Full wwPDB/EMDataBank EM Map/Model Validation Report

Sep 19, 2018 – 10:18 AM EDT

PDB ID : 5ZEU
EMDB ID: : EMD-6923
Title : M. smegmatis P/P state 30S ribosomal subunit
Authors : Mishra, S.; Ahmed, T.; Tyagi, A.; Shi, J.; Bhushan, S.
Deposited on : 2018-02-28
Resolution : 3.70 Å (reported)

This is a Full wwPDB/EMDataBank EM Map/Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the symbol.

MolProbity : 4.02b-467
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)
Validation Pipeline (wwPDB-VP) : rb-20031172
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Metric

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136327</td>
<td>1886</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>132723</td>
<td>1663</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>132532</td>
<td>1531</td>
</tr>
<tr>
<td>RNA backbone</td>
<td>3747</td>
<td>458</td>
</tr>
</tbody>
</table>

Metric

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1528</td>
<td>68% 27%</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>275</td>
<td>69% 24%</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>214</td>
<td>88% 7%</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>156</td>
<td>96%</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>132</td>
<td>93% 5%</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>150</td>
<td>79% 5% 16%</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>101</td>
<td>89% 7%</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>138</td>
<td>78% 7% 15%</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>l</td>
<td>124</td>
<td>92%</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>89</td>
<td>97%</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>98</td>
<td>92%</td>
</tr>
<tr>
<td>12</td>
<td>r</td>
<td>84</td>
<td>76% 24%</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>93</td>
<td>80% 16%</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>86</td>
<td>91% 6%</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>77</td>
<td>77% 23%</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>61</td>
<td>97%</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>277</td>
<td>81% 18%</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>201</td>
<td>99%</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>96</td>
<td>98%</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>124</td>
<td>94% 6%</td>
</tr>
<tr>
<td>21</td>
<td>p</td>
<td>156</td>
<td>72% 28%</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>33</td>
<td>76% 21%</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 22 unique types of molecules in this entry. The entry contains 52954 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a RNA chain called 16S rRNA.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1506</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32341 14404 5921 10510 1506</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called 30S ribosomal protein S3.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>210</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1672 1043 324 300 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called 30S ribosomal protein S5.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>e</td>
<td>198</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1433 885 282 262 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called 30S ribosomal protein S7.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>g</td>
<td>156</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1240 773 242 222 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 5 is a protein called 30S ribosomal protein S8.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>h</td>
<td>130</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1003 629 188 185 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 6 is a protein called 30S ribosomal protein S9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>i</td>
<td>126</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>994 630 194 170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Molecule 7 is a protein called 30S ribosomal protein S10.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>j</td>
<td>97</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>775 488 143 141 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 8 is a protein called 30S ribosomal protein S11.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>k</td>
<td>117</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>871 539 173 158 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 9 is a protein called 30S ribosomal protein S12.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>l</td>
<td>122</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>958 594 197 165 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 10 is a protein called 30S ribosomal protein S15.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>o</td>
<td>87</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>709 443 143 123</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 11 is a protein called 30S ribosomal protein S17.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>q</td>
<td>92</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>730 458 138 132 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 12 is a protein called 30S ribosomal protein S18 2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>r</td>
<td>64</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>512 319 102 88 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 13 is a protein called 30S ribosomal protein S19.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>s</td>
<td>78</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>630 405 117 107 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 14 is a protein called 30S ribosomal protein S20.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>t</td>
<td>84</td>
<td>Total C N O 655 399 138 118</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 15 is a RNA chain called P-tRNAfMet.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>v</td>
<td>77</td>
<td>Total C N O P 1643 732 297 537 77</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 16 is a protein called 30S ribosomal protein S14 type Z.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>60</td>
<td>Total C N O S 477 302 97 73 5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 17 is a protein called 30S ribosomal protein S2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>b</td>
<td>228</td>
<td>Total C N O S 1793 1132 322 330 9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 18 is a protein called 30S ribosomal protein S4.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>d</td>
<td>200</td>
<td>Total C N O S 1641 1028 316 295 2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 19 is a protein called 30S ribosomal protein S6.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>f</td>
<td>96</td>
<td>Total C N O S 771 486 138 145 2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 20 is a protein called 30S ribosomal protein S13.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>m</td>
<td>116</td>
<td>Total C N O S 935 572 191 169 3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 21 is a protein called 30S ribosomal protein S16.
Molecule 22 is a protein called Conserved domain protein.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>p</td>
<td>113</td>
<td>Total C N O</td>
<td>891 570 162 159</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>32</td>
<td>Total C N O S</td>
<td>280 172 71 36 1</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: 16S rRNA

Chain a:
- Molecule 2: 30S ribosomal protein S3

 Chain c:

- Molecule 3: 30S ribosomal protein S5

 Chain e:

- Molecule 4: 30S ribosomal protein S7

 Chain g:

- Molecule 5: 30S ribosomal protein S8

 Chain h:

- Molecule 6: 30S ribosomal protein S9

 Chain i:

- Molecule 7: 30S ribosomal protein S10

 Chain j:

- Molecule 8: 30S ribosomal protein S11

 Chain k:
• Molecule 9: 30S ribosomal protein S12

Chain l:

• Molecule 10: 30S ribosomal protein S15

Chain o:

• Molecule 11: 30S ribosomal protein S17

Chain q:

• Molecule 12: 30S ribosomal protein S18

Chain r:

• Molecule 13: 30S ribosomal protein S19

Chain s:

• Molecule 14: 30S ribosomal protein S20

Chain t:

• Molecule 15: P-tRNAfMet

Chain v:
- Molecule 16: 30S ribosomal protein S14 type Z

Chain n:

- Molecule 17: 30S ribosomal protein S2

Chain b:

- Molecule 18: 30S ribosomal protein S4

Chain d:

- Molecule 19: 30S ribosomal protein S6

Chain f:

- Molecule 20: 30S ribosomal protein S13

Chain m:

- Molecule 21: 30S ribosomal protein S16

Chain p:

