

Apr 24, 2024 – 10:58 pm BST

PDB ID	:	6ZSD
EMDB ID	:	EMD-11394
Title	:	Human mitochondrial ribosome in complex with mRNA, P-site tRNA and
		E-site tRNA
Authors	:	Aibara, S.; Singh, V.; Modelska, A.; Amunts, A.
Deposited on	:	2020-07-15
Resolution	:	3.70 Å(reported)
This i	s a l	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org*

A user guide is available at

https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	(Quality of chai	in		
1	0	188	51%	43%	43%		
2	1	65	68%		14%	18	%
3	2	92	48%	·	50%		
4	3	188	39%	12%	49%		
5	4	103	34% •		63%		
6	5	423	6	30%		12%	7%
7	6	380	- 78	3%		15%	7%

Mol	Chain	Length	Quality of chain	
8	7	338	• 75%	12% 14%
9	8	206	6 0% 7%	33%
10	9	137	● 86%	• 9%
11	XA	1559	65%	27% • •
12	A0	218	8%	12% 8%
13	A1	323	8%	12% • 15%
14	A2	118	7%	22% •
15	A3	199	1	
16	A4	689	24%	10% 20%
17	AA	954	66%	26%
18	AR	296	66% 66%	26%
10	AC	167	03% 8%	20%
20		420	/1%	8% 21%
20	AD	430	73%	7% 20%
21	AE	125	82%	16% •
22	AF	242	71%	12% 17%
23	AG	396	• 67% 10	23%
24	AH	201	• 57% 10%	33%
25	AI	194	6 0% 10%	30%
26	AJ	138	66 % 12	22%
27	AK	128	70%	9% 21%
28	AL	257	• 57% 7%	36%
29	AM	137	6%76%	9% 15%
30	AN	130	• 72%	11% 18%
31	AO	258	6 2% 10%	28%
32	AP	142	• 59% 8%	33%

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chair	n
33	AQ	87	84%	14% ·
34	AR	360	59% 1	0% 31%
35	AS	190	63%	7% 30%
36	AT	173	79%	14% 6%
37	AU	205	71%	13% 16%
38	AV	414	74%	10% 16%
39	AW	187	48% •	48%
40	AX	398	6%75%	12% 13%
41	AY	395	• 23% 6% 7	1%
42	AZ	106	72%	9% 19%
43	XB	72	61%	18% • 18%
44	XD	305	65%	11% • 23%
45	XE	348	▲ 76%	11% 13%
46	XF	311	66%	14% 20%
47	XH	267	30% 6%	64%
48	XI	261	20%	8% 19%
49	XJ	192	6% 82%	6% • 11%
50	XK	178	90%	10% •
51	XL	145	66%	13% 21%
52	XM	296	79%	18% •
53	XN	251	76%	12% 12%
54	XO	175	72%	15% 13%
55	XP	180	71%	8% • 21%
56	XQ	292	72%	9% 18%
57	XR	149	83%	11% 6%

Mol	Chain	Length	Quality of chain		
58	XS	205	73%	5%	22%
59	XT	206	71%	9%	19%
60	XU	153	81%		11% 8%
61	XV	216	86%		8% 6%
62	XW	148	66%	9% •	25%
63	XX	256	• 84%		11% 5%
64	XY	250	61% 10%		29%
65	XZ	161	63% 11	%	25%
66	a	142	• 68%		32%
67	b	215	69%		31%
68	с	332	83%		17%
69	d	306	 70%		29%
70	е	279	8%		22%
71	f	212	5%		33%
72	g	166	● 79%	•	20%
73	h	158	68%		32%
74	i	128	76%		24%
75	i	123	• 70%		30%
76	k	112	• 85%		15%
77	1	138	58%	429	4
78	m	128	• 47%	53%	
79	0	102	• • •		8%
80	n	206	62%	2	8%
81	<u>Ч</u>	200	7%	<u>,</u>	26%
82	r Y	196	78%		2070
	-	100	/ 0 /0		2270

Continued from previous page...

