

Nov 8, 2022 - 10:03 AM JST

PDB ID	:	5ZEP
EMDB ID	:	EMD-6921
Title	:	M. smegmatis hibernating state 70S ribosome structure
Authors	:	Mishra, S.; Ahmed, T.; Tyagi, A.; Shi, J.; Bhushan, S.
Deposited on	:	2018-02-27
Resolution	:	3.40 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	a	1528	67%	27%	•••
2	с	275	71%	24	4%
3	е	214	88%		• 7%
4	g	156	95%		
5	h	132	93%		5% •
6	i	150	77%	6%•	16%
7	j	101	92%		
8	k	138	78%	7%	15%

Continued from previous page... Chain Length Quality of chain Mol 9 1 124 6% • 92% İ. •• 10 89 0 97% i. 11 98 • 6% q 92% i. 12r 84 75% 24% • 1393 \mathbf{S} 80% 16% • 14 \mathbf{t} 86 . . 94% ••• 1561 n 97% \mathbf{b} 2771681% 18% • 201 17d 99% f 96 1898% . ÷ 19124 \mathbf{m} 94% 6% 20156р 72% 28% • 2133 u 76% 21% 17% 2277W 39% 53% 8% 35% 23230х 30% 11% 57% 32% 240 47945% 53% С 2527890% 8% • D 262175%• 93% 27Е 2158% • • 87% i. F • 2818788% 9% i \mathbf{G} . 2917998% ÷ 30 Η 15199% 6% 31 Ι 17572% 28% 5% J 3214294% 6% 33 Κ 14791% 9%

Chain Length Quality of chain Mol L 122348% • 91% İ. •• 35М 14798% 36 Ν 138. . . 92% i. Ο 3719951% 7% • 41% Р 3812799% • Q 3911398% . 129 40 R 95% • • i ... \mathbf{S} 10341 97% Т 4215369% 5% •• 25% U 1004379% 12% • 6% i V 4410584% 9% 8% W 4521579% 7% 13% 5% 46Х 88 6% • 7% 86% Υ 476498% . i. Ζ 487774% 8% 18% <u>.</u> 4961. . v 95% 7% 7550. . у 83% 12% • 5751 \mathbf{Z} 95% 5% 5% 521 5569% 16% 5% 9% ÷ 26% • 534789% ÷ . . 3 546495% • 55437 95% 5% 8% 5652496% • В 118••• 5764% 33% 583120 • • А 67% 30%

2 Entry composition (i)

There are 58 unique types of molecules in this entry. The entry contains 152451 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	a	1506	Total 32341	C 14404	N 5921	O 10510	Р 1506	0	0

• Molecule 2 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	С	210	Total 1672	C 1043	N 324	O 300	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
3	е	198	Total 1433	C 885	N 282	O 262	${S \atop 4}$	0	0

• Molecule 4 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	g	156	Total 1240	C 773	N 242	0 222	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	h	130	Total 1003	C 629	N 188	0 185	S 1	0	0

• Molecule 6 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
6	i	126	Total 994	C 630	N 194	O 170	0	0

• Molecule 7 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	j	97	Total 775	C 488	N 143	0 141	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	k	117	Total 871	C 539	N 173	0 158	S 1	0	0

• Molecule 9 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
9	1	122	Total 958	C 594	N 197	0 165	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 10 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
10	О	87	Total 709	C 443	N 143	O 123	0	0

• Molecule 11 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
11	q	92	Total 730	C 458	N 138	0 132	${S \over 2}$	0	0

• Molecule 12 is a protein called 30S ribosomal protein S18 2.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
12	r	64	Total 512	C 319	N 102	0 88	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms		AltConf	Trace	
13	S	78	Total 630	C 405	N 117	0 107	S 1	0	0

• Molecule 14 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
14	t	84	Total 655	C 399	N 138	0 118	0	0

• Molecule 15 is a protein called 30S ribosomal protein S14 type Z.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
15	n	60	Total 477	C 302	N 97	O 73	${f S}{5}$	0	0

• Molecule 16 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		Ate	AltConf	Trace			
16	b	228	Total 1793	C 1132	N 322	O 330	S 9	0	0

• Molecule 17 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate	AltConf	Trace			
17	d	200	Total 1641	C 1028	N 316	O 295	${S \over 2}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	f	96	Total 771	C 486	N 138	0 145	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	m	116	Total 935	C 572	N 191	O 169	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
20	р	113	Total 891	C 570	N 162	O 159	0	0

• Molecule 21 is a protein called Conserved domain protein.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
21	u	32	Total 280	C 172	N 71	O 36	S 1	0	0

• Molecule 22 is a RNA chain called E-tRNAfMet.

Mol	Chain	Residues		A	AltConf	Trace			
22	W	77	Total 1643	С 732	N 297	O 537	Р 77	0	0

• Molecule 23 is a protein called Ribosome hibernation promoting factor.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	x	100	Total 831	C 513	N 167	0 149	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called bS1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
24	0	262	Total 1310	C 786	N 262	O 262	0	0

• Molecule 25 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	С	273	Total 2097	C 1290	N 435	O 368	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	D	214	Total 1587	C 982	N 310	O 290	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
27	Е	207	Total 1553	C 959	N 292	O 300	$\frac{\mathrm{S}}{2}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	F	181	Total 1437	C 903	N 269	O 259	S 6	0	0

• Molecule 29 is a protein called 50S ribosomal protein L6.

	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
29	G	176	Total	C 845	N 240	0 253	S 1	0	0

• Molecule 30 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	Н	151	Total 1018	C 635	N 188	0 194	S 1	0	0

• Molecule 31 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	Ι	126	Total 918	C 580	N 156	0 180	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	J	133	Total 990	C 625	N 175	0 187	${ m S} { m 3}$	0	0

• Molecule 33 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	K	147	Total 1138	С 727	N 208	O 201	${ m S} { m 2}$	0	0

• Molecule 34 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	L	121	Total 930	C 580	N 178	O 169	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	М	145	Total 1078	C 676	N 205	O 194	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	Ν	134	Total 1074	C 680	N 211	0 181	${ m S} { m 2}$	0	0

• Molecule 37 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	AltConf	Trace			
37	О	117	Total 919	C 577	N 178	0 162	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 38 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
38	Р	126	Total	C	N 100	0	0	0
			950	580	199	1/1		

• Molecule 39 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	AltConf	Trace			
39	Q	113	Total 907	C 570	N 171	0 165	S 1	0	0

• Molecule 40 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
40	R	124	Total 988	C 613	N 203	0 172	0	0

• Molecule 41 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
41	S	102	Total 768	C 487	N 140	O 141	0	0

• Molecule 42 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
42	Т	114	Total 873	C 543	N 171	O 159	0	0

• Molecule 43 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
43	U	94	Total 739	C 469	N 135	O 135	0	0

• Molecule 44 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	AltConf	Trace			
44	V	97	Total 731	C 456	N 137	0 136	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
45	W	186	Total	С	N	Ō	0	0
40	vv	160	1389	859	249	281	0	0

• Molecule 46 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
46	Х	82	Total 604	C 372	N 127	O 105	0	0

• Molecule 47 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
47	Y	63	Total 470	C 283	N 103	O 80	$\frac{S}{4}$	0	0

• Molecule 48 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	Z	63	Total 527	C 322	N 102	O 102	S 1	0	0

• Molecule 49 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
49	v	60	Total 483	C 298	N 97	O 88	0	0

• Molecule 50 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
50	У	66	Total 510	C 316	N 03	0 96	S 5	0	0

• Molecule 51 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
51	Z	54	Total 423	C 260	N 93	O 69	S 1	0	0

• Molecule 52 is a protein called 50S ribosomal protein L33 1.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
52	1	50	Total 416	C 254	N 86	0 72	$\frac{S}{4}$	0	0

• Molecule 53 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
53	2	45	Total 372	C 222	N 96	O 53	S 1	0	0

• Molecule 54 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
54	3	63	Total 502	C 302	N 115	O 85	0	0

• Molecule 55 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
55	4	37	Total 298	C 181	N 66	O 46	${S \atop 5}$	0	0

• Molecule 56 is a protein called Uncharacterized protein.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
56	5	23	Total 189	C 111	N 50	O 28	0	0

• Molecule 57 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
57	В	117	Total 2501	C 1116	N 462	O 806	Р 117	0	0

• Molecule 58 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
58	А	3102	Total 66623	C 29694	N 12253	O 21574	Р 3102	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain a: 67% 27%
- Molecule 1: 16S rRNA

• Molecule 7: 30S	ribosomal protein S10	
Chain j:	92%	• •
MET ALA ALA ALA CLY CLY K5 K5 R5 R5 R5 R5 R5	100 1100 0101	
• Molecule 8: 30S :	ribosomal protein S11	
Chain k:	78%	7% 15%
MET ALA ALA ALA ALA ALA GLY GLY GLY ALA ALA ALA ALA ALA ALA ALA GLY GLY	CLUS LYS THR ARG ARG ARG ARG CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	V138
• Molecule 9: 30S	ribosomal protein S12	
Chain l:	92%	6% ·
MET P2 R13 A17 K20 K20 K20 K25 K25	M46 K56 S59 K88 K88 K88 K88 SBR	
• Molecule 10: 30S	b ribosomal protein S15	
Chain o:	97%	
MET A2 R64 R68 ARG		
• Molecule 11: 30S	S ribosomal protein S17	
Chain q:	92%	• 6%
MET ALA ALA ALA CLN LLYS CLN K15 A A 7 L76 A A 7 L76 A A 7 L76		
• Molecule 12: 30S	S ribosomal protein S18 2	
Chain r:	75%	• 24%
MET ALA ALA SER SER SER ASE ASE ASE ARG ALA PRO PRO PRO PRO PRO	VAL K16 K19 CT SER SER ARG	
• Molecule 13: 30S	S ribosomal protein S19	
Chain s:	80%	• 16%

MET PRO ARG SER LEU KG Q29 R55 R55 F73	ASP ITE ITE ASP ASP ASP ASP ASC ASC ASC ASC ASC	
• Molecule 14: 30S	5 ribosomal protein S20	
Chain t:	94%	
NET ALA N3 L18 L19 R18 R18 R18 R19 R20 R20		
• Molecule 15: 30S	S ribosomal protein S14 type Z	
Chain n:	97%	
MET A2 A45 A45 A45 A45 A45 A45 A45 A45 A45 A45		
• Molecule 16: 30S	S ribosomal protein S2	
Chain b:	81%	• 18%
M1 N24 E127 A167 N167 N203 R278 R228	ALA ALA GLY GLY GLY GLY GLY FIO FIO ALA ALA ALA ALA ALA CLU CLU GLU GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA ALA ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ALA SER		
• Molecule 17: 30S	5 ribosomal protein S4	
Chain d:	99%	
MET A 2 E 43 E 43 F 186 F 186 K 201		
• Molecule 18: 30S	S ribosomal protein S6	
Chain f:	98%	•
M1 R47 A67 H96		
• Molecule 19: 30S	5 ribosomal protein S13	
Chain m:	94%	6%
MET A2 T116 T117 A1A A1A C1Y C1YS LYS LYS LYS ALA ARG		

M1 L8 D37 K53	K67 100 100 100 100 100 100 100 10	V121 LEU					
• Molecule 35:	50S ribosomal protein	L15					
Chain M:		98%)				
MET SER 85 843 843 147							
• Molecule 36:	50S ribosomal protein	L16					
Chain N:		92%					
M1 619 134 R60 R60 R60	P78 479 492 1122 1122 010 010 010 010						
• Molecule 37:	50S ribosomal protein	L17					
Chain O:	51%		7% •	43	1%	_	
MET 15 814 815 815	R45 P46 H61 H61 L79 R115 N115 N117 R117	E118 LYS THR VAL THP	ASP GLU ALA ASN ARG ARG ARG	ARG ALA ALA ALA SER GLN	ALA LYS ALA ASP GLU ARG	ALA ASP GLU LYS ALA	ASP GLU LYS ALA
GLU CLU CLU CLU CLU CLU CLU CLU ALA	ALA GLU GLU GLU GLU GLU ALA ALA ALA GLU CLU GLU GLU TTHR	THK GLU ALA PRO ALA	GLU GLU SER THR GLU ALA ALA	GLU GLU SER GLU ALA LYS	ASP ASP THR LYS		
• Molecule 38:	50S ribosomal protein	L18					
Chain P:		99%				•	
MET A2 F127							
• Molecule 39:	50S ribosomal protein	L19					
Chain Q:		98%				·	
MI DI5 E101 R113							
• Molecule 40:	50S ribosomal protein	L20					
Chain R:		95%					
MET A2 K34 S125 GLY GLY GLU ALA ALA							

W O R L D W I D E PROTEIN DATA BANK

• Molecule 41: 50S ribosomal protein L21	
Chain S: 97%	
MET V K103	
\bullet Molecule 42: 50S ribosomal protein L22	
Chain T: 69% 59	% •• 25%
MET THR THR THR THR THR THR F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8	ALA THR LLYS LLYS SER LLY ALA CLU CLU CLU GLU GLU GLU
• Molecule 43: 50S ribosomal protein L23	
Chain U: 79%	12% • 6%
MET ALLA THR THR TF D6 D6 D6 D110 L112 L112 R70 R76 R77 R75 R77 R75 R77 R75 R77 R76 R77 R75 R76 R77 R76 R76 R76 R76 R76 R76 R76 R76	
• Molecule 44: 50S ribosomal protein L24	
Chain V: 84%	9% 8%
M1 L10 K20 G21 K22 G21 K22 G21 K22 G21 K22 G21 K22 G21 G12 G12 G12 G12 G12 G12 G12 G12 G	
\bullet Molecule 45: 50S ribosomal protein L25	
Chain W: 79%	7% 13%
MET LYS TIA ALA ALA ALA 17 17 16 149 149 149 149 149 149 168 168 168 168 168 168 168 168 168 168	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA
\bullet Molecule 46: 50S ribosomal protein L27	
Chain X: 86%	6% • 7%
MET ALA ALA HIS LYS KB GG A17 A17 A17 A17 A17 A17 A17 A17 A17 A17	
\bullet Molecule 47: 50S ribosomal protein L28	
Chain Y: 98%	

• Molecule 48: 50S ribosomal protein L29

Chain Z:	74%	8%	18%
MET ALA VAL GLY GLY L10 L10 M23 R23	N44 147 147 147 147 147 144 144 144 144 1		
• Molecule 49: 5	0S ribosomal protein L30		
Chain v:	95%		• •
MET A2 48 H51 H51 K61			
• Molecule 50: 5	0S ribosomal protein L31		
Chain y:	83%		•• 12%
M1 C38 F44 F44 F52 F52 F52 F52 F52 F52	SS4		
• Molecule 51: 5	0S ribosomal protein L32		
Chain z:	95%		5%
MET A2 E23 E23 L51 D55 LYS ARG			
• Molecule 52: 5	0S ribosomal protein L33 1		
Chain 1:	69%	16%	5% 9%
MET ALA SER SER SER SER SER NR N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2	K26 K27 K30 N31 N31 N32 F37 E37 E37 C42 S54 K55 K55 K55 K55 K55 K55 K55 K55 K55 K		
• Molecule 53: 5	0S ribosomal protein L34		
Chain 2:	89%		6% ·
MET ALA ALA R6 17 17 127 A47			

 \bullet Molecule 54: 50S ribosomal protein L35

<mark>U451</mark> G452	U453 U454	C455 C456	A459 G460	U461	G468	C471 C472	6474 6474	A489	A490 U491	C492 U493	G494 C495	G498	C504	C505	U509	G512	C513 C514	GEBO		U544	U547	A548 C549	C550	GSSS	G561 C562		A567	A568 G569	C572	G585			
A589	<mark>A</mark> 590 G591	A592 G593	0594 A595 C596	G 599	G605	C608	6008	0617 C618 C618	G620	<mark>U621</mark> C622	A633	ບອ	n	u638	G640	U641 G642	G643 G644	G645 11646	6647	0649 0649	<mark>G655</mark>	C656 C657	U658	GGG5 AGGG	A667	A678	e / 9	G684 G685	U689	A696			
C703	<mark>G706</mark>	G707 G708	6712	G713 U714	A721	A725	G728	G730	6732	U733 C734	A740	A747	A753		A758	G759 U760	G763	U764 G765	6766 11767	6768	0770 A770	G774	G784	A785 C786	C787 C788		G/ 94	U801 C802	<u>A830</u>	A831 G832			
<mark>6838</mark>	U839	C845 C846	<mark>C853</mark>	U857	U862 G863	C868	A871	68/2	48/9 G880	<mark>(890)</mark>	G891	A897 A898	<mark>6899</mark>	A904		A908 A909	C910 U911	C912	U915	A917	0918 A919	G920 C921	U922	C927 U928	C929	C931	C332	0937 6938	C939	0942 0943			
A944 G945	C952	C957	<mark>G960</mark> U961	U962 U963	C964 U965	9960	6971 A972	G974 1077	4976 A976	C977	C980 U981	A982 C983	U984	A994 11005	9660	C1001	C1002 A1003	ບ ⊲	G1006 61007	G1008	01009 01010	A1011 C1012	U1013 G1014	A1015 C1016			QZ01W	C1029 C1030	U1034	A1042			
G1043 U1044	C1045 C1046	A1047 A1048	G1049	A1058	A1062 G1063	A1064 C1065	C1068	G1050	A1074	U1075 A1076	A1077 G1078	C1082	G1083 U1084	G1085	U1088	A1091	G1092 A1093	G1094	A1098	C1100	A1101 G1102	C1103	G1107	G1114	U1117	C1123	C1130	G1131	G1140 U1141	G1142 G1143			
A1144	U1151	U1158	A1163 A1164	C1167 A1168	A1169 C1170	C1171 A1172 C1172	61173 61174 41175	d) 11 / 1	8/110	61181	U1184 A1185	G1186 A1187	A1188 G1189	C1190	61192 G1192	C1197	<mark>C1198</mark>	G1201 A1202		A1206	61207 U1208	G1209	U1212 A1213	A1214 U1215	A1216	U1219		G1224	A1229 G1230	<mark>U1231</mark> G1232			
A1233	11237 31238	31240	41244 11245	41246	<mark>J1250</mark> 41251	31252 21253 21253	1.254	41261	c1266	31 <mark>270</mark>	41275 41275	31276	01292 31293		0671	11302 11303	11320	c1321	J1325	11332 11332	31335	31343	A1344 31345	J1346 31347	1 262		41.362 31363	11364 31365	A1366 31367	A1368 A1369			
1370 1371	1372 ([382 [382	1389	1393	[403	1404	[409	415	[416 [417 ([428 (1429	(440 (441	444	074	1449	1456 1	1460	461 462		1466	[467	l478 l479 ([480	[485 [493 104		[499 [500			1510			
5 5	5	5		5	5	5	5 8	EA .	A A	50	5	2.2	10		•	5	5	8		5 5		55	P 4	5				5	5	A1		• •	
C1515	C1521 G1522	U1529	C1531 C1531 C1532	U1533 C1534	C1535	A1539 U1540	A1546	C1548 C1548	G1550 G1550	U1551 A1552	C1553 U1554	A1555 A1556	C1561	C1562	A1564 A1564	A1565 A1566	C1567	A1569	C1571 C1571	G1572	G1574	A1575	C1576 C1577	G1578	C1579 A1580	C1581	C1582	U1584	U1585 C1586	G1587	G1589 G1589	G1590 U1591	G1592
U1593	G1594 G1595	C1596 G1597	U1598 U1599	G1600 G1601	U1602 <mark>G1603</mark>	G1604 G1605	G1607	01608 G1609	C1610 A1611	01612	C1618	G1625	G1629 U1630	A1631	01633 U1633	A1636	G1637 C1638	G1639 41640	01641	74015	A1648 C1649	G1650 C1651	G1654	G1658	C166D		C1668 C1668	C1672	A1673 G1674	U1675 G1676 C1677	01678		
A1679 A1680	U1681	G1688		G1703	A1710	61711 61712 11712	01/13 A1714	A1/15 A1716 M1717		U1721	G1724	A1727 U1728	A1729 U1730	A1731	C1734	A1737	A1744	C1 747	A1748	C1753	61754 A1755	0 C	G1758	U1 766 U1 767	C1768		01 / / 4 C1775	A1778	<mark>U1779</mark> G1780	G1786			
A1787 G1788	A1789	A1792		G1802 A1803	C1813	C1816			A1820	A1836 G1837	C1843	A1844 G1845	G1846 U1847		ZCOTW	C1862 G1863	U1864 A1865	C1866	G1869	G1871	A1872	G1878	A1887	G1892 C1893	111 202		C1904	G1905 U1906	A1916	G1917			
C1926	G1933	C1943 C1944 111045	018450	_ A C1949	C1953	C1958	G1967	C1973	A19/4 A1975	A1976 C1977	U1981	A1990	C1991 U1992		01990 A1997	C1998 U1999	C2005	(2012	C2013	C2017	62018	C2025 A2026	A2027 G2028	U2033	anora			U2061 G2062	G2063 A2064	G2074			
2075 2076	:2077	12083 2084 2005	12086 12087	2088 2089	12090 12091	12092	12094 12095	12096	12106 12107	2110	12111 2112	2116	12117 115	2118	12120	12130 2131	21 27	213/ 2138	2139 2140	12141 2142	2143 2144	0147		2151 2152 04 53	2154	12155	2158 2159	<mark>\2160</mark> 2161	<mark>\2162</mark> \2163	2166			
A C				0		<mark>ט ר</mark>	<u> </u>								W P				I D BAN	E							<mark>. 8</mark>	A		0			

