

# Full wwPDB X-ray Structure Validation Report (i)

Apr 10, 2021 - 08:36 am BST

| μ̈́ΡQ                                    |                                    |
|------------------------------------------|------------------------------------|
| ystal structure of the open conformation | of Angiotensin-1 converting enzyme |
| domain.                                  |                                    |
| ozier, G.E.; Acharya, K.R.               |                                    |
| 20-07-09                                 |                                    |
| 35  Å(reported)                          |                                    |
| 35 Å(reported)                           |                                    |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

| $\operatorname{MolProbity}$    | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| $\mathrm{EDS}$                 | : | 2.18                                                               |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| $\operatorname{CCP4}$          | : | 7.0.044  (Gargrove)                                                |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.18                                                               |
| Validation Pipeline (wwPDB-VP) | : | 2.18                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.85 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Motrio                | Whole archive       | Similar resolution                                        |
|-----------------------|---------------------|-----------------------------------------------------------|
| wietric               | $(\# { m Entries})$ | $(\# { m Entries}, { m resolution} { m range}({ m \AA}))$ |
| R <sub>free</sub>     | 130704              | 2469 (1.86-1.86)                                          |
| Clashscore            | 141614              | 2625(1.86-1.86)                                           |
| Ramachandran outliers | 138981              | 2592(1.86-1.86)                                           |
| Sidechain outliers    | 138945              | 2592(1.86-1.86)                                           |
| RSRZ outliers         | 127900              | 2436 (1.86-1.86)                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |    |   |
|-----|-------|--------|------------------|----|---|
| 1   | А     | 629    | 91%              | 6% | · |
| 1   | В     | 629    | 2%<br>89%        | 7% | • |
| 1   | С     | 629    | %<br>91%         | 5% | • |
| 1   | D     | 629    | 2%<br>90%        | 7% | • |
| 2   | Е     | 2      | 100%             |    |   |



| Mol | Chain | Length | (   | Quality of chain |     |  |  |  |  |  |  |
|-----|-------|--------|-----|------------------|-----|--|--|--|--|--|--|
| 2   | Н     | 2      |     | 100%             |     |  |  |  |  |  |  |
| 2   | J     | 2      | 50% |                  | 50% |  |  |  |  |  |  |
| 3   | F     | 3      |     | 100%             |     |  |  |  |  |  |  |
| 3   | G     | 3      | 33% | 33%              | 33% |  |  |  |  |  |  |
| 3   | Ι     | 3      |     | 100%             |     |  |  |  |  |  |  |
| 3   | K     | 3      | 33% | 33%              | 33% |  |  |  |  |  |  |



# 2 Entry composition (i)

There are 16 unique types of molecules in this entry. The entry contains 41964 atoms, of which 19721 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain   | Residues |       |      | Atom | S   |              | ZeroOcc | AltConf | Trace |   |
|-----|---------|----------|-------|------|------|-----|--------------|---------|---------|-------|---|
| 1   | 1 1 608 | Total    | С     | Η    | Ν    | 0   | $\mathbf{S}$ | 0       | 10      | 0     |   |
|     | А       | 008      | 9793  | 3211 | 4790 | 859 | 914          | 19      | 0       | 10    | 0 |
| 1   | В       | 605      | Total | С    | Η    | Ν   | 0            | S       | 0       | 14    | 0 |
| 1   | D       | 005      | 9807  | 3215 | 4797 | 861 | 915          | 19      | 0       |       |   |
| 1   | C       | 605      | Total | С    | Η    | Ν   | Ο            | S       | 0       | 14    | 0 |
|     | U       | 005      | 9785  | 3211 | 4781 | 857 | 917          | 19      |         |       | 0 |
| 1   | П       | 607      | Total | С    | Η    | Ν   | Ο            | S       | 0       | 10    | 0 |
|     | D       | 007      | 9849  | 3227 | 4815 | 866 | 922          | 19      |         | 18    |   |

• Molecule 1 is a protein called Angiotensin-converting enzyme.

There are 36 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| А     | 9       | GLN      | ASN    | engineered mutation | UNP P12821 |
| А     | 25      | GLN      | ASN    | engineered mutation | UNP P12821 |
| А     | 82      | GLN      | ASN    | engineered mutation | UNP P12821 |
| А     | 117     | GLN      | ASN    | engineered mutation | UNP P12821 |
| А     | 131     | GLN      | ASN    | engineered mutation | UNP P12821 |
| А     | 289     | GLN      | ASN    | engineered mutation | UNP P12821 |
| А     | 545     | ARG      | GLN    | engineered mutation | UNP P12821 |
| А     | 576     | LEU      | PRO    | engineered mutation | UNP P12821 |
| А     | 629     | LEU      | -      | expression tag      | UNP P12821 |
| В     | 9       | GLN      | ASN    | engineered mutation | UNP P12821 |
| В     | 25      | GLN      | ASN    | engineered mutation | UNP P12821 |
| В     | 82      | GLN      | ASN    | engineered mutation | UNP P12821 |
| В     | 117     | GLN      | ASN    | engineered mutation | UNP P12821 |
| В     | 131     | GLN      | ASN    | engineered mutation | UNP P12821 |
| В     | 289     | GLN      | ASN    | engineered mutation | UNP P12821 |
| В     | 545     | ARG      | GLN    | engineered mutation | UNP P12821 |
| В     | 576     | LEU      | PRO    | engineered mutation | UNP P12821 |
| В     | 629     | LEU      | -      | expression tag      | UNP P12821 |
| С     | 9       | GLN      | ASN    | engineered mutation | UNP P12821 |
| С     | 25      | GLN      | ASN    | engineered mutation | UNP P12821 |
| С     | 82      | GLN      | ASN    | engineered mutation | UNP P12821 |



| 6ZP | Q |
|-----|---|
|-----|---|

| Chain | Residue | Modelled | Actual | Comment             | Reference  |
|-------|---------|----------|--------|---------------------|------------|
| С     | 117     | GLN      | ASN    | engineered mutation | UNP P12821 |
| С     | 131     | GLN      | ASN    | engineered mutation | UNP P12821 |
| С     | 289     | GLN      | ASN    | engineered mutation | UNP P12821 |
| С     | 545     | ARG      | GLN    | engineered mutation | UNP P12821 |
| С     | 576     | LEU      | PRO    | engineered mutation | UNP P12821 |
| С     | 629     | LEU      | -      | expression tag      | UNP P12821 |
| D     | 9       | GLN      | ASN    | engineered mutation | UNP P12821 |
| D     | 25      | GLN      | ASN    | engineered mutation | UNP P12821 |
| D     | 82      | GLN      | ASN    | engineered mutation | UNP P12821 |
| D     | 117     | GLN      | ASN    | engineered mutation | UNP P12821 |
| D     | 131     | GLN      | ASN    | engineered mutation | UNP P12821 |
| D     | 289     | GLN      | ASN    | engineered mutation | UNP P12821 |
| D     | 545     | ARG      | GLN    | engineered mutation | UNP P12821 |
| D     | 576     | LEU      | PRO    | engineered mutation | UNP P12821 |
| D     | 629     | LEU      | -      | expression tag      | UNP P12821 |

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms |    |    |   |    | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|----|----|---|----|---------|---------|-------|
| 2   | F     | E 2      | Total | С  | Η  | Ν | Ο  | 0       | 0       | 0     |
|     |       |          | 53    | 16 | 25 | 2 | 10 | 0       |         |       |
| 0   | Ц     | 2        | Total | С  | Η  | Ν | Ο  | 0       | 0       | 0     |
|     | 11    | 2        | 53    | 16 | 25 | 2 | 10 | 0       | 0       | 0     |
| 0   | т     | 0        | Total | С  | Η  | Ν | Ο  | 0       | 0       | 0     |
|     | J 2   | 2        | 53    | 16 | 25 | 2 | 10 | 0       | 0       | 0     |

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms       |         |         |        |         | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------------|---------|---------|--------|---------|---------|---------|-------|
| 3   | F     | 3        | Total<br>59 | C<br>22 | Н<br>21 | N<br>2 | 0<br>14 | 0       | 0       | 0     |



| Mol | Chain | Residues |       | At | oms |   |    | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|----|-----|---|----|---------|---------|-------|
| 2   | С     | 2        | Total | С  | Η   | Ν | 0  | 0       | 0       | 0     |
| 0   | 3 G   | 5        | 71    | 22 | 33  | 2 | 14 | 0       |         |       |
| 9   | т     | 3        | Total | С  | Η   | Ν | 0  | 0       | 0       | 0     |
| 0   |       |          | 72    | 22 | 34  | 2 | 14 | 0       |         |       |
| 9   | V     | ე        | Total | С  | Η   | Ν | 0  | 0       | 0       | 0     |
| 0   | IX I  | 0        | 72    | 22 | 34  | 2 | 14 | U       |         | 0     |

Continued from previous page...

• Molecule 4 is BORIC ACID (three-letter code: BO3) (formula:  $BH_3O_3$ ).



| Mol | Chain | Residues | A     | tor | $\mathbf{ns}$ |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|-----|---------------|---|---------|---------|
| 4   | Λ     | 1        | Total | В   | Η             | 0 | 0       | 0       |
| 4   | Л     | I        | 7     | 1   | 3             | 3 | 0       | 0       |
| 4   | Λ     | 1        | Total | В   | Η             | Ο | 0       | 0       |
|     | 1     | 7        | 1     | 3   | 3             | 0 | 0       |         |
| 4   | Λ     | 1        | Total | В   | Η             | Ο | 0       | 0       |
| 4   | Л     | I        | 7     | 1   | 3             | 3 | 0       |         |
| 4   | В     | 1        | Total | В   | Η             | Ο | 0       | 0       |
| 4   | 4 D   | I        | 7     | 1   | 3             | 3 |         | 0       |
| 4   | С     | 1        | Total | В   | Η             | Ο | 0       | 0       |
| 4   | U     |          | 7     | 1   | 3             | 3 |         |         |
| 4   | п     | 1        | Total | В   | Η             | Ο | 0       | 0       |
| 4   | D     | T        | 7     | 1   | 3             | 3 | 0       | 0       |
| 4   | р     | 1        | Total | В   | Η             | 0 | 0       | 0       |
| 4   |       |          | 7     | 1   | 3             | 3 |         |         |
| 4   | р     | 1        | Total | В   | Η             | 0 | 0       | 0       |
| 4   |       |          | 7     | 1   | 3             | 3 |         | 0       |





| Mol | Chain | Residues |       | $\mathbf{At}$ | $\mathbf{oms}$ |   |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|---------------|----------------|---|---|---------|---------|
| 5   | Δ     | 1        | Total | С             | Η              | Ν | Ο | 0       | 0       |
| 0   | Л     | T        | 23    | 6             | 12             | 1 | 4 | 0       | 0       |
| 5   | Λ     | 1        | Total | С             | Η              | Ν | Ο | 0       | 0       |
| 0   | Л     | T        | 23    | 6             | 12             | 1 | 4 | 0       |         |
| 5   | р     | В 1      | Total | С             | Η              | Ν | Ο | 0       | 0       |
| 0   | D     |          | 23    | 6             | 12             | 1 | 4 |         | 0       |
| 5   | C     | 1        | Total | С             | Η              | Ν | Ο | 0       | 0       |
| 0   | U     | T        | 23    | 6             | 12             | 1 | 4 | 0       | 0       |
| 5   | п     | 1        | Total | С             | Η              | N | O | 0       | 0       |
|     |       |          | 23    | 6             | 12             | 1 | 4 |         | 0       |

• Molecule 6 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula:  $C_4H_{10}O_3$ ).





| Mol | Chain | Residues | A     | Ator | $\mathbf{ns}$ |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|------|---------------|---|---------|---------|
| 6   | Λ     | 1        | Total | С    | Η             | Ο | 0       | 0       |
|     | L     | 17       | 4     | 10   | 3             | 0 | 0       |         |
| 6   | В     | 1        | Total | С    | Η             | Ο | 0       | 0       |
|     | D     | T        | 17    | 4    | 10            | 3 | 0       | 0       |
| 6   | В     | 1        | Total | С    | Η             | Ο | 0       | 0       |
| 0   | D     | L        | 17    | 4    | 10            | 3 | 0       | 0       |
| 6   | В     | 1        | Total | С    | Η             | Ο | 0       | 0       |
| 0   |       |          | 17    | 4    | 10            | 3 |         | 0       |

• Molecule 7 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula:  $C_2H_6O_2$ ).