Mol	Chain	Length		Qua	ality of chain	
0.0	1	10	33%			
83	rl	12			100%	
84	r3	75	—		100%	
85	r4	76	9%		100%	
	11	10			100 %	
86	S	439		849	%	16%
87	t1	198	16% 23%	•	77%	
87	t2	198	10%		85%	
87	t3	198	15%		85%	
87	t4	198	15%		85%	
87	t5	198	15%		85%	
87	t6	198	14%		86%	
88	А	8	25%	12%	62%	

Continued from previous page...

2 Entry composition (i)

There are 92 unique types of molecules in this entry. The entry contains 313714 atoms, of which 143052 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 39S ribosomal protein L32, mitochondrial.

Mol	Chain	Residues	Atoms						AltConf	Trace
1	0	108	Total 1783	С 545	Н 903	N 172	0 157	S 6	0	0

• Molecule 2 is a protein called 39S ribosomal protein L33, mitochondrial.

Mol	Chain	Residues	Atoms						AltConf	Trace
2	1	53	Total 919	C 281	Н 480	N 84	0 72	${ m S} { m 2}$	0	0

• Molecule 3 is a protein called 39S ribosomal protein L34, mitochondrial.

Mol	Chain	Residues	Atoms						AltConf	Trace
3	2	46	Total 783	C 233	Н 407	N 83	O 59	S 1	0	0

• Molecule 4 is a protein called 39S ribosomal protein L35, mitochondrial.

Mol	Chain	Residues	Atoms						AltConf	Trace
4	3	95	Total 1714	C 539	H 883	N 162	0 127	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called 39S ribosomal protein L36, mitochondrial.

Mol	Chain	Residues		A	Atoms	5			AltConf	Trace
5	4	38	Total 703	C 217	Н 362	N 72	0 48	${S \over 4}$	0	0

• Molecule 6 is a protein called 39S ribosomal protein L37, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
6	5	393	Total 6405	C 2070	H 3201	N 559	0 564	S 11	0	0

• Molecule 7 is a protein called 39S ribosomal protein L38, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
7	6	354	Total 5788	C 1881	Н 2841	N 525	O 532	S 9	0	0

• Molecule 8 is a protein called 39S ribosomal protein L39, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
8	7	291	Total 4738	C 1514	Н 2373	N 401	O 432	S 18	0	0

• Molecule 9 is a protein called 39S ribosomal protein L40, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
9	8	139	Total 2377	$\begin{array}{c} \mathrm{C} \\ 747 \end{array}$	Н 1202	N 208	0 218	${ m S} { m 2}$	0	0

• Molecule 10 is a protein called 39S ribosomal protein L41, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
10	9	124	Total 1983	C 644	Н 987	N 170	O 180	${ m S} { m 2}$	0	0

• Molecule 11 is a RNA chain called 16S mitochondrial rRNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
11	XA	1499	Total 47994	C 14284	H 16162	N 5756	O 10294	Р 1498	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
XA	3107	U	UNK	conflict	GB 1025814679
XA	3200	А	U	conflict	GB 1025814679

• Molecule 12 is a protein called 28S ribosomal protein S34, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
12	A0	201	Total 3369	C 1065	H 1685	N 322	0 292	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called 28S ribosomal protein S35, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
13	A1	275	Total	C	H	N	0	S	0	0
			4491	1414	2261	380	425	11		

• Molecule 14 is a protein called Coiled-coil-helix-coiled-coil-helix domain-containing protein 1.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
14	A2	116	Total 1889	C 574	Н 964	N 181	O 162	S 8	0	0

• Molecule 15 is a protein called Aurora kinase A-interacting protein.

Mol	Chain	Residues		_	Atom	S			AltConf	Trace
15	A3	69	Total 1292	C 393	Н 682	N 130	O 86	S 1	0	0

• Molecule 16 is a protein called Pentatric opeptide repeat domain-containing protein 3, mito-chondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
16	A4	552	Total 8955	C 2866	Н 4485	N 756	O 820	S 28	0	0

• Molecule 17 is a RNA chain called 12S mitochondrial rRNA.