U2167	U2179	U2180 C2181		C2191	A2194	U2195	G2196 G2197	C2198	C2206	-	02215 G2216	U2217	A2221	-	U2226	C2230		02243 A2244	C2245	U2246 A2247	C2248	100E1	10770	A2255	42250 A2257		U2260 U2261	C2262	60229	C2267 G2268	C2269	C2274	A2275	G2276	C2279	G2280	A2284	G2285 ▲2286	C2287	
C2288	C2290	C2299		02315 G2316	G2317 U2318	G2319	C2320 U2321	C2322	42324 A2324	U2325	A2326 C2327	<mark>G2328</mark>	G2329	755011	G2335	U2336	62338 G2338	G2339	A2340 117341	A2342	G2343	G2346	G2347	0.2348	G2350	A2351	C2352 U2353	G2354	U2355	G2356		C2360 U2361	C2362	CD366	G2367	C2368	G2371	C0375		U2378 G2379
G2380	62382	U2383 C2384	G2385	02386 U2387	G2388 U2389	U2390	62391 A2392	A2393	N2395	A2396	G2404		G2407 G2408	U2409	A2410	U2411 U2412	G2413	G2414	U2418	C2419	02420 A2421	A2422	C2423	G2427	C2430		U2433 A7A3A	N2435 U2435	A2436 U2437	C2438	G2446	O V V C V	NZ442	G2462	G2463	U2467	C.047.0	U2473	G2476	
	U2486	C2487	A2490	A2502	G2506	C2507	A2510	A2511	ZTOZA	C2521	A2529	C2530	G2532 G2532		G2545 A7546		G2549	02550 A2551		C2558 A2559		U2567	C2571	00611	07014	A2578	A2582		0.2585 G2586	G2596		A2601 A2602		G2607 G2608	A2609	A 761 7	A2612 G2613	U2614 C2615	A2616	
	77070	C2625 U2626	C2627	A2630	G2631 U2632	-	G2640	U2643	U2647	C2648	A2649 A2650	C2651	G2653 G2653	A2654	U2655	A2659		C2666		G2669 G2670	G2671	A2672 112673		C2676	AZOII	C2680	02681 G2682		0.2688 C2688	C2689 C2690	-	G2694	U2697	C2698 C2699	A2700	U2701 42703		G2705	U27 15	
U2716 113717	G2718	G2726		u2730	C2734	U2735	C2736 G2737	01201	A2142 U2743	C2744	U2752	G2753	A2758	G2759	C0780	G2781	C2782	U2786	U2787	A2788 A2789	A2790	G2791	G2793		A2790 C2797		G2803 C2803		01820	C2815	A2826	G2827 U2828	U2829	112833		U2837	A2838 U2839	C2840 C2841	G2842	
CJOED		U2860	G2865	A 2000	C2869 C2870		C2876 U2877	A2878	A2886	G2887	C2890		6.5833	G2897			U2906	U2908	-	U2913 A2914	C2915	C2916	C2923		A 29 20 C 29 27		G2937	G2938	02939 U2940	G2941 G2942	A2943	U2944	C2947	C2950		G2956	A 2951	U2963	C2967	
G2968	U2970	G2971 A2972		62975 C2976	A2977 U2978	C2979	A2982	00000	00275	A2989	A2990	U2993	A3002	C3003	C3004 A3005		U3009	C3011 C3011		A3014 C3015	C3016		A3021	G 3023	113.029		C3034	<u>c3036</u>	C3039		A 3042	C3045	A3047	C3048	A3056	U3057	C3066		G3070	•
U3082	C3088	A3093	A3094	02030	C3101	C3105	C3106 G3107	01101	A3112 A3113	A3114	A3115 C3116	-	A3119 C																											

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	391837	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.5	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON II (4k x 4k)	Depositor
Maximum map value	0.253	Depositor
Minimum map value	-0.087	Depositor
Average map value	-0.001	Depositor
Map value standard deviation	0.017	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	419.84, 419.84, 419.84	wwPDB
Map dimensions	328, 328, 328	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.28, 1.28, 1.28	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	I	Bond angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	a	0.81	24/36201~(0.1%)	1.27	213/56488~(0.4%)
2	с	0.36	0/1696	0.62	2/2276~(0.1%)
3	е	0.39	0/1449	0.67	5/1949~(0.3%)
4	g	0.35	0/1260	0.58	0/1701
5	h	0.42	0/1018	0.71	2/1375~(0.1%)
6	i	0.36	0/1012	0.74	2/1362~(0.1%)
7	j	0.36	0/789	0.60	0/1069
8	k	0.31	0/889	0.57	0/1201
9	1	0.38	0/969	0.75	0/1294
10	0	0.34	0/718	0.58	0/963
11	q	0.39	0/741	0.67	1/993~(0.1%)
12	r	0.34	0/517	0.56	0/691
13	s	0.34	0/647	0.64	0/871
14	t	0.33	0/658	0.52	0/875
15	n	0.53	0/488	0.57	0/650
16	b	0.31	0/1822	0.54	0/2457
17	d	0.38	0/1672	0.61	1/2251~(0.0%)
18	f	0.38	0/782	0.62	1/1059~(0.1%)
19	m	0.36	0/942	0.62	0/1260
20	р	0.41	0/908	0.60	0/1226
21	u	0.49	0/280	0.67	0/359
22	W	0.78	1/1835~(0.1%)	1.23	20/2857~(0.7%)
23	Х	0.56	0/843	0.93	6/1127~(0.5%)
25	С	1.00	5/2140~(0.2%)	0.93	5/2879~(0.2%)
26	D	0.54	0/1609	0.65	2/2165~(0.1%)
27	Е	0.84	1/1576~(0.1%)	0.87	4/2132~(0.2%)
28	F	0.58	0/1459	0.79	1/1962~(0.1%)
29	G	0.36	0/1369	0.57	0/1848
30	Н	0.33	0/1027	0.61	1/1398~(0.1%)
31	Ι	0.29	0/925	0.52	0/1246
32	J	0.29	0/1006	0.60	0/1364
33	K	0.76	1/1165~(0.1%)	0.88	4/1578~(0.3%)
34	L	0.92	0/938	0.96	5/1257~(0.4%)
35	М	0.53	0/1091	0.65	$0/1\overline{457}$

Mal	Chain	B	ond lengths	I	Bond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
36	Ν	0.91	1/1100~(0.1%)	0.86	1/1482~(0.1%)
37	0	0.74	0/936	0.95	5/1256~(0.4%)
38	Р	0.43	0/966	0.57	0/1298
39	Q	0.51	0/921	0.60	1/1236~(0.1%)
40	R	0.55	0/1000	0.58	0/1341
41	S	0.47	0/778	0.57	0/1048
42	Т	0.96	1/887~(0.1%)	0.93	3/1204~(0.2%)
43	U	0.75	0/749	0.87	2/1006~(0.2%)
44	V	0.65	0/737	0.78	1/987~(0.1%)
45	W	0.52	0/1404	0.81	5/1917~(0.3%)
46	Х	0.96	0/613	0.87	1/821~(0.1%)
47	Y	0.55	0/478	0.71	0/641
48	Ζ	0.68	0/530	0.75	0/708
49	V	0.80	0/486	0.88	0/651
50	У	0.37	0/520	0.60	1/698~(0.1%)
51	Z	0.55	0/427	0.61	0/572
52	1	0.73	1/424~(0.2%)	0.78	2/567~(0.4%)
53	2	0.84	0/375	1.00	1/493~(0.2%)
54	3	0.92	0/507	0.94	2/672~(0.3%)
55	4	0.82	0/302	0.77	0/401
56	5	0.44	0/191	0.60	0/247
57	В	0.55	1/2797~(0.0%)	1.15	$19\overline{/4357}\ (0.4\%)$
58	A	1.00	1/74597~(0.0%)	1.24	627/116386~(0.5%)
All	All	0.84	37/164166~(0.0%)	1.13	946/245629~(0.4%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	с	0	1
3	е	0	1
4	g	0	3
5	h	0	2
7	j	0	1
8	k	0	2
9	1	0	2
11	q	0	1
12	r	0	1
13	s	0	2
17	d	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
23	Х	0	11
24	0	0	8
25	С	0	5
26	D	0	2
27	Е	0	5
28	F	0	1
33	Κ	0	1
36	Ν	0	2
37	0	0	2
42	Т	0	1
43	U	0	1
45	W	0	2
52	1	0	2
All	All	0	60

Continued from previous page...

All (37) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
22	W	1	С	OP3-P	-11.11	1.47	1.61
57	В	1	G	OP3-P	-10.43	1.48	1.61
1	a	861	С	N1-C6	-7.36	1.32	1.37
1	a	552	А	N9-C4	-7.21	1.33	1.37
25	С	79	VAL	CB-CG2	-6.93	1.38	1.52
42	Т	112	VAL	CB-CG2	-6.67	1.38	1.52
1	a	552	А	N3-C4	-6.66	1.30	1.34
1	a	290	С	N1-C6	-6.28	1.33	1.37
1	a	1378	С	N1-C6	-6.25	1.33	1.37
25	С	224	VAL	CB-CG2	-6.19	1.39	1.52
1	a	746	А	N3-C4	-6.13	1.31	1.34
1	a	1497	А	N9-C4	-6.12	1.34	1.37
36	Ν	92	TRP	CB-CG	-5.99	1.39	1.50
1	a	1204	С	N1-C6	-5.84	1.33	1.37
1	a	708	А	N9-C4	-5.75	1.34	1.37
1	a	746	А	N9-C4	-5.71	1.34	1.37
52	1	42	CYS	CB-SG	-5.58	1.72	1.81
1	a	901	А	N9-C4	-5.57	1.34	1.37
25	С	247	VAL	CB-CG1	-5.46	1.41	1.52
1	a	863	G	N9-C8	-5.41	1.34	1.37
1	a	552	A	C5-C4	-5.33	1.35	1.38
1	a	777	С	N1-C6	-5.29	1.33	1.37
58	A	1099	A	N7-C5	-5.20	1.36	1.39
33	Κ	54	VAL	CB-CG2	-5.19	1.42	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	a	797	С	N1-C6	-5.18	1.34	1.37
25	С	224	VAL	CB-CG1	-5.17	1.42	1.52
1	a	1467	A	N3-C4	-5.17	1.31	1.34
1	а	296	U	C2-N3	-5.14	1.34	1.37
1	a	746	А	C5-C4	-5.13	1.35	1.38
1	a	899	G	C5-C4	-5.13	1.34	1.38
1	а	22	С	N1-C6	-5.13	1.34	1.37
1	a	1476	A	N9-C4	5.12	1.41	1.37
27	Е	37	VAL	CB-CG1	-5.10	1.42	1.52
1	a	1401	A	N3-C4	-5.09	1.31	1.34
1	а	712	C	N1-C6	-5.04	1.34	1.37
25	C	187	VAL	CB-CG1	-5.03	1.42	1.52
1	a	119	С	N1-C6	-5.01	1.34	1.37

Continued from previous page...

All (946) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	323	С	N1-C2-O2	11.58	125.85	118.90
58	А	1130	С	N1-C2-O2	11.12	125.57	118.90
58	А	2245	С	N1-C2-O2	11.04	125.52	118.90
58	А	2245	С	C2-N1-C1'	10.65	130.51	118.80
58	А	323	С	C2-N1-C1'	10.46	130.31	118.80
58	А	2025	С	N3-C2-O2	-10.30	114.69	121.90
58	А	619	С	N1-C2-O2	10.23	125.04	118.90
58	А	3046	С	C2-N1-C1'	10.20	130.02	118.80
58	А	1012	С	C2-N1-C1'	9.89	129.68	118.80
58	А	2245	С	N3-C2-O2	-9.66	115.14	121.90
58	А	1012	С	N1-C2-O2	9.63	124.68	118.90
58	А	237	С	C6-N1-C2	-9.62	116.45	120.30
1	a	1482	U	P-O3'-C3'	9.60	131.22	119.70
5	h	94	LEU	N-CA-C	-9.59	85.11	111.00
58	А	1694	С	N1-C2-O2	9.56	124.64	118.90
58	А	1130	С	C2-N1-C1'	9.56	129.31	118.80
58	А	1630	U	C5-C4-O4	9.52	131.61	125.90
58	А	619	С	C2-N1-C1'	9.52	129.27	118.80
58	А	1694	С	N3-C2-O2	-9.51	115.25	121.90
1	a	101	G	C8-N9-C4	-9.47	102.61	106.40
58	А	1001	С	C6-N1-C2	-9.45	116.52	120.30
58	А	912	С	C5-C6-N1	9.37	125.68	121.00
58	А	1428	U	C2-N1-C1'	9.35	128.92	117.70
58	А	2407	С	N1-C2-O2	9.34	124.50	118.90
58	А	2025	С	C2-N1-C1'	9.29	129.02	118.80

Continued	from	previous	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	2025	С	N1-C2-O2	9.29	124.48	118.90
6	i	101	LEU	CB-CG-CD2	-9.28	95.22	111.00
58	А	323	С	N3-C2-O2	-9.26	115.42	121.90
1	a	70	А	N1-C2-N3	9.24	133.92	129.30
58	А	2407	С	C2-N1-C1'	9.23	128.95	118.80
58	А	336	С	C2-N1-C1'	9.16	128.88	118.80
58	А	3046	С	N3-C2-O2	-9.12	115.52	121.90
1	а	108	G	C8-N9-C4	9.11	110.04	106.40
1	a	489	А	N7-C8-N9	9.09	118.35	113.80
1	a	85	С	C2-N1-C1'	9.09	128.79	118.80
1	а	332	G	C8-N9-C4	9.06	110.02	106.40
1	a	101	G	N7-C8-N9	8.96	117.58	113.10
58	А	1694	С	C6-N1-C2	-8.96	116.72	120.30
58	А	1130	С	N3-C2-O2	-8.93	115.65	121.90
58	А	709	U	N3-C2-O2	-8.88	115.98	122.20
58	А	1428	U	N1-C2-O2	8.85	129.00	122.80
43	U	12	LEU	CA-CB-CG	8.81	135.57	115.30
1	a	1268	С	C2-N1-C1'	8.75	128.43	118.80
58	А	1428	U	N3-C2-O2	-8.61	116.17	122.20
58	А	2697	U	N1-C2-O2	8.53	128.77	122.80
58	А	2870	С	C6-N1-C2	-8.53	116.89	120.30
58	А	237	С	C5-C6-N1	8.51	125.26	121.00
58	А	417	С	C6-N1-C2	-8.51	116.90	120.30
58	А	3046	С	N1-C2-O2	8.46	123.97	118.90
23	Х	56	ARG	NE-CZ-NH2	8.45	124.53	120.30
58	А	622	С	C5-C6-N1	8.41	125.21	121.00
58	А	3011	С	N1-C2-O2	8.40	123.94	118.90
58	А	709	U	N1-C2-O2	8.39	128.68	122.80
58	А	905	U	C2-N1-C1'	8.39	127.77	117.70
37	0	45	ARG	C-N-CD	8.37	145.98	128.40
45	W	62	GLY	N-CA-C	8.28	133.81	113.10
22	W	13	С	C6-N1-C2	-8.25	117.00	120.30
58	А	2521	С	C2-N1-C1'	8.23	127.86	118.80
1	a	1486	А	C5-N7-C8	-8.22	99.79	103.90
58	А	703	С	C2-N1-C1'	8.21	127.83	118.80
22	W	63	С	C6-N1-C2	-8.20	117.02	120.30
58	А	2005	С	C6-N1-C2	-8.11	117.05	120.30
58	А	275	С	C2-N1-C1'	8.10	127.71	118.80
58	А	962	U	C2-N1-C1'	8.08	127.40	117.70
58	А	619	C	C6-N1-C1'	-8.00	111.20	120.80
58	A	$22\overline{67}$	C	C6-N1-C2	-7.99	117.10	120.30
1	a	85	С	N1-C2-O2	7.98	123.69	118.90

α \cdot \cdot \cdot	C	•	
Continued	trom	nremous	naae
Contentaca	JIONO	preciouo	pago