- Molecule 22: Conserved domain protein

Chain u:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>391837</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.143 CUT-OFF</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>PHASE FLIPPING ONLY</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TITAN KRIOS</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>300</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose (e⁻/Å²)</td>
<td>1.5</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>FEI FALCON II (4k x 4k)</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0.81</td>
<td>23/36201 (0.1%)</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>0.34</td>
<td>0/718</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>0.39</td>
<td>0/741</td>
</tr>
<tr>
<td>12</td>
<td>r</td>
<td>0.35</td>
<td>0/517</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>0.34</td>
<td>0/647</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>0.35</td>
<td>0/658</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>0.40</td>
<td>1/1835 (0.1%)</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>0.53</td>
<td>0/488</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>0.31</td>
<td>0/1822</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>0.38</td>
<td>0/1672</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>0.38</td>
<td>0/782</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>0.37</td>
<td>0/1696</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>0.36</td>
<td>0/942</td>
</tr>
<tr>
<td>21</td>
<td>p</td>
<td>0.42</td>
<td>0/908</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>0.49</td>
<td>0/280</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>0.39</td>
<td>0/1449</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>0.35</td>
<td>0/1260</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>0.42</td>
<td>0/1018</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>0.38</td>
<td>0/1012</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>0.40</td>
<td>0/789</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>0.31</td>
<td>0/889</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>0.38</td>
<td>0/969</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.69</td>
<td>24/57293 (0.0%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>q</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>d</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>26</td>
</tr>
</tbody>
</table>

All (24) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>v</td>
<td>1</td>
<td>C</td>
<td>OP3-P</td>
<td>-10.55</td>
<td>1.48</td>
<td>1.61</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>861</td>
<td>C</td>
<td>N1-C6</td>
<td>-7.30</td>
<td>1.32</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>552</td>
<td>A</td>
<td>N9-C4</td>
<td>-7.15</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>552</td>
<td>A</td>
<td>N3-C4</td>
<td>-6.70</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>746</td>
<td>A</td>
<td>N3-C4</td>
<td>-6.28</td>
<td>1.31</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>290</td>
<td>C</td>
<td>N1-C6</td>
<td>-6.19</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1378</td>
<td>C</td>
<td>N1-C6</td>
<td>-6.08</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1497</td>
<td>A</td>
<td>N9-C4</td>
<td>-5.89</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1204</td>
<td>C</td>
<td>N1-C6</td>
<td>-5.86</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>708</td>
<td>A</td>
<td>N9-C4</td>
<td>-5.76</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>746</td>
<td>A</td>
<td>N9-C4</td>
<td>-5.73</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>901</td>
<td>A</td>
<td>N9-C4</td>
<td>-5.53</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>863</td>
<td>G</td>
<td>N9-C8</td>
<td>-5.44</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>777</td>
<td>C</td>
<td>N1-C6</td>
<td>-5.41</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1476</td>
<td>A</td>
<td>N9-C4</td>
<td>5.36</td>
<td>1.41</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>712</td>
<td>C</td>
<td>N1-C6</td>
<td>-5.35</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>797</td>
<td>C</td>
<td>N1-C6</td>
<td>-5.32</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>22</td>
<td>C</td>
<td>N1-C6</td>
<td>-5.29</td>
<td>1.33</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>552</td>
<td>A</td>
<td>C5-C4</td>
<td>-5.29</td>
<td>1.35</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1467</td>
<td>A</td>
<td>N3-C4</td>
<td>-5.22</td>
<td>1.31</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>119</td>
<td>C</td>
<td>N1-C6</td>
<td>-5.21</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>296</td>
<td>U</td>
<td>C2-N3</td>
<td>-5.17</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>846</td>
<td>A</td>
<td>N3-C4</td>
<td>-5.13</td>
<td>1.31</td>
<td>1.34</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>746</td>
<td>A</td>
<td>C5-C4</td>
<td>-5.03</td>
<td>1.35</td>
<td>1.38</td>
</tr>
</tbody>
</table>