Mol	Chain	Residues			Ato	ms			AltConf	Trace
17	АА	924	Total	С	Н	Ν	0	Р	0	0
		021	29593	8800	9965	3540	6364	924	Ŭ	0

• Molecule 18 is a protein called 28S ribosomal protein S2, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
18	AB	218	Total 3545	C 1135	Н 1769	N 322	O 309	S 10	0	0

• Molecule 19 is a protein called 28S ribosomal protein S24, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
19	AC	132	Total 2170	C 699	Н 1088	N 195	0 184	${S \atop 4}$	0	0

• Molecule 20 is a protein called 28S ribosomal protein S5, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
20	AD	343	Total 5501	C 1706	Н 2785	N 515	O 482	S 13	0	0

• Molecule 21 is a protein called 28S ribosomal protein S6, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
21	AE	122	Total 1973	C 614	Н 1001	N 177	O 177	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called 28S ribosomal protein S7, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
22	AF	201	Total 3383	C 1069	Н 1715	N 305	O 283	S 11	0	0

• Molecule 23 is a protein called 28S ribosomal protein S9, mitochondrial.

Mol	Chain	Residues			Atom	s			AltConf	Trace
23	AG	304	Total 4997	C 1593	Н 2492	N 444	0 454	S 14	0	0

• Molecule 24 is a protein called 28S ribosomal protein S10, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
24	AH	135	Total 2241	C 712	Н 1136	N 187	O 203	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called 28S ribosomal protein S11, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
25	AI	136	Total 2063	C 637	Н 1052	N 192	0 178	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 28S ribosomal protein S12, mitochondrial.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
26	AJ	108	Total 1725	C 521	Н 887	N 169	0 142	${ m S}{ m 6}$	0	0

• Molecule 27 is a protein called 28S ribosomal protein S14, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
27	AK	101	Total 1746	C 537	Н 885	N 179	0 140	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called 28S ribosomal protein S15, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
28	AL	164	Total 2854	C 883	Н 1472	N 257	O 235	${ m S} 7$	0	0

• Molecule 29 is a protein called 28S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
29	AM	116	Total 1871	C 582	Н 951	N 182	O 150	${ m S}{ m 6}$	0	0

• Molecule 30 is a protein called 28S ribosomal protein S17, mitochondrial.

Mol	Chain	Residues		Atoms						Trace
30	AN	107	Total 1754	C 549	Н 908	N 153	0 141	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called 28S ribosomal protein S18b, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
31	AO	185	Total 3017	C 970	H 1489	N 285	O 267	S 6	0	0

• Molecule 32 is a protein called 28S ribosomal protein S18c, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
32	AP	95	Total 1561	C 493	Н 796	N 132	0 132	S 8	0	0

• Molecule 33 is a protein called 28S ribosomal protein S21, mitochondrial.

Mol	Chain	Residues		Atoms						Trace
33	AQ	85	Total 1483	C 455	Н 749	N 149	0 123	${f S}{7}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AQ	$\overline{50}$	ARG	CYS	conflict	UNP P82921

• Molecule 34 is a protein called 28S ribosomal protein S22, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
34	AR	250	Total 4134	C 1314	Н 2074	N 353	O 385	S 8	0	0

• Molecule 35 is a protein called 28S ribosomal protein S23, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
35	AS	133	Total 2203	C 709	Н 1103	N 196	0 194	S 1	0	0

• Molecule 36 is a protein called 28S ribosomal protein S25, mitochondrial.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
36	AT	162	Total 2672	C 850	Н 1342	N 231	0 238	S 11	0	0

• Molecule 37 is a protein called 28S ribosomal protein S26, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
37	AU	173	Total	С	Н	Ν	0	S	0	0
		1.0	2932	900	1471	294	263	4	5	5

• Molecule 38 is a protein called 28S ribosomal protein S27, mitochondrial.

Mol	Chain	Residues			Atom	.S			AltConf	Trace
38	AV	349	Total 5730	C 1841	Н 2863	N 478	O 536	S 12	0	0

• Molecule 39 is a protein called 28S ribosomal protein S28, mitochondrial.

Mol	Chain	Residues			Aton	AltConf	Trace			
39	AW	97	Total 1551	C 486	Н 785	N 137	O 139	${S \over 4}$	0	0

• Molecule 40 is a protein called 28S ribosomal protein S29, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
40	AX	348	Total 5619	C 1802	H 2805	N 401	0 510	S 11	0	0
40	АА	348	5619	1802	2805	491	510	11	0	

• Molecule 41 is a protein called 28S ribosomal protein S31, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
41	AY	113	Total 1868	C 621	Н 912	N 157	0 176	${ m S} { m 2}$	0	0

• Molecule 42 is a protein called 28S ribosomal protein S33, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
42	AZ	86	Total 1465	C 467	Н 734	N 131	0 129	S 4	0	0

• Molecule 43 is a RNA chain called mitochondrial tRNAVal.