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	2870	C	C5-C6-N1	7.98	124.99	121.00
57	В	31	C	N1-C2-O2	7.94	123.67	118.90
58	А	1521	C	C2-N1-C1'	7.94	127.53	118.80
58	А	1429	С	C2-N1-C1'	7.93	127.53	118.80
58	А	845	С	N1-C2-O2	7.92	123.65	118.90
58	А	975	U	C2-N1-C1'	7.90	127.18	117.70
58	А	275	С	C6-N1-C2	-7.89	117.14	120.30
58	А	1403	C	N3-C2-O2	-7.88	116.39	121.90
58	А	2689	C	C5-C6-N1	7.88	124.94	121.00
1	a	973	U	C6-N1-C2	-7.87	116.28	121.00
58	А	2947	С	C6-N1-C2	-7.86	117.16	120.30
58	А	323	С	C6-N1-C2	-7.85	117.16	120.30
58	А	2267	С	C5-C6-N1	7.82	124.91	121.00
58	А	1535	С	C6-N1-C2	-7.79	117.18	120.30
42	Т	118	PRO	CA-N-CD	-7.78	100.60	111.50
58	А	1694	С	C2-N1-C1'	7.78	127.36	118.80
58	А	2521	С	C6-N1-C2	-7.76	117.19	120.30
58	А	543	U	N3-C2-O2	-7.76	116.77	122.20
58	А	2289	С	C5-C6-N1	7.75	124.88	121.00
58	А	2325	U	N1-C2-O2	7.74	128.22	122.80
58	А	1535	С	C2-N1-C1'	7.74	127.31	118.80
58	А	1130	С	C6-N1-C2	-7.72	117.21	120.30
58	А	1302	G	C6-C5-N7	-7.70	125.78	130.40
22	W	63	С	C5-C6-N1	7.70	124.85	121.00
58	А	905	U	N1-C2-O2	7.69	128.18	122.80
58	А	2322	С	N1-C2-O2	7.68	123.51	118.90
58	А	2944	U	N1-C2-O2	7.67	128.17	122.80
58	А	2697	U	C2-N1-C1'	7.67	126.90	117.70
58	А	29	С	C2-N1-C1'	7.66	127.23	118.80
1	a	1486	A	C6-C5-N7	-7.65	126.94	132.30
58	А	275	С	N1-C2-O2	7.63	123.48	118.90
1	a	67	C	C6-N1-C2	-7.62	117.25	120.30
58	А	102	C	C2-N1-C1'	7.58	127.14	118.80
58	А	472	C	C2-N1-C1'	7.58	127.13	118.80
58	А	2180	U	N1-C2-O2	7.56	128.09	122.80
58	А	2245	С	C6-N1-C2	-7.54	117.28	120.30
58	А	1123	С	C5-C6-N1	7.53	124.77	121.00
58	A	1044	U	N1-C2-O2	7.52	128.07	122.80
22	W	63	C	N1-C2-O2	7.51	123.41	118.90
58	А	2111	U	N1-C2-O2	7.50	128.05	122.80
58	A	1409	С	C6-N1-C2	-7.49	117.30	120.30
1	а	489	A	C8-N9-C4	-7.47	102.81	105.80

Continued	from	previous	page
	5	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	1030	С	C2-N1-C1'	7.46	127.01	118.80
58	А	2180	U	N3-C2-O2	-7.46	116.98	122.20
58	А	1429	С	C5-C6-N1	7.45	124.72	121.00
58	А	2287	С	C6-N1-C2	-7.44	117.32	120.30
58	А	2697	U	N3-C2-O2	-7.43	117.00	122.20
1	a	954	С	C5-C6-N1	-7.43	117.29	121.00
58	А	2288	С	C6-N1-C2	-7.41	117.34	120.30
1	a	1486	A	C2-N3-C4	-7.37	106.91	110.60
58	А	234	U	N3-C2-O2	-7.37	117.04	122.20
22	W	63	С	C2-N1-C1'	7.35	126.88	118.80
58	А	1123	С	C6-N1-C2	-7.34	117.36	120.30
58	А	932	С	C6-N1-C2	-7.32	117.37	120.30
58	А	1531	С	C2-N1-C1'	7.32	126.85	118.80
58	А	619	С	N3-C2-O2	-7.31	116.78	121.90
1	a	862	С	C6-N1-C2	7.31	123.22	120.30
58	А	905	U	N3-C2-O2	-7.30	117.09	122.20
1	a	954	С	C2-N1-C1'	-7.27	110.81	118.80
58	А	2841	С	C6-N1-C2	-7.26	117.40	120.30
1	a	311	С	N3-C2-O2	-7.25	116.82	121.90
1	a	794	A	N1-C6-N6	7.25	122.95	118.60
58	А	2360	C	N1-C2-O2	7.24	123.25	118.90
58	А	514	С	C2-N1-C1'	7.24	126.76	118.80
58	А	845	С	C6-N1-C2	-7.23	117.41	120.30
57	В	62	С	N1-C2-O2	7.23	123.23	118.90
58	А	2325	U	N3-C2-O2	-7.22	117.15	122.20
58	А	283	U	N3-C2-O2	-7.22	117.15	122.20
58	А	2087	С	C2-N1-C1'	7.22	126.74	118.80
1	a	1486	A	N7-C8-N9	7.21	117.40	113.80
1	a	1268	С	C5-C6-N1	7.19	124.60	121.00
58	А	2325	U	C2-N1-C1'	7.19	126.33	117.70
1	a	1302	С	C6-N1-C2	7.19	123.18	120.30
58	А	962	U	N1-C2-O2	7.18	127.83	122.80
1	a	895	A	P-O3'-C3'	7.17	128.31	119.70
58	A	2245	С	C6-N1-C1'	-7.16	112.20	120.80
2	с	186	LEU	CA-CB-CG	7.16	131.76	115.30
58	А	1219	U	N3-C2-O2	-7.16	117.19	122.20
1	a	1350	U	C5-C6-N1	-7.15	119.12	122.70
1	a	305	G	N3-C4-N9	7.13	130.28	126.00
1	a	794	A	N1-C2-N3	7.12	132.86	129.30
58	A	2320	C	N1-C2-O2	7.12	123.17	118.90
58	A	102	C	C6-N1-C2	-7.12	117.45	120.30
1	a	803	G	N1-C6-O6	-7.11	115.64	119.90

58

А

962

U

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	734	С	C5-C6-N1	7.10	124.55	121.00
58	А	2086	U	C5-C6-N1	7.10	126.25	122.70
58	А	3011	С	N3-C2-O2	-7.10	116.93	121.90
58	А	2005	С	C5-C6-N1	7.09	124.55	121.00
58	А	102	С	N1-C2-O2	7.08	123.15	118.90
58	А	445	U	P-O3'-C3'	7.07	128.19	119.70
58	А	1822	С	C6-N1-C2	-7.07	117.47	120.30
58	А	336	С	C5-C6-N1	7.07	124.53	121.00
58	А	1044	U	C2-N1-C1'	7.06	126.17	117.70
58	А	709	U	C2-N1-C1'	7.06	126.17	117.70
58	А	283	U	N1-C2-O2	7.05	127.74	122.80
58	А	2327	С	N1-C2-O2	7.05	123.13	118.90
58	А	1044	U	N3-C2-O2	-7.03	117.28	122.20
58	А	1219	U	N1-C2-O2	7.03	127.72	122.80
1	a	314	С	C6-N1-C2	-7.03	117.49	120.30
58	А	2322	С	C2-N1-C1'	7.02	126.52	118.80
58	А	543	U	N1-C2-O2	7.01	127.71	122.80
58	А	3046	С	C6-N1-C1'	-7.01	112.38	120.80
58	А	2248	С	C5-C6-N1	7.01	124.50	121.00
58	А	714	U	N1-C2-O2	6.99	127.69	122.80
58	А	2890	С	N1-C2-O2	6.99	123.09	118.90
1	a	1149	С	C6-N1-C2	-6.99	117.51	120.30
58	А	2085	С	P-O3'-C3'	6.97	128.07	119.70
1	a	1088	G	C8-N9-C4	-6.97	103.61	106.40
58	А	197	С	C5-C6-N1	6.97	124.48	121.00
58	А	1862	С	C6-N1-C2	-6.96	117.51	120.30
1	a	793	U	C2-N1-C1'	6.96	126.05	117.70
58	А	2680	С	C5-C6-N1	6.96	124.48	121.00
1	a	1269	А	C8-N9-C4	-6.95	103.02	105.80
58	А	279	U	N1-C2-O2	6.95	127.67	122.80
58	А	714	U	N3-C2-O2	-6.95	117.34	122.20
58	А	656	С	C6-N1-C2	-6.95	117.52	120.30
58	А	514	С	C6-N1-C2	-6.95	117.52	120.30
58	А	323	С	C6-N1-C1'	-6.94	112.47	120.80
57	В	31	С	N3-C2-O2	-6.93	117.05	121.90
58	А	1130	С	C5-C6-N1	6.93	124.47	121.00
58	А	1303	U	C5-C6-N1	6.93	126.16	122.70
1	a	216	U	C2-N1-C1'	6.91	126.00	117.70
58	А	1012	С	C6-N1-C1'	-6.91	112.50	120.80
58	А	472	С	N1-C2-O2	6.91	123.05	118.90
58	А	729	С	C6-N1-C2	-6.90	117.54	120.30

Continued from previous page... D

Continued on next page...

122.20

117.37

-6.90

N3-C2-O2

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	<i>paae</i>
• • • • • • • • • • • • •	J	P	r ~g ····

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	1298	С	C5-C6-N1	6.90	124.45	121.00
58	А	703	С	C6-N1-C2	-6.90	117.54	120.30
1	a	849	G	N3-C4-C5	-6.88	125.16	128.60
58	А	1057	С	C6-N1-C2	-6.88	117.55	120.30
58	А	2094	G	P-O3'-C3'	6.87	127.94	119.70
58	А	2248	С	C6-N1-C2	-6.86	117.56	120.30
1	a	489	А	C5-N7-C8	-6.86	100.47	103.90
58	А	7	U	C2-N1-C1'	6.84	125.90	117.70
58	А	764	U	N3-C2-O2	-6.83	117.42	122.20
58	А	3046	С	C6-N1-C2	-6.83	117.57	120.30
58	А	910	С	C5-C6-N1	6.83	124.41	121.00
58	А	784	G	C4-N9-C1'	6.82	135.37	126.50
58	А	975	U	C5-C6-N1	6.80	126.10	122.70
45	W	138	LEU	CA-CB-CG	6.79	130.93	115.30
58	А	2717	U	C5-C6-N1	6.79	126.10	122.70
1	a	216	U	N1-C2-O2	6.79	127.55	122.80
58	А	275	С	C5-C6-N1	6.77	124.39	121.00
58	А	975	U	N1-C2-O2	6.77	127.54	122.80
1	a	9	U	C5-C6-N1	6.76	126.08	122.70
58	А	1382	U	N1-C2-O2	6.76	127.53	122.80
1	a	1486	А	C4-C5-N7	6.76	114.08	110.70
1	a	243	А	N1-C6-N6	6.75	122.65	118.60
58	А	1535	С	N3-C2-O2	-6.75	117.17	121.90
58	А	1667	С	C6-N1-C2	-6.74	117.60	120.30
58	А	2289	С	C6-N1-C2	-6.74	117.60	120.30
1	a	943	U	O5'-P-OP2	-6.74	99.64	105.70
58	А	2111	U	N3-C2-O2	-6.73	117.49	122.20
57	В	106	С	N1-C2-O2	6.73	122.94	118.90
58	А	2890	С	N3-C2-O2	-6.72	117.19	121.90
1	a	216	U	N3-C2-O2	-6.72	117.50	122.20
58	А	1630	U	N3-C4-O4	-6.72	114.70	119.40
58	А	1534	С	N1-C2-O2	6.71	122.93	118.90
58	А	2671	G	C6-N1-C2	-6.71	121.07	125.10
33	K	108	MET	CA-CB-CG	6.70	124.69	113.30
58	А	2327	С	C6-N1-C2	-6.70	117.62	120.30
58	А	192	U	N3-C2-O2	-6.69	117.52	122.20
1	a	1149	С	C2-N1-C1'	6.69	126.15	118.80
1	a	119	С	O5'-P-OP1	-6.67	99.70	105.70
58	A	1302	G	N3-C4-N9	6.66	130.00	126.00
58	А	2689	С	C2-N1-C1'	6.66	126.12	118.80
58	A	2407	С	C6-N1-C1'	-6.65	112.82	120.80
58	А	2521	С	C5-C6-N1	6.64	124.32	121.00

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	332	C	N3-C2-O2	-6.64	117.25	121.90
25	С	106	ILE	CG1-CB-CG2	-6.64	96.79	111.40
58	А	910	C	C6-N1-C2	-6.63	117.65	120.30
58	А	1239	С	C5-C6-N1	6.62	124.31	121.00
58	А	1403	С	N1-C2-O2	6.61	122.87	118.90
1	a	331	G	C8-N9-C4	6.61	109.04	106.40
58	А	1012	С	N3-C2-O2	-6.61	117.27	121.90
58	А	2647	U	N1-C2-O2	6.61	127.42	122.80
58	А	283	U	C2-N1-C1'	6.60	125.62	117.70
58	А	2407	С	C5-C6-N1	6.60	124.30	121.00
58	А	2138	С	N1-C2-O2	6.59	122.86	118.90
1	a	429	U	P-O3'-C3'	6.58	127.60	119.70
58	А	1123	С	C2-N1-C1'	6.58	126.04	118.80
1	a	101	G	C5-N7-C8	-6.58	101.01	104.30
18	f	67	ALA	C-N-CA	6.58	138.14	121.70
58	А	417	С	C5-C6-N1	6.57	124.29	121.00
58	А	2327	С	C2-N1-C1'	6.56	126.02	118.80
58	А	2025	С	C6-N1-C1'	-6.56	112.93	120.80
22	W	72	С	C5-C4-N4	-6.55	115.61	120.20
1	a	558	С	C5-C6-N1	-6.54	117.73	121.00
58	А	2913	U	N3-C2-O2	-6.54	117.62	122.20
58	А	1219	U	C2-N1-C1'	6.52	125.53	117.70
37	0	85	PRO	CA-N-CD	-6.52	102.37	111.50
58	А	1409	С	C5-C6-N1	6.51	124.26	121.00
58	А	1893	С	N1-C2-O2	6.51	122.81	118.90
58	А	2269	С	C6-N1-C2	-6.51	117.70	120.30
58	А	438	U	C2-N1-C1'	6.51	125.51	117.70
58	А	29	С	N1-C2-O2	6.50	122.80	118.90
22	W	67	C	C6-N1-C2	-6.50	117.70	120.30
58	А	2970	U	C5-C6-N1	6.50	125.95	122.70
1	a	122	G	C8-N9-C4	6.50	109.00	106.40
1	a	847	A	C8-N9-C4	6.49	108.40	105.80
1	a	364	А	C8-N9-C4	-6.48	103.21	105.80
58	А	7	U	N1-C2-O2	6.48	127.33	122.80
1	a	279	А	O4'-C1'-N9	-6.46	103.03	108.20
58	А	845	С	C5-C6-N1	6.46	124.23	121.00
1	a	1486	А	N1-C6-N6	6.46	122.47	118.60
58	A	2689	C	C6-N1-C2	-6.45	117.72	120.30
58	A	1045	С	C2-N1-C1'	6.45	125.89	118.80
58	А	2290	С	C6-N1-C2	-6.44	117.72	120.30
58	А	336	С	N1-C2-O2	6.43	122.76	118.90
1	а	1266	U	C2-N1-C1'	6.43	125.41	117.70

α \cdot \cdot \cdot	C	•	
Continued	trom	nremons	naae
Continucu	110110	preduous	page
		*	

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	1302	G	C4-N9-C1'	6.43	134.85	126.50
58	А	2671	G	C5-C6-O6	-6.42	124.75	128.60
58	А	1197	С	C2-N1-C1'	6.42	125.86	118.80
1	a	85	С	C6-N1-C1'	-6.42	113.09	120.80
1	a	332	G	N7-C8-N9	-6.42	109.89	113.10
58	А	139	U	N3-C2-O2	-6.41	117.71	122.20
58	А	2407	С	N3-C2-O2	-6.40	117.42	121.90
58	А	1551	U	C5-C6-N1	6.39	125.90	122.70
58	А	2260	C	C6-N1-C2	-6.39	117.74	120.30
1	a	1268	С	C6-N1-C1'	-6.39	113.13	120.80
58	А	764	U	N1-C2-O2	6.39	127.27	122.80
58	А	1534	С	C2-N1-C1'	6.38	125.82	118.80
37	0	89	ASP	CB-CG-OD1	6.37	124.04	118.30
58	А	2944	U	N3-C2-O2	-6.37	117.74	122.20
58	А	1212	U	C5-C6-N1	6.37	125.88	122.70
58	А	608	С	C5-C6-N1	6.37	124.18	121.00
58	А	2734	С	N1-C2-O2	6.37	122.72	118.90
1	a	895	А	C8-N9-C4	-6.35	103.26	105.80
58	А	336	С	C6-N1-C1'	-6.35	113.18	120.80
58	А	2869	C	C2-N1-C1'	6.34	125.78	118.80
58	А	839	U	N3-C2-O2	-6.33	117.77	122.20
58	А	1044	U	C5-C6-N1	6.33	125.86	122.70
1	a	1508	С	C6-N1-C2	-6.33	117.77	120.30
58	А	336	С	C6-N1-C2	-6.32	117.77	120.30
58	А	1991	С	C5-C6-N1	6.32	124.16	121.00
58	А	1001	С	C5-C6-N1	6.32	124.16	121.00
58	А	1428	U	C6-N1-C1'	-6.32	112.36	121.20
58	А	2841	С	N1-C2-O2	6.31	122.69	118.90
58	А	561	G	N3-C4-N9	6.31	129.79	126.00
58	А	279	U	N3-C2-O2	-6.30	117.79	122.20
58	А	2360	С	C2-N1-C1'	6.29	125.72	118.80
58	А	1813	C	C5-C6-N1	6.28	124.14	121.00
1	a	485	G	N7-C8-N9	6.28	116.24	113.10
1	a	1424	G	C4-N9-C1'	6.27	134.65	126.50
26	D	144	VAL	CG1-CB-CG2	-6.27	100.87	110.90
58	A	2198	C	C5-C6-N1	$6.2\overline{7}$	124.14	121.00
1	a	117	C	C6-N1-C2	6.27	122.81	120.30
57	В	4	A	C8-N9-C4	-6.27	103.29	105.80
58	A	514	C	C5-C6-N1	6.26	124.13	121.00
58	А	505	C	C5-C6-N1	6.26	124.13	121.00
58	А	1012	C	C6-N1-C2	-6.26	117.80	120.30
58	A	461	U	N3-C2-O2	-6.26	117.82	122.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	2841	С	C5-C6-N1	6.25	124.13	121.00
58	А	3070	G	C4-N9-C1'	-6.25	118.37	126.50
58	А	2025	С	C6-N1-C2	-6.25	117.80	120.30
37	0	46	PRO	CA-N-CD	-6.25	102.75	111.50
58	А	102	С	C5-C6-N1	6.25	124.12	121.00
58	А	192	U	N1-C2-O2	6.25	127.17	122.80
58	А	2076	A	N1-C6-N6	6.25	122.35	118.60
58	А	1008	G	C4-N9-C1'	6.24	134.61	126.50
22	W	72	С	N3-C4-C5	6.24	124.39	121.90
58	А	1197	C	N1-C2-O2	6.24	122.64	118.90
25	С	213	ARG	NE-CZ-NH2	-6.23	117.18	120.30
1	a	11	G	C5-N7-C8	-6.23	101.18	104.30
42	Т	102	ARG	NE-CZ-NH2	-6.23	117.19	120.30
58	А	1816	С	C2-N1-C1'	6.23	125.65	118.80
58	А	1057	C	C5-C6-N1	6.23	124.11	121.00
58	А	2680	C	C6-N1-C2	-6.23	117.81	120.30
58	А	1893	C	N3-C2-O2	-6.22	117.54	121.90
58	А	2900	C	C6-N1-C2	-6.22	117.81	120.30
58	А	1429	С	C6-N1-C2	-6.22	117.81	120.30
33	K	18	ILE	CG1-CB-CG2	-6.22	97.73	111.40
58	А	2366	С	N3-C2-O2	-6.21	117.55	121.90
1	a	538	G	N3-C4-C5	-6.21	125.49	128.60
58	А	2435	U	N3-C2-O2	-6.21	117.86	122.20
1	a	305	G	C4-N9-C1'	6.20	134.56	126.50
58	А	912	С	C6-N1-C2	-6.20	117.82	120.30
58	А	1837	G	C4-C5-N7	6.20	113.28	110.80
58	A	323	С	C5-C6-N1	6.20	124.10	121.00
58	A	387	U	N1-C2-O2	6.19	127.13	122.80
57	В	69	С	N1-C2-O2	6.18	122.61	118.90
58	A	2947	С	C5-C6-N1	6.18	124.09	121.00
58	A	898	A	C4-N9-C1'	6.18	137.42	126.30
58	A	550	C	C6-N1-C2	-6.18	117.83	120.30
58	A	1130	С	C6-N1-C1'	-6.17	113.39	120.80
58	A	549	C	C6-N1-C2	-6.17	117.83	120.30
1	a	305	G	C8-N9-C1'	-6.17	118.98	127.00
58	A	1441	С	N1-C2-O2	6.16	122.60	118.90
58	A	1531	С	C5-C6-N1	6.15	124.07	121.00
53	2	7	THR	N-CA-C	6.14	127.59	111.00
58	A	957	C	C6-N1-C2	-6.14	117.84	120.30
1	a	794	A	C2-N3-C4	-6.14	107.53	110.60
57	В	4	A	N7-C8-N9	6.14	116.87	113.80
25	C	95	LEU	CB-CG-CD1	-6.13	100.57	111.00