| $6\mathrm{ZP}$ | Q |
|----------------|---|
|----------------|---|

| Mol | Chain | Residues | Atoms       | ZeroOcc | AltConf |
|-----|-------|----------|-------------|---------|---------|
| 7   | А     | 1        | Total C H O | 0       | 0       |
| · · |       | -        | 10 2 6 2    |         |         |
| 7   | A     | 1        | Total C H O | 0       | 0       |
|     |       |          |             | _       | _       |
| 7   | A     | 1        | Total C H O | 0       | 0       |
| -   |       | _        | 10 2 6 2    |         |         |
| 7   | A     | 1        | Total C H O | 0       | 0       |
| -   |       | _        | 10 2 6 2    |         |         |
| 7   | A     | 1        | Total C H O | 0       | 0       |
|     |       | _        |             |         |         |
| 7   | В     | 1        | Total C H O | 0       | 0       |
|     |       | -        | 10 2 6 2    |         |         |
| 7   | В     | 1        | Total C H O | 0       | 0       |
| · · |       | -        | 10 2 6 2    |         |         |
| 7   | С     | 1        | Total C H O | 0       | 1       |
|     |       | _        | 20 4 12 4   |         | _       |
| 7   | С     | 1        | Total C H O | 0       | 0       |
|     |       | _        | 10  2  6  2 |         |         |
| 7   | С     | 1        | Total C H O | 0       | 0       |
|     | _     |          | 10  2  6  2 | _       | _       |
| 7   | D     | 1        | Total C H O | 0       | 0       |
|     |       |          | 10  2  6  2 | _       | _       |
| 7   | D     | 1        | Total C H O | 0       | 0       |
|     |       |          | 10  2  6  2 | _       | -       |
| 7   | D     | 1        | Total C H O | 0       | 0       |
|     |       |          | 10  2  6  2 | _       | -       |
| 7   | D     | 1        | Total C H O | 0       | 1 $ $   |
|     |       |          | 20 4 12 4   | _       |         |

• Molecule 8 is TRIETHYLENE GLYCOL (three-letter code: PGE) (formula:  $C_6H_{14}O_4$ ).





| Mol | Chain | Residues | A     | Ator | $\mathbf{ns}$ |   | ZeroOcc | AltConf |
|-----|-------|----------|-------|------|---------------|---|---------|---------|
| 0   | Λ     | 1        | Total | С    | Η             | Ο | 0       | 0       |
| 0   | А     | L        | 24    | 6    | 14            | 4 | 0       | 0       |
| 8   | Λ     | 1        | Total | С    | Η             | Ο | 0       | 0       |
| 0   | o A   | L        | 24    | 6    | 14            | 4 | 0       |         |
| 8   | о D   | 1        | Total | С    | Η             | Ο | 0       | 0       |
| 0   | D     |          | 24    | 6    | 14            | 4 | 0       |         |
| 8   | В     | 1        | Total | С    | Η             | Ο | 0       | 0       |
| 0   | D     | T        | 24    | 6    | 14            | 4 | 0       | 0       |
| 0   | П     | 1        | Total | С    | Η             | 0 |         | 1       |
|     |       |          | 48    | 12   | 28            | 8 |         |         |

• Molecule 9 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 9   | А     | 1        | Total Zn<br>1 1 | 0       | 0       |
| 9   | В     | 1        | Total Zn<br>1 1 | 0       | 0       |
| 9   | С     | 1        | Total Zn<br>1 1 | 0       | 0       |
| 9   | D     | 1        | Total Zn<br>1 1 | 0       | 0       |

• Molecule 10 is CHLORIDE ION (three-letter code: CL) (formula: Cl).



| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 10  | А     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 10  | В     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 10  | С     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 10  | D     | 1        | Total Cl<br>1 1 | 0       | 0       |

• Molecule 11 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 11  | А     | 1        | Total Mg<br>1 1 | 0       | 0       |
| 11  | В     | 1        | Total Mg<br>1 1 | 0       | 0       |
| 11  | С     | 1        | Total Mg<br>1 1 | 0       | 0       |

• Molecule 12 is CALCIUM ION (three-letter code: CA) (formula: Ca).

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 12  | А     | 1        | Total Ca<br>1 1 | 0       | 0       |
| 12  | В     | 1        | Total Ca<br>1 1 | 0       | 0       |
| 12  | С     | 1        | Total Ca<br>1 1 | 0       | 0       |
| 12  | D     | 1        | Total Ca<br>1 1 | 0       | 0       |

• Molecule 13 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula:  $C_8H_{15}NO_6$ ).





| Mol | Chain | Residues |       | At | $\mathbf{oms}$ |   | ZeroOcc | AltConf |   |
|-----|-------|----------|-------|----|----------------|---|---------|---------|---|
| 13  | В     | 1        | Total | С  | Н              | Ν | 0       | 0       | 0 |
|     | _     | _        | 27    | 8  | 13             | 1 | 5       |         | Ū |

• Molecule 14 is 2-METHOXYETHANOL (three-letter code: MXE) (formula:  $C_3H_8O_2$ ).



| Mol | Chain | Residues | A           | tor    | ns      |        | ZeroOcc | AltConf |
|-----|-------|----------|-------------|--------|---------|--------|---------|---------|
| 14  | В     | 1        | Total<br>13 | С<br>3 | Н<br>8  | O<br>2 | 0       | 0       |
| 14  | С     | 1        | Total<br>26 | C<br>6 | Н<br>16 | 0<br>4 | 0       | 1       |

• Molecule 15 is SODIUM ION (three-letter code: NA) (formula: Na).



| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 15  | В     | 1        | Total Na<br>1 1 | 0       | 0       |

• Molecule 16 is water.

| Mol | Chain | Residues | Atoms                                     | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------|---------|---------|
| 16  | А     | 435      | Total O<br>436 436                        | 0       | 1       |
| 16  | В     | 403      | Total         O           403         403 | 0       | 0       |
| 16  | С     | 389      | Total O<br>389 389                        | 0       | 0       |
| 16  | D     | 443      | Total O<br>444 444                        | 0       | 1       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Angiotensin-converting enzyme

# M267 L1 M266 L32 M266 V36 S303 T44 A323 N45 A323 N45 A323 N45 N326 E49 E327 N45 V368 E56 V368 E56 V372 L60 V372 L60 V372 L60 V372 L60 V399 L75 V495 E16 V477 N96 V495 L120 V495 L127 N496 M120 V497 N14 K479 R14 K479 R14 K479 R120 V496 M120 V496 M120 V496 R121 K479 R14 K50 L157 K48 R146 K49 R146 K49 R146

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain E:

100%

#### NAG1 NAG2

LEU

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain H:     | 100% |  |
|--------------|------|--|
| NAG2<br>NAG2 |      |  |

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain J: | 50% | 50% |
|----------|-----|-----|
|          |     |     |

#### NAG1 NAG2

 • Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain F:     | 100% |
|--------------|------|
| IAG2<br>FUG3 |      |

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose

| Chain G:             | 33% | 33% | 33% |
|----------------------|-----|-----|-----|
| NAG1<br>NAG2<br>FUC3 |     |     |     |

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose



Chain I:

NAG 1 NAG 2 FUC 3 100%

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose

| Chain K:                | 33% | 33% | 33% |
|-------------------------|-----|-----|-----|
| NAG 1<br>NAG 2<br>FUC 3 |     |     |     |



# 4 Data and refinement statistics (i)

| Property                                    | Value                                            | Source    |
|---------------------------------------------|--------------------------------------------------|-----------|
| Space group                                 | P 1                                              | Depositor |
| Cell constants                              | 74.68Å $99.93$ Å $128.70$ Å                      | Deperitor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | $97.76^{\circ}$ $90.21^{\circ}$ $111.06^{\circ}$ | Depositor |
| $\mathbf{D}$ and $\mathbf{D}$               | 80.50 - 1.85                                     | Depositor |
| Resolution (A)                              | 92.26 - 1.85                                     | EDS       |
| % Data completeness                         | 97.5 (80.50-1.85)                                | Depositor |
| (in resolution range)                       | 97.6 (92.26-1.85)                                | EDS       |
| $R_{merge}$                                 | 0.13                                             | Depositor |
| $R_{sym}$                                   | (Not available)                                  | Depositor |
| $< I/\sigma(I) > 1$                         | $1.40 (at 1.84 \text{\AA})$                      | Xtriage   |
| Refinement program                          | PHENIX 1.13_2998, PHENIX 1.13_2998               | Depositor |
| D D .                                       | 0.184 , $0.214$                                  | Depositor |
| $\Pi, \Pi_{free}$                           | 0.185 , $0.214$                                  | DCC       |
| $R_{free}$ test set                         | 2025 reflections $(0.71%)$                       | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 29.3                                             | Xtriage   |
| Anisotropy                                  | 0.304                                            | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$ | 0.39 , $46.7$                                    | EDS       |
| L-test for $twinning^2$                     | $< L >=0.51, < L^2>=0.34$                        | Xtriage   |
| Estimated twinning fraction                 | 0.028 for h,-h-k,-l                              | Xtriage   |
| $F_o, F_c$ correlation                      | 0.96                                             | EDS       |
| Total number of atoms                       | 41964                                            | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 43.0                                             | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.75% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MXE, BO3, EDO, ZN, PGE, CL, FUC, BCN, PEG, NA, NAG, CA, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Chain |       | Bond | lengths  | Bond angles |          |
|-----------|-------|------|----------|-------------|----------|
|           | Chain | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5 |
| 1         | А     | 0.45 | 0/5211   | 0.50        | 0/7097   |
| 1         | В     | 0.49 | 0/5213   | 0.52        | 0/7101   |
| 1         | С     | 0.45 | 0/5214   | 0.49        | 0/7101   |
| 1         | D     | 0.51 | 0/5259   | 0.52        | 0/7162   |
| All       | All   | 0.47 | 0/20897  | 0.51        | 0/28461  |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added)        | Clashes | Symm-Clashes |
|-----|-------|-------|----------|-----------------|---------|--------------|
| 1   | А     | 5003  | 4790     | 4743            | 27      | 0            |
| 1   | В     | 5010  | 4797     | 4749            | 27      | 0            |
| 1   | С     | 5004  | 4781     | 4732            | 17      | 1            |
| 1   | D     | 5034  | 4815     | 4742            | 28      | 1            |
| 2   | E     | 28    | 25       | 25              | 0       | 0            |
| 2   | Н     | 28    | 25       | 25              | 0       | 0            |
| 2   | J     | 28    | 25       | 25              | 2       | 0            |
| 3   | F     | 38    | 21       | 34              | 0       | 0            |
| 3   | G     | 38    | 33       | $\overline{34}$ | 4       | 0            |



| Conti<br>Mol | nuea fron<br>Chain | Non H            | $\frac{page}{\mathbf{H}(\mathbf{modol})}$ | H(addod)     | Clashos | Symm Clashos |
|--------------|--------------------|------------------|-------------------------------------------|--------------|---------|--------------|
|              |                    | 1 <b>1011-11</b> | $\pi(\text{model})$                       | $\pi(auueu)$ | Clashes | Symm-Clasnes |
| <u> </u>     | I<br>V             |                  | 04<br>24                                  | 04<br>24     | 0       | 0            |
| 3            |                    |                  | 0                                         | 0            | 1       | 0            |
| 4            | A<br>D             |                  | 9                                         | 9            | 0       | 0            |
| 4            | D                  | 4                | ა<br>ე                                    | ა<br>ე       | 0       | 0            |
| 4            |                    | 4                | 0<br>0                                    | 0<br>0       | 1       | 0            |
| 4            |                    | 12               | 9                                         | 9            | 1       | 0            |
| 5            | A<br>P             |                  | <u> </u>                                  | 20           | 2       | 0            |
| 5            | D<br>C             | 11               | 12                                        | 10           | 0       | 0            |
| 5            |                    | 11               | 12                                        | 10           | 0       | 0            |
| 6            |                    | 11               | 12                                        | 11           | 0       | 0            |
| 6            | R R                | 1<br>            | 30                                        | 30           | 0       | 0            |
| 7            |                    | 21               | 30                                        | 30           | 1       | 0            |
| 7            | B                  | 20               | 12                                        | 12           | 0       | 0            |
| 7            | D<br>C             | 16               | 24                                        | 24           | 0       | 0            |
| 7            |                    | 20               | 30                                        | 24           | 0       | 0            |
| 8            |                    | 20               | 28                                        | 25           | 6       | 0            |
| 8            | B                  | 20               | 20                                        | 20           | 0       | 0            |
| 8            | D                  | 20               | 20                                        | 20           | 0       | 0            |
| 9            | A                  | 1                | 0                                         | 0            | 0       | 0            |
| 9            | B                  | 1                | 0                                         | 0            | 0       | 0            |
| 9            | C                  | 1                | 0                                         | 0            | 0       | 0            |
| 9            | D                  | 1                | 0                                         | 0            | 0       | 0            |
| 10           | A                  | 1                | 0                                         | 0            | 0       | 0            |
| 10           | В                  | 1                | 0                                         | 0            | 0       | 0            |
| 10           | С                  | 1                | 0                                         | 0            | 0       | 0            |
| 10           | D                  | 1                | 0                                         | 0            | 0       | 0            |
| 11           | A                  | 1                | 0                                         | 0            | 0       | 0            |
| 11           | В                  | 1                | 0                                         | 0            | 0       | 0            |
| 11           | С                  | 1                | 0                                         | 0            | 0       | 0            |
| 12           | А                  | 1                | 0                                         | 0            | 0       | 0            |
| 12           | В                  | 1                | 0                                         | 0            | 0       | 0            |
| 12           | С                  | 1                | 0                                         | 0            | 0       | 0            |
| 12           | D                  | 1                | 0                                         | 0            | 0       | 0            |
| 13           | В                  | 14               | 13                                        | 13           | 0       | 0            |
| 14           | В                  | 5                | 8                                         | 8            | 0       | 0            |
| 14           | С                  | 10               | 16                                        | 16           | 0       | 0            |
| 15           | В                  | 1                | 0                                         | 0            | 0       | 0            |
| 16           | A                  | 436              | 0                                         | 0            | 6       | 0            |
| 16           | B                  | 403              | 0                                         | 0            | 5       | 0            |
| 16           | C                  | 389              | 0                                         | 0            | 6       | 0            |
| 16           | D                  | 444              | 0                                         | 0            | 7       | 0            |

 $\alpha$ 1 0 · · · .