Mol	Chain	Residues			AltConf	Trace				
43	XB	59	Total 1890	C 563	Н 635	N 227	0 406	Р 59	0	0

• Molecule 44 is a protein called 39S ribosomal protein L2, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
44	XD	236	Total 3738	C 1145	Н 1896	N 373	0 315	S 9	0	0

• Molecule 45 is a protein called 39S ribosomal protein L3, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
45	VF	304	Total	С	Η	Ν	0	\mathbf{S}	0	0
40	AL	504	4799	1539	2403	416	430	11	0	0

• Molecule 46 is a protein called 39S ribosomal protein L4, mitochondrial.

Mol	Chain	Residues			Atom	5			AltConf	Trace
46	XF	250	Total 4058	C 1294	Н 2045	N 365	0 348	S 6	0	0

• Molecule 47 is a protein called 39S ribosomal protein L9, mitochondrial.

Mol	Chain	Residues		Α	toms			AltConf	Trace
47	XH	95	Total 1616	C 498	Н 832	N 152	0 134	0	0

• Molecule 48 is a protein called 39S ribosomal protein L10, mitochondrial.

Mol	Chain	Residues			Atoms							
48	XI	211	Total 3474	C 1086	Н 1783	N 303	O 291	S 11	0	0		

• Molecule 49 is a protein called 39S ribosomal protein L11, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
49	XJ	170	Total 2658	C 825	Н 1367	N 230	O 234	${ m S} { m 2}$	0	0

• Molecule 50 is a protein called 39S ribosomal protein L13, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
50	XK	177	Total 2899	C 934	Н 1448	N 259	0 251	${ m S} 7$	0	0

• Molecule 51 is a protein called 39S ribosomal protein L14, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
51	XL	115	Total 1830	C 559	Н 941	N 171	0 154	${S \atop 5}$	0	0

• Molecule 52 is a protein called 39S ribosomal protein L15, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
52	XM	287	Total 4683	C 1472	Н 2378	N 425	O 402	${ m S}{ m 6}$	0	0

• Molecule 53 is a protein called 39S ribosomal protein L16, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
53	XN	221	Total 3586	C 1138	H 1808	N 325	O 305	S 10	0	0

• Molecule 54 is a protein called 39S ribosomal protein L17, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
54	XO	152	Total 2528	C 784	Н 1283	N 239	O 215	${f S}{7}$	0	0

• Molecule 55 is a protein called 39S ribosomal protein L18, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
55	XP	143	Total 2326	C 729	Н 1162	N 223	O 207	${ m S}{ m 5}$	0	0

• Molecule 56 is a protein called 39S ribosomal protein L19, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
56	XQ	238	Total 4000	C 1268	Н 2022	N 352	0 349	S 9	0	0

• Molecule 57 is a protein called 39S ribosomal protein L20, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
57	XR	140	Total 2367	C 732	Н 1214	N 231	0 186	S 4	0	0

• Molecule 58 is a protein called 39S ribosomal protein L21, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
58	XS	160	Total 2638	C 829	Н 1354	N 226	O 225	$\frac{S}{4}$	0	0

• Molecule 59 is a protein called 39S ribosomal protein L22, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
59	XT	166	Total 2778	C 875	Н 1410	N 254	O 232	${ m S} 7$	0	0

• Molecule 60 is a protein called 39S ribosomal protein L23, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
60	XU	141	Total 2335	С 743	Н 1164	N 222	O 203	${ m S} { m 3}$	0	0

• Molecule 61 is a protein called 39S ribosomal protein L24, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
61	XV	202	Total 3304	C 1051	Н 1656	N 294	O 295	S 8	0	0

• Molecule 62 is a protein called 39S ribosomal protein L27, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
62	XW	111	Total 1769	C 558	Н 898	N 164	0 146	${ m S} { m 3}$	0	0

• Molecule 63 is a protein called 39S ribosomal protein L28, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
63	XX	243	Total 4089	C 1317	Н 2054	N 351	O 362	${ m S}{ m 5}$	0	0