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
36	Ν	122	ILE	CG1-CB-CG2	-6.13	97.90	111.40
58	А	1012	С	C5-C6-N1	6.13	124.07	121.00
58	А	703	С	C5-C6-N1	6.13	124.06	121.00
58	А	1662	С	C6-N1-C2	-6.13	117.85	120.30
58	А	1697	U	N3-C2-O2	-6.12	117.91	122.20
1	a	11	G	N3-C4-C5	6.12	131.66	128.60
58	А	3034	С	C6-N1-C2	-6.12	117.85	120.30
58	А	2320	С	C2-N1-C1'	6.11	125.52	118.80
58	А	1088	U	C5-C6-N1	6.11	125.76	122.70
1	a	108	G	N7-C8-N9	-6.11	110.05	113.10
58	А	2320	С	N3-C2-O2	-6.10	117.63	121.90
58	А	2166	С	C5-C6-N1	6.10	124.05	121.00
58	А	1535	С	N1-C2-O2	6.09	122.55	118.90
58	А	293	G	N1-C6-O6	-6.08	116.25	119.90
58	А	2362	С	N1-C2-O2	6.08	122.55	118.90
58	А	930	С	C6-N1-C2	-6.08	117.87	120.30
1	a	70	А	C6-N1-C2	-6.07	114.96	118.60
58	А	2158	С	N1-C2-O2	6.07	122.54	118.90
58	А	2900	С	C5-C6-N1	6.07	124.03	121.00
1	a	1149	С	P-O3'-C3'	6.07	126.98	119.70
44	V	10	LEU	CA-CB-CG	6.07	129.25	115.30
58	А	853	С	C2-N1-C1'	6.07	125.47	118.80
58	А	2061	U	C5-C6-N1	6.06	125.73	122.70
58	А	1302	G	C8-N9-C1'	-6.06	119.12	127.00
1	a	1178	А	N1-C2-N3	6.05	132.33	129.30
58	А	2438	С	N1-C2-O2	6.05	122.53	118.90
58	А	1801	С	N1-C2-O2	6.04	122.53	118.90
58	А	1251	А	O4'-C1'-N9	6.04	113.03	108.20
58	А	1521	С	C6-N1-C2	-6.04	117.89	120.30
58	А	2155	U	N1-C2-O2	6.04	127.03	122.80
58	А	2144	С	C6-N1-C2	-6.04	117.89	120.30
1	a	1172	А	C8-N9-C4	-6.04	103.39	105.80
57	В	31	С	C6-N1-C2	-6.04	117.89	120.30
37	0	88	ALA	C-N-CA	6.03	136.78	121.70
58	А	2782	С	C5-C6-N1	6.03	124.02	121.00
58	А	1531	С	N1-C2-O2	6.03	122.52	118.90
1	a	1117	U	OP1-P-O3'	6.03	118.46	105.20
1	a	108	G	N3-C4-N9	6.03	129.62	126.00
1	a	305	G	N3-C4-C5	-6.03	125.59	128.60
1	a	404	G	N1-C6-O6	-6.03	116.28	119.90
58	А	2381	А	P-O3'-C3'	6.03	126.93	119.70
58	А	3045	С	C6-N1-C2	-6.02	117.89	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	1410	С	C6-N1-C2	-6.02	117.89	120.30
58	А	66	С	C6-N1-C2	-6.02	117.89	120.30
58	А	2993	U	N1-C2-O2	6.01	127.01	122.80
1	a	713	G	C4-N9-C1'	-6.01	118.68	126.50
57	В	106	С	C2-N1-C1'	6.01	125.41	118.80
58	А	2689	С	N1-C2-O2	6.01	122.51	118.90
1	a	456	С	O5'-P-OP1	-6.01	100.29	105.70
1	a	485	G	C8-N9-C4	-6.01	104.00	106.40
58	А	161	U	C2-N1-C1'	6.01	124.91	117.70
58	А	622	С	C6-N1-C2	-6.00	117.90	120.30
1	a	101	G	C6-C5-N7	-6.00	126.80	130.40
58	А	2487	С	C6-N1-C2	-6.00	117.90	120.30
1	a	956	А	O4'-C1'-N9	6.00	113.00	108.20
1	a	861	С	C2-N3-C4	-5.99	116.90	119.90
58	А	784	G	C8-N9-C1'	-5.99	119.22	127.00
1	a	769	U	C5-C4-O4	5.98	129.49	125.90
58	А	1103	С	C5-C6-N1	5.98	123.99	121.00
58	А	2916	С	C6-N1-C2	-5.98	117.91	120.30
58	А	279	U	C2-N1-C1'	5.97	124.87	117.70
1	a	243	А	C5-N7-C8	-5.97	100.91	103.90
27	Е	33	LEU	CB-CG-CD2	-5.97	100.84	111.00
58	А	1449	С	C6-N1-C2	-5.97	117.91	120.30
58	А	461	U	N1-C2-O2	5.96	126.98	122.80
58	А	2327	С	N3-C2-O2	-5.96	117.72	121.90
58	А	845	С	C2-N3-C4	5.96	122.88	119.90
1	a	734	С	N3-C2-O2	-5.95	117.73	121.90
57	В	62	С	N3-C2-O2	-5.95	117.73	121.90
58	А	2430	С	N1-C2-O2	5.95	122.47	118.90
58	А	1625	G	N7-C8-N9	5.95	116.07	113.10
58	А	237	С	C2-N1-C1'	5.94	125.34	118.80
58	А	2734	С	N3-C2-O2	-5.94	117.74	121.90
22	W	67	С	C5-C6-N1	5.94	123.97	121.00
58	А	357	U	P-O3'-C3'	5.94	126.83	119.70
58	А	839	U	N1-C2-O2	5.94	126.96	122.80
58	А	1531	С	C6-N1-C2	-5.94	117.92	120.30
58	А	974	G	P-O3'-C3'	5.94	126.82	119.70
58	A	2226	U	N1-C2-O2	5.94	126.95	122.80
58	A	1393	С	C6-N1-C2	-5.93	117.93	120.30
58	A	1553	C	N1-C2-O2	5.93	122.46	118.90
57	В	106	С	N3-C2-O2	-5.93	117.75	121.90
58	A	2111	U	C2-N1-C1'	5.93	124.81	117.70
58	А	918	U	C5-C6-N1	5.92	125.66	122.70

α \cdot \cdot \cdot	r	•	
Continued	from	previous	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	2622	С	C6-N1-C2	-5.91	117.94	120.30
58	А	2602	А	N1-C6-N6	5.89	122.14	118.60
57	В	31	С	C2-N1-C1'	5.89	125.28	118.80
58	А	1082	С	C6-N1-C2	-5.89	117.94	120.30
58	А	1467	U	N3-C2-O2	-5.89	118.08	122.20
58	А	1618	С	N1-C2-O2	5.89	122.43	118.90
58	А	1801	С	C2-N1-C1'	5.89	125.28	118.80
58	А	2419	С	C2-N1-C1'	5.88	125.27	118.80
1	a	1340	U	C5-C6-N1	-5.88	119.76	122.70
58	А	2116	С	N1-C2-O2	5.88	122.43	118.90
58	А	2155	U	N3-C2-O2	-5.88	118.08	122.20
58	А	2940	U	N3-C2-O2	-5.88	118.08	122.20
58	А	1529	U	C5-C6-N1	5.87	125.64	122.70
58	А	1798	U	N3-C2-O2	-5.87	118.09	122.20
1	a	1268	С	N3-C4-N4	5.86	122.10	118.00
58	А	1668	С	C6-N1-C2	-5.86	117.96	120.30
1	a	454	С	C2-N1-C1'	5.85	125.24	118.80
58	А	714	U	C2-N1-C1'	5.85	124.72	117.70
58	А	930	С	C5-C6-N1	5.85	123.92	121.00
58	А	2013	С	C6-N1-C2	-5.85	117.96	120.30
58	А	1813	С	C6-N1-C2	-5.84	117.96	120.30
58	А	2110	U	C2-N1-C1'	5.84	124.71	117.70
1	a	107	G	N3-C4-C5	5.84	131.52	128.60
1	a	1350	U	C6-N1-C2	5.83	124.50	121.00
22	W	72	С	C6-N1-C1'	-5.83	113.80	120.80
58	А	1494	U	N3-C2-O2	-5.83	118.12	122.20
58	А	599	G	O4'-C1'-N9	5.82	112.86	108.20
58	А	1158	U	N3-C2-O2	-5.82	118.13	122.20
1	a	311	С	C2-N1-C1'	5.82	125.20	118.80
58	А	1082	С	C5-C6-N1	5.82	123.91	121.00
58	А	2744	С	N1-C2-O2	5.81	122.39	118.90
58	А	1167	С	C6-N1-C2	-5.81	117.98	120.30
1	a	794	А	C4-C5-C6	5.81	119.90	117.00
58	А	617	U	N3-C2-O2	-5.80	118.14	122.20
58	А	2423	С	C5-C6-N1	5.80	123.90	121.00
1	a	243	А	C4-C5-N7	5.79	113.60	110.70
58	А	2690	С	C6-N1-C2	-5.79	117.98	120.30
1	a	693	G	N3-C4-C5	-5.79	125.71	128.60
34	L	67	LYS	CD-CE-NZ	-5.79	98.39	111.70
58	A	1302	G	C4-C5-N7	5.79	113.12	110.80
58	А	324	С	N3-C2-O2	-5.78	117.85	121.90
1	a	1481	G	C8-N9-C4	-5.78	104.09	106.40

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	200	С	C6-N1-C2	-5.78	117.99	120.30
58	А	504	С	C5-C6-N1	5.77	123.89	121.00
58	А	1747	C	C6-N1-C2	-5.77	117.99	120.30
22	W	72	С	C2-N1-C1'	5.77	125.14	118.80
1	a	132	C	C6-N1-C2	5.76	122.61	120.30
1	a	504	G	N3-C4-C5	-5.76	125.72	128.60
58	А	417	С	N1-C2-O2	5.76	122.36	118.90
58	А	2407	С	C6-N1-C2	-5.76	118.00	120.30
58	А	2927	С	N1-C2-O2	5.76	122.36	118.90
1	a	799	G	N3-C4-C5	5.76	131.48	128.60
58	А	139	U	C2-N1-C1'	5.76	124.61	117.70
58	А	939	С	C6-N1-C2	-5.76	118.00	120.30
45	W	49	LEU	CB-CG-CD2	-5.75	101.22	111.00
58	А	2191	С	N1-C2-O2	5.75	122.35	118.90
58	А	154	C	C6-N1-C2	-5.74	118.00	120.30
58	А	495	С	C6-N1-C2	-5.74	118.00	120.30
58	А	1034	U	N3-C2-O2	-5.74	118.18	122.20
1	а	666	U	C6-N1-C1'	5.74	129.24	121.20
58	А	191	G	C4-N9-C1'	5.74	133.96	126.50
1	а	532	U	C5-C6-N1	-5.73	119.83	122.70
58	А	2815	С	C6-N1-C2	-5.73	118.01	120.30
1	a	385	С	C6-N1-C2	-5.73	118.01	120.30
58	А	2088	С	N1-C2-O2	5.73	122.34	118.90
58	А	7	U	N3-C2-O2	-5.72	118.19	122.20
58	А	2217	U	N3-C2-O2	-5.72	118.19	122.20
58	А	1030	С	N1-C2-O2	5.72	122.33	118.90
1	a	108	G	N9-C4-C5	-5.72	103.11	105.40
1	a	243	А	C2-N3-C4	-5.71	107.75	110.60
58	А	857	U	C5-C6-N1	5.70	125.55	122.70
58	А	1775	C	C5-C6-N1	5.70	123.85	121.00
58	А	2138	С	C2-N1-C1'	5.70	125.07	118.80
58	А	962	U	C6-N1-C1'	-5.70	113.22	121.20
58	А	332	С	N1-C2-O2	5.70	122.32	118.90
58	А	1045	C	N1-C2-O2	5.70	122.32	118.90
58	А	2666	C	N1-C2-O2	5.70	122.32	118.90
1	a	666	U	C2-N1-C1'	-5.69	110.87	117.70
58	А	2890	С	C6-N1-C2	-5.69	118.02	120.30
58	A	898	A	N7-C8-N9	5.69	116.64	113.80
58	А	1198	С	C6-N1-C2	-5.69	118.02	120.30
1	a	413	G	O4'-C1'-N9	5.68	112.74	108.20
23	Х	47	ARG	NE-CZ-NH2	5.67	123.14	120.30
58	А	1467	U	C2-N1-C1'	5.67	124.51	117.70

Continued	from	previous	page
Contentaca	JION	precious	pagem

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	2350	G	P-O3'-C3'	5.67	126.50	119.70
57	В	62	С	C2-N1-C1'	5.67	125.03	118.80
58	А	977	G	N3-C4-N9	5.66	129.40	126.00
58	А	1197	С	C6-N1-C2	-5.66	118.04	120.30
22	W	50	G	C6-C5-N7	-5.66	127.01	130.40
58	А	868	С	C6-N1-C2	-5.65	118.04	120.30
1	a	372	С	N3-C2-O2	-5.65	117.94	121.90
1	a	846	А	C2-N3-C4	-5.65	107.78	110.60
58	А	1996	U	C2-N1-C1'	5.65	124.48	117.70
1	a	1171	G	O5'-P-OP2	-5.65	100.62	105.70
1	a	311	С	N1-C2-O2	5.64	122.29	118.90
58	А	788	С	C6-N1-C2	-5.64	118.04	120.30
58	А	3066	С	C6-N1-C2	-5.64	118.04	120.30
58	А	2841	С	N3-C2-O2	-5.64	117.95	121.90
58	А	975	U	N3-C2-O2	-5.63	118.26	122.20
45	W	49	LEU	CA-CB-CG	5.62	128.23	115.30
58	А	2144	С	C5-C6-N1	5.62	123.81	121.00
1	a	1486	А	C5-C6-N1	-5.62	114.89	117.70
58	А	2730	U	N3-C2-O2	-5.61	118.27	122.20
58	А	1001	С	N1-C2-O2	5.61	122.27	118.90
1	a	1204	С	C5-C6-N1	-5.61	118.20	121.00
34	L	110	LYS	N-CA-C	5.60	126.13	111.00
58	А	43	С	C6-N1-C2	-5.60	118.06	120.30
58	А	2842	G	N3-C4-C5	-5.60	125.80	128.60
1	a	794	А	C6-C5-N7	-5.60	128.38	132.30
1	a	1481	G	N3-C4-C5	-5.60	125.80	128.60
58	А	2803	С	N1-C2-O2	5.60	122.26	118.90
58	А	29	С	C6-N1-C1'	-5.60	114.08	120.80
1	a	488	С	C6-N1-C2	-5.59	118.06	120.30
58	А	1008	G	C6-C5-N7	-5.59	127.04	130.40
58	А	1515	С	C6-N1-C2	-5.59	118.06	120.30
58	А	839	U	C2-N1-C1'	5.58	124.40	117.70
58	А	703	С	N1-C2-O2	5.58	122.25	118.90
1	a	1214	G	C8-N9-C4	5.58	108.63	106.40
58	А	1429	С	N1-C2-O2	5.58	122.25	118.90
58	A	2245	C	C5-C6-N1	5.58	123.79	121.00
58	А	1298	С	C2-N1-C1'	5.58	124.94	118.80
1	a	466	U	C2-N1-C1'	5.57	124.39	117.70
22	W	68	C	C5-C6-N1	5.57	123.78	121.00
57	В	38	С	N1-C2-O2	5.57	122.24	118.90
58	А	112	C	C6-N1-C2	-5.57	118.07	120.30
58	A	1386	G	C8-N9-C4	-5.56	104.17	106.40

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	85	С	N3-C2-O2	-5.56	118.01	121.90
58	А	1862	С	C5-C6-N1	5.56	123.78	121.00
58	А	3048	С	N1-C2-O2	5.56	122.23	118.90
58	А	922	U	N3-C2-O2	-5.55	118.31	122.20
58	А	2181	С	C6-N1-C2	-5.55	118.08	120.30
58	А	1816	С	C5-C6-N1	5.55	123.78	121.00
58	А	2687	U	C5-C6-N1	5.55	125.47	122.70
58	А	324	С	C6-N1-C2	-5.55	118.08	120.30
22	W	50	G	C4-N9-C1'	5.54	133.71	126.50
58	А	2979	С	C5-C6-N1	5.54	123.77	121.00
58	А	929	С	C5-C6-N1	5.54	123.77	121.00
22	W	4	G	N3-C4-N9	-5.54	122.68	126.00
22	W	26	С	N3-C4-C5	5.54	124.12	121.90
58	А	1212	U	N1-C2-O2	5.54	126.68	122.80
58	А	2290	С	C5-C6-N1	5.54	123.77	121.00
58	А	1843	С	C2-N1-C1'	5.54	124.89	118.80
1	a	953	G	O4'-C1'-N9	5.53	112.63	108.20
22	W	63	С	N3-C2-O2	-5.53	118.03	121.90
58	А	1816	С	N1-C2-O2	5.53	122.22	118.90
58	А	1651	С	C5-C6-N1	5.53	123.76	121.00
39	Q	15	ASP	CB-CG-OD1	5.53	123.28	118.30
58	А	2842	G	C2-N3-C4	5.53	114.66	111.90
22	W	62	С	N1-C2-O2	5.52	122.22	118.90
58	А	234	U	N1-C2-O2	5.52	126.67	122.80
58	А	1775	С	C2-N1-C1'	5.52	124.88	118.80
1	a	489	А	C6-C5-N7	-5.52	128.44	132.30
1	a	799	G	C8-N9-C4	5.52	108.61	106.40
33	K	5	THR	N-CA-C	-5.52	96.10	111.00
57	В	69	С	N3-C2-O2	-5.52	118.04	121.90
58	А	937	U	C5-C6-N1	5.52	125.46	122.70
1	a	666	U	C5-C4-O4	5.52	129.21	125.90
58	А	1612	U	N3-C2-O2	-5.52	118.34	122.20
1	a	1117	U	P-O3'-C3'	5.51	126.32	119.70
58	А	846	С	C6-N1-C2	-5.51	118.09	120.30
58	А	1197	С	C5-C6-N1	5.51	123.75	121.00
58	А	1548	С	N1-C2-O2	5.51	122.20	118.90
23	X	58	GLU	CB-CA-C	-5.50	99.39	110.40
58	А	2230	С	N1-C2-O2	5.50	122.20	118.90
58	A	733	U	C5-C6-N1	5.50	125.45	122.70
1	a	902	U	C5-C6-N1	-5.50	119.95	122.70
58	А	1801	С	C6-N1-C2	-5.50	118.10	120.30
58	А	2521	С	N1-C2-O2	5.50	122.20	118.90