All (229) bond angle outliers are listed below:
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>h</td>
<td>94</td>
<td>LEU</td>
<td>N-CA-C</td>
<td>-9.60</td>
<td>85.08</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1482</td>
<td>U</td>
<td>P-O3'-C3'</td>
<td>9.53</td>
<td>131.14</td>
<td>119.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>101</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-9.51</td>
<td>102.60</td>
<td>106.40</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>101</td>
<td>LEU</td>
<td>C8-CG-C2</td>
<td>-9.26</td>
<td>95.25</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>70</td>
<td>A</td>
<td>N1-C2-N3</td>
<td>9.15</td>
<td>133.88</td>
<td>129.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>489</td>
<td>A</td>
<td>N7-C8-N9</td>
<td>9.10</td>
<td>118.35</td>
<td>113.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>332</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>9.09</td>
<td>110.04</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>108</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>9.06</td>
<td>110.03</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>85</td>
<td>C</td>
<td>C2-N1-C1'</td>
<td>9.05</td>
<td>128.76</td>
<td>118.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>101</td>
<td>G</td>
<td>N7-C8-N9</td>
<td>9.00</td>
<td>117.60</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1268</td>
<td>C</td>
<td>C2-N1-C1'</td>
<td>8.77</td>
<td>128.45</td>
<td>118.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1486</td>
<td>A</td>
<td>C5-N7-C8</td>
<td>-8.20</td>
<td>99.80</td>
<td>103.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>973</td>
<td>U</td>
<td>C6-N1-C2</td>
<td>-7.91</td>
<td>116.26</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>85</td>
<td>C</td>
<td>N1-C2-O2</td>
<td>7.87</td>
<td>123.62</td>
<td>118.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>489</td>
<td>A</td>
<td>C8-N9-C4</td>
<td>-7.78</td>
<td>102.69</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1486</td>
<td>A</td>
<td>C6-C5-N7</td>
<td>-7.61</td>
<td>126.97</td>
<td>132.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>67</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-7.47</td>
<td>117.31</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>862</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>7.47</td>
<td>123.29</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>954</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>-7.47</td>
<td>117.27</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>311</td>
<td>C</td>
<td>N3-C2-O2</td>
<td>-7.35</td>
<td>116.76</td>
<td>121.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1302</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>7.31</td>
<td>123.22</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>794</td>
<td>A</td>
<td>N1-C6-N6</td>
<td>7.30</td>
<td>122.98</td>
<td>118.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1033</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>7.30</td>
<td>109.32</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1486</td>
<td>A</td>
<td>C2-N3-C4</td>
<td>-7.29</td>
<td>106.95</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1486</td>
<td>A</td>
<td>N7-C8-N9</td>
<td>7.26</td>
<td>117.43</td>
<td>113.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1268</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>7.21</td>
<td>124.61</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>305</td>
<td>G</td>
<td>N3-C4-N9</td>
<td>7.21</td>
<td>130.32</td>
<td>126.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>954</td>
<td>C</td>
<td>C2-N1-C1'</td>
<td>-7.21</td>
<td>110.87</td>
<td>118.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>895</td>
<td>A</td>
<td>P-O3'-C3'</td>
<td>7.20</td>
<td>128.34</td>
<td>119.70</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>186</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>7.15</td>
<td>131.75</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1350</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>-7.09</td>
<td>119.15</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>803</td>
<td>G</td>
<td>N1-C6-O6</td>
<td>-7.09</td>
<td>115.64</td>
<td>119.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>794</td>
<td>A</td>
<td>N1-C2-N3</td>
<td>7.08</td>
<td>132.84</td>
<td>129.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1149</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-7.06</td>
<td>117.47</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>314</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-7.06</td>
<td>117.48</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1088</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-7.00</td>
<td>103.60</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>793</td>
<td>U</td>
<td>C2-N1-C1'</td>
<td>6.97</td>
<td>126.07</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>216</td>
<td>U</td>
<td>N1-C2-O2</td>
<td>6.95</td>
<td>127.66</td>
<td>122.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>122</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>6.89</td>
<td>109.16</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>216</td>
<td>U</td>
<td>C2-N1-C1'</td>
<td>6.84</td>
<td>125.91</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>9</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>6.82</td>
<td>126.11</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>489</td>
<td>A</td>
<td>C5-N7-C8</td>
<td>-6.78</td>
<td>100.51</td>
<td>103.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>216</td>
<td>U</td>
<td>N3-C2-O2</td>
<td>-6.77</td>
<td>117.46</td>
<td>122.20</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>119</td>
<td>C</td>
<td>O5'-P-OP1</td>
<td>-6.74</td>
<td>99.63</td>
<td>105.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>849</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-6.73</td>
<td>125.23</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>101</td>
<td>G</td>
<td>C5-N7-C8</td>
<td>-6.72</td>
<td>100.94</td>
<td>104.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>243</td>
<td>A</td>
<td>N1-C6-N6</td>
<td>6.72</td>
<td>122.63</td>
<td>118.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>895</td>
<td>A</td>
<td>C4-C5-N7</td>
<td>6.70</td>
<td>114.05</td>
<td>110.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1149</td>
<td>C</td>
<td>C2-N1-C1</td>
<td>6.67</td>
<td>126.14</td>
<td>118.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>943</td>
<td>U</td>
<td>O5'-P-OP2</td>
<td>-6.66</td>
<td>99.71</td>
<td>105.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1269</td>
<td>A</td>
<td>C8-N9-C4</td>
<td>-6.65</td>
<td>103.14</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>331</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>6.64</td>
<td>109.06</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>429</td>
<td>U</td>
<td>P-O3'-C3'</td>
<td>6.63</td>
<td>127.66</td>
<td>119.70</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>67</td>
<td>ALA</td>
<td>C-N-CA</td>
<td>6.60</td>
<td>138.20</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>847</td>
<td>A</td>
<td>C8-N9-C4</td>
<td>6.60</td>
<td>108.44</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1486</td>
<td>A</td>
<td>N1-C6-N6</td>
<td>6.55</td>
<td>122.53</td>
<td>118.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>279</td>
<td>A</td>
<td>O4'-C1'-N9</td>
<td>-6.47</td>
<td>103.02</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1508</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-6.46</td>
<td>117.71</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>558</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>-6.46</td>
<td>117.77</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1268</td>
<td>C</td>
<td>C6-N1-C1</td>
<td>-6.41</td>
<td>113.11</td>
<td>120.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>85</td>
<td>C</td>
<td>C6-N1-C1</td>
<td>-6.39</td>
<td>113.13</td>
<td>120.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1266</td>
<td>U</td>
<td>C2-N1-C1</td>
<td>6.38</td>
<td>125.36</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>117</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>6.38</td>
<td>122.85</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>485</td>
<td>G</td>
<td>N7-C8-N9</td>
<td>6.38</td>
<td>116.29</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>332</td>
<td>G</td>
<td>N7-C8-N9</td>
<td>-6.33</td>
<td>109.93</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>364</td>
<td>A</td>
<td>C8-N9-C4</td>
<td>-6.31</td>
<td>103.28</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1424</td>
<td>G</td>
<td>C4-N9-C1</td>
<td>6.28</td>
<td>134.67</td>
<td>126.50</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>11</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>6.28</td>
<td>131.74</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>11</td>
<td>G</td>
<td>C5-N7-C8</td>
<td>-6.26</td>
<td>101.17</td>
<td>104.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>485</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-6.24</td>
<td>103.90</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>538</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-6.24</td>
<td>125.48</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>305</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-6.22</td>
<td>125.49</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>305</td>
<td>G</td>
<td>C4-N9-C1</td>
<td>6.19</td>
<td>134.54</td>
<td>126.50</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>305</td>
<td>G</td>
<td>C8-N9-C1</td>
<td>-6.13</td>
<td>119.03</td>
<td>127.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1149</td>
<td>C</td>
<td>P-O3'-C3'</td>
<td>6.11</td>
<td>127.04</td>
<td>119.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>456</td>
<td>C</td>
<td>O5'-P-OP1</td>