• Molecule 64 is a protein called 39S ribosomal protein L47, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
64	vv	178	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
04	Λ 1	170	3109	981	1575	295	254	4	0	0

• Molecule 65 is a protein called 39S ribosomal protein L30, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
65	XZ	120	Total 2008	C 626	Н 1030	N 183	O 166	${ m S} { m 3}$	0	0

• Molecule 66 is a protein called 39S ribosomal protein L42, mitochondrial.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
66	a	97	Total 1590	C 512	Н 777	N 145	0 151	${ m S}{ m 5}$	0	0

• Molecule 67 is a protein called 39S ribosomal protein L43, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
67	b	148	Total 2358	C 733	Н 1180	N 229	0 213	${ m S} { m 3}$	0	0

• Molecule 68 is a protein called 39S ribosomal protein L44, mitochondrial.

Mol	Chain	Residues			Atoms	5			AltConf	Trace
68	с	275	Total 4437	C 1415	Н 2220	N 383	O 410	S 9	0	0

• Molecule 69 is a protein called 39S ribosomal protein L45, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
69	d	216	Total 3501	C 1125	Н 1743	N 305	O 315	S 13	0	0

• Molecule 70 is a protein called 39S ribosomal protein L46, mitochondrial.

Mol	Chain	Residues			Atoms	S			AltConf	Trace
70	е	217	Total 3529	C 1124	H 1767	N 310	O 323	${ m S}{ m 5}$	0	0

• Molecule 71 is a protein called 39S ribosomal protein L48, mitochondrial.

Mol	Chain	Residues			Atom	.s			AltConf	Trace
71	f	143	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
11	1	140	2314	737	1165	187	221	4	0	0

• Molecule 72 is a protein called 39S ribosomal protein L49, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
72	g	132	Total 2183	C 710	Н 1086	N 191	0 194	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 73 is a protein called 39S ribosomal protein L50, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
73	h	108	Total 1748	C 560	Н 866	N 154	0 165	${ m S} { m 3}$	0	0

• Molecule 74 is a protein called 39S ribosomal protein L51, mitochondrial.

Mol	Chain	Residues			Aton	ns			AltConf	Trace
74	i	97	Total 1684	C 532	Н 857	N 165	0 126	${S \atop 4}$	0	0

• Molecule 75 is a protein called 39S ribosomal protein L52, mitochondrial.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
75	j	86	Total 1367	C 426	Н 678	N 134	0 127	${ m S} { m 2}$	0	0

• Molecule 76 is a protein called 39S ribosomal protein L53, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
76	k	95	Total 1477	C 456	Н 745	N 139	0 132	${ m S}{ m 5}$	0	0

• Molecule 77 is a protein called 39S ribosomal protein L54, mitochondrial.

Mol	Chain	Residues			AltConf	Trace				
77	1	80	Total 1327	$\begin{array}{c} \mathrm{C} \\ 427 \end{array}$	Н 654	N 118	O 125	${ m S} { m 3}$	0	0

• Molecule 78 is a protein called 39S ribosomal protein L55, mitochondrial.

Mol	Chain	Residues		L	AltConf	Trace				
78	m	60	Total 1025	C 309	Н 525	N 104	O 85	${ m S} { m 2}$	0	0

• Molecule 79 is a protein called Ribosomal protein 63, mitochondrial.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
79	О	94	Total 1601	C 501	H 804	N 165	0 128	$\frac{S}{3}$	0	0

• Molecule 80 is a protein called Peptidyl-tRNA hydrolase ICT1, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
80	g	127	Total	С	Н	N	0	S	0	0
	1		2141	661	1083	201	192	4		

• Molecule 81 is a protein called Growth arrest and DNA damage-inducible proteins-interacting protein 1.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
81	q	164	Total 2738	C 858	Н 1359	N 267	0 249	${ m S}{ m 5}$	0	0

• Molecule 82 is a protein called 39S ribosomal protein S18a, mitochondrial.