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	1321	С	C6-N1-C2	-5.49	118.10	120.30
58	А	2632	U	C5-C6-N1	5.49	125.45	122.70
1	a	745	G	C4-C5-N7	5.49	113.00	110.80
23	Х	94	GLY	C-N-CD	5.49	139.93	128.40
1	a	737	U	C5-C6-N1	-5.49	119.96	122.70
1	a	258	G	C8-N9-C4	-5.49	104.21	106.40
1	a	85	С	C6-N1-C2	-5.48	118.11	120.30
26	D	156	THR	C-N-CD	5.48	139.91	128.40
58	А	1847	U	N1-C2-N3	5.48	118.19	114.90
58	А	204	G	O4'-C1'-N9	5.48	112.58	108.20
28	F	35	ILE	C-N-CD	5.48	139.90	128.40
25	С	35	ARG	C-N-CD	5.48	139.90	128.40
52	1	32	ASP	C-N-CD	5.48	139.90	128.40
1	a	70	А	N1-C6-N6	5.47	121.88	118.60
58	А	2647	U	N3-C2-O2	-5.47	118.37	122.20
58	А	1366	А	C2-N3-C4	5.47	113.33	110.60
58	А	2362	С	C6-N1-C2	-5.47	118.11	120.30
58	А	1045	С	N3-C2-O2	-5.47	118.07	121.90
1	a	296	U	N3-C2-O2	-5.47	118.37	122.20
1	a	1117	U	O4'-C1'-N1	5.46	112.57	108.20
1	a	1383	С	C6-N1-C2	-5.46	118.11	120.30
3	е	190	ALA	C-N-CD	5.46	139.87	128.40
1	a	1507	G	C8-N9-C4	5.46	108.58	106.40
1	a	954	С	C6-N1-C2	5.45	122.48	120.30
58	А	184	С	C6-N1-C2	-5.45	118.12	120.30
58	А	1102	G	N3-C4-C5	-5.45	125.88	128.60
1	a	962	С	C5-C6-N1	5.45	123.72	121.00
58	А	2116	С	N3-C2-O2	-5.44	118.09	121.90
58	А	1485	С	C5-C6-N1	5.44	123.72	121.00
34	L	12	ASP	CB-CG-OD1	5.43	123.19	118.30
58	А	3035	С	C6-N1-C2	-5.43	118.13	120.30
58	А	2752	U	N1-C2-O2	5.43	126.60	122.80
58	А	97	U	P-O3'-C3'	5.42	126.21	119.70
58	А	918	U	C6-N1-C2	-5.42	117.75	121.00
1	a	11	G	C4-C5-N7	5.42	112.97	110.80
1	a	496	U	C2-N1-C1'	5.42	124.20	117.70
58	A	3070	G	N3-C4-C5	5.42	131.31	128.60
58	A	1991	С	C6-N1-C2	-5.41	118.14	120.30
58	A	2690	С	C5-C6-N1	5.41	123.71	121.00
1	a	415	C	C2-N1-C1'	5.41	$1\overline{24.75}$	118.80
1	a	803	G	N9-C4-C5	5.41	107.56	105.40
1	a	85	С	C5-C6-N1	5.41	123.70	121.00

58

А

2267

С

Mol	Chain	Bes	Type	Atoms	Z	Observed ^(o)	Ideal(°)
58	Δ	802	C C	N1-C2-O2	5.41	122.14	118.90
58	Δ	905	U	$\frac{110202}{C6-N1-C1}$	-5.41	113.63	121.20
58	A	1904		N3-C2-O2	-5.41	118.00	121.20
1	21	821	C	N1-C2-O2	5.40	122 14	118.90
58	A	2571		N1-C2-O2	5.40 5.40	122.14	118.90
58	Δ	2665		N1-C2-O2	5.40	122.14	118.90
58	Δ	1276	G	C4-C5-N7	5.40	112.14	110.90
58	Δ	3116	C	C6-N1-C2	-5.30	112.50	120.30
58	Δ	1662	C	C5-C6-N1	5 30	123.69	120.00
1	2	1002 27		C6-N1-C2	5.39	129.05	121.00 120.30
58	Δ	1260	C	C_2 -N1-C1'	5 30	122.40	118.80
58	Δ	1200 1302	G	N9-C4-C5	-5.38	103.25	105.00
58	Δ	$\frac{1002}{2472}$	C	$C_{2}-N_{1}-C_{1}$	5.38	105.20 124 72	118.80
1	2	1510	C C	N3-C4-C5	-5.38	124.72	128.60
1	a 9	1310 1/77		C8-N9-C4	-5.38	103.65	105.80
58		1911	II	C5-C6-N1	-5.38	105.00	100.00 122.70
58	Δ	984		C5-C6-N1	5.38	125.39	122.70 122.70
58	Δ	504		C6 N1 C2	5.38	118 15	122.10
58	Λ	101		$\frac{\text{C0-N1-C2}}{\text{C8 N0 C1'}}$	-5.30	110.15	120.30 197.00
58	Δ	191	U U	$04^{\circ} C1^{\circ} N1$	-0.00	112 50	108.20
58	Λ Λ	2108		C6 N1 C2	5.38	112.50	100.20
58	A	2198		C6 N1 C2	-5.30	118.15	120.30 120.30
1	<u>л</u>	929		C6 N1 C2	-0.07	118.15	120.30
59		404		N1 C2 N2	-0.07	110.10	120.30 114.00
1	A	100		$\frac{11-02-103}{C2}$	5.37	110.12	114.90
1 59		1028	G U	C5 C6 N1	-0.00	104.20	100.40 199.70
<u> </u>	A	2220		$\frac{\text{C}_{0}\text{-}\text{N}_{1}}{\text{C}_{0}\text{-}\text{N}_{1}}$	5.30	120.00	122.70 120.20
1	a	907		$\frac{\text{C0-N1-C2}}{\text{C6 N1 C2}}$	5.30	122.44	120.30 191.00
17	a	947		$\frac{\text{C0-N1-C2}}{\text{C} \text{ N CA}}$	5.30	124.22	121.00 121.70
11		169	PRO	CE CC N1	0.30 E 26	105.10	121.70
<u> </u>	A	2147		$\frac{\text{CO-UO-INI}}{\text{CC-INI}}$	0.30	120.38	122.70
$\frac{58}{22}$	A	1298		00-N1-C2	-5.30	118.10	120.30
1	W	01		NI-02-02	0.30	120.33	122.80
1 <u></u>	a A	1209	A	$\frac{N}{-C8-N9}$	5.35	110.48	113.80
58	A	1920		C0-N1-C2	-5.35	118.10	120.30
58	A	(8)		C0-N1-C2	-5.35	118.10	120.30
58	A	472		<u>U0-N1-U2</u>	-5.35	118.10	120.30
58	A	1158		N1-C2-O2	5.35	120.55	122.80
58	A	2829		N3-C2-O2	-5.35	118.45	122.20
45	W .	58	LEU	CB-CG-CD2	-5.35	101.91	111.00
6	i	32	ARG	CB-CA-C	5.34	121.09	110.40
58	A	1953	C	C6-N1-C2	-5.34	118.17	120.30

Continued from previous page... D

Continued on next page...

118.90

122.10

5.34

N1-C2-O2

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
0010000000	J. 01.0	p. 0000 a0	P ~ 9 0 · · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	2360	С	C5-C6-N1	5.34	123.67	121.00
58	А	2625	С	N1-C2-O2	5.34	122.10	118.90
58	А	2698	С	C2-N1-C1'	5.34	124.67	118.80
34	L	108	GLU	N-CA-C	-5.34	96.59	111.00
58	А	2327	С	C5-C6-N1	5.34	123.67	121.00
1	a	331	G	N9-C4-C5	-5.33	103.27	105.40
58	А	514	С	N1-C2-O2	5.33	122.10	118.90
58	А	1694	С	C5-C6-N1	5.33	123.67	121.00
58	А	2375	G	C6-C5-N7	-5.33	127.20	130.40
58	А	957	С	C5-C6-N1	5.33	123.66	121.00
58	А	2138	С	N3-C2-O2	-5.33	118.17	121.90
58	А	952	С	C6-N1-C2	-5.33	118.17	120.30
30	Н	124	ILE	C-N-CA	5.33	135.01	121.70
1	a	1028	G	N7-C8-N9	5.32	115.76	113.10
58	А	2886	A	C8-N9-C4	-5.32	103.67	105.80
58	А	996	G	C4-N9-C1'	5.32	133.42	126.50
58	А	2890	С	C2-N1-C1'	5.32	124.65	118.80
58	А	1898	U	N3-C2-O2	-5.32	118.48	122.20
58	А	1094	G	C4-C5-N7	5.32	112.93	110.80
58	А	2472	С	C5-C6-N1	5.32	123.66	121.00
33	K	1	MET	C-N-CD	5.32	139.56	128.40
1	a	1060	A	C8-N9-C4	5.31	107.92	105.80
1	a	1511	С	C5-C6-N1	5.31	123.66	121.00
58	А	845	С	N3-C2-O2	-5.31	118.18	121.90
58	А	1943	С	N1-C2-O2	5.31	122.08	118.90
1	a	509	G	C5-N7-C8	-5.30	101.65	104.30
5	h	94	LEU	C-N-CD	5.30	139.54	128.40
58	А	1008	G	N3-C4-N9	5.30	129.18	126.00
58	А	3016	C	C6-N1-C2	-5.30	118.18	120.30
54	3	15	ARG	CB-CG-CD	-5.30	97.82	111.60
1	a	641	G	C8-N9-C4	-5.30	104.28	106.40
58	А	1521	С	C6-N1-C1'	-5.30	114.44	120.80
58	А	1734	С	C6-N1-C2	-5.30	118.18	120.30
58	А	1220	С	C6-N1-C2	-5.30	118.18	120.30
58	А	1321	С	C5-C6-N1	5.29	123.65	121.00
58	А	1651	С	C6-N1-C2	-5.29	118.18	120.30
27	Е	19	GLU	C-N-CA	5.29	134.92	121.70
58	A	1817	C	C5-C6-N1	5.29	123.64	121.00
1	a	489	A	O4'-C1'-N9	5.28	112.43	108.20
58	А	192	U	C2-N1-C1'	5.28	124.04	117.70
1	a	1511	С	C6-N1-C2	-5.28	118.19	120.30
58	А	2322	С	C6-N1-C1'	-5.28	114.46	120.80

Continued	from	previous	page
00.000.0000	<i>J. o.</i>	<i>p</i> · <i>o o o a o</i>	$p \approx g \circ \cdots$

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	109	G	C5-C6-N1	5.28	114.14	111.50
1	a	901	А	C2-N3-C4	-5.28	107.96	110.60
52	1	8	ARG	C-N-CD	5.28	139.48	128.40
58	А	2087	С	C6-N1-C1'	-5.28	114.47	120.80
58	А	1409	С	C2-N1-C1'	5.27	124.60	118.80
58	А	102	С	N3-C2-O2	-5.27	118.21	121.90
58	А	1065	С	C5-C6-N1	5.27	123.64	121.00
1	a	11	G	O4'-C1'-N9	5.27	112.41	108.20
1	a	322	С	N1-C2-O2	-5.27	115.74	118.90
1	a	1171	G	C5'-C4'-O4'	-5.26	102.78	109.10
1	a	799	G	N9-C4-C5	-5.26	103.30	105.40
58	А	2274	C	C6-N1-C2	-5.26	118.19	120.30
58	А	2118	C	N1-C2-O2	5.26	122.06	118.90
11	q	76	LEU	CA-CB-CG	5.26	127.40	115.30
58	А	1030	C	C6-N1-C1'	-5.26	114.49	120.80
1	a	846	A	N1-C2-N3	5.25	131.93	129.30
58	А	1449	C	C5-C6-N1	5.25	123.62	121.00
58	А	2366	C	N1-C2-O2	5.25	122.05	118.90
58	А	2967	С	C6-N1-C2	-5.25	118.20	120.30
58	А	274	С	C2-N1-C1'	5.25	124.57	118.80
58	А	326	A	C8-N9-C4	-5.25	103.70	105.80
58	А	2717	U	C6-N1-C2	-5.25	117.85	121.00
1	a	777	С	C6-N1-C1'	-5.24	114.51	120.80
58	А	205	U	N1-C2-O2	5.24	126.47	122.80
58	А	599	G	N1-C6-O6	-5.24	116.75	119.90
1	a	802	G	C8-N9-C4	-5.24	104.30	106.40
58	А	1816	С	C6-N1-C2	-5.24	118.20	120.30
58	А	1008	G	C8-N9-C1'	-5.24	120.19	127.00
1	a	1204	С	C6-N1-C2	5.24	122.40	120.30
58	А	472	С	C6-N1-C1'	-5.24	114.51	120.80
58	A	2107	G	C2-N3-C4	-5.24	109.28	111.90
1	a	215	U	N3-C2-O2	-5.23	118.54	122.20
3	е	32	ASP	CB-CG-OD2	5.23	123.01	118.30
58	A	2782	С	C6-N1-C2	-5.23	118.21	120.30
1	a	1480	С	C6-N1-C2	-5.23	118.21	120.30
58	A	3048	С	C5-C6-N1	5.23	123.61	121.00
1	a	903	U	C5-C6-N1	-5.23	120.09	122.70
1	a	1466	G	N3-C4-C5	-5.23	125.99	128.60
58	A	417	C	N3-C2-O2	-5.23	118.24	121.90
58	A	1521	C	C5-C6-N1	5.23	123.61	121.00
42	Т	7	PHE	C-N-CD	5.23	139.38	128.40
1	a	895	A	N9-C4-C5	5.22	107.89	105.80