<td>-6.09</td>
<td>100.22</td>
<td>105.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>101</td>
<td>G</td>
<td>C6-C5-N7</td>
<td>-6.05</td>
<td>126.77</td>
<td>130.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>108</td>
<td>G</td>
<td>N3-C4-N9</td>
<td>6.04</td>
<td>129.62</td>
<td>126.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>794</td>
<td>A</td>
<td>C2-N3-C4</td>
<td>-6.03</td>
<td>107.58</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>861</td>
<td>C</td>
<td>C2-N3-C4</td>
<td>-6.01</td>
<td>116.89</td>
<td>119.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>956</td>
<td>A</td>
<td>O4'-C1'-N9</td>
<td>6.00</td>
<td>113.00</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>70</td>
<td>A</td>
<td>C6-N1-C2</td>
<td>-6.00</td>
<td>115.00</td>
<td>118.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1117</td>
<td>U</td>
<td>OP1-P-O3'</td>
<td>6.00</td>
<td>118.39</td>
<td>105.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1178</td>
<td>A</td>
<td>N1-C2-N3</td>
<td>5.99</td>
<td>132.29</td>
<td>129.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1172</td>
<td>A</td>
<td>C8-N9-C4</td>
<td>-5.97</td>
<td>103.41</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>734</td>
<td>C</td>
<td>N3-C2-O2</td>
<td>-5.96</td>
<td>117.73</td>
<td>121.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>243</td>
<td>A</td>
<td>C5-N7-C8</td>
<td>-5.95</td>
<td>100.92</td>
<td>103.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1033</td>
<td>G</td>
<td>N7-C8-N9</td>
<td>-5.94</td>
<td>110.13</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>108</td>
<td>G</td>
<td>N7-C8-N9</td>
<td>-5.94</td>
<td>110.13</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>532</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>-5.94</td>
<td>119.73</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>769</td>
<td>U</td>
<td>C5-C4-O4</td>
<td>5.94</td>
<td>129.46</td>
<td>125.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>311</td>
<td>C</td>
<td>C2-N1-C1'</td>
<td>5.92</td>
<td>125.32</td>
<td>118.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>404</td>
<td>G</td>
<td>N1-C6-O6</td>
<td>-5.92</td>
<td>116.35</td>
<td>119.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>504</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-5.92</td>
<td>125.64</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>713</td>
<td>G</td>
<td>C4-N9-C1'</td>
<td>-5.92</td>
<td>118.80</td>
<td>126.50</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1350</td>
<td>U</td>
<td>C6-N1-C2</td>
<td>5.87</td>
<td>124.52</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1268</td>
<td>C</td>
<td>N3-C4-N4</td>
<td>5.86</td>
<td>122.10</td>
<td>118.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>799</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>5.85</td>
<td>131.52</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>132</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>5.82</td>
<td>122.63</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>454</td>
<td>C</td>
<td>C2-N1-C1'</td>
<td>5.81</td>
<td>125.19</td>
<td>118.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1340</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>-5.80</td>
<td>119.80</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1204</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>-5.79</td>
<td>118.10</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1486</td>
<td>A</td>
<td>C5-C6-N1</td>
<td>-5.77</td>
<td>114.82</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>107</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>5.76</td>
<td>131.48</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>666</td>
<td>U</td>
<td>C6-N1-C1'</td>
<td>5.75</td>
<td>129.25</td>
<td>121.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>243</td>
<td>A</td>
<td>C4-C5-N7</td>
<td>5.73</td>
<td>113.56</td>
<td>110.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1171</td>
<td>G</td>
<td>O5'-P-OP2</td>
<td>-5.72</td>
<td>100.55</td>
<td>105.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>794</td>
<td>A</td>
<td>C4-C5-C6</td>
<td>5.71</td>
<td>119.86</td>
<td>117.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>666</td>
<td>U</td>
<td>C2-N1-C1'</td>
<td>-5.70</td>
<td>110.86</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>372</td>
<td>C</td>
<td>N3-C2-O2</td>
<td>-5.70</td>
<td>117.91</td>
<td>121.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1481</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-5.66</td>
<td>104.13</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>799</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>5.66</td>
<td>108.66</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>108</td>
<td>G</td>
<td>N9-C4-C5</td>
<td>-5.66</td>
<td>103.14</td>
<td>105.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>11</td>
<td>G</td>
<td>C4-C5-N7</td>
<td>5.65</td>
<td>113.06</td>
<td>110.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>745</td>
<td>G</td>
<td>C4-C5-N7</td>
<td>5.65</td>
<td>113.06</td>
<td>110.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>385</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.64</td>
<td>118.05</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>488</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.63</td>
<td>118.05</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1117</td>
<td>U</td>
<td>P-O3'-C3'</td>
<td>5.63</td>
<td>126.46</td>
<td>119.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>466</td>
<td>U</td>
<td>C2-N1-C1'</td>
<td>5.62</td>
<td>124.45</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>413</td>
<td>G</td>
<td>O4'-C1'-N9</td>
<td>5.62</td>
<td>112.69</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>846</td>
<td>A</td>
<td>C2-N3-C4</td>
<td>-5.61</td>
<td>107.80</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>311</td>
<td>C</td>
<td>N1-C2-O2</td>
<td>5.60</td>
<td>122.26</td>
<td>118.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>693</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-5.57</td>
<td>125.81</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>794</td>
<td>A</td>
<td>C6-C5-N7</td>
<td>-5.57</td>
<td>128.40</td>
<td>132.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>902</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>-5.55</td>
<td>119.92</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1117</td>
<td>U</td>
<td>O4'-C1'-N1</td>
<td>5.55</td>
<td>112.64</td>
<td>108.20</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>70</td>
<td>A</td>
<td>N1-C6-N6</td>
<td>5.53</td>
<td>121.92</td>
<td>118.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>953</td>
<td>G</td>
<td>O4’-C1’-N9</td>
<td>5.53</td>
<td>112.62</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>85</td>
<td>C</td>
<td>N3-C2-O2</td>
<td>-5.51</td>
<td>118.04</td>
<td>121.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1214</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>5.51</td>
<td>108.60</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1477</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-5.50</td>
<td>103.60</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1507</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>5.49</td>
<td>108.59</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>85</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.48</td>
<td>118.11</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>954</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>5.47</td>
<td>122.49</td>
<td>120.30</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>190</td>
<td>ALA</td>
<td>C-N-CD</td>
<td>5.47</td>
<td>139.88</td>
<td>128.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>85</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.44</td>
<td>118.12</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1833</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.44</td>
<td>104.22</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>821</td>
<td>C</td>
<td>N1-C2-O2</td>
<td>5.43</td>
<td>122.16</td>
<td>118.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>415</td>
<td>C</td>
<td>N1-C2-O2</td>
<td>5.43</td>
<td>122.49</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>666</td>
<td>U</td>
<td>C5-C4-O4</td>
<td>5.42</td>
<td>129.15</td>
<td>125.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>489</td>
<td>A</td>
<td>O4’-C1’-N9</td>
<td>5.42</td>
<td>112.53</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>962</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>5.42</td>
<td>123.71</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>11</td>
<td>G</td>
<td>O4’-C1’-N9</td>
<td>5.41</td>
<td>122.44</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>258</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-5.41</td>
<td>104.24</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>296</td>
<td>U</td>
<td>N3-C2-O2</td>
<td>-5.41</td>
<td>118.42</td>
<td>122.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1480</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.40</td>
<td>118.14</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>803</td>
<td>G</td>
<td>N9-C4-C5</td>
<td>5.40</td>
<td>107.56</td>
<td>105.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1060</td>
<td>A</td>
<td>C8-N9-C4</td>
<td>5.38</td>
<td>107.95</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1028</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-5.36</td>
<td>104.25</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>110</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>-5.36</td>
<td>120.02</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>237</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.36</td>
<td>118.16</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1511</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.36</td>