Continued from previous page...

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| All | All   | 22243 | 19721    | 19508    | 104     | 1            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (104) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1             | Atom 2           | Interatomic  | Clash       |  |
|--------------------|------------------|--------------|-------------|--|
| Atom-1             | Atom-2           | distance (Å) | overlap (Å) |  |
| 1:D:554:GLU:OE1    | 16:D:801:HOH:O   | 1.94         | 0.85        |  |
| 1:A:260:SER:OG     | 1:A:262:GLU:OE1  | 2.01         | 0.77        |  |
| 1:D:260:SER:OG     | 1:D:262:GLU:OE1  | 2.03         | 0.76        |  |
| 1:D:151:ARG:HD2    | 1:D:267:MET:HE2  | 1.67         | 0.76        |  |
| 3:G:1:NAG:H83      | 3:G:1:NAG:H3     | 1.69         | 0.74        |  |
| 1:C:554:GLU:OE1    | 16:C:801:HOH:O   | 2.06         | 0.72        |  |
| 1:B:566:ASP:OD2    | 16:B:801:HOH:O   | 2.08         | 0.70        |  |
| 1:C:550:ARG:NH1    | 16:C:804:HOH:O   | 2.23         | 0.70        |  |
| 7:A:711:EDO:O1     | 16:A:801:HOH:O   | 2.12         | 0.68        |  |
| 1:B:331:HIS:ND1    | 16:B:804:HOH:O   | 2.26         | 0.67        |  |
| 1:C:527:GLN:NE2    | 16:C:808:HOH:O   | 2.28         | 0.67        |  |
| 1:A:201:TRP:O      | 8:A:716:PGE:H12  | 1.96         | 0.66        |  |
| 1:B:260:SER:OG     | 1:B:262:GLU:OE1  | 2.08         | 0.66        |  |
| 1:C:354[B]:ASP:OD1 | 16:C:802:HOH:O   | 2.15         | 0.64        |  |
| 1:A:157:LEU:HD11   | 1:A:477:VAL:HG13 | 1.80         | 0.63        |  |
| 1:D:75:LEU:O       | 16:D:802:HOH:O   | 2.14         | 0.63        |  |
| 1:C:49:GLU:OE1     | 1:C:52:ARG:NH1   | 2.31         | 0.63        |  |
| 1:D:157:LEU:HD11   | 1:D:477:VAL:HG13 | 1.82         | 0.61        |  |
| 1:C:157:LEU:HD11   | 1:C:477:VAL:HG13 | 1.82         | 0.61        |  |
| 1:A:518:GLU:OE2    | 16:A:802:HOH:O   | 2.16         | 0.61        |  |
| 1:B:157:LEU:HD11   | 1:B:477:VAL:HG13 | 1.81         | 0.61        |  |
| 1:A:110[A]:GLN:NE2 | 16:A:812:HOH:O   | 2.36         | 0.58        |  |
| 1:A:504[B]:SER:OG  | 16:A:803:HOH:O   | 2.17         | 0.57        |  |
| 1:A:46:ILE:HD12    | 1:A:327:GLU:HG2  | 1.86         | 0.57        |  |
| 1:B:25:GLN:OE1     | 1:B:376:PRO:HA   | 2.07         | 0.55        |  |
| 1:A:381:ARG:HB2    | 8:A:716:PGE:H5   | 1.89         | 0.55        |  |
| 1:C:157:LEU:HD13   | 1:C:476:PRO:HB2  | 1.89         | 0.54        |  |
| 1:D:360:HIS:CD2    | 1:D:399:VAL:HG21 | 2.43         | 0.54        |  |
| 1:B:34:GLN:OE1     | 1:B:53:ARG:NH1   | 2.39         | 0.54        |  |
| 1:B:482:THR:HG23   | 3:G:1:NAG:H82    | 1.89         | 0.54        |  |
| 1:A:25:GLN:NE2     | 16:A:807:HOH:O   | 2.31         | 0.53        |  |
| 2:J:1:NAG:H62      | 2:J:2:NAG:C1     | 2.40         | 0.52        |  |
| 1:B:32:LEU:HD21    | 6:B:707:PEG:H32  | 1.91         | 0.52        |  |



| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Continued from previou  | is page                                |                                                             |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|-------------------------------------------------------------|-------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atom-1                  | Atom-2                                 | Interatomic distance $\begin{pmatrix} & \\ & \end{pmatrix}$ | Clash |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.D.190.I FU.UD2        | 1.D.120.DD().UD)                       |                                                             | 0.52  |
| 1.b. 101 LUC (101)       1.b. 4101 ROTH2       1.93       0.01         1.C. 31 VALCO       1.C. 31 VALCO       1.C. 31 VALCO       0.50         1:b. 217 [B]:GLN:OE1       16:D:803:HOH:O       2.20       0.50         1:b. 566:ASP:OD1       16:B:802:HOH:O       2.20       0.49         1:C. 77:GLU:HB3       1:C:78:PRO:HD3       1.95       0.48         1:b. 495:VAL:O       1:D:495:VAL:HG12       2.13       0.48         1:B:482:THR:CG2       3:G:1:NAG:H82       2.43       0.47         1:B:482:THR:CG2       3:G:1:NAG:H82       2.43       0.47         1:A:104:PRO:HG2       1:A:107:EYS:HD2       1.97       0.46         1:A:104:PRO:HG2       1:A:107:EYS:HD2       1.97       0.46         1:B:42:HIS:CD2       1:B:13:FUC:O2       2.14       0.46         1:B:32:LEU:HD11       6:B:707:PEG:H31       1.97       0.46         1:B:280:THR:HG23       1:B:352:THR:HA       1.97       0.46         1:C:493:PRO:HD2       2.16       0.45       1:D:49:SUYS:O       1:C:493:PRO:HD2       2.16       0.45         1:D:49:CUU:HB       1:D:523:RG:HD2       2.16       0.45       1:D:49:SUYS:O       1:B:493:PRO:HD2       2.16       0.45         1:D:49:EU:HD13 | 1.D.129.LEU.IID3        | 1.D.130.F  n 0.11D2 $1.D.476.DD 0.UD9$ | 1.92                                                        | 0.52  |
| 11C:31:VAL:011C:34:GLN:RG32.110.311:A:157:LEU:HD131:A:476:PRO:HB21.940.501:D:217[B]:GLN:OE116D:803:HOH:02.200.501:B:566:ASP:0D116B:802:HOH:02.200.491:C:77:GLU:HB31:C:78:PRO:HD31.950.481:D:495:VAL:01:D:495:VAL:HG122.130.471:B:482:THR:CG23:G:1:NAG:H822.430.471:D:181[B]:GLN:CD1:D:81[B]:GLN:H2.170.461:A:201:TRP:08:A:716:PGE:C12.610.471:A:201:TRP:08:A:716:PGE:C12.610.461:B:42:HIS:CD21:B:51:ALA:HB22.510.461:B:42:HIS:CD21:B:51:ALA:HB22.510.461:B:32:LEU:HD116:B:707:PEG:H311.970.461:B:280:THR:HG231:B:352:THR:HA1.970.461:B:280:THR:HG231:B:352:THR:HA1.970.461:C:489:LYS:01:C:493:PRO:HD22.160.451:D:49:CAL:HB1:D:493:PRO:HD22.160.451:D:49:GLU:OE21:D:52:ARG:NH22.500.451:B:489:LYS:01:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:192:LEU:HB31:B:130:PRO:HD22.000.441:B:192:LEU:HB31:B:130:PRO:HD22.000.441:D:57:LEU:HD131:D:476:PRO:HD22.000.441:D:157:LEU:HB31:B:130:PRO:HD22.000.441:D:157:LEU:HB31:B:130:PRO:HD22.000.                                                                                                                                                                                                                            | <u>1:D:107:LEU:ПD10</u> | 1:D:470:PKU:HD2                        | 1.95                                                        | 0.51  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:0:31:VAL:0            | $1: 0:34: GLIN: \Pi G $                | 2.11                                                        | 0.51  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1:A:157:LEU:HD13        | 1:A:470:PRU:HB2                        | 1.94                                                        | 0.50  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:D:217[B]:GLN:OE1      | 16 D 202 HOH O                         | 2.20                                                        | 0.50  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:B:566:ASP:0D1         | 10:B:802:HOH:O                         | 2.20                                                        | 0.49  |
| 1:D:495:VAL:H1:D:495:VAL:H01:D:481:B:482:THR:CG23:G:1:NAG:H822.430.471:D:81[B]:GLN:CD1:D:81[B]:GLN:H2.170.471:A:201:TRP:O8:A:716:PGE:C12.610.471:A:104:PRO:HG21:A:107:LYS:HD21.970.461:A:129:LEU:HB31:A:130:PRO:HD21.970.461:B:42:HIS:CD21:B:51:ALA:HB22.510.463:K:1:NAG:H623:K:3:FUC:O22.140.461:B:32:LEU:HD116:B:707:PEG:H311.970.461:B:280:THR:HG231:B:352:THR:HA1.970.461:D:492:VAL:HB1:D:493:PRO:CD2.450.461:C:489:LYS:O1:C:493:PRO:CD2.450.461:D:49:GLU:OE21:D:52:ARG:NH22.500.451:D:49:GLU:OE21:D:52:ARG:NH22.500.451:D:49:GLU:OE21:D:801:HOH:O2.170.441:D:550:ARG:HD21:6:D801:HOH:O2.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:D:77:GLU:O1:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:571:LEU:HD222.000.44 <t< td=""><td>1:C:77:GLU:HB3</td><td>1:C:78:PRO:HD3</td><td>1.95</td><td>0.48</td></t<>                                                                                                                                                    | 1:C:77:GLU:HB3          | 1:C:78:PRO:HD3                         | 1.95                                                        | 0.48  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1:D:495:VAL:O           | 1:D:495:VAL:HG12                       | 2.13                                                        | 0.48  |
| 1:D:81[B]:GLN:H2.17 $0.47$ 1:A:201:TRP:O8:A:716:PGE:C12.61 $0.47$ 1:A:104:PRO:HG21:A:107:LYS:HD2 $1.97$ $0.46$ 1:A:129:LEU:HB31:A:130:PRO:HD2 $1.97$ $0.46$ 1:B:42:HIS:CD21:B:51:ALA:HB2 $2.51$ $0.46$ 1:B:32:LEU:HD116:B:707:PEG:H31 $1.97$ $0.46$ 1:B:280:THR:HG231:B:352:THR:HA $1.97$ $0.46$ 1:B:280:THR:HG231:B:352:THR:HA $1.97$ $0.46$ 1:C:489:LYS:O1:C:493:PRO:CD $2.45$ $0.46$ 1:C:489:LYS:O1:C:493:PRO:HD2 $2.16$ $0.45$ 1:D:44:THR:C1:D:328:VAL:HG12 $2.36$ $0.45$ 1:D:49:GLU:OE21:D:52:ARG:NH2 $2.50$ $0.45$ 1:D:49:GLU:OE21:D:801:HOH:O $2.16$ $0.45$ 1:D:49:GLU:OE21:D:801:HOH:O $2.17$ $0.44$ 1:D:550:ARG:HD216:D:801:HOH:O $2.16$ $0.45$ 1:A:489:LYS:O1:A:493:PRO:HD2 $2.17$ $0.44$ 1:A:489:LYS:O1:A:493:PRO:HD2 $2.17$ $0.44$ 1:B:129:LEU:HB31:B:130:PRO:HD2 $2.00$ $0.44$ 1:B:129:LEU:HB31:B:130:PRO:HD2 $2.00$ $0.44$ 1:D:77:GLU:O1:D:81[B]:GLN:OE1 $2.36$ $0.44$ 1:D:77:GLU:O1:D:81[B]:CN:OE1 $2.36$ $0.44$ 1:D:77:GLU:O1:D:81[B]:GLN:OE1 $2.36$ $0.44$ 1:D:77:GLU:O1:D:81[B]:CN:OE1 $2.36$ $0.44$ 1:D:77:GLU:O1:D:81[B]:CN:OE1 $2.36$ $0.43$ 1:                                                                                                                  | 1:B:482:THR:CG2         | 3:G:1:NAG:H82                          | 2.43                                                        | 0.47  |
| 1:A:201:TRP:O $8:A:716:PGE:C1$ $2.61$ $0.47$ $1:A:104:PRO:HG2$ $1:A:107:LYS:HD2$ $1.97$ $0.46$ $1:A:129:LEU:HB3$ $1:A:130:PRO:HD2$ $1.97$ $0.46$ $1:B:42:HIS:CD2$ $1:B:51:ALA:HB2$ $2.51$ $0.46$ $3:K:1:NAG:H62$ $3:K:3:FUC:O2$ $2.14$ $0.46$ $1:B:32:LEU:HD11$ $6:B:707:PEG:H31$ $1.97$ $0.46$ $1:B:280:THR:HG23$ $1:B:352:THR:HA$ $1.97$ $0.46$ $1:D:492:VAL:HB$ $1:D:493:PRO:CD$ $2.45$ $0.46$ $1:D:492:VAL:HB$ $1:D:493:PRO:HD2$ $2.16$ $0.45$ $1:D:49:GLU:OE2$ $1:D:328:VAL:HG12$ $2.36$ $0.45$ $1:D:49:GLU:OE2$ $1:D:52:ARG:NH2$ $2.50$ $0.45$ $1:D:49:GLU:OE2$ $1:D:801:HOH:O$ $2.16$ $0.45$ $1:D:49:GLU:OE2$ $1:D:801:HOH:O$ $2.16$ $0.45$ $1:D:49:GLU:OE2$ $1:D:52:ARG:NH2$ $2.50$ $0.45$ $1:D:49:GLU:OE2$ $1:D:80:HD2$ $2.17$ $0.44$ $1:D:55:ARG:HD2$ $1:A:493:PRO:HD2$ $2.17$ $0.44$ $1:A:489:LYS:O$ $1:A:493:PRO:HD2$ $2.17$ $0.44$ $1:A:331:HIS:NE2$ $5:A:709:BCN:C1$ $2.80$ $0.44$ $1:D:221:LEU:HD3$ $1:B:130:PRO:HD2$ $2.00$ $0.44$ $1:D:7:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.32$ $0.44$ $1:D:7:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.44$ $1:D:7:GLU:O$ $1:D:81[B]:CH:OE1$ $2.00$ $0.43$ $1:D:7:GLU:O$ $1:D:81[B]:CH:OE1$ $2.00$ $0.$                                        | 1:D:81[B]:GLN:CD        | 1:D:81[B]:GLN:H                        | 2.17                                                        | 0.47  |
| 1:A:104:PRO:HG21:A:107:LYS:HD21.970.461:A:129:LEU:HB31:A:130:PRO:HD21.970.461:B:42:HIS:CD21:B:51:ALA:HB22.510.463:K:1:NAG:H623:K:3:FUC:O22.140.461:B:32:LEU:HD116:B:707:PEG:H311.970.461:B:280:THR:HG231:B:352:THR:HA1.970.461:D:492:VAL:HB1:D:493:PRO:CD2.450.461:C:489:LYS:O1:C:493:PRO:HD22.160.451:D:44:THR:C1:D:328:VAL:HG122.360.451:D:49:GLU:OE21:D:52:ARG:NH22.500.451:B:489:LYS:O1:B:493:PRO:HD22.170.441:B:489:LYS:O1:B:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:D:77:GLU:O1:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:235[B]:ARG:NH216:B:988:HOH:O2.180.431:C:129:LEU:HB31:C:493:PRO:CD2.470.431:C:129:LEU:HB31:C:130:PRO:HD22.000.441:D:57:LEU:HD131:D:476:PRO:HB22.000.441:D:57:LEU:HD131:D:476:PRO:HB22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:C:129:LEU:HB31:C:130:PRO:HD22.00                                                                                                                                                                                                                            | 1:A:201:TRP:O           | 8:A:716:PGE:C1                         | 2.61                                                        | 0.47  |
| 1:A:129:LEU:HB3 $1:A:130:PRO:HD2$ $1.97$ $0.46$ $1:B:42:HIS:CD2$ $1:B:51:ALA:HB2$ $2.51$ $0.46$ $3:K:1:NAG:H62$ $3:K:3:FUC:O2$ $2.14$ $0.46$ $1:B:32:LEU:HD11$ $6:B:707:PEG:H31$ $1.97$ $0.46$ $1:B:280:THR:HG23$ $1:B:352:THR:HA$ $1.97$ $0.46$ $1:D:492:VAL:HB$ $1:D:493:PRO:CD$ $2.45$ $0.46$ $1:C:489:LYS:O$ $1:C:493:PRO:HD2$ $2.16$ $0.45$ $1:D:44:THR:C$ $1:D:328:VAL:HG12$ $2.36$ $0.45$ $1:D:44:THR:C$ $1:D:328:VAL:HG12$ $2.36$ $0.45$ $1:D:49:GLU:OE2$ $1:D:52:ARG:NH2$ $2.50$ $0.45$ $1:D:49:GLU:OE2$ $1:D:52:ARG:NH2$ $2.17$ $0.44$ $1:D:550:ARG:HD2$ $1:B:H93:PRO:HD2$ $2.17$ $0.44$ $1:A:331:HIS:NE2$ $5:A:709:BCN:C1$ $2.80$ $0.44$ $1:B:129:LEU:HB3$ $1:B:130:PRO:HD2$ $2.00$ $0.44$ $1:B:129:LEU:HB3$ $1:B:130:PRO:HD2$ $2.00$ $0.44$ $1:D:77:GLU:O$ $1:D:571:LEU:HD22$ $2.47$ $0.44$ $1:D:77:GLU:O$ $1:D:571:LEU:HD22$ $2.47$ $0.44$ $1:D:77:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.44$ $1:D:77:GLU:O$ $1:D:898:HOH:O$ $2.18$ $0.43$ $1:C:129:LEU:HD13$ $1:C:493:PRO:CD$ $2.47$ $0.43$ $1:D:571:LEU:HD13$ $1:D:476:PRO:HB2$ $2.00$ $0.44$ $1:D:571:LEU:HD13$ $1:D:476:PRO:HD2$ $2.47$ $0.43$ $1:D:60:LEU:HD13$ $1:C:130:PRO:HD2$ $2.$                                | 1:A:104:PRO:HG2         | 1:A:107:LYS:HD2                        | 1.97                                                        | 0.46  |
| 1:B:42:HIS:CD2 $1:B:51:ALA:HB2$ $2.51$ $0.46$ $3:K:1:NAG:H62$ $3:K:3:FUC:O2$ $2.14$ $0.46$ $1:B:32:LEU:HD11$ $6:B:707:PEG:H31$ $1.97$ $0.46$ $1:B:280:THR:HG23$ $1:B:352:THR:HA$ $1.97$ $0.46$ $1:D:492:VAL:HB$ $1:D:493:PRO:CD$ $2.45$ $0.46$ $1:C:489:LYS:O$ $1:C:493:PRO:HD2$ $2.16$ $0.45$ $1:D:44:THR:C$ $1:D:328:VAL:HG12$ $2.36$ $0.45$ $1:D:49:GLU:OE2$ $1:D:52:ARG:NH2$ $2.50$ $0.45$ $1:B:489:LYS:O$ $1:B:493:PRO:HD2$ $2.17$ $0.44$ $1:D:55:ARG:HD2$ $1:B:493:PRO:HD2$ $2.17$ $0.44$ $1:D:55:ARG:HD2$ $1:A:493:PRO:HD2$ $2.17$ $0.44$ $1:A:493:PRO:HD2$ $2.17$ $0.44$ $1:B:129:LEU:HB3$ $1:B:130:PRO:HD2$ $2.00$ $0.44$ $3:G:1:NAG:H3$ $3:G:1:NAG:C8$ $2.42$ $0.44$ $1:D:221:LEU:CD1$ $1:D:571:LEU:HD22$ $2.47$ $0.44$ $1:D:77:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.44$ $1:D:77:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.44$ $1:D:77:GLU:O$ $1:D:476:PRO:HB2$ $2.00$ $0.44$ $1:D:476:PRO:HB2$ $2.00$ $0.43$ $1:C:129:LEU:HD13$ $1:C:493:PRO:CD$ $2.47$ $0.43$ $1:C:129:LEU:HD13$ $1:C:130:PRO:HD2$ $2.00$ $0.43$ $1:C:129:LEU:HD13$ $1:C:130:PRO:HD2$ $2.00$ $0.43$ $1:C:129:LEU:HB3$ $1:C:130:PRO:HD2$ $2.00$ $0.43$ $1:C:129:LEU:HB$                                         | 1:A:129:LEU:HB3         | 1:A:130:PRO:HD2                        | 1.97                                                        | 0.46  |
| 3:K:1:NAG:H62       3:K:3:FUC:O2       2.14       0.46         1:B:32:LEU:HD11       6:B:707:PEG:H31       1.97       0.46         1:B:280:THR:HG23       1:B:352:THR:HA       1.97       0.46         1:D:492:VAL:HB       1:D:493:PRO:CD       2.45       0.46         1:C:489:LYS:O       1:C:493:PRO:HD2       2.16       0.45         1:D:44:THR:C       1:D:328:VAL:HG12       2.36       0.45         1:D:49:GLU:OE2       1:D:52:ARG:NH2       2.50       0.45         1:B:489:LYS:O       1:B:493:PRO:HD2       2.17       0.45         1:D:550:ARG:HD2       16:D:801:HOH:O       2.16       0.45         1:A:489:LYS:O       1:A:493:PRO:HD2       2.17       0.44         1:A:331:HIS:NE2       5:A:709:BCN:C1       2.80       0.44         1:B:129:LEU:HB3       1:B:130:PRO:HD2       2.00       0.44         1:D:221:LEU:CD1       1:D:571:LEU:HD22       2.47       0.44         1:D:77:GLU:O       1:D:476:PRO:HB2       2.00       0.44         1:D:77:GLU:O       1:D:476:PRO:HB2       2.00       0.44         1:D:571:LEU:HD13       1:D:476:PRO:HB2       2.00       0.44         1:D:57:LEU:HD13       1:D:476:PRO:HB2       2.00       0.43                  | 1:B:42:HIS:CD2          | 1:B:51:ALA:HB2                         | 2.51                                                        | 0.46  |
| 1:B:32:LEU:HD116:B:707:PEG:H311.970.461:B:280:THR:HG231:B:352:THR:HA1.970.461:D:492:VAL:HB1:D:493:PRO:CD2.450.461:C:489:LYS:O1:C:493:PRO:HD22.160.451:D:44:THR:C1:D:328:VAL:HG122.360.451:D:49:GLU:OE21:D:52:ARG:NH22.500.451:B:489:LYS:O1:B:493:PRO:HD22.170.451:D:550:ARG:HD216:D:801:HOH:O2.160.451:A:489:LYS:O1:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:571:LEU:HD131:D:476:PRO:HB22.000.441:D:571:LEU:HD131:D:476:PRO:HB22.000.441:D:571:LEU:HD131:D:476:PRO:HB22.000.441:D:572:LEU:HD131:D:476:PRO:HB22.000.441:D:576[B]:LEU:HD1216:B:830:HOH:O2.180.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                        | 3:K:1:NAG:H62           | 3:K:3:FUC:O2                           | 2.14                                                        | 0.46  |
| 1:B:280:THR:HG231:B:352:THR:HA1.970.461:D:492:VAL:HB1:D:493:PRO:CD2.450.461:C:489:LYS:O1:C:493:PRO:HD22.160.451:D:44:THR:C1:D:328:VAL:HG122.360.451:D:49:GLU:OE21:D:52:ARG:NH22.500.451:B:489:LYS:O1:B:493:PRO:HD22.170.451:D:550:ARG:HD216:D:801:HOH:O2.160.451:A:489:LYS:O1:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:356[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:129:LEU:HB31:C:493:PRO:CD2.470.431:C:129:LEU:HB31:C:130:PRO:HD22.000.441:D:575(LU:O1:D:60:LEU:HD122.180.431:C:129:LEU:HD131:C:493:PRO:CD2.180.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                    | 1:B:32:LEU:HD11         | 6:B:707:PEG:H31                        | 1.97                                                        | 0.46  |
| 1:D:492:VAL:HB1:D:493:PRO:CD2.450.461:C:489:LYS:O1:C:493:PRO:HD22.160.451:D:44:THR:C1:D:328:VAL:HG122.360.451:D:49:GLU:OE21:D:52:ARG:NH22.500.451:B:489:LYS:O1:B:493:PRO:HD22.170.451:D:550:ARG:HD216:D:801:HOH:O2.160.451:A:489:LYS:O1:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:571:LEU:HD131:D:476:PRO:HB22.000.441:D:572:LEU:HD131:D:476:PRO:HB22.000.441:D:572:LEU:HD131:D:476:PRO:HB22.000.441:D:572:LEU:HD131:D:476:PRO:HB22.000.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                  | 1:B:280:THR:HG23        | 1:B:352:THR:HA                         | 1.97                                                        | 0.46  |
| 1:C:489:LYS:O $1:C:493:PRO:HD2$ $2.16$ $0.45$ $1:D:44:THR:C$ $1:D:328:VAL:HG12$ $2.36$ $0.45$ $1:D:49:GLU:OE2$ $1:D:52:ARG:NH2$ $2.50$ $0.45$ $1:B:489:LYS:O$ $1:B:493:PRO:HD2$ $2.17$ $0.45$ $1:D:550:ARG:HD2$ $16:D:801:HOH:O$ $2.16$ $0.45$ $1:A:489:LYS:O$ $1:A:493:PRO:HD2$ $2.17$ $0.44$ $1:A:331:HIS:NE2$ $5:A:709:BCN:C1$ $2.80$ $0.44$ $1:B:129:LEU:HB3$ $1:B:130:PRO:HD2$ $2.00$ $0.44$ $3:G:1:NAG:H3$ $3:G:1:NAG:C8$ $2.42$ $0.44$ $1:D:221:LEU:CD1$ $1:D:571:LEU:HD22$ $2.47$ $0.44$ $1:D:221:LEU:CD1$ $1:D:571:LEU:HD22$ $2.00$ $0.44$ $1:D:77:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.44$ $1:D:77:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.44$ $1:D:77:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.43$ $1:C:492:VAL:HB$ $1:C:493:PRO:CD$ $2.47$ $0.43$ $1:C:129:LEU:HD12$ $16:B:988:HOH:O$ $2.18$ $0.43$ $1:C:129:LEU:HD13$ $1:C:130:PRO:HD2$ $2.00$ $0.43$ $1:D:60:LEU:O$ $1:D:60:LEU:HD23$ $2.18$ $0.43$ $1:D:60:LEU:O$ $1:D:60:LEU:HD23$ $2.18$ $0.43$                                                                                                                                                                                                                             | 1:D:492:VAL:HB          | 1:D:493:PRO:CD                         | 2.45                                                        | 0.46  |
| 1:D:44:THR:C1:D:328:VAL:HG122.360.451:D:49:GLU:OE21:D:52:ARG:NH22.500.451:B:489:LYS:O1:B:493:PRO:HD22.170.451:D:550:ARG:HD216:D:801:HOH:O2.160.451:A:489:LYS:O1:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:A:331:HIS:NE25:A:709:BCN:H122.320.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:57:GLU:O1:D:81[B]:GLN:OE12.360.441:D:57:GLU:O1:D:81[B]:GLN:OE12.360.441:D:576[B]:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:129:LEU:HB31:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                   | 1:C:489:LYS:O           | 1:C:493:PRO:HD2                        | 2.16                                                        | 0.45  |
| 1:D:49:GLU:OE21:D:52:ARG:NH22.500.451:B:489:LYS:O1:B:493:PRO:HD22.170.451:D:550:ARG:HD216:D:801:HOH:O2.160.451:A:489:LYS:O1:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.443:G:1:NAG:H33:G:1:NAG:C82.420.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1:D:44:THR:C            | 1:D:328:VAL:HG12                       | 2.36                                                        | 0.45  |
| 1:B:489:LYS:O1:B:493:PRO:HD22.170.451:D:550:ARG:HD216:D:801:HOH:O2.160.451:A:489:LYS:O1:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:576[B]:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:D:49:GLU:OE2          | 1:D:52:ARG:NH2                         | 2.50                                                        | 0.45  |
| 1:D:550:ARG:HD2 $16:D:801:HOH:O$ $2.16$ $0.45$ $1:A:489:LYS:O$ $1:A:493:PRO:HD2$ $2.17$ $0.44$ $1:A:331:HIS:NE2$ $5:A:709:BCN:C1$ $2.80$ $0.44$ $1:B:129:LEU:HB3$ $1:B:130:PRO:HD2$ $2.00$ $0.44$ $3:G:1:NAG:H3$ $3:G:1:NAG:C8$ $2.42$ $0.44$ $1:D:221:LEU:CD1$ $1:D:571:LEU:HD22$ $2.47$ $0.44$ $1:D:221:LEU:CD1$ $1:D:571:LEU:HD22$ $2.47$ $0.44$ $1:D:77:GLU:O$ $1:D:81[B]:GLN:OE1$ $2.36$ $0.44$ $1:D:77:LEU:HD13$ $1:D:476:PRO:HB2$ $2.00$ $0.44$ $1:D:157:LEU:HD12$ $16:B:988:HOH:O$ $2.18$ $0.43$ $1:C:492:VAL:HB$ $1:C:493:PRO:CD$ $2.47$ $0.43$ $1:D:60:LEU:O$ $1:D:60:LEU:HD23$ $2.18$ $0.43$ $1:D:60:LEU:O$ $1:D:60:LEU:HD23$ $2.18$ $0.43$ $1:A:495:VAL:HG12$ $1:A:495:VAL:O$ $2.18$ $0.43$                                                                                                                                                                                                                          | 1:B:489:LYS:O           | 1:B:493:PRO:HD2                        | 2.17                                                        | 0.45  |
| 1:A:489:LYS:O1:A:493:PRO:HD22.170.441:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.443:G:1:NAG:H33:G:1:NAG:C82.420.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:A:331:HIS:NE25:A:709:BCN:H122.320.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1:D:550:ARG:HD2         | 16:D:801:HOH:O                         | 2.16                                                        | 0.45  |
| 1:A:331:HIS:NE25:A:709:BCN:C12.800.441:B:129:LEU:HB31:B:130:PRO:HD22.000.443:G:1:NAG:H33:G:1:NAG:C82.420.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:A:331:HIS:NE25:A:709:BCN:H122.320.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1:A:489:LYS:O           | 1:A:493:PRO:HD2                        | 2.17                                                        | 0.44  |
| 1:B:129:LEU:HB31:B:130:PRO:HD22.000.443:G:1:NAG:H33:G:1:NAG:C82.420.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:A:331:HIS:NE25:A:709:BCN:H122.320.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1:A:331:HIS:NE2         | 5:A:709:BCN:C1                         | 2.80                                                        | 0.44  |
| 3:G:1:NAG:H33:G:1:NAG:C82.420.441:D:221:LEU:CD11:D:571:LEU:HD222.470.441:A:331:HIS:NE25:A:709:BCN:H122.320.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1:B:129:LEU:HB3         | 1:B:130:PRO:HD2                        | 2.00                                                        | 0.44  |
| 1:D:221:LEU:CD11:D:571:LEU:HD222.470.441:A:331:HIS:NE25:A:709:BCN:H122.320.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3:G:1:NAG:H3            | 3:G:1:NAG:C8                           | 2.42                                                        | 0.44  |
| 1:A:331:HIS:NE25:A:709:BCN:H122.320.441:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1:D:221:LEU:CD1         | 1:D:571:LEU:HD22                       | 2.47                                                        | 0.44  |
| 1:D:77:GLU:O1:D:81[B]:GLN:OE12.360.441:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:A:331:HIS:NE2         | 5:A:709:BCN:H12                        | 2.32                                                        | 0.44  |
| 1:D:157:LEU:HD131:D:476:PRO:HB22.000.441:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1:D:77:GLU:O            | 1:D:81[B]:GLN:OE1                      | 2.36                                                        | 0.44  |
| I:B:576[B]:LEU:HD1216:B:988:HOH:O2.180.431:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1:D:157:LEU:HD13        | 1:D:476:PRO:HB2                        | 2.00                                                        | 0.44  |
| 1:C:492:VAL:HB1:C:493:PRO:CD2.470.431:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1:B:576[B]:LEU:HD12     | 16:B:988:HOH:O                         | 2.18                                                        | 0.43  |
| 1:B:235[B]:ARG:NH216:B:830:HOH:O2.510.431:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:C:492:VAL:HB          | 1:C:493:PRO:CD                         | 2.47                                                        | 0.43  |
| 1:C:129:LEU:HB31:C:130:PRO:HD22.000.431:D:60:LEU:O1:D:60:LEU:HD232.180.431:A:495:VAL:HG121:A:495:VAL:O2.180.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1:B:235[B]:ARG:NH2      | 16:B:830:HOH:O                         | 2.51                                                        | 0.43  |
| 1:D:60:LEU:O         1:D:60:LEU:HD23         2.18         0.43           1:A:495:VAL:HG12         1:A:495:VAL:O         2.18         0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1:C:129:LEU:HB3         | 1:C:130:PRO:HD2                        | 2.00                                                        | 0.43  |
| 1:A:495:VAL:HG12 1:A:495:VAL:O 2.18 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:D:60:LEU:O            | 1:D:60:LEU:HD23                        | 2.18                                                        | 0.43  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:A:495:VAL:HG12        | 1:A:495:VAL:O                          | 2.18                                                        | 0.43  |