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
58	А	2487	С	N3-C2-O2	-5.22	118.25	121.90
1	a	110	U	C5-C6-N1	-5.22	120.09	122.70
58	А	2435	U	C2-N1-C1'	5.22	123.96	117.70
58	А	2012	С	C6-N1-C2	-5.22	118.21	120.30
1	a	1203	G	N3-C4-N9	-5.21	122.87	126.00
58	А	2226	U	N3-C2-O2	-5.21	118.55	122.20
1	a	509	G	N7-C8-N9	5.21	115.70	113.10
1	a	1510	G	C2-N3-C4	5.21	114.51	111.90
58	А	2118	С	N3-C2-O2	-5.21	118.25	121.90
58	А	1429	С	C6-N1-C1'	-5.21	114.55	120.80
58	А	1553	С	N3-C2-O2	-5.21	118.25	121.90
2	с	143	GLN	C-N-CD	5.21	139.33	128.40
58	А	572	С	C5-C6-N1	5.21	123.60	121.00
58	А	231	U	C2-N1-C1'	5.21	123.95	117.70
58	А	236	С	C5-C6-N1	5.21	123.60	121.00
58	А	658	U	C2-N1-C1'	5.21	123.95	117.70
58	А	1837	G	N3-C4-N9	5.21	129.12	126.00
1	a	530	G	C6-C5-N7	-5.20	127.28	130.40
54	3	62	LEU	CA-CB-CG	5.20	127.26	115.30
3	е	21	ASP	CB-CG-OD2	5.20	122.98	118.30
1	a	504	G	N3-C4-N9	5.20	129.12	126.00
1	a	107	G	C8-N9-C4	5.19	108.48	106.40
58	А	472	С	N3-C2-O2	-5.19	118.27	121.90
58	А	703	С	C6-N1-C1'	-5.19	114.57	120.80
58	А	547	U	N1-C2-O2	5.19	126.43	122.80
58	А	2260	С	N3-C2-O2	-5.19	118.27	121.90
1	a	485	G	C4-N9-C1'	5.18	133.24	126.50
58	А	79	G	C8-N9-C4	-5.18	104.33	106.40
58	А	1991	С	N3-C2-O2	-5.18	118.27	121.90
58	А	101	U	N1-C2-O2	5.18	126.42	122.80
58	А	184	С	C5-C6-N1	5.18	123.59	121.00
57	В	78	U	N3-C2-O2	-5.17	118.58	122.20
58	А	197	С	C2-N1-C1'	5.17	124.49	118.80
58	А	1478	С	N1-C2-O2	5.17	122.00	118.90
58	А	275	С	N3-C2-O2	-5.17	118.28	121.90
58	А	609	G	N3-C4-N9	5.17	129.10	126.00
58	А	802	С	C2-N1-C1'	5.17	124.49	118.80
58	A	1837	G	N9-C4-C5	-5.17	103.33	105.40
58	А	2680	С	C2-N1-C1'	5.17	124.48	118.80
58	A	927	C	C6-N1-C2	-5.17	118.23	120.30
1	a	900	A	N1-C2-N3	5.16	131.88	129.30
58	А	1212	U	C2-N1-C1'	5.16	123.90	117.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	a	1302	С	C5-C6-N1	-5.16	118.42	121.00
58	А	1266	С	C6-N1-C2	-5.16	118.23	120.30
1	a	747	А	C4-C5-C6	5.16	119.58	117.00
1	a	790	С	N3-C2-O2	-5.16	118.29	121.90
1	a	1435	U	O4'-C1'-N1	-5.16	104.07	108.20
58	А	83	С	C5-C6-N1	5.16	123.58	121.00
58	А	197	С	N1-C2-O2	5.16	122.00	118.90
58	А	438	U	N1-C2-O2	5.16	126.41	122.80
58	А	2243	С	C2-N1-C1'	5.16	124.47	118.80
1	a	280	С	C6-N1-C2	5.15	122.36	120.30
58	А	1276	G	C6-C5-N7	-5.15	127.31	130.40
25	С	94	LEU	CB-CG-CD1	-5.15	102.25	111.00
58	А	646	U	N3-C2-O2	-5.15	118.59	122.20
58	А	1977	С	C6-N1-C2	-5.15	118.24	120.30
58	А	2839	U	N1-C2-O2	5.15	126.41	122.80
1	a	1504	G	C8-N9-C4	5.15	108.46	106.40
58	А	747	А	C4-C5-N7	5.15	113.27	110.70
58	А	3045	С	C5-C6-N1	5.15	123.57	121.00
58	А	324	С	N1-C2-O2	5.15	121.99	118.90
58	А	407	С	C6-N1-C2	-5.15	118.24	120.30
1	a	953	G	OP1-P-OP2	5.14	127.32	119.60
58	А	387	U	N3-C2-O2	-5.14	118.60	122.20
3	е	22	ASP	CB-CG-OD2	5.14	122.92	118.30
1	a	454	С	C5-C6-N1	5.14	123.57	121.00
27	Е	93	PRO	C-N-CA	5.14	134.54	121.70
58	А	1001	С	N3-C2-O2	-5.14	118.31	121.90
58	А	2780	С	C6-N1-C2	-5.14	118.25	120.30
58	А	186	G	C4-C5-N7	5.13	112.85	110.80
58	А	977	G	N3-C4-C5	-5.13	126.03	128.60
58	А	2260	C	N1-C2-O2	5.13	121.98	118.90
58	А	1103	С	C2-N1-C1'	5.13	124.44	118.80
58	А	853	C	C6-N1-C2	-5.13	118.25	120.30
58	А	1382	U	N3-C2-O2	-5.13	118.61	122.20
50	У	42	HIS	C-N-CD	5.12	139.16	128.40
58	А	1467	U	N1-C2-O2	5.12	126.39	122.80
58	А	2430	С	N3-C2-O2	-5.12	118.31	121.90
1	a	1088	G	N7-C8-N9	5.12	$1\overline{15.66}$	113.10
58	A	1320	U	C5-C6-N1	5.12	$1\overline{25.26}$	122.70
1	a	1485	C	C6-N1-C2	5.12	122.35	120.30
1	a	251	G	N9-C4-C5	-5.12	103.35	105.40
1	a	666	U	O4'-C1'-N1	5.12	112.30	108.20
58	А	961	U	C2-N1-C1'	5.12	123.84	117.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	1102	G	C2-N3-C4	5.12	114.46	111.90
58	А	2262	С	C5-C6-N1	5.12	123.56	121.00
58	А	3036	С	C6-N1-C2	-5.12	118.25	120.30
3	е	29	ASP	CB-CG-OD2	5.11	122.90	118.30
58	А	2993	U	N3-C2-O2	-5.11	118.62	122.20
1	a	372	С	N1-C2-N3	5.11	122.78	119.20
1	a	1340	U	C6-N1-C2	5.11	124.06	121.00
43	U	6	ASP	C-N-CD	5.11	139.12	128.40
58	А	318	U	N1-C2-O2	5.11	126.38	122.80
58	А	685	G	C4-N9-C1'	5.11	133.14	126.50
1	a	821	С	C2-N1-C1'	5.11	124.42	118.80
58	А	759	G	N3-C4-C5	5.11	131.15	128.60
58	А	912	С	C4-C5-C6	-5.11	114.85	117.40
58	А	472	С	C5-C6-N1	5.10	123.55	121.00
58	А	1903	С	N1-C2-O2	5.10	121.96	118.90
58	А	2086	U	C6-N1-C2	-5.10	117.94	121.00
58	А	2923	С	C5-C6-N1	5.10	123.55	121.00
58	А	277	U	C5-C6-N1	5.10	125.25	122.70
58	А	1460	С	C2-N1-C1'	5.10	124.41	118.80
58	А	2158	С	N3-C2-O2	-5.09	118.33	121.90
58	А	608	С	N1-C2-O2	5.09	121.96	118.90
58	А	3034	С	C5-C6-N1	5.09	123.55	121.00
1	a	63	А	C8-N9-C4	-5.09	103.77	105.80
22	W	28	U	OP1-P-O3'	5.09	116.39	105.20
58	А	127	С	C5-C6-N1	5.08	123.54	121.00
1	a	1171	G	P-O5'-C5'	-5.08	112.77	120.90
58	А	2485	C	N3-C2-O2	-5.08	118.34	121.90
58	А	2780	С	N1-C2-O2	5.08	121.95	118.90
58	А	1534	С	N3-C2-O2	-5.08	118.35	121.90
58	А	1102	G	N3-C4-N9	5.07	129.04	126.00
58	А	2697	U	C5-C6-N1	5.07	125.24	122.70
1	a	798	G	O4'-C1'-N9	5.07	112.25	108.20
23	х	58	GLU	CA-CB-CG	5.07	124.55	113.40
58	А	964	C	C5-C6-N1	5.07	123.53	121.00
58	А	2005	С	C2-N1-C1'	5.07	124.38	118.80
58	А	2077	С	C5-C6-N1	5.07	123.53	121.00
58	A	2361	U	C5-C6-N1	5.07	125.23	122.70
46	X	85	ARG	C-N-CD	5.07	139.04	128.40
57	В	109	C	N1-C2-O2	5.07	121.94	118.90
58	А	1298	C	N1-C2-O2	5.07	121.94	118.90
58	A	1403	C	C2-N1-C1'	5.06	124.37	118.80
1	a	1486	A	C8-N9-C4	-5.06	103.78	105.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
58	А	1775	С	N1-C2-O2	5.06	121.94	118.90
1	a	1149	С	N3-C2-O2	-5.06	118.36	121.90
58	А	1753	С	C6-N1-C2	-5.06	118.28	120.30
57	В	4	А	N1-C6-N6	5.06	121.63	118.60
58	А	1485	С	C2-N1-C1'	5.05	124.36	118.80
1	a	1192	U	O4'-C1'-N1	5.05	112.24	108.20
1	a	847	А	N7-C8-N9	-5.05	111.28	113.80
34	L	92	ASP	C-N-CD	5.05	139.00	128.40
58	А	658	U	C5-C6-N1	5.05	125.22	122.70
58	А	2138	С	C6-N1-C2	-5.05	118.28	120.30
1	a	1515	А	C8-N9-C4	-5.05	103.78	105.80
58	А	1239	С	N1-C2-O2	5.05	121.93	118.90
58	А	2087	С	C5-C6-N1	5.05	123.52	121.00
58	А	2320	С	C6-N1-C2	-5.04	118.28	120.30
58	А	3029	U	N1-C2-O2	5.04	126.33	122.80
57	В	73	G	N3-C4-N9	5.04	129.02	126.00
58	А	2940	U	N1-C2-O2	5.04	126.33	122.80
58	А	2940	U	C5-C6-N1	5.04	125.22	122.70
58	А	1953	С	C5-C6-N1	5.04	123.52	121.00
27	Е	155	LEU	CB-CG-CD1	-5.03	102.44	111.00
58	А	211	U	N3-C2-O2	-5.03	118.68	122.20
58	А	1992	U	C5-C4-O4	-5.03	122.88	125.90
58	А	2118	С	C6-N1-C2	-5.03	118.29	120.30
58	А	2322	С	N3-C2-O2	-5.03	118.38	121.90
58	А	1535	С	O4'-C1'-N1	5.03	112.22	108.20
58	А	1862	С	N1-C2-O2	5.02	121.91	118.90
58	А	2736	С	C5-C6-N1	5.02	123.51	121.00
1	a	458	А	O4'-C1'-N9	5.02	112.22	108.20
1	a	927	G	N3-C4-C5	-5.02	126.09	128.60
58	А	2671	G	N3-C4-N9	5.02	129.01	126.00
1	a	1482	U	N1-C2-N3	5.02	117.91	114.90
58	А	2913	U	N1-C2-O2	5.02	126.31	122.80
1	a	755	G	N1-C6-O6	5.01	122.91	119.90
58	А	2698	С	N1-C2-O2	5.01	121.91	118.90
1	a	742	А	C4-C5-C6	5.01	119.51	117.00
1	a	356	А	C4-C5-C6	5.01	119.50	117.00
1	a	415	С	C6-N1-C2	-5.01	118.30	120.30
1	a	799	G	C2-N3-C4	-5.01	109.40	111.90
23	Х	56	ARG	NE-CZ-NH1	-5.00	117.80	120.30

There are no chirality outliers.

All (60) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
24	0	114	UNK	Peptide
24	0	115	UNK	Peptide
24	0	336	UNK	Peptide
24	0	337	UNK	Peptide
24	0	338	UNK	Peptide
24	0	339	UNK	Peptide
24	0	450	UNK	Peptide
24	0	451	UNK	Peptide
52	1	32	ASP	Peptide
52	1	33	PRO	Peptide
25	С	144	ALA	Peptide
25	С	229	VAL	Peptide
25	С	246	PRO	Peptide
25	С	35	ARG	Peptide
25	С	61	ALA	Peptide
26	D	153	GLY	Peptide
26	D	156	THR	Peptide
27	Е	131	VAL	Peptide
27	Е	137	SER	Peptide
27	Е	158	ILE	Peptide
27	Е	162	ASP	Peptide
27	Е	93	PRO	Peptide
28	F	81	ILE	Peptide
33	Κ	91	GLU	Peptide
36	Ν	60	ARG	Peptide
36	Ν	78	PRO	Peptide
37	0	117	ARG	Peptide
37	0	61	HIS	Peptide
42	Т	95	ARG	Peptide
43	U	67	LYS	Peptide
45	W	137	ALA	Peptide
45	W	39	GLY	Peptide
2	с	62	ARG	Peptide
17	d	189	PRO	Peptide
3	е	186	ILE	Peptide
4	g	1	MET	Peptide
4	g	32	LEU	Peptide
4	g	76	ARG	Peptide
5	h	126	GLU	Peptide
5	h	55	ARG	Peptide
7	j	44	THR	Peptide
8	k	133	PRO	Peptide
8	k	35	THR	Peptide

Mol	Chain	Res	Type	Group
9	1	23	ALA	Peptide
9	1	88	LYS	Peptide
11	q	15	LYS	Peptide
12	r	19	LYS	Peptide
13	s	70	LYS	Peptide
13	s	73	GLU	Peptide
23	Х	125	LYS	Peptide
23	Х	126	ASP	Peptide
23	Х	127	ARG	Peptide
23	Х	128	ARG	Peptide
23	Х	129	LYS	Peptide
23	Х	37	GLY	Peptide
23	Х	56	ARG	Sidechain
23	х	65	TYR	Sidechain
23	Х	70	GLU	Peptide
23	х	93	ARG	Peptide
23	Х	94	GLY	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
2	с	208/275~(76%)	184 (88%)	17 (8%)	7 (3%)	3 21
3	е	196/214~(92%)	176~(90%)	19 (10%)	1 (0%)	29 61
4	g	154/156~(99%)	144 (94%)	9 (6%)	1 (1%)	25 57
5	h	128/132~(97%)	119 (93%)	8 (6%)	1 (1%)	19 51
6	i	124/150~(83%)	108 (87%)	13 (10%)	3 (2%)	6 28

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
7	j	95/101~(94%)	84 (88%)	10 (10%)	1 (1%)	14	44
8	k	115/138 (83%)	103 (90%)	10 (9%)	2 (2%)	9	34
9	1	120/124~(97%)	93~(78%)	26 (22%)	1 (1%)	19	51
10	О	85/89~(96%)	81 (95%)	4 (5%)	0	100	100
11	q	90/98~(92%)	79~(88%)	11 (12%)	0	100	100
12	r	62/84~(74%)	54 (87%)	8 (13%)	0	100	100
13	s	76/93~(82%)	68~(90%)	8 (10%)	0	100	100
14	t	82/86~(95%)	77 (94%)	5 (6%)	0	100	100
15	n	58/61~(95%)	53~(91%)	5 (9%)	0	100	100
16	b	226/277~(82%)	211 (93%)	15 (7%)	0	100	100
17	d	198/201~(98%)	185 (93%)	12 (6%)	1 (0%)	29	61
18	f	94/96~(98%)	90 (96%)	4 (4%)	0	100	100
19	m	114/124~(92%)	102 (90%)	12 (10%)	0	100	100
20	р	111/156 (71%)	104 (94%)	7 (6%)	0	100	100
21	u	30/33~(91%)	28~(93%)	2 (7%)	0	100	100
23	х	98/230~(43%)	80 (82%)	15 (15%)	3 (3%)	4	23
25	С	271/278~(98%)	234 (86%)	33 (12%)	4 (2%)	10	36
26	D	212/217~(98%)	197~(93%)	10 (5%)	5 (2%)	6	28
27	Е	205/215~(95%)	179 (87%)	20 (10%)	6 (3%)	4	24
28	F	179/187~(96%)	163 (91%)	14 (8%)	2 (1%)	14	44
29	G	174/179~(97%)	166~(95%)	8 (5%)	0	100	100
30	Н	149/151~(99%)	139~(93%)	9~(6%)	1 (1%)	22	55
31	Ι	124/175~(71%)	118 (95%)	6 (5%)	0	100	100
32	J	131/142 (92%)	118 (90%)	13 (10%)	0	100	100
33	К	145/147~(99%)	132 (91%)	10 (7%)	3 (2%)	7	30
34	L	119/122~(98%)	106 (89%)	10 (8%)	3 (2%)	5	26
35	М	143/147~(97%)	128 (90%)	15 (10%)	0	100	100
36	Ν	$\overline{132/138}\ (96\%)$	111 (84%)	20 (15%)	1 (1%)	19	51
37	0	$\overline{115/199}~(58\%)$	101 (88%)	11 (10%)	3 (3%)	5	26
38	Р	124/127~(98%)	119 (96%)	5 (4%)	0	100	100

Continued from previous page... Mol Chain Analyzad

Continued on next page...

100

100

0

9 (8%)

102 (92%)

111/113~(98%)

Q

39

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
40	R	122/129~(95%)	120 (98%)	2 (2%)	0	100	100
41	S	100/103~(97%)	94 (94%)	5 (5%)	1 (1%)	15	46
42	Т	112/153~(73%)	103 (92%)	6 (5%)	3~(3%)	5	26
43	U	92/100~(92%)	76~(83%)	11 (12%)	5(5%)	2	13
44	V	93/105~(89%)	83~(89%)	8 (9%)	2(2%)	6	29
45	W	184/215~(86%)	156 (85%)	22 (12%)	6 (3%)	4	22
46	Х	80/88~(91%)	61 (76%)	14 (18%)	5~(6%)	1	9
47	Y	61/64~(95%)	57~(93%)	4 (7%)	0	100	100
48	Z	61/77~(79%)	59~(97%)	1 (2%)	1 (2%)	9	34
49	v	58/61~(95%)	53 (91%)	5 (9%)	0	100	100
50	У	64/75~(85%)	60 (94%)	3(5%)	1 (2%)	9	34
51	z	52/57~(91%)	51 (98%)	1 (2%)	0	100	100
52	1	48/55~(87%)	40 (83%)	5 (10%)	3~(6%)	1	9
53	2	43/47~(92%)	41 (95%)	2(5%)	0	100	100
54	3	61/64~(95%)	54 (88%)	7 (12%)	0	100	100
55	4	35/37~(95%)	29 (83%)	5 (14%)	1 (3%)	4	24
56	5	21/24 (88%)	20 (95%)	1 (5%)	0	100	100
All	All	6085/6909 (88%)	5493 (90%)	515 (8%)	77 (1%)	16	39

All (77) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
2	с	138	GLN
2	с	143	GLN
2	с	144	PRO
4	g	154	TYR
8	k	116	VAL
23	Х	78	ARG
25	С	58	HIS
25	С	145	VAL
25	С	262	LYS
26	D	151	ILE
27	Е	94	LYS
27	Е	152	LYS
28	F	47	VAL
33	Κ	142	ILE

Mol	Chain	Res	Type
34	L	89	ASN
42	Т	7	PHE
42	Т	118	PRO
45	W	40	HIS
45	W	83	LEU
48	Ζ	10	LEU
52	1	34	ASP
2	с	63	VAL
2	с	149	ILE
3	е	186	ILE
5	h	56	VAL
9	1	59	SER
23	Х	128	ARG
25	С	146	GLU
26	D	155	ALA
27	Е	65	PRO
28	F	142	GLN
33	K	140	PHE
36	Ν	59	LYS
37	0	15	SER
43	U	75	LYS
45	W	63	THR
46	Х	12	ASN
46	Х	16	SER
46	Х	17	ALA
55	4	23	VAL
6	i	43	PRO
6	i	81	PHE
26	D	161	PHE
33	K	2	PRO
34	L	90	ASP
37	0	116	VAL
45	W	85	VAL
45	W	104	GLU
52	1	33	PRO
2	с	137	ILE
8	k	36	PHE
17	d	189	PRO
26	D	150	SER
27	Е	4	LYS
27	Е	93	PRO
30	Н	125	LYS

Mol	Chain	Res	Type
37	0	60	LEU
42	Т	8	PRO
43	U	6	ASP
43	U	67	LYS
44	V	90	GLU
44	V	101	ASN
45	W	87	PRO
46	Х	83	VAL
52	1	7	VAL
2	с	145	ASN
6	i	42	VAL
26	D	157	PRO
27	Е	132	GLU
43	U	5	THR
46	Х	85	ARG
7	j	43	PRO
41	S	7	VAL
43	U	10	ILE
23	х	43	PRO
50	У	42	HIS
34	L	93	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
2	с	171/212~(81%)	164 (96%)	7~(4%)	30	59
3	е	139/147~(95%)	135~(97%)	4 (3%)	42	69
4	g	132/132~(100%)	127~(96%)	5(4%)	33	61
5	h	106/108~(98%)	103 (97%)	3(3%)	43	70
6	i	102/125~(82%)	96~(94%)	6~(6%)	19	49
7	j	88/90~(98%)	86~(98%)	2(2%)	50	74
8	k	91/105~(87%)	85 (93%)	6 (7%)	16	46
9	1	103/105~(98%)	98~(95%)	5(5%)	25	55

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
10	О	75/77~(97%)	74 (99%)	1 (1%)	69	84
11	q	78/83~(94%)	78 (100%)	0	100	100
12	r	55/72~(76%)	54 (98%)	1 (2%)	59	79
13	\mathbf{s}	69/84~(82%)	67~(97%)	2(3%)	42	69
14	t	69/70~(99%)	66~(96%)	3~(4%)	29	59
15	n	49/50~(98%)	48 (98%)	1 (2%)	55	77
16	b	191/218~(88%)	187~(98%)	4 (2%)	53	76
17	d	175/176~(99%)	174 (99%)	1 (1%)	86	94
18	f	85/85~(100%)	84 (99%)	1 (1%)	71	85
19	m	99/104~(95%)	99 (100%)	0	100	100
20	р	92/118~(78%)	92 (100%)	0	100	100
21	u	30/31~(97%)	23~(77%)	7(23%)	1	2
23	х	88/199~(44%)	66~(75%)	22 (25%)	0	2
25	С	214/218~(98%)	208~(97%)	6 (3%)	43	70
26	D	160/163~(98%)	156 (98%)	4 (2%)	47	72
27	Ε	167/173~(96%)	159~(95%)	8 (5%)	25	56
28	F	150/156~(96%)	138~(92%)	12 (8%)	12	38
29	G	148/150~(99%)	148 (100%)	0	100	100
30	Н	90/116~(78%)	90 (100%)	0	100	100
31	Ι	89/120~(74%)	89 (100%)	0	100	100
32	J	102/108~(94%)	102 (100%)	0	100	100
33	K	120/120~(100%)	116 (97%)	4 (3%)	38	66
34	L	99/100~(99%)	97~(98%)	2(2%)	55	77
35	М	112/114 (98%)	111 (99%)	1 (1%)	78	90
36	Ν	112/116~(97%)	109 (97%)	3 (3%)	44	70
37	О	96/158~(61%)	90 (94%)	6 (6%)	18	47
38	Р	93/94~(99%)	93 (100%)	0	100	100
39	Q	100/100~(100%)	99~(99%)	1 (1%)	76	88
40	R	97/99~(98%)	96 (99%)	1 (1%)	76	88
41	S	82/83~(99%)	81 (99%)	1 (1%)	71	85
42	Т	90/117~(77%)	86 (96%)	4 (4%)	28	58