<td>118.16</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>496</td>
<td>U</td>
<td>C2-N1-C1’</td>
<td>5.35</td>
<td>124.12</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1466</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-5.35</td>
<td>125.92</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>947</td>
<td>U</td>
<td>C6-N1-C2</td>
<td>5.34</td>
<td>124.21</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>799</td>
<td>G</td>
<td>N9-C4-C5</td>
<td>-5.34</td>
<td>103.26</td>
<td>105.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1204</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>5.34</td>
<td>122.44</td>
<td>120.30</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>189</td>
<td>PRO</td>
<td>C-N-CA</td>
<td>5.34</td>
<td>135.04</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1511</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>5.33</td>
<td>123.67</td>
<td>121.00</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>94</td>
<td>LEU</td>
<td>C-N-CD</td>
<td>5.33</td>
<td>139.60</td>
<td>128.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>509</td>
<td>G</td>
<td>C5-N7-C8</td>
<td>-5.33</td>
<td>101.64</td>
<td>104.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1481</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-5.33</td>
<td>125.94</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>215</td>
<td>U</td>
<td>N3-C2-O2</td>
<td>-5.33</td>
<td>118.47</td>
<td>122.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1203</td>
<td>G</td>
<td>N3-C4-N9</td>
<td>-5.33</td>
<td>122.80</td>
<td>126.00</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>32</td>
<td>ARG</td>
<td>CB-CA-C</td>
<td>5.32</td>
<td>121.05</td>
<td>110.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>454</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.32</td>
<td>118.17</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>109</td>
<td>G</td>
<td>C5-C6-N1</td>
<td>5.32</td>
<td>114.16</td>
<td>111.50</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>802</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>-5.31</td>
<td>104.28</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>846</td>
<td>A</td>
<td>N1-C2-N3</td>
<td>5.30</td>
<td>131.95</td>
<td>129.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1171</td>
<td>G</td>
<td>C5'-C4'-O4'</td>
<td>-5.29</td>
<td>102.76</td>
<td>109.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>504</td>
<td>G</td>
<td>N3-C4-N9</td>
<td>5.28</td>
<td>129.17</td>
<td>126.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>509</td>
<td>G</td>
<td>N7-C8-N9</td>
<td>5.27</td>
<td>115.73</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>107</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>5.26</td>
<td>108.51</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1307</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.26</td>
<td>118.19</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>504</td>
<td>G</td>
<td>N3-C4-N9</td>
<td>5.26</td>
<td>122.40</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>322</td>
<td>C</td>
<td>N1-C2-O2</td>
<td>-5.26</td>
<td>114.55</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1171</td>
<td>G</td>
<td>C5'-C4'-O4'</td>
<td>-5.26</td>
<td>103.69</td>
<td>113.10</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>21</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.25</td>
<td>123.03</td>
<td>118.30</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>76</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.25</td>
<td>127.38</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>737</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>-5.23</td>
<td>120.08</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>32</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.23</td>
<td>123.01</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>487</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.23</td>
<td>118.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>777</td>
<td>C</td>
<td>C6-N1-C1'</td>
<td>-5.21</td>
<td>114.55</td>
<td>120.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>251</td>
<td>G</td>
<td>N9-C4-C5</td>
<td>-5.20</td>
<td>103.32</td>
<td>105.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>881</td>
<td>C</td>
<td>N3-C4-C5</td>
<td>5.20</td>
<td>123.98</td>
<td>121.90</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.20</td>
<td>122.98</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>666</td>
<td>U</td>
<td>O4'-C1'-N1</td>
<td>5.20</td>
<td>112.36</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>747</td>
<td>A</td>
<td>C4-C5-C6</td>
<td>5.20</td>
<td>119.60</td>
<td>117.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>903</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>-5.19</td>
<td>120.10</td>
<td>122.70</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>29</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.19</td>
<td>122.97</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>280</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>5.18</td>
<td>122.37</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>331</td>
<td>G</td>
<td>N9-C4-C5</td>
<td>-5.18</td>
<td>103.33</td>
<td>105.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>485</td>
<td>G</td>
<td>C4-N9-C1'</td>
<td>5.17</td>
<td>133.22</td>
<td>126.50</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1510</td>
<td>G</td>
<td>N3-C4-C5</td>
<td>-5.17</td>
<td>126.02</td>
<td>128.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1435</td>
<td>U</td>
<td>O4'-C1'-N1</td>
<td>-5.17</td>
<td>104.07</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1302</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>-5.16</td>
<td>118.42</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1510</td>
<td>G</td>
<td>C2-N3-C4</td>
<td>5.16</td>
<td>114.48</td>
<td>111.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>821</td>
<td>C</td>
<td>C2-N1-C1'</td>
<td>5.13</td>
<td>124.44</td>
<td>118.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>901</td>
<td>A</td>
<td>C2-N3-C4</td>
<td>-5.13</td>
<td>108.04</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>895</td>
<td>A</td>
<td>N9-C4-C5</td>
<td>5.12</td>
<td>107.85</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1504</td>
<td>G</td>
<td>C8-N9-C4</td>
<td>5.12</td>
<td>108.45</td>
<td>106.40</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>415</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>-5.12</td>
<td>118.25</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1515</td>
<td>A</td>
<td>C8-N9-C4</td>
<td>-5.12</td>
<td>103.75</td>
<td>105.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>953</td>
<td>G</td>
<td>OP1-P-OP2</td>
<td>5.12</td>
<td>127.27</td>
<td>119.60</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1340</td>
<td>U</td>
<td>C6-N1-C2</td>
<td>5.11</td>
<td>124.07</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>530</td>
<td>G</td>
<td>C6-C5-N7</td>
<td>-5.10</td>
<td>127.34</td>
<td>130.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>538</td>
<td>G</td>
<td>N3-C4-N9</td>
<td>5.10</td>
<td>129.06</td>
<td>126.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>790</td>
<td>C</td>
<td>N3-C2-O2</td>
<td>-5.10</td>
<td>118.33</td>
<td>121.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>798</td>
<td>G</td>
<td>O4'-C1'-N9</td>
<td>5.09</td>
<td>112.28</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>847</td>
<td>A</td>
<td>N7-C8-N9</td>
<td>-5.09</td>
<td>111.25</td>
<td>113.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>372</td>
<td>C</td>
<td>N1-C2-N3</td>
<td>5.09</td>
<td>122.76</td>
<td>119.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1192</td>
<td>U</td>
<td>O4'-C1'-N1</td>
<td>5.09</td>
<td>112.27</td>
<td>108.20</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1171</td>
<td>G</td>
<td>P-O5'-C5'</td>
<td>-5.08</td>
<td>112.78</td>
<td>120.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1267</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>5.07</td>
<td>125.24</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>454</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>5.07</td>
<td>123.53</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1269</td>
<td>A</td>
<td>N7-C8-N9</td>
<td>5.07</td>
<td>116.33</td>
<td>113.80</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>742</td>
<td>A</td>
<td>C4-C5-C6</td>
<td>5.07</td>
<td>119.53</td>
<td>117.00</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>967</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>5.05</td>
<td>122.32</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1485</td>
<td>C</td>
<td>C6-N1-C2</td>
<td>5.04</td>
<td>122.32</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>755</td>
<td>G</td>
<td>N1-C6-O6</td>
<td>5.02</td>
<td>122.91</td>
<td>119.90</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>118</td>
<td>A</td>
<td>C5-C6-N1</td>
<td>5.02</td>
<td>120.21</td>
<td>117.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>793</td>
<td>U</td>
<td>C5-C6-N1</td>
<td>5.02</td>
<td>125.21</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1088</td>
<td>G</td>
<td>N7-C8-N9</td>
<td>5.02</td>
<td>115.61</td>
<td>113.10</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1176</td>
<td>C</td>
<td>C5-C6-N1</td>
<td>5.00</td>
<td>123.50</td>
<td>121.00</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (26) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>106</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>107</td>
<td>ASN</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>108</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>110</td>
<td>SER</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>138</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>141</td>
<td>MET</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>144</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>62</td>