1:C:172:LYS:NZ

1:C:350:ARG:NH1

1:A:6:GLN:HB2

1:A:373:LYS:HE3

Continued on next page...

0.43

0.43

0.42

0.42



2.51

2.48

2.00

2.01

1:C:481:GLU:O

16:C:824:HOH:O

1:A:7:PRO:HD2

1:B:535:LYS:HG2

| Atom 1              | Atom 2             | Interatomic  | Clash       |  |
|---------------------|--------------------|--------------|-------------|--|
| Atom-1              | Atom-2             | distance (Å) | overlap (Å) |  |
| 1:D:489:LYS:O       | 1:D:493:PRO:HD2    | 2.19         | 0.42        |  |
| 1:D:239:ASP:OD2     | 16:D:804:HOH:O     | 2.21         | 0.42        |  |
| 1:B:70:GLN:O        | 1:B:74:GLU:HG3     | 2.20         | 0.42        |  |
| 1:A:29:GLU:HG2      | 1:A:377:VAL:HG11   | 2.01         | 0.42        |  |
| 1:C:29:GLU:CG       | 1:C:377:VAL:HG11   | 2.50         | 0.42        |  |
| 1:B:91:ILE:O        | 1:B:95:VAL:HG23    | 2.20         | 0.42        |  |
| 1:B:53:ARG:O        | 1:B:53:ARG:HD2     | 2.20         | 0.42        |  |
| 1:B:422:ILE:HD11    | 1:B:576[B]:LEU:HG  | 2.01         | 0.42        |  |
| 1:D:221:LEU:HD11    | 1:D:571:LEU:HD22   | 2.01         | 0.42        |  |
| 1:B:221:LEU:CD1     | 1:B:571:LEU:HD22   | 2.50         | 0.41        |  |
| 1:D:120:ARG:NH1     | 16:D:835:HOH:O     | 2.52         | 0.41        |  |
| 1:A:568:GLN:OE1     | 16:A:804:HOH:O     | 2.22         | 0.41        |  |
| 1:D:180:ALA:O       | 1:D:184[B]:GLU:HG3 | 2.20         | 0.41        |  |
| 1:D:32:LEU:O        | 1:D:36:VAL:HG23    | 2.20         | 0.41        |  |
| 1:A:382:GLY:O       | 8:A:716:PGE:H4     | 2.21         | 0.41        |  |
| 1:C:161:GLU:OE2     | 16:C:803:HOH:O     | 2.22         | 0.41        |  |
| 1:A:36:VAL:HG22     | 8:A:712:PGE:H22    | 2.02         | 0.41        |  |
| 1:A:382:GLY:O       | 8:A:716:PGE:C4     | 2.68         | 0.41        |  |
| 1:B:360:HIS:CD2     | 1:B:399:VAL:HG21   | 2.55         | 0.41        |  |
| 1:B:309:MET:SD      | 1:B:366:ILE:HG21   | 2.60         | 0.41        |  |
| 1:A:360:HIS:CD2     | 1:A:399:VAL:HG21   | 2.56         | 0.40        |  |
| 1:D:303:SER:HB2     | 1:D:532:ARG:HG2    | 2.01         | 0.40        |  |
| 1:D:326:ARG:NE      | 2:J:1:NAG:H82      | 2.36         | 0.40        |  |
| 1:A:60:LEU:HD23     | 1:A:60:LEU:O       | 2.22         | 0.40        |  |
| 1:B:433[B]:ILE:HD11 | 1:B:570:LEU:HD21   | 2.03         | 0.40        |  |
| 1:C:115:LEU:CD2     | 1:C:495:VAL:HG21   | 2.51         | 0.40        |  |
| 1:D:550:ARG:NH2     | 16:D:821:HOH:O     | 2.46         | 0.40        |  |
| 1:A:140:ASP:HA      | 1:A:141:PRO:HA     | 1.96         | 0.40        |  |
| 1:D:172:LYS:O       | 1:D:176[A]:GLU:HG3 | 2.22         | 0.40        |  |