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
43	U	82/85~(96%)	72~(88%)	10 (12%)	5 18
44	V	81/86~(94%)	75~(93%)	6 (7%)	13 42
45	W	152/168~(90%)	146 (96%)	6 (4%)	32 61
46	Х	59/63~(94%)	57~(97%)	2(3%)	37 65
47	Y	50/51~(98%)	50 (100%)	0	100 100
48	Z	58/66~(88%)	53 (91%)	5 (9%)	10 35
49	v	53/54~(98%)	51 (96%)	2(4%)	33 61
50	У	57/63~(90%)	54 (95%)	3~(5%)	22 52
51	Z	43/46~(94%)	43 (100%)	0	100 100
52	1	48/52~(92%)	41 (85%)	7 (15%)	3 12
53	2	35/36~(97%)	33~(94%)	2~(6%)	20 50
54	3	53/54~(98%)	53 (100%)	0	100 100
55	4	35/35~(100%)	34 (97%)	1 (3%)	42 69
56	5	18/19~(95%)	18 (100%)	0	100 100
All	All	5032/5574~(90%)	4854 (96%)	178 (4%)	39 65

All (178) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	с	131	ARG
2	с	141	MET
2	с	142	ARG
2	с	143	GLN
2	с	147	LYS
2	с	169	ARG
2	с	186	LEU
3	е	79	LYS
3	е	182	ARG
3	е	184	LEU
3	е	188	ASP
4	g	10	ARG
4	g	76	ARG
4	g	78	ARG
4	g	112	ARG
4	g	148	ASN
5	h	41	LYS
5	h	50	ARG

Mol	Chain	Res	Type
5	h	96	ARG
6	i	40	ARG
6	i	57	ASN
6	i	81	PHE
6	i	84	TYR
6	i	86	HIS
6	i	115	ARG
7	j	57	LYS
7	j	99	ASN
8	k	23	LYS
8	k	37	ASN
8	k	47	GLN
8	k	62	LYS
8	k	78	ASN
8	k	134	LYS
9	1	13	ARG
9	1	46	ASN
9	1	56	LYS
9	1	73	ASN
9	1	83	ARG
10	0	54	ARG
12	r	19	LYS
13	s	29	GLN
13	S	55	ARG
14	t	8	ILE
14	t	18	ARG
14	t	20	ARG
15	n	45	ARG
16	b	24	ASN
16	b	167	ASN
16	b	177	ARG
16	b	203	ASN
17	d	86	LEU
18	f	47	ARG
21	u	4	VAL
21	u	6	LYS
21	u	8	ARG
21	u	10	LYS
21	u	11	ARG
21	u	24	THR
21	u	30	LYS
23	X	36	LYS

Mol	Chain	Res	Type
23	Х	39	ASN
23	Х	56	ARG
23	Х	60	PHE
23	Х	61	ASP
23	Х	62	LYS
23	Х	73	HIS
23	Х	74	GLU
23	Х	75	ARG
23	Х	77	ARG
23	Х	78	ARG
23	Х	80	ARG
23	Х	81	LYS
23	Х	84	GLN
23	X	87	GLU
23	X	89	THR
23	Х	91	ARG
23	Х	93	ARG
23	Х	118	GLU
23	Х	120	ARG
23	Х	127	ARG
23	Х	129	LYS
25	С	35	ARG
25	С	71	ASP
25	С	73	ASP
25	С	168	LYS
25	С	256	ARG
25	С	258	ARG
26	D	60	ARG
26	D	154	CYS
26	D	159	ARG
26	D	201	ARG
27	E	4	LYS
27	E	20	LEU
$\overline{27}$	E	33	LEU
27	E	75	ARG
27	E	130	LEU
27	E	150	GLU
27	E	171	ASN
27	E	178	ILE
28	F	10	ARG
$\overline{28}$	F	11	LEU
28	F	14	ARG

Mol	Chain	Res	Type
28	F	55	LYS
28	F	56	LEU
28	F	108	ASP
28	F	110	LEU
28	F	118	ILE
28	F	122	ARG
28	F	174	ARG
28	F	185	LYS
28	F	186	GLU
33	K	75	TYR
33	K	76	ARG
33	K	113	LYS
33	K	141	GLU
34	L	8	LEU
34	L	53	LYS
35	М	43	ARG
36	Ν	34	ILE
36	Ν	92	TRP
36	N	96	ASN
37	0	5	THR
37	0	9	ARG
37	0	14	SER
37	0	79	LEU
37	0	115	LEU
37	0	117	ARG
39	Q	38	ARG
40	R	34	LYS
41	S	103	LYS
42	Т	6	GLU
42	Т	44	ARG
42	Т	90	LYS
42	Т	118	PRO
43	U	9	ASP
43	U	12	LEU
43	U	27	ASN
43	U	68	ARG
43	U	70	ARG
43	U	77	LYS
43	U	79	THR
43	U	94	ASP
43	U	95	LEU
43	U	96	PHE

Mol	Chain	Res	Type
44	V	20	LYS
44	V	22	LYS
44	V	39	ASN
44	V	89	ASP
44	V	96	ARG
44	V	99	LYS
45	W	6	ASN
45	W	7	ILE
45	W	64	ASN
45	W	83	LEU
45	W	105	LYS
45	W	129	ASN
46	Х	15	ASP
46	Х	85	ARG
48	Ζ	5	THR
48	Z	14	THR
48	Ζ	23	ARG
48	Z	44	ASN
48	Ζ	47	LEU
49	V	8	GLN
49	V	51	HIS
50	у	38	CYS
50	у	44	PHE
50	у	60	ARG
52	1	22	ASN
52	1	23	TYR
52	1	26	LYS
52	1	27	LYS
52	1	35	ARG
52	1	37	GLU
52	1	42	CYS
53	2	6	ARG
53	2	27	THR
55	4	22	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (102) such sidechains are listed below:

Mol	Chain	Res	Type
2	с	27	GLN
2	с	97	GLN
2	с	101	ASN
2	с	107	ASN

Mol	Chain	Res	Type
2	с	122	GLN
4	g	148	ASN
5	h	117	GLN
6	i	57	ASN
6	i	64	HIS
7	j	99	ASN
8	k	31	HIS
8	k	37	ASN
8	k	47	GLN
8	k	49	ASN
8	k	58	HIS
8	k	78	ASN
9	1	46	ASN
10	0	28	GLN
11	q	33	GLN
12	r	70	ASN
13	S	22	GLN
13	S	29	GLN
14	t	3	ASN
14	t	7	GLN
14	t	21	ASN
16	b	15	HIS
16	b	24	ASN
16	b	36	ASN
16	b	167	ASN
16	b	203	ASN
17	d	49	GLN
18	f	80	ASN
23	Х	39	ASN
23	Х	73	HIS
23	Х	76	ASN
23	Х	79	GLN
23	X	84	GLN
23	X	85	HIS
25	С	58	HIS
$\overline{25}$	C	96	HIS
25	С	130	ASN
25	С	135	ASN
25	С	205	ASN
25	С	227	ASN
26	D	34	ASN
27	Е	35	HIS

Mol	Chain	Res	Type
27	Е	76	GLN
27	Е	121	ASN
27	Е	176	HIS
27	Е	184	ASN
27	Е	202	ASN
28	F	34	GLN
28	F	44	ASN
28	F	142	GLN
28	F	146	HIS
29	G	66	HIS
32	J	33	HIS
32	J	119	ASN
33	K	47	ASN
33	K	132	HIS
33	K	135	GLN
34	L	4	GLN
35	М	58	HIS
35	М	76	GLN
35	М	84	ASN
35	М	127	ASN
36	N	57	HIS
36	N	96	ASN
37	0	16	HIS
37	0	77	HIS
38	Р	41	ASN
40	R	38	GLN
40	R	41	HIS
41	S	76	HIS
41	S	85	HIS
41	S	92	GLN
42	Т	67	ASN
42	Т	68	ASN
43	U	27	ASN
43	U	58	ASN
45	W	40	HIS
45	W	46	HIS
45	W	101	GLN
45	W	126	GLN
46	X	29	GLN
46	X	46	HIS
46	Х	79	ASN
47	Y	22	HIS

e entitudea frent precis as pagem				
Mol	Chain	\mathbf{Res}	Type	
48	Ζ	44	ASN	
48	Ζ	52	GLN	
49	V	8	GLN	
49	V	42	GLN	
49	V	51	HIS	
50	У	40	GLN	
52	1	48	HIS	
52	1	49	GLN	
53	2	11	ASN	
53	2	19	HIS	
54	3	7	HIS	
54	3	28	ASN	
54	3	31	HIS	
56	5	17	ASN	

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	a	1504/1528~(98%)	397~(26%)	0
22	W	76/77~(98%)	41 (53%)	0
57	В	116/118~(98%)	33~(28%)	1 (0%)
58	А	3096/3120~(99%)	785~(25%)	28~(0%)
All	All	4792/4843~(98%)	1256~(26%)	29 (0%)

All (1256) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	a	11	G
1	a	12	А
1	a	13	G
1	a	26	G
1	a	36	А
1	a	43	G
1	a	45	G
1	a	48	G
1	a	51	С
1	a	52	U
1	a	53	U
1	a	54	А
1	a	55	А
1	a	59	А

Mol	Chain	Res	Type
1	a	62	С
1	a	67	С
1	a	68	G
1	a	77	G
1	a	81	С
1	a	82	U
1	a	83	U
1	a	85	С
1	a	87	G
1	a	92	А
1	a	93	С
1	a	94	U
1	a	101	G
1	a	112	A
1	a	113	G
1	a	116	A
1	a	117	С
1	a	118	А
1	a	123	G
1	a	128	U
1	a	136	G
1	a	139	С
1	a	160	С
1	a	170	U
1	a	174	G
1	a	179	С
1	a	180	А
1	a	181	С
1	a	192	G
1	a	194	A
1	a	201	G
1	a	210	A
1	a	211	A
1	a	213	С
1	a	214	U
1	a	215	U
1	a	216	U
1	a	217	U
1	a	218	G
1	a	226	G
1	a	242	U
1	a	243	A

Mol	Chain	Res	Type
1	a	245	С
1	a	247	G
1	a	251	G
1	a	262	G
1	a	266	G
1	a	267	С
1	a	279	А
1	a	280	C
1	a	281	G
1	a	283	С
1	a	289	G
1	a	301	G
1	a	314	С
1	a	319	G
1	a	321	A
1	a	329	А
1	a	332	G
1	a	338	A
1	a	344	А
1	a	345	С
1	a	350	G
1	a	351	G
1	a	352	С
1	a	353	А
1	a	354	G
1	a	356	А
1	a	367	U
1	a	372	C
1	a	373	A
1	a	382	A
1	a	390	U
1	a	392	С
1	a	397	A
1	a	398	С
1	a	406	G
1	a	411	A
1	a	414	А
1	a	415	C
1	a	421	U
1	a	422	С
1	a	423	G
1	a	424	G

Mol	Chain	Res	Type
1	a	426	U
1	a	427	U
1	a	428	G
1	a	429	U
1	a	430	A
1	a	434	C
1	a	436	С
1	a	438	U
1	a	450	G
1	a	451	А
1	a	452	A
1	a	453	G
1	a	454	C
1	a	456	С
1	a	457	А
1	a	458	А
1	a	459	G
1	a	461	G
1	a	464	G
1	a	465	G
1	a	466	U
1	a	477	G
1	a	478	A
1	a	479	A
1	a	482	А
1	a	484	С
1	a	485	G
1	a	486	G
1	a	491	С
1	a	496	U
1	a	497	G
1	a	498	C
1	a	499	C
1	a	505	C
1	a	507	G
1	a	509	G
1	a	511	U
1	a	512	A
1	a	513	A
1	a	515	A
1	a	519	A
1	a	520	G

Mol	Chain	Res	Type
1	a	525	С
1	a	527	А
1	a	539	А
1	a	542	U
1	a	544	С
1	a	552	А
1	a	553	А
1	a	554	А
1	a	556	А
1	a	557	G
1	a	612	U
1	a	613	G
1	a	629	G
1	a	633	A
1	a	641	G
1	a	645	G
1	a	666	U
1	a	667	А
1	a	668	G
1	a	680	G
1	a	682	А
1	a	683	G
1	a	700	C
1	a	701	G
1	a	702	G
1	a	703	U
1	a	704	G
1	a	711	G
1	a	713	G
1	a	728	А
1	a	729	А
1	a	735	G
1	a	757	А
1	a	761	A
1	a	764	А
1	a	765	G
1	a	771	G
1	a	772	А
1	a	773	U
1	a	774	A
1	a	779	G
1	a	782	А

Mol	Chain	Res	Type
1	a	789	G
1	a	793	U
1	a	794	А
1	a	795	А
1	a	797	С
1	a	799	G
1	a	800	U
1	a	808	А
1	a	818	U
1	a	821	С
1	a	822	U
1	a	828	G
1	a	829	G
1	a	830	G
1	a	835	G
1	a	840	G
1	a	841	U
1	a	865	С
1	a	884	G
1	a	895	А
1	a	896	А
1	a	908	G
1	a	909	G
1	a	913	С
1	a	914	С
1	a	915	G
1	a	916	С
1	a	917	А
1	a	921	G
1	a	930	С
1	a	932	U
1	a	940	A
1	a	942	U
1	a	943	U
1	a	945	G
1	a	947	U
1	a	948	G
1	a	950	А
1	a	951	A
1	a	953	G
1	a	954	С
1	a	955	G

Mol	Chain	Res	Type
1	a	956	А
1	a	957	А
1	a	959	А
1	a	971	G
1	a	973	U
1	a	974	U
1	a	975	G
1	a	982	А
1	a	984	А
1	a	986	G
1	a	987	А
1	a	988	С
1	a	992	G
1	a	996	G
1	a	999	А
1	a	1000	U
1	a	1003	С
1	a	1007	U
1	a	1008	С
1	a	1010	С
1	a	1011	U
1	a	1013	G
1	a	1014	U
1	a	1020	G
1	a	1021	U
1	a	1022	G
1	a	1024	G
1	a	1025	С
1	a	1028	G
1	a	1033	G
1	a	1034	С
1	a	1035	А
1	a	1036	U
1	a	1045	U
1	a	1047	А
1	a	1048	G
1	a	1054	G
1	a	1064	G
1	a	1074	G
1	a	1075	U
1	a	1079	G
1	a	1081	А

Mol	Chain	Res	Type
1	a	1085	А
1	a	1104	G
1	a	1108	С
1	a	1110	А
1	a	1112	С
1	a	1115	G
1	a	1116	U
1	a	1117	U
1	a	1118	А
1	a	1120	G
1	a	1123	G
1	a	1128	С
1	a	1129	U
1	a	1132	U
1	a	1133	G
1	a	1138	А
1	a	1140	U
1	a	1141	G
1	a	1147	G
1	a	1149	С
1	a	1150	А
1	a	1152	С
1	a	1162	G
1	a	1164	U
1	a	1165	G
1	a	1171	G
1	a	1176	С
1	a	1177	A
1	a	1178	A
1	a	1181	С
1	a	1182	A
1	a	1183	U
1	a	1193	U
1	a	1194	A
1	a	1206	U
1	a	1207	С
1	a	1217	A
1	a	1219	A
1	a	1231	A
1	a	1233	A
1	a	1235	G
1	a	1238	U

Mol	Chain	Res	Type
1	a	1239	G
1	a	1241	G
1	a	1242	А
1	a	1248	U
1	a	1249	G
1	a	1251	G
1	a	1254	G
1	a	1255	G
1	a	1261	А
1	a	1265	U
1	a	1266	U
1	a	1267	U
1	a	1268	С
1	a	1269	А
1	a	1272	G
1	a	1281	А
1	a	1282	G
1	a	1283	U
1	a	1284	U
1	a	1285	С
1	a	1287	G
1	a	1298	G
1	a	1299	С
1	a	1300	А
1	a	1301	А
1	a	1302	С
1	a	1305	G
1	a	1313	G
1	a	1320	G
1	a	1321	А
1	a	1322	G
1	a	1323	U
1	a	1327	U
1	a	1328	A
1	a	$1\overline{329}$	G
1	a	1335	G
1	a	1343	G
1	a	1344	С
1	a	1345	A
1	a	1346	А
1	a	1347	С
1	a	1351	G

Mol	Chain	Res	Type
1	a	1353	G
1	a	1357	А
1	a	1363	U
1	a	1364	U
1	a	1381	А
1	a	1382	С
1	a	1383	С
1	a	1385	\mathbf{C}
1	a	1389	U
1	a	1402	G
1	a	1406	G
1	a	1407	U
1	a	1424	G
1	a	1425	G
1	a	1426	С
1	a	1429	A
1	a	1430	А
1	a	1434	U
1	a	1435	U
1	a	1436	G
1	a	1438	G
1	a	1459	G
1	a	1460	A
1	a	1466	G
1	a	1468	U
1	a	1471	G
1	a	1478	G
1	a	1481	G
1	a	1482	U
1	a	1483	A
1	a	1486	A
1	a	1487	A
1	a	1488	G
1	a	1490	U
1	a	1491	A
1	a	1492	G
1	a	1501	G
1	a	1502	A
1	a	1503	A
1	a	1504	G
1	a	1511	С
1	a	1512	U

Mol	Chain	Res	Type
1	a	1513	G
1	a	1514	G
1	a	1516	U
1	a	1517	С
1	a	1518	А
22	W	2	G
22	W	3	С
22	W	5	G
22	W	6	G
22	W	7	G
22	W	9	G
22	W	10	G
22	W	13	С
22	W	14	A
22	W	15	G
22	W	17	С
22	W	18	U
22	W	19	G
22	W	20	G
22	W	21	U
22	W	22	А
22	W	23	G
22	W	26	С
22	W	27	G
22	W	29	С
22	W	33	С
22	W	34	U
22	W	35	С
22	W	38	А
22	W	39	А
22	W	40	С
22	W	44	А
22	W	45	A
22	W	49	С
22	W	50	G
22	W	57	С
22	W	58	A
22	W	60	А
22	W	61	U
22	W	65	G
22	W	68	С
22	W	70	С

Mol	Chain	Res	Type
22	W	71	G
22	W	72	С
22	W	75	С
22	W	77	A
57	В	4	А
57	В	5	С
57	В	7	G
57	В	10	G
57	В	12	С
57	В	13	С
57	В	22	A
57	В	23	G
57	В	24	G
57	В	25	G
57	В	26	A
57	В	30	G
57	В	34	G
57	В	35	G
57	В	37	С
57	В	40	А
57	В	41	U
57	В	44	С
57	В	45	G
57	В	47	А
57	В	52	G
57	В	53	А
57	В	56	С
57	В	66	С
57	В	67	А
57	В	68	G
57	В	85	С
57	В	86	U
57	В	88	С
57	В	90	G
57	В	102	A
57	В	106	С
57	В	113	G
58	А	7	U
58	А	11	А
58	А	12	G
58	А	20	G
58	А	29	С

Mol	Chain	Res	Type
58	А	31	U
58	А	32	G
58	А	33	G
58	А	52	G
58	А	58	G
58	А	59	G
58	А	60	А
58	А	68	А
58	А	71	А
58	А	72	G
58	А	77	G
58	А	80	G
58	А	81	A
58	A	88	A
58	А	89	A
58	А	90	С
58	А	93	A
58	А	94	G
58	А	98	U
58	А	99	G
58	А	115	A
58	А	117	U
58	А	122	A
58	А	125	С
58	А	128	G
58	А	136	U
58	А	143	G
58	А	161	U
58	А	164	А
58	A	173	U
58	A	175	G
58	А	180	А
58	A	186	G
58	A	195	A
58	А	198	A
58	A	203	A
58	A	205	U
58	A	212	A
58	A	214	G
58	A	215	A
58	A	220	А
58	А	221	A