<td>ARG</td>
<td>Peptide</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>189</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>186</td>
<td>ILE</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>1</td>
<td>MET</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>32</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>126</td>
<td>GLU</td>
<td>Peptide</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>55</td>
<td>ARG</td>
<td>Peptide</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>82</td>
<td>ASP</td>
<td>Peptide</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>86</td>
<td>HIS</td>
<td>Peptide</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>44</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>59</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>133</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>k</td>
<td>35</td>
<td>THR</td>
<td>Peptide</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>23</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>88</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>15</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>70</td>
<td>LYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>73</td>
<td>GLU</td>
<td>Peptide</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>4</td>
<td>ILE</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>32341</td>
<td>0</td>
<td>16267</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>1672</td>
<td>0</td>
<td>1722</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>1433</td>
<td>0</td>
<td>1485</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>1240</td>
<td>0</td>
<td>1293</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>1003</td>
<td>0</td>
<td>1039</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>994</td>
<td>0</td>
<td>1049</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>775</td>
<td>0</td>
<td>808</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>871</td>
<td>0</td>
<td>885</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>958</td>
<td>0</td>
<td>1045</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>709</td>
<td>0</td>
<td>747</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>730</td>
<td>0</td>
<td>772</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>r</td>
<td>512</td>
<td>0</td>
<td>543</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>630</td>
<td>0</td>
<td>639</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>655</td>
<td>0</td>
<td>703</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>1643</td>
<td>0</td>
<td>833</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>477</td>
<td>0</td>
<td>501</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>1793</td>
<td>0</td>
<td>1839</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>1641</td>
<td>0</td>
<td>1668</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>771</td>
<td>0</td>
<td>797</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>935</td>
<td>0</td>
<td>986</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>p</td>
<td>891</td>
<td>0</td>
<td>933</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>280</td>
<td>0</td>
<td>342</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>52954</td>
<td>0</td>
<td>36896</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 17.
There are no clashes within the asymmetric unit.
There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>208/275 (76%)</td>
<td>175 (84%)</td>
<td>19 (9%)</td>
<td>14 (7%)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>196/214 (92%)</td>
<td>176 (90%)</td>
<td>19 (10%)</td>
<td>1 (0%)</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>154/156 (99%)</td>
<td>144 (94%)</td>
<td>9 (6%)</td>
<td>1 (1%)</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>128/132 (97%)</td>
<td>119 (93%)</td>
<td>8 (6%)</td>
<td>1 (1%)</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>124/150 (83%)</td>
<td>110 (89%)</td>
<td>13 (10%)</td>
<td>1 (1%)</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>95/101 (94%)</td>
<td>83 (87%)</td>
<td>10 (10%)</td>
<td>2 (2%)</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>115/138 (83%)</td>
<td>103 (90%)</td>
<td>10 (9%)</td>
<td>2 (2%)</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>120/124 (97%)</td>
<td>94 (78%)</td>
<td>25 (21%)</td>
<td>1 (1%)</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>85/89 (96%)</td>
<td>81 (95%)</td>
<td>4 (5%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>90/98 (92%)</td>
<td>78 (87%)</td>
<td>12 (13%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>r</td>
<td>62/84 (74%)</td>
<td>55 (89%)</td>
<td>7 (11%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>76/93 (82%)</td>
<td>68 (90%)</td>
<td>8 (10%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>82/86 (95%)</td>
<td>77 (94%)</td>
<td>3 (4%)</td>
<td>2 (2%)</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>58/61 (95%)</td>
<td>53 (91%)</td>
<td>5 (9%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>226/277 (82%)</td>
<td>212 (94%)</td>
<td>14 (6%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>198/201 (98%)</td>
<td>185 (93%)</td>
<td>12 (6%)</td>
<td>1 (0%)</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>94/96 (98%)</td>
<td>90 (96%)</td>
<td>4 (4%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>114/124 (92%)</td>
<td>102 (90%)</td>
<td>12 (10%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>p</td>
<td>111/156 (71%)</td>
<td>104 (94%)</td>
<td>7 (6%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>30/33 (91%)</td>
<td>28 (93%)</td>
<td>2 (7%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2366/2688 (88%)</td>
<td>2137 (90%)</td>
<td>203 (9%)</td>
<td>26 (1%)</td>
<td>20</td>
</tr>
</tbody>
</table>
All (26) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>108</td>
<td>PRO</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>109</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>110</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>132</td>
<td>ALA</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>133</td>
<td>MET</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>139</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>140</td>
<td>ALA</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>142</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>143</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>154</td>
<td>TYR</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>87</td>
<td>LEU</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>116</td>
<td>VAL</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>6</td>
<td>SER</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>9</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>63</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>137</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>186</td>
<td>ILE</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>56</td>
<td>VAL</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>59</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>144</td>
<td>PRO</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>61</td>
<td>SER</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>36</td>
<td>PHE</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>189</td>
<td>PRO</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>141</td>
<td>MET</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>43</td>
<td>PRO</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>171/212 (81%)</td>
<td>164 (96%)</td>
<td>7 (4%)</td>
<td>33 68</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>139/147 (95%)</td>
<td>135 (97%)</td>
<td>4 (3%)</td>
<td>45 75</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>132/132 (100%)</td>
<td>128 (97%)</td>
<td>4 (3%)</td>
<td>44 75</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>h</td>
<td>106/108 (98%)</td>
<td>103 (97%)</td>
<td>3 (3%)</td>
<td>47 76</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>102/125 (82%)</td>
<td>98 (96%)</td>
<td>4 (4%)</td>
<td>35 69</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>88/90 (98%)</td>
<td>85 (97%)</td>
<td>3 (3%)</td>
<td>40 72</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>91/105 (87%)</td>
<td>85 (93%)</td>
<td>6 (7%)</td>
<td>18 55</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>103/105 (98%)</td>
<td>98 (95%)</td>
<td>5 (5%)</td>
<td>27 63</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>75/77 (97%)</td>
<td>74 (99%)</td>
<td>1 (1%)</td>
<td>71 88</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>78/83 (94%)</td>
<td>78 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>12</td>
<td>r</td>
<td>55/72 (76%)</td>
<td>55 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>69/84 (82%)</td>
<td>67 (97%)</td>
<td>2 (3%)</td>
<td>45 75</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>69/70 (99%)</td>
<td>65 (94%)</td>
<td>4 (6%)</td>
<td>22 59</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>49/50 (98%)</td>
<td>48 (98%)</td>
<td>1 (2%)</td>
<td>58 82</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>191/218 (88%)</td>
<td>187 (98%)</td>
<td>4 (2%)</td>
<td>56 81</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>175/176 (99%)</td>
<td>174 (99%)</td>
<td>1 (1%)</td>
<td>87 94</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>85/85 (100%)</td>
<td>84 (99%)</td>
<td>1 (1%)</td>
<td>74 89</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>99/104 (95%)</td>
<td>99 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>21</td>
<td>p</td>
<td>92/118 (78%)</td>
<td>92 (100%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>30/31 (97%)</td>
<td>23 (77%)</td>
<td>7 (23%)</td>
<td>1 6</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1999/2192 (91%)</td>
<td>1942 (97%)</td>
<td>57 (3%)</td>
<td>49 75</td>
</tr>
</tbody>
</table>