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

| Atom-1          | Atom-2                     | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-----------------|----------------------------|-----------------------------|----------------------|
| 1:C:285:GLN:OE1 | 1:D:235[B]:ARG:HH21[1_556] | 1.56                        | 0.04                 |



## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|---------|----------|-------|--------|
| 1   | А     | 614/629~(98%)   | 602~(98%)  | 12 (2%) | 0        | 100   | 100    |
| 1   | В     | 615/629~(98%)   | 602~(98%)  | 13~(2%) | 0        | 100   | 100    |
| 1   | С     | 615/629~(98%)   | 602~(98%)  | 13~(2%) | 0        | 100   | 100    |
| 1   | D     | 621/629~(99%)   | 607~(98%)  | 13~(2%) | 1 (0%)   | 47    | 33     |
| All | All   | 2465/2516 (98%) | 2413 (98%) | 51 (2%) | 1 (0%)   | 100   | 100    |

All (1) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 45  | ASN  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric Outliers |         | Percentiles |    |  |
|-----|-------|-----------------|--------------------|---------|-------------|----|--|
| 1   | А     | 533/541~(98%)   | 528~(99%)          | 5(1%)   | 78          | 72 |  |
| 1   | В     | 534/541~(99%)   | 527~(99%)          | 7 (1%)  | 69          | 58 |  |
| 1   | С     | 533/541~(98%)   | 528~(99%)          | 5 (1%)  | 78          | 72 |  |
| 1   | D     | 538/541~(99%)   | 535~(99%)          | 3 (1%)  | 86          | 83 |  |
| All | All   | 2138/2164~(99%) | 2118 (99%)         | 20 (1%) | 76          | 72 |  |

All (20) residues with a non-rotameric sidechain are listed below:



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 70  | GLN  |
| 1   | А     | 96  | ARG  |
| 1   | А     | 129 | LEU  |
| 1   | А     | 368 | TYR  |
| 1   | А     | 372 | TYR  |
| 1   | В     | 96  | ARG  |
| 1   | В     | 289 | GLN  |
| 1   | В     | 326 | ARG  |
| 1   | В     | 368 | TYR  |
| 1   | В     | 372 | TYR  |
| 1   | В     | 416 | ASN  |
| 1   | В     | 421 | ASP  |
| 1   | С     | 96  | ARG  |
| 1   | С     | 129 | LEU  |
| 1   | С     | 155 | MET  |
| 1   | С     | 368 | TYR  |
| 1   | С     | 372 | TYR  |
| 1   | D     | 96  | ARG  |
| 1   | D     | 368 | TYR  |
| 1   | D     | 372 | TYR  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

18 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the



| Mal | Trees | Chain | Dec | Timle | Bo         | Bond lengths |          |                | ond ang | les      |
|-----|-------|-------|-----|-------|------------|--------------|----------|----------------|---------|----------|
|     | Type  | Chain | Res |       | Counts     | RMSZ         | # Z  > 2 | Counts         | RMSZ    | # Z  > 2 |
| 2   | NAG   | E     | 1   | 2,1   | 14, 14, 15 | 0.22         | 0        | 17,19,21       | 0.57    | 0        |
| 2   | NAG   | Е     | 2   | 2     | 14,14,15   | 0.23         | 0        | 17,19,21       | 0.47    | 0        |
| 3   | NAG   | F     | 1   | 3,1   | 14,14,15   | 0.41         | 0        | 17,19,21       | 0.46    | 0        |
| 3   | NAG   | F     | 2   | 3     | 14,14,15   | 0.71         | 0        | 17,19,21       | 0.51    | 0        |
| 3   | FUC   | F     | 3   | 3     | 10,10,11   | 0.77         | 0        | 14,14,16       | 0.79    | 0        |
| 3   | NAG   | G     | 1   | 3,1   | 14,14,15   | 0.63         | 0        | 17,19,21       | 1.14    | 1(5%)    |
| 3   | NAG   | G     | 2   | 3     | 14,14,15   | 0.93         | 1(7%)    | 17,19,21       | 0.87    | 0        |
| 3   | FUC   | G     | 3   | 3     | 10,10,11   | 0.85         | 0        | 14,14,16       | 0.84    | 0        |
| 2   | NAG   | Н     | 1   | 2,1   | 14,14,15   | 0.17         | 0        | 17,19,21       | 0.60    | 0        |
| 2   | NAG   | Н     | 2   | 2     | 14,14,15   | 0.31         | 0        | 17,19,21       | 0.46    | 0        |
| 3   | NAG   | Ι     | 1   | 3,1   | 14,14,15   | 0.50         | 0        | 17,19,21       | 0.51    | 0        |
| 3   | NAG   | Ι     | 2   | 3     | 14, 14, 15 | 0.20         | 0        | 17,19,21       | 0.60    | 0        |
| 3   | FUC   | Ι     | 3   | 3     | 10,10,11   | 0.69         | 0        | $14,\!14,\!16$ | 0.79    | 0        |
| 2   | NAG   | J     | 1   | 2,1   | 14,14,15   | 0.75         | 1(7%)    | 17,19,21       | 0.82    | 1(5%)    |
| 2   | NAG   | J     | 2   | 2     | 14,14,15   | 0.32         | 0        | 17,19,21       | 0.43    | 0        |
| 3   | NAG   | K     | 1   | 3,1   | 14,14,15   | 0.31         | 0        | 17,19,21       | 0.77    | 0        |
| 3   | NAG   | K     | 2   | 3     | 14,14,15   | 0.24         | 0        | 17,19,21       | 0.41    | 0        |
| 3   | FUC   | K     | 3   | 3     | 10,10,11   | 1.02         | 0        | $14,\!14,\!16$ | 1.21    | 2 (14%)  |

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | E     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Е     | 2   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | NAG  | F     | 1   | 3,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | F     | 2   | 3    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | FUC  | F     | 3   | 3    | -       | -         | 0/1/1/1 |
| 3   | NAG  | G     | 1   | 3,1  | -       | 3/6/23/26 | 0/1/1/1 |
| 3   | NAG  | G     | 2   | 3    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | FUC  | G     | 3   | 3    | -       | -         | 0/1/1/1 |
| 2   | NAG  | Н     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Н     | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | Ι     | 1   | 3,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | Ι     | 2   | 3    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | FUC  | Ι     | 3   | 3    | -       | -         | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | J     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | J     | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | K     | 1   | 3,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | K     | 2   | 3    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | FUC  | K     | 3   | 3    | -       | -         | 0/1/1/1 |

All (2) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | $Observed(\text{\AA})$ | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|-------|-------|------------------------|--------------------------------------------|
| 3   | G     | 2   | NAG  | C1-C2 | 3.15  | 1.57                   | 1.52                                       |
| 2   | J     | 1   | NAG  | O5-C1 | -2.62 | 1.39                   | 1.43                                       |

All (4) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z    | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|------|---------------------------|---------------|
| 3   | G     | 1   | NAG  | C2-N2-C7 | 3.23 | 127.50                    | 122.90        |
| 3   | Κ     | 3   | FUC  | C1-C2-C3 | 2.46 | 112.69                    | 109.67        |
| 2   | J     | 1   | NAG  | C1-O5-C5 | 2.39 | 115.43                    | 112.19        |
| 3   | K     | 3   | FUC  | C1-O5-C5 | 2.26 | 117.90                    | 112.78        |

There are no chirality outliers.

| Mol | Chain | $\mathbf{Res}$ | $\mathbf{Type}$ | Atoms       |
|-----|-------|----------------|-----------------|-------------|
| 3   | F     | 2              | NAG             | C4-C5-C6-O6 |
| 3   | Ι     | 2              | NAG             | O5-C5-C6-O6 |
| 3   | G     | 1              | NAG             | C8-C7-N2-C2 |
| 3   | G     | 1              | NAG             | O7-C7-N2-C2 |
| 3   | F     | 2              | NAG             | O5-C5-C6-O6 |
| 2   | J     | 1              | NAG             | C4-C5-C6-O6 |
| 3   | Ι     | 2              | NAG             | C4-C5-C6-O6 |
| 2   | J     | 1              | NAG             | O5-C5-C6-O6 |
| 2   | Н     | 2              | NAG             | C3-C2-N2-C7 |
| 3   | F     | 1              | NAG             | C3-C2-N2-C7 |
| 3   | G     | 1              | NAG             | C3-C2-N2-C7 |
| 3   | Ι     | 1              | NAG             | C3-C2-N2-C7 |
| 3   | Κ     | 1              | NAG             | C3-C2-N2-C7 |
| 3   | Κ     | 2              | NAG             | C3-C2-N2-C7 |
| 3   | K     | 2              | NAG             | O5-C5-C6-O6 |
| 2   | Ē     | 1              | NAG             | C4-C5-C6-O6 |
| 2   | J     | 2              | NAG             | C4-C5-C6-O6 |

All (17) torsion outliers are listed below:



There are no ring outliers.

5 monomers are involved in 7 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 2   | J     | 1   | NAG  | 2       | 0            |
| 3   | G     | 1   | NAG  | 4       | 0            |
| 3   | K     | 1   | NAG  | 1       | 0            |
| 3   | K     | 3   | FUC  | 1       | 0            |
| 2   | J     | 2   | NAG  | 1       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.



























## 5.6 Ligand geometry (i)

Of 59 ligands modelled in this entry, 16 are monoatomic - leaving 43 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Type | Chain | Dec   | d Link | Bond lengths |            |      | В        | ond ang     | les  |          |
|----------|-------|-------|--------|--------------|------------|------|----------|-------------|------|----------|
|          | туре  | Chain | nes    |              | Counts     | RMSZ | # Z  > 2 | Counts      | RMSZ | # Z  > 2 |
| 7        | EDO   | С     | 710    | -            | $^{3,3,3}$ | 0.49 | 0        | $^{2,2,2}$  | 0.33 | 0        |
| 6        | PEG   | А     | 710    | -            | $^{6,6,6}$ | 0.49 | 0        | $5,\!5,\!5$ | 0.42 | 0        |
| 8        | PGE   | В     | 709    | -            | 9, 9, 9    | 0.33 | 0        | 8,8,8       | 0.32 | 0        |