Mol	Chain	Res	Type
58	А	227	А
58	А	229	U
58	А	230	G
58	А	231	U
58	А	237	С
58	А	245	G
58	А	248	G
58	А	250	G
58	А	264	G
58	А	265	А
58	А	272	А
58	А	274	С
58	А	275	С
58	А	279	U
58	А	283	U
58	А	285	U
58	А	286	G
58	А	287	А
58	А	288	U
58	А	291	С
58	А	292	G
58	А	296	А
58	А	297	G
58	А	299	G
58	А	300	G
58	А	301	U
58	А	302	U
58	А	303	G
58	А	305	G
58	A	309	G
$\overline{58}$	А	313	G
58	A	314	G
58	A	315	U
58	A	317	G
58	A	318	U
$\overline{58}$	A	319	G
58	A	322	A
58	A	323	С
58	A	326	A
58	A	327	U
$\overline{58}$	A	329	U
58	А	330	U

Mol	Chain	Res	Type
58	А	331	U
58	А	336	С
58	А	337	U
58	А	338	С
58	А	346	С
58	А	351	G
58	А	352	G
58	А	357	U
58	А	358	G
58	А	361	А
58	А	364	А
58	А	366	G
58	А	370	U
58	А	384	G
58	А	393	U
58	А	404	А
58	А	412	А
58	А	416	С
58	А	417	С
58	А	424	G
58	А	425	U
58	А	427	А
58	А	434	G
58	А	438	U
58	А	445	U
58	А	446	G
58	А	449	G
58	А	450	G
58	А	452	G
58	А	453	U
58	А	454	U
58	А	459	А
58	А	460	G
58	А	468	G
58	А	471	С
58	А	472	С
58	А	474	G
58	А	489	А
58	А	491	U
58	А	493	U
58	А	498	G
58	А	505	C

Mol	Chain	Res	Type
58	А	509	U
58	А	512	G
58	А	530	G
58	А	543	U
58	А	544	U
58	А	547	U
58	А	555	G
58	А	561	G
58	А	562	G
58	А	566	A
58	А	567	A
58	А	568	A
58	А	569	G
58	А	585	G
58	А	589	А
58	А	591	G
58	А	592	А
58	А	594	U
58	А	595	А
58	А	596	С
58	А	605	G
58	А	617	U
58	А	618	С
58	А	619	С
58	А	620	G
58	А	639	С
58	А	640	G
58	А	641	U
58	А	642	G
58	А	643	G
58	А	644	G
58	А	647	G
58	А	649	U
58	А	655	G
58	А	665	G
58	А	666	A
58	А	667	A
58	А	678	A
58	А	679	G
58	А	684	G
58	А	685	G
58	А	689	U

Mol	Chain	Res	Type
58	А	696	А
58	А	706	G
58	А	707	G
58	А	708	G
58	А	709	U
58	А	712	G
58	А	721	А
58	А	725	А
58	А	728	G
58	А	730	G
58	А	731	А
58	А	740	А
58	А	747	A
58	А	753	A
58	А	757	G
58	А	758	A
58	А	760	U
58	А	763	G
58	А	765	G
58	А	766	G
58	А	768	G
58	А	769	U
58	А	770	А
58	А	774	G
58	А	784	G
58	А	785	А
58	А	794	G
58	А	801	U
58	А	830	А
58	А	832	G
58	А	838	G
58	А	845	С
58	А	862	U
58	А	863	G
58	А	868	С
58	А	871	А
58	А	872	G
58	А	879	A
58	А	880	G
58	А	890	G
58	А	891	G
58	A	897	А

Mol	Chain	Res	Type
58	А	899	G
58	А	904	А
58	А	908	А
58	А	915	U
58	А	917	А
58	А	919	А
58	А	920	G
58	А	921	С
58	А	927	С
58	А	942	U
58	А	944	А
58	А	945	G
58	A	960	G
$\overline{58}$	А	961	U
58	A	966	U
58	A	971	G
58	А	973	G
58	А	974	G
58	А	975	U
58	А	981	U
58	А	982	А
58	А	994	А
58	А	995	U
58	А	996	G
58	А	1001	С
58	А	1002	С
58	А	1003	А
58	А	1007	G
58	А	1009	U
58	А	1011	А
58	A	1012	С
$\overline{58}$	А	1013	U
58	A	1014	G
58	А	1016	С
58	A	1022	C
58	A	1025	A
58	А	1029	С
58	A	1030	С
58	A	1042	A
58	A	1044	U
$\overline{58}$	A	1046	С
58	А	1047	А

Mol	Chain	Res	Type
58	А	1048	А
58	А	1049	G
58	А	1058	А
58	А	1062	А
58	А	1063	G
58	А	1068	С
58	А	1070	G
58	А	1074	А
58	А	1076	А
58	А	1078	G
58	А	1085	G
58	А	1091	А
58	А	1092	G
58	А	1098	А
58	А	1100	С
58	А	1101	А
58	А	1107	G
58	А	1114	G
58	А	1130	С
58	А	1131	G
58	А	1140	G
58	А	1141	U
58	А	1143	G
58	А	1144	А
58	А	1151	U
58	А	1163	А
58	А	1164	А
58	А	1169	А
58	А	1171	С
58	А	1173	G
$\overline{58}$	A	1175	A
58	A	1178	U
58	A	1181	G
$\overline{58}$	A	1184	U
58	A	1185	A
58	A	1186	G
$\overline{58}$	A	1187	A
58	A	1188	A
$\overline{58}$	A	1189	G
58	A	1190	С
58	A	1191	A
58	А	1192	G

Mol	Chain	Res	Type
58	А	1201	G
58	А	1202	А
58	А	1205	G
58	А	1206	А
58	А	1207	G
58	А	1209	G
58	А	1212	U
58	А	1213	А
58	А	1215	U
58	А	1216	А
58	А	1224	G
58	А	1229	А
58	А	1230	G
58	А	1232	G
58	А	1233	А
58	А	1237	U
58	А	1238	G
58	А	1239	С
58	А	1240	G
58	А	1244	А
58	А	1246	A
58	А	1250	U
58	А	1251	А
58	А	1253	С
58	А	1254	G
58	А	1260	С
58	А	1261	А
58	А	1270	G
58	А	1275	А
58	A	1292	U
58	А	1293	G
58	A	1303	U
58	A	1325	U
58	A	1332	G
58	А	1335	G
58	A	1343	G
58	А	1344	А
58	А	1345	G
58	A	1347	G
58	A	1353	G
58	A	1362	A
58	А	1363	G

Mol	Chain	Res	Type
58	А	1365	G
58	А	1368	А
58	А	1369	А
58	А	1371	G
58	А	1372	С
58	А	1386	G
58	А	1389	U
58	А	1404	С
58	А	1409	С
58	А	1415	А
58	А	1416	А
58	А	1417	А
58	А	1440	\mathbf{C}
58	A	1444	U
58	А	1448	С
58	А	1456	G
58	А	1462	G
58	А	1465	С
58	А	1467	U
58	А	1480	А
58	А	1493	А
58	А	1494	U
58	А	1499	А
58	А	1501	С
58	А	1507	G
58	А	1510	А
58	А	1521	С
58	А	1522	G
58	А	1529	U
58	А	1531	С
58	A	1532	G
58	A	1533	U
58	A	1534	С
58	A	1539	А
58	A	1540	U
58	A	1546	A
58	А	1549	G
58	А	1550	G
58	A	1551	U
58	А	1552	А
58	А	1553	С
58	A	1554	U

Mol	Chain	Res	Type
58	А	1555	А
58	А	1556	А
58	А	1561	С
58	А	1562	С
58	А	1563	А
58	А	1564	А
58	А	1565	А
58	A	1566	А
58	A	1567	С
58	A	1568	С
58	A	1570	С
58	A	1571	С
58	A	1572	G
58	A	1573	U
58	A	1574	G
58	А	1578	G
58	А	1580	А
58	A	1584	U
58	А	1587	G
58	A	1588	G
58	А	1589	G
58	A	1590	G
58	A	1591	U
58	А	1592	G
58	A	1593	U
58	А	1595	G
58	A	1596	С
58	A	1597	G
58	А	1598	U
58	А	1599	U
58	A	1600	G
58	A	1601	G
58	A	1602	U
58	A	1604	G
58	А	1605	G
58	A	1606	G
58	A	1607	С
58	A	1609	G
58	A	1610	C
58	A	1611	A
58	A	1625	G
58	A	1629	G

Mol	Chain	Res	Type
58	А	1630	U
58	А	1632	G
58	А	1633	U
58	А	1636	А
58	А	1637	G
58	А	1638	С
58	А	1639	G
58	А	1640	А
58	А	1641	U
58	А	1642	G
58	А	1648	А
58	А	1649	С
58	А	1654	G
58	А	1658	G
58	А	1672	С
58	А	1674	G
58	А	1676	G
58	А	1678	U
58	А	1679	А
58	А	1680	А
58	А	1681	U
58	А	1688	G
58	А	1703	G
58	А	1710	А
58	А	1711	G
58	А	1713	U
58	А	1715	А
58	А	1717	U
58	А	1721	U
58	А	1724	G
58	А	1727	А
58	А	1728	U
58	A	1731	A
58	A	1737	A
58	А	1744	A
58	A	1748	A
58	A	1753	С
58	А	1754	G
58	A	1767	U
58	A	1768	С
58	A	1769	G
58	А	1774	U

Mol	Chain	Res	Type
58	А	1778	А
58	А	1780	G
58	А	1786	G
58	А	1787	А
58	А	1789	А
58	А	1792	А
58	А	1798	U
58	А	1803	А
58	А	1813	С
58	А	1826	А
58	А	1836	А
58	А	1837	G
58	А	1845	G
58	А	1852	А
58	А	1863	G
58	А	1864	U
58	А	1866	С
58	А	1869	G
58	А	1870	U
58	А	1871	G
58	А	1872	А
58	А	1878	G
58	А	1887	А
58	А	1892	G
58	А	1893	С
58	А	1903	С
58	А	1906	U
58	А	1916	А
58	А	1917	G
58	А	1933	G
58	А	1958	С
58	А	1967	G
58	А	1973	С
58	А	1974	А
58	А	1975	А
58	А	1981	U
58	А	1990	А
58	A	1998	С
58	А	1999	U
58	A	2017	С
58	A	2018	G
58	А	2026	А

Mol	Chain	Res	Type
58	А	2028	G
58	А	2033	U
58	А	2046	А
58	А	2052	G
58	А	2062	G
58	А	2064	А
58	А	2074	G
58	А	2075	G
58	А	2083	А
58	А	2085	С
58	А	2086	U
58	А	2088	С
58	А	2089	С
58	А	2090	U
58	А	2091	U
58	А	2092	U
58	А	2093	G
58	А	2094	G
58	А	2095	G
58	А	2096	G
58	А	2106	А
58	А	2107	G
58	А	2111	U
58	А	2112	U
58	А	2118	С
58	А	2120	А
58	А	2130	G
58	А	2131	G
58	А	2137	А
58	А	2138	С
58	A	2140	А
58	A	2142	А
58	A	2151	A
58	А	2153	G
58	A	2154	G
58	A	2160	A
58	А	2161	А
58	A	2163	U
58	А	2167	U
58	A	2179	U
58	А	2190	А
58	А	2191	С

Mol	Chain	Res	Type
58	А	2194	А
58	А	2195	U
58	А	2196	G
58	А	2206	С
58	А	2215	U
58	А	2217	U
58	А	2221	А
58	А	2244	А
58	А	2247	А
58	А	2251	G
58	А	2255	А
58	А	2256	G
58	А	2257	А
58	А	2263	G
58	А	2267	С
58	А	2276	G
58	А	2279	С
58	А	2280	G
58	А	2284	А
58	А	2285	G
58	А	2286	А
58	А	2299	С
58	А	2315	U
58	А	2316	G
58	А	2317	G
58	А	2319	G
58	А	2320	С
58	А	2322	С
58	А	2323	G
58	А	2325	U
58	A	2328	G
58	А	2334	U
58	A	2335	G
58	А	2337	А
58	А	2338	G
58	A	2339	G
58	А	2340	A
58	A	2341	U
58	А	2342	А
58	А	2343	G
58	A	$2\overline{346}$	G
58	A	2348	G

Mol	Chain	Res	Type
58	А	2349	А
58	А	2351	А
58	А	2353	U
58	А	2354	G
58	А	2355	U
58	А	2356	G
58	А	2357	А
58	А	2362	С
58	А	2368	С
58	А	2371	G
58	А	2380	G
58	А	2382	G
58	А	2383	U
58	А	2384	С
58	А	2385	G
58	А	2386	U
58	А	2387	U
58	А	2388	G
58	А	2390	U
58	А	2392	А
58	А	2393	А
58	А	2394	А
58	А	2395	U
58	А	2396	А
58	А	2404	G
58	А	2407	С
58	А	2408	G
58	А	2409	U
58	А	2410	А
58	А	2411	U
58	А	2413	G
58	А	2414	G
58	A	2418	U
58	A	2421	A
58	A	2427	G
58	A	2433	U
58	А	2434	А
58	A	2436	A
58	A	2446	G
58	А	2449	A
58	A	2462	G
58	А	2463	G

Mol	Chain	Res	Type
58	А	2467	U
58	А	2473	U
58	А	2476	G
58	А	2490	А
58	А	2502	А
58	А	2506	G
58	А	2507	С
58	А	2510	A
58	А	2511	А
58	А	2512	А
58	А	2529	А
58	А	2531	G
58	А	2532	G
58	А	2545	G
58	А	2546	А
58	А	2549	G
58	А	2551	А
58	А	2558	С
58	А	2559	А
58	А	2567	U
58	А	2571	С
58	А	2574	С
58	А	2578	А
58	А	2582	A
58	А	2585	U
58	А	2586	G
58	А	2596	G
58	А	2601	A
58	А	2607	G
58	А	2608	G
58	А	2609	А
58	A	2612	A
58	A	2614	U
58	A	2615	G
58	A	2616	A
58	A	2626	U
58	A	2627	С
58	A	2630	A
58	A	2631	G
58	A	2640	G
58	A	2643	U
58	А	2647	U

Mol	Chain	Res	Type
58	А	2648	С
58	А	2649	А
58	А	2650	А
58	А	2651	С
58	А	2653	G
58	А	2654	А
58	А	2655	U
58	А	2659	А
58	А	2665	С
58	А	2669	G
58	А	2671	G
58	А	2672	А
58	А	2673	U
58	А	2676	С
58	А	2677	А
58	А	2682	G
58	А	2694	G
58	А	2698	С
58	А	2700	А
58	А	2702	А
58	А	2705	G
58	А	2715	U
58	А	2718	G
58	А	2726	G
58	А	2729	G
58	А	2737	G
58	А	2742	А
58	А	2744	С
58	А	2753	G
58	А	2758	A
58	А	2759	G
58	A	2786	U
58	А	2788	A
58	A	2790	A
58	A	2791	G
58	A	2793	G
58	А	2796	A
58	А	2797	С
58	A	2802	G
58	A	2810	U
58	A	2826	A
58	А	2827	G

Mol	Chain	Res	Type
58	А	2833	U
58	А	2837	U
58	А	2839	U
58	А	2853	С
58	А	2860	U
58	А	2865	G
58	А	2866	А
58	А	2870	С
58	А	2876	С
58	А	2878	А
58	А	2887	G
58	А	2893	G
58	А	2897	G
58	А	2906	U
58	А	2908	U
58	А	2913	U
58	А	2915	С
58	А	2926	А
58	А	2936	С
58	А	2938	G
58	А	2942	G
58	А	2950	С
58	А	2956	G
58	А	2957	А
58	А	2963	U
58	А	2968	G
58	А	2972	А
58	А	2975	G
58	А	2976	С
58	А	2977	А
58	А	2982	А
58	А	2985	G
58	A	2989	A
58	A	2990	A
58	A	2993	U
58	A	3002	А
58	А	3004	С
58	А	3005	A
58	A	3009	U
58	A	3011	С
58	A	3014	А
58	А	3015	С

Mol	Chain	Res	Type
58	А	3021	А
58	А	3022	G
58	А	3023	G
58	А	3029	U
58	А	3039	С
58	А	3042	А
58	А	3045	С
58	А	3047	А
58	А	3056	А
58	А	3057	U
58	А	3070	G
58	А	3082	U
58	А	3088	С
58	А	3093	А
58	А	3094	А
58	А	3095	С
58	А	3101	С
58	А	3105	С
58	А	3106	С
58	А	3107	G
58	А	3112	А
58	А	3113	А
58	А	3114	А
58	А	3115	А

All (29) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
57	В	66	С
58	А	84	U
58	А	89	А
58	А	97	U
58	А	316	U
58	А	336	С
58	А	357	U
58	А	445	U
58	А	456	С
58	А	567	А
58	А	974	G
58	А	980	С
58	А	981	U
58	А	1002	С

	0	1	1 0
Mol	Chain	Res	Type
58	А	1010	U
58	А	1084	U
58	А	1117	U
58	А	1186	G
58	А	1562	С
58	А	1571	С
58	А	1595	G
58	А	1596	С
58	А	1597	G
58	А	1730	U
58	А	2085	С
58	А	2088	С
58	А	2094	G
58	А	2350	G
58	А	2381	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-6921. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 164

Y Index: 164

Z Index: 164

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 171

Y Index: 169

Z Index: 157

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2473 nm^3 ; this corresponds to an approximate mass of 2234 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.294 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-6921 and PDB model 5ZEP. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9239	0.2750
0	0.4168	0.0310
1	0.8561	0.2240
2	0.8372	0.3070
3	0.8208	0.2930
4	0.8846	0.2810
5	0.8268	0.2680
А	0.9680	0.2950
В	0.9764	0.2680
С	0.8200	0.2850
D	0.8544	0.2870
E	0.8665	0.2690
F	0.8780	0.2420
G	0.9109	0.2520
Н	0.8720	0.2260
I	0.8401	0.1300
J	0.8631	0.1190
K	0.8557	0.2760
L	0.7561	0.2780
М	0.8451	0.2700
Ν	0.8327	0.2880
О	0.8121	0.2510
Р	0.9100	0.2480
Q	0.8045	0.2540
R	0.8552	0.2450
S	0.8682	0.3080
Т	0.8290	0.2830
U	0.8340	0.2990
V	0.8776	0.2290
W	0.8889	0.2550
X	0.8065	0.2590
Y	0.8455	0.3030
Z	0.8419	0.2110
a	0.9862	0.3000
b	0.8330	0.1980

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
С	0.8418	0.2040
d	0.8525	0.1940
е	0.8138	0.2510
f	0.8652	0.2630
g	0.8395	0.2020
h	0.8763	0.2830
i	0.9168	0.2300
j	0.8767	0.2300
k	0.8595	0.2540
1	0.8095	0.2680
m	0.8555	0.2020
n	0.8420	0.2520
0	0.8436	0.2410
р	0.8675	0.2440
q	0.8136	0.2600
r	0.8846	0.2500
S	0.8470	0.2270
t	0.8299	0.1930
u	0.6832	0.2460
V	0.8312	0.2500
W	0.6689	0.1340
X	0.2425	-0.0160
У	0.8457	0.2190
Z	0.8209	0.2820