All (57) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>106</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>109</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>131</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>134</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>138</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>169</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>186</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>79</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>182</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>184</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>188</td>
<td>ASP</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>10</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>78</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>112</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>g</td>
<td>148</td>
<td>ASN</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>41</td>
<td>LYS</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>50</td>
<td>ARG</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>96</td>
<td>ARG</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>57</td>
<td>ASN</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>84</td>
<td>TYR</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>86</td>
<td>HIS</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>115</td>
<td>ARG</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>57</td>
<td>LYS</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>60</td>
<td>ASP</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>99</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>23</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>37</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>47</td>
<td>GLN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>62</td>
<td>LYS</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>78</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>134</td>
<td>LYS</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>13</td>
<td>ARG</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>46</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>56</td>
<td>LYS</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>73</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>83</td>
<td>ARG</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>54</td>
<td>ARG</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>29</td>
<td>GLN</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>55</td>
<td>ARG</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>6</td>
<td>SER</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>8</td>
<td>ILE</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>18</td>
<td>ARG</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>20</td>
<td>ARG</td>
</tr>
<tr>
<td>16</td>
<td>n</td>
<td>45</td>
<td>ARG</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>167</td>
<td>ASN</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>177</td>
<td>ARG</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>203</td>
<td>ASN</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>86</td>
<td>LEU</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>47</td>
<td>ARG</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>4</td>
<td>VAL</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>6</td>
<td>LYS</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>8</td>
<td>ARG</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>10</td>
<td>LYS</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>11</td>
<td>ARG</td>
</tr>
<tr>
<td>22</td>
<td>u</td>
<td>24</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (30) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>u</td>
<td>30</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>27</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>97</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>101</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>143</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>145</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>148</td>
<td>ASN</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>22</td>
<td>HIS</td>
</tr>
<tr>
<td>5</td>
<td>h</td>
<td>117</td>
<td>GLN</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>57</td>
<td>ASN</td>
</tr>
<tr>
<td>7</td>
<td>j</td>
<td>99</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>31</td>
<td>HIS</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>37</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>47</td>
<td>GLN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>49</td>
<td>ASN</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>58</td>
<td>HIS</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>78</td>
<td>ASN</td>
</tr>
<tr>
<td>9</td>
<td>l</td>
<td>46</td>
<td>ASN</td>
</tr>
<tr>
<td>10</td>
<td>o</td>
<td>28</td>
<td>GLN</td>
</tr>
<tr>
<td>11</td>
<td>q</td>
<td>33</td>
<td>GLN</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>22</td>
<td>GLN</td>
</tr>
<tr>
<td>13</td>
<td>s</td>
<td>29</td>
<td>GLN</td>
</tr>
<tr>
<td>14</td>
<td>t</td>
<td>7</td>
<td>GLN</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>24</td>
<td>ASN</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>167</td>
<td>ASN</td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td>203</td>
<td>ASN</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>49</td>
<td>GLN</td>
</tr>
<tr>
<td>18</td>
<td>d</td>
<td>84</td>
<td>ASN</td>
</tr>
<tr>
<td>19</td>
<td>f</td>
<td>80</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Backbone Outliers</th>
<th>Pucker Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1504/1528 (98%)</td>
<td>392 (26%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Backbone Outliers</th>
<th>Pucker Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>v</td>
<td>76/77 (98%)</td>
<td>17 (22%)</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1580/1605 (98%)</td>
<td>409 (25%)</td>
<td>0</td>
</tr>
</tbody>
</table>