| Mal | <b>T</b> | Chain | Dec    | T : 1- | Bo                   | ond leng          | ths      | Bond angles          |                   |          |
|-----|----------|-------|--------|--------|----------------------|-------------------|----------|----------------------|-------------------|----------|
|     | Type     | Chain | Res    | LINK   | Counts               | RMSZ              | # Z  > 2 | Counts               | RMSZ              | # Z  > 2 |
| 8   | PGE      | А     | 716    | -      | 9, 9, 9              | 0.48              | 0        | 8,8,8                | 0.79              | 0        |
| 4   | BO3      | С     | 708    | -      | 3, 3, 3              | 0.31              | 0        | $^{3,3,3}$           | 0.16              | 0        |
| 8   | PGE      | А     | 712    | -      | 9, 9, 9              | 0.33              | 0        | 8,8,8                | 0.30              | 0        |
| 4   | BO3      | А     | 708    | -      | $^{3,3,3}$           | 0.50              | 0        | $^{3,3,3}$           | 0.16              | 0        |
| 8   | PGE      | D     | 708[B] | -      | 9, 9, 9              | 0.29              | 0        | 8,8,8                | 0.35              | 0        |
| 5   | BCN      | А     | 709    | 12     | 7,10,10              | 0.60              | 0        | 8,11,11              | 1.15              | 1 (12%)  |
| 4   | BO3      | A     | 713    | -      | 3, 3, 3              | 0.31              | 0        | $3,\!3,\!3$          | 0.27              | 0        |
| 4   | BO3      | В     | 705    | -      | $^{3,3,3}$           | 0.28              | 0        | $3,\!3,\!3$          | 0.15              | 0        |
| 14  | MXE      | С     | 707[A] | -      | 4, 4, 4              | 0.36              | 0        | $^{3,3,3}$           | 0.33              | 0        |
| 7   | EDO      | D     | 712[B] | -      | $^{3,3,3}$           | 0.53              | 0        | 2,2,2                | 0.48              | 0        |
| 7   | EDO      | С     | 709[B] | -      | $^{3,3,3}$           | 0.45              | 0        | $2,\!2,\!2$          | 0.23              | 0        |
| 4   | BO3      | D     | 713    | -      | $^{3,3,3}$           | 0.54              | 0        | $^{3,3,3}$           | 0.24              | 0        |
| 5   | BCN      | A     | 707    | 12     | 7,10,10              | 0.64              | 0        | 8,11,11              | 0.96              | 0        |
| 7   | EDO      | D     | 710    | -      | $^{3,3,3}$           | 0.51              | 0        | $2,\!2,\!2$          | 0.27              | 0        |
| 6   | PEG      | В     | 713    | _      | $^{6,6,6}$           | 0.47              | 0        | $5,\!5,\!5$          | 0.40              | 0        |
| 5   | BCN      | С     | 706    | 12     | 7,10,10              | 0.67              | 0        | $8,\!11,\!11$        | 0.84              | 0        |
| 7   | EDO      | С     | 711    | -      | $^{3,3,3}$           | 0.51              | 0        | $2,\!2,\!2$          | 0.39              | 0        |
| 7   | EDO      | D     | 711    | 12     | $^{3,3,3}$           | 0.47              | 0        | 2,2,2                | 0.46              | 0        |
| 4   | BO3      | A     | 706    | -      | $^{3,3,3}$           | 0.18              | 0        | $^{3,3,3}$           | 0.06              | 0        |
| 7   | EDO      | A     | 717    | _      | $^{3,3,3}$           | 0.37              | 0        | $2,\!2,\!2$          | 0.50              | 0        |
| 6   | PEG      | В     | 714    | _      | $^{6,6,6}$           | 0.49              | 0        | $5,\!5,\!5$          | 0.32              | 0        |
| 4   | BO3      | D     | 706    | -      | $^{3,3,3}$           | 0.36              | 0        | $^{3,3,3}$           | 0.32              | 0        |
| 7   | EDO      | A     | 714    | -      | $^{3,3,3}$           | 0.46              | 0        | 2,2,2                | 0.35              | 0        |
| 8   | PGE      | В     | 708    | -      | $9,\!9,\!9$          | 0.30              | 0        | 8,8,8                | 0.32              | 0        |
| 8   | PGE      | D     | 708[A] | _      | 9, 9, 9              | 0.28              | 0        | 8,8,8                | 0.32              | 0        |
| 7   | EDO      | D     | 709    | _      | 3, 3, 3              | 0.40              | 0        | 2,2,2                | 0.31              | 0        |
| 7   | EDO      | D     | 712[A] | -      | $^{3,3,3}$           | 0.58              | 0        | $2,\!2,\!2$          | 0.36              | 0        |
| 7   | EDO      | В     | 710    | _      | 3, 3, 3              | 0.49              | 0        | 2,2,2                | 0.33              | 0        |
| 7   | EDO      | A     | 718    | _      | 3, 3, 3              | 0.51              | 0        | 2,2,2                | 0.61              | 0        |
| 7   | EDO      | В     | 711    | -      | $^{3,3,3}$           | 0.48              | 0        | 2,2,2                | 0.35              | 0        |
| 5   | BCN      | D     | 707    | 12     | 7,10,10              | 0.65              | 0        | $^{8,11,11}$         | 1.02              | 1 (12%)  |
| 14  | MXE      | С     | 707[B] | -      | 4, 4, 4              | 0.44              | 0        | $^{3,3,3}$           | 0.37              | 0        |
| 5   | BCN      | В     | 706    | 12     | 7,10,10              | 0.61              | 0        | $8,\!11,\!11$        | 1.05              | 0        |
| 13  | NAG      | В     | 701    | 1      | $14,\!14,\!15$       | 0.35              | 0        | 17, 19, 21           | 0.55              | 0        |
| 7   | EDO      | С     | 709[A] | -      | $^{3,3,3}$           | 0.53              | 0        | $^{2,2,2}$           | 0.46              | 0        |
| 7   | EDO      | A     | 711    | -      | $^{3,3,3}$           | 0.44              | 0        | 2,2,2                | 0.37              | 0        |
| 7   | EDO      | A     | 715    | -      | $^{3,3,3}$           | 0.48              | 0        | 2,2,2                | 0.62              | 0        |
| 14  | MXE      | B     | 712    | -      | 4, 4, 4              | 0.39              | 0        | $3,\!3,\!3$          | 0.31              | 0        |
| 4   | BO3      | D     | 714    | -      | $3,\!3,\!3$          | 0.34              | 0        | $^{3,3,3}$           | 0.34              | 0        |
| 6   | PEG      | B     | 707    | -      | $6, \overline{6, 6}$ | $0.\overline{47}$ | 0        | $5, \overline{5, 5}$ | $0.\overline{24}$ | 0        |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral



| Mol | Type | Chain | Res    | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|--------|------|---------|-----------|---------|
| 7   | EDO  | С     | 710    | -    | -       | 0/1/1/1   | -       |
| 6   | PEG  | А     | 710    | -    | -       | 2/4/4/4   | _       |
| 8   | PGE  | В     | 709    | -    | _       | 3/7/7/7   | _       |
| 8   | PGE  | А     | 716    | -    | -       | 4/7/7/7   | _       |
| 8   | PGE  | А     | 712    | -    | -       | 3/7/7/7   | _       |
| 8   | PGE  | D     | 708[B] | -    | -       | 1/7/7/7   | _       |
| 5   | BCN  | А     | 709    | 12   | -       | 4/8/10/10 | _       |
| 14  | MXE  | С     | 707[A] | -    | -       | 1/2/2/2   | -       |
| 7   | EDO  | D     | 712[B] | -    | _       | 0/1/1/1   | _       |
| 7   | EDO  | С     | 709[B] | -    | _       | 0/1/1/1   | _       |
| 5   | BCN  | А     | 707    | 12   | _       | 0/8/10/10 | -       |
| 7   | EDO  | D     | 710    | -    | -       | 1/1/1/1   | -       |
| 6   | PEG  | В     | 713    | -    | -       | 1/4/4/4   | -       |
| 5   | BCN  | С     | 706    | 12   | -       | 2/8/10/10 | -       |
| 7   | EDO  | С     | 711    | -    | -       | 1/1/1/1   | -       |
| 7   | EDO  | D     | 711    | 12   | -       | 1/1/1/1   | -       |
| 7   | EDO  | А     | 717    | -    | -       | 1/1/1/1   | -       |
| 6   | PEG  | В     | 714    | -    | -       | 1/4/4/4   | -       |
| 7   | EDO  | А     | 714    | -    | -       | 1/1/1/1   | -       |
| 8   | PGE  | В     | 708    | -    | -       | 0/7/7/7   | -       |
| 8   | PGE  | D     | 708[A] | -    | -       | 2/7/7/7   | -       |
| 7   | EDO  | D     | 712[A] | -    | -       | 0/1/1/1   | -       |
| 7   | EDO  | В     | 710    | -    | -       | 0/1/1/1   | -       |
| 7   | EDO  | А     | 718    | -    | -       | 0/1/1/1   | -       |
| 7   | EDO  | В     | 711    | -    | -       | 0/1/1/1   | _       |
| 5   | BCN  | D     | 707    | 12   | -       | 2/8/10/10 | -       |
| 14  | MXE  | С     | 707[B] | -    | -       | 1/2/2/2   | -       |
| 5   | BCN  | В     | 706    | 12   | -       | 2/8/10/10 | -       |
| 13  | NAG  | В     | 701    | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 7   | EDO  | С     | 709[A] | -    | _       | 0/1/1/1   | _       |
| 7   | EDO  | А     | 711    | -    | -       | 0/1/1/1   | -       |
| 7   | EDO  | А     | 715    | -    | -       | 1/1/1/1   | -       |
| 14  | MXE  | В     | 712    | -    | -       | 0/2/2/2   | -       |
| 7   | EDO  | D     | 709    | -    | -       | 0/1/1/1   | -       |
| 6   | PEG  | В     | 707    | _    | -       | 3/4/4/4   | _       |

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

There are no bond length outliers.



| Mol | Chain | Res | Type | Atoms    |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 5   | А     | 709 | BCN  | C2-C1-N1 | -2.15 | 110.42           | 113.48        |
| 5   | D     | 707 | BCN  | C1-N1-C3 | -2.10 | 106.85           | 111.29        |

All (2) bond angle outliers are listed below:

There are no chirality outliers.

All (40) torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       |
|-----|-------|----------------|------|-------------|
| 8   | D     | 708[A]         | PGE  | O1-C1-C2-O2 |
| 5   | D     | 707            | BCN  | N1-C5-C6-O6 |
| 8   | А     | 712            | PGE  | O1-C1-C2-O2 |
| 13  | В     | 701            | NAG  | O5-C5-C6-O6 |
| 5   | С     | 706            | BCN  | N1-C5-C6-O6 |
| 14  | С     | 707[B]         | MXE  | O1-C1-C2-O2 |
| 13  | В     | 701            | NAG  | C4-C5-C6-O6 |
| 8   | D     | 708[B]         | PGE  | O1-C1-C2-O2 |
| 6   | В     | 707            | PEG  | O2-C3-C4-O4 |
| 14  | С     | 707[A]         | MXE  | O1-C1-C2-O2 |
| 8   | В     | 709            | PGE  | O1-C1-C2-O2 |
| 7   | D     | 710            | EDO  | O1-C1-C2-O2 |
| 7   | D     | 711            | EDO  | O1-C1-C2-O2 |
| 8   | А     | 716            | PGE  | C1-C2-O2-C3 |
| 8   | А     | 712            | PGE  | O3-C5-C6-O4 |
| 5   | В     | 706            | BCN  | N1-C3-C4-O4 |
| 5   | А     | 709            | BCN  | C2-C1-N1-C3 |
| 8   | А     | 716            | PGE  | O3-C5-C6-O4 |
| 8   | D     | 708[A]         | PGE  | O3-C5-C6-O4 |
| 6   | А     | 710            | PEG  | C1-C2-O2-C3 |
| 6   | В     | 707            | PEG  | O1-C1-C2-O2 |
| 6   | В     | 714            | PEG  | O2-C3-C4-O4 |
| 6   | В     | 707            | PEG  | C4-C3-O2-C2 |
| 5   | А     | 709            | BCN  | C2-C1-N1-C5 |
| 8   | В     | 709            | PGE  | O3-C5-C6-O4 |
| 6   | А     | 710            | PEG  | C4-C3-O2-C2 |
| 8   | А     | 712            | PGE  | O2-C3-C4-O3 |
| 5   | С     | 706            | BCN  | C6-C5-N1-C1 |
| 8   | А     | 716            | PGE  | C4-C3-O2-C2 |
| 5   | A     | 709            | BCN  | C4-C3-N1-C5 |
| 7   | A     | 715            | EDO  | O1-C1-C2-O2 |
| 7   | A     | 717            | EDO  | 01-C1-C2-O2 |
| 5   | A     | 709            | BCN  | C4-C3-N1-C1 |
| 6   | В     | 713            | PEG  | C1-C2-O2-C3 |



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 8   | В     | 709 | PGE  | C4-C3-O2-C2 |
| 5   | D     | 707 | BCN  | C6-C5-N1-C1 |
| 5   | В     | 706 | BCN  | C4-C3-N1-C1 |
| 7   | А     | 714 | EDO  | O1-C1-C2-O2 |
| 8   | А     | 716 | PGE  | O2-C3-C4-O3 |
| 7   | С     | 711 | EDO  | O1-C1-C2-O2 |

There are no ring outliers.