Mol	Chain	Residues			Atom	IS			AltConf	Trace
82	r	152	Total 2514	C 792	Н 1267	N 239	O 208	S 8	0	0

• Molecule 83 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
83	r1	12	Total 216	C 108	N 24	0 72	Р 12	0	0

• Molecule 84 is a RNA chain called P-site tRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
84	r3	75	Total 1459	С 711	N 222	0 451	Р 75	0	0

• Molecule 85 is a RNA chain called E-site tRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
85	r4	76	Total 1485	C 723	N 230	0 456	Р 76	0	0

• Molecule 86 is a protein called 39S ribosomal protein S30, mitochondrial.

Mol	Chain	Residues			Atom	S			AltConf	Trace
86	S	370	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
	5	010	6059	1946	3023	542	534	14	0	0

• Molecule 87 is a protein called 39S ribosomal protein L12, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
87	+1	46	Total	С	Η	Ν	0	2	0
01	01	40	733	228	379	56	70	2	0
87	+2	30	Total	С	Н	Ν	0	0	0
01	62	50	506	154	268	38	46	0	
87	+3	30	Total	С	Н	Ν	0	0	0
01	60	30	506	154	268	38	46	0	0
97	+1	20	Total	С	Η	Ν	0	0	0
01	64	29	484	148	255	36	45	0	0
97	+5	20	Total	С	Н	Ν	0	0	0
01	60	29	484	148	255	36	45	0	0
87	+6	27	Total	С	Η	Ν	0	0	0
01	ιU	21	450	137	236	34	43	0	0

• Molecule 88 is a protein called Quinupristin.

Mol	Chain	Residues	Atoms				AltConf	Trace		
88	А	8	Total 140	$\begin{array}{c} \mathrm{C} \\ 53 \end{array}$	Н 67	N 9	O 10	S 1	0	0

• Molecule 89 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
89	0	1	Total Zn 1 1	0
89	4	1	Total Zn 1 1	0
89	AB	1	Total Zn 1 1	0
89	AO	1	Total Zn 1 1	0
89	AP	1	Total Zn 1 1	0
89	AT	1	Total Zn 1 1	0
89	XI	1	Total Zn 1 1	0

• Molecule 90 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
90	XA	143	Total Mg 143 143	0
90	AA	46	TotalMg4646	0
90	XD	1	Total Mg 1 1	0
90	XE	1	Total Mg 1 1	0
90	XI	1	Total Mg 1 1	0
90	XM	1	Total Mg 1 1	0
90	XW	1	Total Mg 1 1	0
90	g	1	Total Mg 1 1	0

• Molecule 91 is 5-(2-DIETHYLAMINO-ETHANESULFONYL)-21-HYDROXY-10-ISOPRO

 $\label{eq:pyl-11,19-DIMETHYL-9,26-DIOXA-3,15,28-TRIAZA-TRICYCLO[23.2.1.00,255] OCTAC OSA-1(27),12,17,19,25(28)-PENTAENE-2,8,14,23-TETRAONE (three-letter code: DOL) (formula: C_{34}H_{50}N_4O_9S).$

Mol	Chain	Residues	Atoms					AltConf	
01	V۸	1	Total	С	Η	Ν	Ο	S	0
91	ЛА	1	98	34	50	4	9	1	0

• Molecule 92 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues	Atoms				AltConf		
0.2	٨v	1	Total	С	Η	Ν	Ο	Р	0
92	АЛ	1	42	10	10	5	14	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 39S ribosomal protein L32, mitochondrial

