -1/2^{*}{\rm h} -1/2^{*}{\rm k} -1/2^{*}{\rm l}, {\rm l}, {\rm l} -1/2^{*}{\rm k} +1/2^{*}{\rm l}, {\rm l}, {\rm l} +{\rm l} +1/2^{*}{\rm l}, {\rm l}, {\rm l} -1/2^{*}{\rm k} +1/2^{*}{\rm l}, {\rm l}, {\rm l} +{\rm l} +1/2^{*}{\rm l} +{\rm l} +1/2$	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	850	wwPDB-VP
Average B, all atoms $(Å^2)$	18.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 13.34% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ACE, $\rm NH2$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.49	0/648	0.58	0/876	
2	В	0.40	0/117	0.55	0/160	
All	All	0.48	0/765	0.58	0/1036	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	623	0	606	5	0
2	В	117	0	130	0	0
3	А	78	0	0	2	2
3	В	32	0	0	0	1
All	All	850	0	736	5	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (5) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:1457:GLU:OE1	3:A:1601:HOH:O	2.20	0.48
1:A:1439:GLU:HB3	3:A:1666:HOH:O	2.15	0.46
1:A:1479:VAL:HG13	1:A:1489:TYR:HB3	2.01	0.42
1:A:1448:ILE:HG12	1:A:1476[A]:ILE:HD12	2.02	0.41
1:A:1454:ASP:OD1	1:A:1456[B]:GLN:HG2	2.20	0.40

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
3:A:1651:HOH:O	3:B:1822:HOH:O[7_545]	2.16	0.04	
3:A:1668:HOH:O	3:A:1670:HOH:O[8_555]	2.18	0.02	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	А	79/75~(105%)	79 (100%)	0	0	100	100
2	В	15/17~(88%)	15~(100%)	0	0	100	100
All	All	94/92~(102%)	94 (100%)	0	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outlie		Percentiles	
1	А	70/64~(109%)	70~(100%)	0	100 100	
2	В	14/14~(100%)	14~(100%)	0	100 100	
All	All	84/78~(108%)	84~(100%)	0	100 100	

There are no protein residues with a non-rotameric sidechain to report.

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ $>$ 2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	$\mathbf{Q}{<}0.9$
1	А	75/75~(100%)	-0.21	2 (2%) 54 60	10,14,31,51	0
2	В	15/17~(88%)	-0.36	0 100 100	11, 14, 22, 31	0
All	All	90/92~(97%)	-0.24	2 (2%) 62 69	10, 14, 31, 51	0

All (2) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	1440	PHE	3.2
1	А	1439	GLU	2.3

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