6 monomers are involved in 12 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 8   | А     | 716 | PGE  | 5       | 0            |
| 8   | А     | 712 | PGE  | 1       | 0            |
| 5   | А     | 709 | BCN  | 2       | 0            |
| 7   | А     | 711 | EDO  | 1       | 0            |
| 4   | D     | 714 | BO3  | 1       | 0            |
| 6   | В     | 707 | PEG  | 2       | 0            |

# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | < <b>RSRZ</b> > | #RSRZ>2       | $OWAB(Å^2)$     | $Q{<}0.9$ |
|-----|-------|-----------------|-----------------|---------------|-----------------|-----------|
| 1   | А     | 608/629~(96%)   | -0.11           | 3 (0%) 91 91  | 23, 36, 62, 93  | 0         |
| 1   | В     | 605/629~(96%)   | 0.03            | 13 (2%) 63 63 | 20, 34, 76, 98  | 0         |
| 1   | С     | 605/629~(96%)   | -0.06           | 9 (1%) 73 74  | 22, 37, 66, 105 | 0         |
| 1   | D     | 607/629~(96%)   | -0.05           | 11 (1%) 68 68 | 19, 34, 64, 102 | 0         |
| All | All   | 2425/2516 (96%) | -0.05           | 36 (1%) 73 74 | 19, 35, 68, 105 | 0         |

All (36) RSRZ outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | С     | 1              | LEU  | 5.0  |
| 1   | В     | 1              | LEU  | 4.6  |
| 1   | D     | 130            | PRO  | 4.6  |
| 1   | В     | 130            | PRO  | 3.7  |
| 1   | В     | 105            | LEU  | 3.6  |
| 1   | С     | 130            | PRO  | 3.5  |
| 1   | А     | 135            | THR  | 3.5  |
| 1   | В     | 129            | LEU  | 3.4  |
| 1   | В     | 413            | ARG  | 3.1  |
| 1   | С     | 135            | THR  | 3.1  |
| 1   | D     | 323            | ALA  | 3.0  |
| 1   | В     | 135            | THR  | 3.0  |
| 1   | D     | 1              | LEU  | 2.9  |
| 1   | А     | 611            | ILE  | 2.9  |
| 1   | D     | 610            | GLY  | 2.8  |
| 1   | С     | 129            | LEU  | 2.7  |
| 1   | D     | 129            | LEU  | 2.6  |
| 1   | В     | 53             | ARG  | 2.6  |
| 1   | С     | 606            | ASN  | 2.6  |
| 1   | А     | 606            | ASN  | 2.5  |
| 1   | D     | 135            | THR  | 2.4  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | В     | 79  | ILE  | 2.4  |
| 1   | С     | 413 | ARG  | 2.4  |
| 1   | В     | 80  | TRP  | 2.4  |
| 1   | С     | 323 | ALA  | 2.4  |
| 1   | В     | 605 | ASP  | 2.3  |
| 1   | D     | 55  | GLU  | 2.3  |
| 1   | D     | 413 | ARG  | 2.2  |
| 1   | С     | 19  | LEU  | 2.2  |
| 1   | D     | 53  | ARG  | 2.2  |
| 1   | D     | 56  | GLU  | 2.2  |
| 1   | D     | 285 | GLN  | 2.2  |
| 1   | В     | 17  | ALA  | 2.1  |
| 1   | В     | 331 | HIS  | 2.1  |
| 1   | В     | 82  | GLN  | 2.1  |
| 1   | С     | 84  | THR  | 2.0  |

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | ${f B}	ext{-factors}({ m \AA}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|-----------------------------------|-------|
| 3   | NAG  | F     | 2   | 14/15 | 0.63 | 0.21 | $59,\!77,\!82,\!87$               | 0     |
| 3   | NAG  | K     | 2   | 14/15 | 0.68 | 0.19 | $62,\!81,\!101,\!106$             | 0     |
| 2   | NAG  | J     | 2   | 14/15 | 0.71 | 0.22 | 82,97,113,116                     | 0     |
| 3   | NAG  | G     | 2   | 14/15 | 0.74 | 0.29 | $62,\!86,\!113,\!117$             | 0     |
| 2   | NAG  | Е     | 2   | 14/15 | 0.75 | 0.22 | $75,\!90,\!108,\!115$             | 0     |
| 3   | FUC  | K     | 3   | 10/11 | 0.76 | 0.30 | $59,\!74,\!89,\!89$               | 0     |
| 3   | NAG  | Ι     | 2   | 14/15 | 0.79 | 0.18 | $51,\!76,\!95,\!102$              | 0     |
| 2   | NAG  | J     | 1   | 14/15 | 0.80 | 0.19 | $67,\!90,\!106,\!110$             | 0     |
| 3   | NAG  | K     | 1   | 14/15 | 0.80 | 0.14 | $42,\!58,\!68,\!80$               | 0     |
| 2   | NAG  | Е     | 1   | 14/15 | 0.83 | 0.13 | 55,70,83,88                       | 0     |
| 3   | NAG  | G     | 1   | 14/15 | 0.85 | 0.13 | $31,\!45,\!60,\!64$               | 0     |
| 2   | NAG  | Н     | 2   | 14/15 | 0.85 | 0.17 | $79,\!93,\!109,\!121$             | 0     |
| 2   | NAG  | Н     | 1   | 14/15 | 0.85 | 0.13 | $5\overline{2,}64,\!80,\!87$      | 0     |



| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $\mathbf{B}	extsf{-}\mathbf{factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|-----|-------|------|------|-----------------------------------------------------|-------|
| 3   | NAG  | Ι     | 1   | 14/15 | 0.88 | 0.12 | $38,\!47,\!57,\!66$                                 | 0     |
| 3   | FUC  | G     | 3   | 10/11 | 0.89 | 0.18 | $45,\!58,\!83,\!90$                                 | 0     |
| 3   | FUC  | Ι     | 3   | 10/11 | 0.90 | 0.13 | 46,57,73,76                                         | 0     |
| 3   | FUC  | F     | 3   | 10/11 | 0.91 | 0.14 | 48,59,74,77                                         | 0     |
| 3   | NAG  | F     | 1   | 14/15 | 0.91 | 0.11 | 40,54,64,68                                         | 0     |

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.



























## 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | $\mathbf{Res}$ | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|----------------|-------|------|------|------------------------------------------|-------|
| 11  | MG   | А     | 721            | 1/1   | 0.35 | 0.14 | 72,72,72,72                              | 0     |



| Mol | Type | Chain | Res    | Atoms | RSCC | RSR               | B-factors(Å <sup>2</sup> ) | Q<0.9 |
|-----|------|-------|--------|-------|------|-------------------|----------------------------|-------|
| 7   | EDO  | С     | 710    | 4/4   | 0.58 | 0.21              | 59,71,77,85                | 0     |
| 7   | EDO  | А     | 718    | 4/4   | 0.61 | 0.22              | 59,70,80,81                | 0     |
| 6   | PEG  | В     | 707    | 7/7   | 0.62 | 0.18              | 56,70,85,85                | 0     |
| 4   | BO3  | D     | 714    | 4/4   | 0.63 | 0.16              | 42,50,67,81                | 0     |
| 14  | MXE  | С     | 707[A] | 5/5   | 0.67 | 0.21              | 43,53,62,65                | 13    |
| 14  | MXE  | С     | 707[B] | 5/5   | 0.67 | 0.21              | 34,47,61,62                | 13    |
| 11  | MG   | В     | 717    | 1/1   | 0.69 | 0.16              | 63,63,63,63                | 0     |
| 7   | EDO  | С     | 711    | 4/4   | 0.70 | 0.33              | 60,72,75,78                | 0     |
| 8   | PGE  | D     | 708[A] | 10/10 | 0.72 | 0.18              | 45,59,71,71                | 24    |
| 8   | PGE  | D     | 708[B] | 10/10 | 0.72 | 0.18              | 45,59,71,71                | 24    |
| 7   | EDO  | С     | 709[A] | 4/4   | 0.73 | 0.16              | 40,48,55,57                | 10    |
| 7   | EDO  | С     | 709[B] | 4/4   | 0.73 | 0.16              | $37,\!45,\!55,\!57$        | 10    |
| 4   | BO3  | А     | 706    | 4/4   | 0.77 | 0.26              | $45,\!51,\!59,\!62$        | 0     |
| 7   | EDO  | D     | 712[A] | 4/4   | 0.78 | 0.19              | $38,\!48,\!57,\!58$        | 10    |
| 7   | EDO  | D     | 712[B] | 4/4   | 0.78 | 0.19              | 38,49,54,59                | 10    |
| 6   | PEG  | В     | 714    | 7/7   | 0.78 | 0.19              | 50,61,74,74                | 0     |
| 7   | EDO  | D     | 710    | 4/4   | 0.78 | 0.13              | 50,62,70,84                | 0     |
| 15  | NA   | В     | 719    | 1/1   | 0.79 | 0.11              | $63,\!63,\!63,\!63$        | 0     |
| 8   | PGE  | А     | 712    | 10/10 | 0.80 | 0.15              | 44,63,72,75                | 0     |
| 13  | NAG  | В     | 701    | 14/15 | 0.81 | 0.17              | $61,\!83,\!105,\!106$      | 0     |
| 7   | EDO  | D     | 711    | 4/4   | 0.81 | 0.14              | 45,54,62,74                | 0     |
| 6   | PEG  | В     | 713    | 7/7   | 0.82 | 0.15              | $37,\!49,\!59,\!67$        | 17    |
| 7   | EDO  | В     | 710    | 4/4   | 0.84 | 0.19              | 44,53,64,69                | 0     |
| 6   | PEG  | А     | 710    | 7/7   | 0.85 | 0.17              | $55,\!66,\!75,\!82$        | 0     |
| 5   | BCN  | А     | 709    | 11/11 | 0.86 | 0.25              | $48,\!63,\!70,\!73$        | 0     |
| 8   | PGE  | В     | 708    | 10/10 | 0.86 | 0.15              | $51,\!68,\!76,\!76$        | 0     |
| 7   | EDO  | В     | 711    | 4/4   | 0.87 | 0.14              | 48,59,70,74                | 0     |
| 8   | PGE  | В     | 709    | 10/10 | 0.87 | 0.13              | $46,\!55,\!66,\!76$        | 0     |
| 4   | BO3  | В     | 705    | 4/4   | 0.88 | 0.16              | $33,\!36,\!40,\!43$        | 0     |
| 7   | EDO  | А     | 711    | 4/4   | 0.88 | 0.11              | $50,\!60,\!66,\!70$        | 0     |
| 4   | BO3  | D     | 713    | 4/4   | 0.90 | 0.16              | $34,\!41,\!57,\!69$        | 0     |
| 8   | PGE  | A     | 716    | 10/10 | 0.90 | 0.26              | $21,\!53,\!60,\!63$        | 24    |
| 4   | BO3  | D     | 706    | 4/4   | 0.91 | 0.14              | $31,\!37,\!44,\!44$        | 0     |
| 7   | EDO  | А     | 717    | 4/4   | 0.91 | 0.13              | 48,58,70,72                | 0     |
| 4   | BO3  | A     | 713    | 4/4   | 0.91 | 0.18              | 47,51,59,61                | 0     |
| 7   | EDO  | D     | 709    | 4/4   | 0.91 | 0.09              | 57,69,75,75                | 0     |
| 4   | BO3  | C     | 708    | 4/4   | 0.92 | 0.15              | 40,44,53,60                | 0     |
| 11  | MG   | С     | 714    | 1/1   | 0.92 | 0.11              | 44,44,44,44                | 1     |
| 7   | EDO  | A     | 714    | 4/4   | 0.92 | 0.11              | 48,58,63,64                | 0     |
| 7   | EDO  | A     | 715    | 4/4   | 0.93 | 0.09              | $51,\!61,\!68,\!75$        | 0     |
| 14  | MXE  | В     | 712    | 5/5   | 0.94 | 0.12              | 46,55,65,65                | 0     |
| 5   | BCN  | В     | 706    | 11/11 | 0.95 | $0.1\overline{0}$ | 24,39,45,47                | 0     |



| Mol | Type | Chain | $\mathbf{Res}$ | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|----------------|-------|------|------|------------------------------------------|-------|
| 5   | BCN  | D     | 707            | 11/11 | 0.95 | 0.11 | $24,\!38,\!46,\!50$                      | 0     |
| 5   | BCN  | С     | 706            | 11/11 | 0.96 | 0.11 | $26,\!35,\!45,\!54$                      | 0     |
| 4   | BO3  | А     | 708            | 4/4   | 0.96 | 0.13 | $35,\!38,\!44,\!50$                      | 0     |
| 5   | BCN  | А     | 707            | 11/11 | 0.96 | 0.13 | $29,\!42,\!51,\!53$                      | 0     |
| 12  | CA   | D     | 717            | 1/1   | 0.98 | 0.09 | 26, 26, 26, 26, 26                       | 0     |
| 12  | CA   | А     | 722            | 1/1   | 0.98 | 0.07 | $31,\!31,\!31,\!31$                      | 0     |
| 10  | CL   | А     | 720            | 1/1   | 0.99 | 0.17 | 26, 26, 26, 26, 26                       | 0     |
| 12  | CA   | В     | 718            | 1/1   | 0.99 | 0.08 | 28,28,28,28                              | 0     |
| 10  | CL   | В     | 716            | 1/1   | 1.00 | 0.15 | 23,23,23,23                              | 0     |
| 12  | CA   | С     | 715            | 1/1   | 1.00 | 0.07 | $30,\!30,\!30,\!30$                      | 0     |
| 10  | CL   | С     | 713            | 1/1   | 1.00 | 0.14 | 26, 26, 26, 26                           | 0     |
| 10  | CL   | D     | 716            | 1/1   | 1.00 | 0.19 | $23,\!23,\!23,\!23$                      | 0     |
| 9   | ZN   | В     | 715            | 1/1   | 1.00 | 0.14 | 27,27,27,27                              | 0     |
| 9   | ZN   | С     | 712            | 1/1   | 1.00 | 0.16 | 27,27,27,27                              | 0     |
| 9   | ZN   | D     | 715            | 1/1   | 1.00 | 0.14 | 27,27,27,27                              | 0     |
| 9   | ZN   | А     | 719            | 1/1   | 1.00 | 0.16 | 28,28,28,28                              | 0     |

# 6.5 Other polymers (i)

There are no such residues in this entry.