All (409) RNA backbone outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>13</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>26</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>43</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>45</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>48</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>51</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>52</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>53</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>54</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>55</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>59</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>62</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>67</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>68</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>77</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>81</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>82</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>83</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>85</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>87</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>92</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>93</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>94</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>101</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>112</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>113</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>116</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>117</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>118</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>123</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>128</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>136</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>139</td>
<td>C</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mo</th>
<th>Cha</th>
<th>Res</th>
<th>Ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>160</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>170</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>174</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>179</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>180</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>181</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>192</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>194</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>201</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>210</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>211</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>213</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>214</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>215</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>216</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>217</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>218</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>226</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>242</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>243</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>245</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>247</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>251</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>262</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>266</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>267</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>279</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>280</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>281</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>283</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>289</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>301</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>314</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>319</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>321</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>329</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>332</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>338</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>344</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>345</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>350</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>351</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>352</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>353</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>354</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>356</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>367</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>372</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>373</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>382</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>390</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>392</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>397</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>398</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>406</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>411</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>414</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>415</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>421</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>422</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>423</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>424</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>426</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>427</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>428</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>429</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>430</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>434</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>436</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>438</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>450</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>451</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>452</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>453</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>454</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>456</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>457</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>458</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>459</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>461</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>464</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>465</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>466</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>477</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>478</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>479</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>482</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>484</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>485</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>486</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>491</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>496</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>497</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>498</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>499</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>505</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>507</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>509</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>511</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>512</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>513</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>515</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>519</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>520</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>525</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>527</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>539</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>542</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>544</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>552</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>553</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>554</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>556</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>557</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>612</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>613</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>629</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>633</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>641</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>645</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>666</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>667</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>668</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>680</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>682</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>683</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>700</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>701</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>702</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>703</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>704</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>711</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>713</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>728</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>729</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>735</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>757</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>761</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>764</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>765</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>771</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>772</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>773</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>774</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>779</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>782</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>789</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>793</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>794</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>795</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>797</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>799</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>800</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>808</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>818</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>821</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>822</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>828</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>835</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>840</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>841</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>865</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>884</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>895</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>896</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>908</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>909</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>913</td>
<td>C</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>914</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>915</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>916</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>917</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>921</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>930</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>932</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>940</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>942</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>943</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>945</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>947</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>948</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>950</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>951</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>953</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>954</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>955</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>956</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>957</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>959</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>971</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>973</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>974</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>975</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>982</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>984</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>986</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>987</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>988</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>992</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>996</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>999</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1000</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1003</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1007</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1008</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1010</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1011</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1013</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1014</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1020</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1021</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1022</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1024</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1025</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1028</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1033</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1034</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1036</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1045</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1047</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1048</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1054</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1064</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1074</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1075</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1079</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1081</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1085</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1104</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1108</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1110</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1112</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1115</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1116</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1117</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1118</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1120</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1123</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1128</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1129</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1132</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1133</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1138</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1140</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1141</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1147</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1149</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1150</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1152</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1162</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1164</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1165</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1171</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1176</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1177</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1178</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1181</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1182</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1183</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1193</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1194</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1206</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1207</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1217</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1219</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1231</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1233</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1235</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1238</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1239</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1241</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1242</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1248</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1249</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1251</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1254</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1255</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1261</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1265</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1266</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1267</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1268</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1269</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1272</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1281</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1282</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1283</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1284</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1285</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1287</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1298</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1299</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1300</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1301</td>
<td>A</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1302</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1305</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1313</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1320</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1322</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1327</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1328</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1329</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1335</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1343</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1344</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1345</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1346</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1347</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1351</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1353</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1357</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1363</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1364</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1381</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1382</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1383</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1385</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1389</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1402</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1406</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1407</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1424</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1425</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1426</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1429</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1430</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1434</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1435</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1436</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1438</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1459</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1460</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1466</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1468</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1471</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1478</td>
<td>G</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1481</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1482</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1483</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1486</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1487</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1488</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1490</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1491</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1492</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1501</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1502</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1503</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1504</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1511</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1512</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1513</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1514</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1516</td>
<td>U</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1517</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>1518</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>7</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>9</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>16</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>17</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>18</td>
<td>U</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>19</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>20</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>21</td>
<td>U</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>23</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>55</td>
<td>U</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>61</td>
<td>U</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>68</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>76</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>v</td>
<td>77</td>
<td>A</td>
</tr>
</tbody>
</table>

There are no RNA pucker outliers to report.
5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.