Chain 0:	51%	7%	43%	
MET ALA LEU ALA MET LEU VAL LEU VAL VAL	PRD TRP SER ALA ALA ALA ARG GLY VAL LEU TYR TYR ARG ARG ARG ARG ARG ARG CLU	LEU ARG LYS LYS LEU PRO GLN SER ARG PRO	PHE PRO PRO PRO PRO GLY PRO ALA LEU ALA	VAL GLY GLY ALA MET PHE THR FLU GLU ALA ASN
ASP THR SER GLY SER LYS GLV ASN SER SER	LEU ASP SER ILEE TRP PHE A79 A79 A79 A79 A79 A79 A79 A79 A79 A79	V109 E136 E136 E139 E145 E163	R173 R177 R181 1186 GLN ASN	
• Molecule 2:	39S ribosomal protein	L33, mitochor	ndrial	
Chain 1:	68%		14%	18%
MET PHE LEU SER ALA VAL PHE ALA ALA LYS CTP	L 175 L 175 R13 R34 R34 R34 R34 R34 R35 R35 R36 R36 R36 R36 R37 R37 R37 R37 R37 R37 R37 R37	R63 V57 L65		
• Molecule 3:	39S ribosomal protein	L34, mitochor	ndrial	
Chain 2:	48%	·	50%	
MET ALA ALA LEU LEU GLY SER LEU LEU CLY GLY	THR SER ARG SER ALA ALA ALA ALA CLV CLV CLV CLV CLV CLV CLV CLV CLV ARG CLV ARG ARG ARG ARG ARG ARG ARG ARG ARA	ALA TRP LEU GLY PHE PRO ASP ALA ALA CLY GLY	LEU PRO PRO PRO GLN GLN GLN GLY A48 A48 A48	H92
• Molecule 4:	39S ribosomal protein	북출동동동학북출동 L35, mitochor	adrial	
탄클로립클ሪ행용립ሪ • Molecule 4: Chain 3:	39%	북출립 등 분 율 왕 북 율 등 L35, mitochor 12%	월 월 분 월 5 5 7 8 5 <mark>5 9 8</mark> ndrial 49%	
Image: Angle	39%	12% L35, mitochor 12%	A # # & # # # # # # # # # # # # # # # #	GLUE THR THR VAL VAL SER SER SER THR THR THR THR THR THR THR THR THR TH
Molecule 4: Chain 3: YY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	39S ribosomal protein 39% 39% 11 11 11 11 11 11 11 11 11 11 11 11 11	THE BOAT HERE AND AN THE AND	843 410 410 410 8113 410 4113 4113 9113 61 711 710 9113 61 711 710 9113 61 710 711 9113 61 711 710 9113 61 710 711 9113 61 710 710 9113 61 710 710 9113 61 710 710 913 81 81 81 914 81 81 81 915 81 81 81	R131 THE M32 K131 THR K85 K136 VAL K85 F147 SER VAL F147 SER F14 F147 SER VAL F147 SER VAL F147 SER VAL F169 THR F14 F159 THR F14 F160 ARO ARO

• Molecule 5: 39S ribosomal protein L36, mitochondrial

Chain 4:

63%

• Molecule 6: 39S ribosomal protein L37, mitochondrial

34%

Chain 8:	60%	7%	33%
MET THR ALA SER VAL LEU ARG SER SER ILE	SER LIEU ALA ALA ALA ALA PRO PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	CLU CLU CLU CLU CLU CLU ARG ARG ARG LLU CLU CLU CLU CLU CLU	TLLC TLLC MET MET ARG ARG CLU PRO PRO PRO PRO
E63 A 98 E100 V 104	E110 R114 A115 L116 K116 K116 K116 K118 R131 E141 E141 E141 D166	F169 P170 F171 E172 E172 P178 P178 C120 C120 VAL	LYE LYS ARG
• Molecule 1	0: 39S ribosomal protein	L41, mitochondria	1
Chain 9:	86	%	• 9%
MET GLY VAL LEU ALA ALA ALA ALA ALA ARG	CYS LEU VAL VAL CYA GAG CAG CAG CAG CAG CAG CAG CAG CAG CA	N134 F135 L136 R137	
• Molecule 1	1: 16S mitochondrial rRI	NA	
Chain XA:	65%		27% • •
C1671 C1672 U1673 A1674 A1674 A1680 C1681 C1685	C1689 A1692 C1693 C1695 C1695 C1695 C1695 C1695 C1695 C1699 U1700 U1700 U1701 U1701 C1699 C1699 C1699 C1699 C1699 C1702 A1702 C1707 A1702	61700 61710 61711 61711 61712 61712 41729 01729	C1734 C1734 A1735 A1737 A1737 A1737 C1742 C1742 C1749 C1749 C1749 C1749 C1749 C1749 C1749 C1749 C1749 C1749 C1760 A1761 A1761 A1761
A1763 C1764 C1765 C1769 C1770 A1775 A1775 C1776	41777 01780 01787 01787 01791 01792 01795 01795 01795 01796 01796 01800 01800	41811 11809 11809 11811 11809 11809 11822 11822 11822 11828 11828	A1832 A1832 C1833 A1836 A1836 A1836 A1836 C1845 C1845 C1845 C1845 A1855 A1855 A1855 A1855
U1857 G1858 A1859 A1864 A1864 A1868 A1869	U1872 U1877 U1877 U1878 U1878 A1882 C1888 C1888 C1888 C1888 C1888 C1902 C1903	A1909 A1917 C1918 C1918 C1919 C1918 C1938 C1938 C1944 C1944	A1953 A1953 A1957 G1958 A1961 A1971 A1971 A1973 G1973 A1973 U1976 U1976 U1976 U1976
U1983 01984 01985 01985 01991 01991 01993	A1994 C2001 C2001 C2005 A2003 A2003 C2016 C2016 C2016 C2016 C2016 C2017 C2017 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2020 C2001 C2001 C2002 C2001 C2002 C2001 C2002	C2036 U2037 U2038 A2038 A2055 U2055 A2061 A2061 A2065 A2065 A2065 A2065	C2065 C2065 C2065 C2065 C2079 C2079 C2079 C2079 C2079 C2079 C2096 C2096 C2096 C2096 C2096 C2096 C2096 C2096 C2079 C2079 C2079 C2065 C2075
G2098 U2099 A2104 C2111 A2112 C2113 G2113	C2126 U2126 A2134 A2135 A2135 A2145 A2146 C2147 A2146 C2147 C2146 C2147 A2151 A2151 A2151 A2151	U2159 A2160 A2166 A2167 A2168 A2168 U2171 U2177 U2177 A2178	A2180 A2181 A2181 A2181 C2183 C2183 C2183 A2191 A2195 A2196 A2196 A2196 A2196 A2196 A2196
C2212 A2213 A2214 C2215 C2216 C2217 C2218 C2218 C2218	с с с с с с 2228 А2229 А2229 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2236 С 2228 С 22228 С 227 С 2228 С 227 С С С С	12244 12244 12245 12246 12246 12249 12249 12249 12249 12250 12260 12261 12258 12258 12258	C2263 C2263 C2283 C2283 C2283 C2283 C2283 C2283 C2283 C2283 C2295 C2295 C2320 C2320 C2322 C2322
C2326 C2332 C2332 C2332 C2335 U	A A A2355 A2357 C2357 C2357 C2357 A2373 A2373 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2379 C2377 C2375 C2377 C2377 C2377 C2375 C2375 C2375 C2357 C23757 C2375 C	2385 U2385 U2387 U2387 A2395 A2395 A2401 A2400 A2401 A2400	22411 22411 22412 22415 22415 22415 22415 22415 22415 72418 A2418 A2458 A2451 A2451 A2451 A2451 C2453
A2457 A2458 A2463 A2466 A2466 G2470 G2471	A2472 U2475 C2476 C2477 C2478 C2478 U2485 U2485 U2499 A2500 A2500 A2506 A2506	C2511 U2615 U2615 C2516 C2517 C2520 C2523 C2523 A552 C2523 C2523	12531 12531 2531 2537 25537 2553 2555 2555 2555 12555 2555 2555 255
C2577 C2578 C2579 U2580 A2581 A2581 C2582 C2582 C2582	025594 U2594 A2601 02603 02603 C25605 U2606 U2614 U2618 U2618 U2628 U2628 U2628 U2628	0.2655 0.2655 0.2643 0.2643 0.2644 0.2654 0.2655 0.2655 0.2655 0.2655 0.2655 0.2655 0.2655 0.2655 0.2655	A2662 U2665 A5672 A5672 Q2673 U25674 U2567 C2683 C2683 C2683 C2687 C2687 C2687 C2687 C2687 C2687 C2687 C2687 C2687 C2687 C2687 C2687 C2688
		WORLDWIDE PROTEIN DATA BANK	

• Molecule 17: 12S mitochondrial rRNA

E207	H288 R292 V295 R310 G312 Q312 D321 R345 1345	A347 A347 E360 V361 E362 R365 D373	R376 R377 E378 R379 R388 R388 R388 R388 R388 R388 R388 R38
• Molecule 24: 28S ribosom	al protein S10, mitocl	nondrial	
Chain AH:	57%	10%	33%
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PHE SPRE VAL VAL ASN THR SSR CLY SSR ASN ASN ASN CLY CLEU CLEU	LEU LEU SER THR ASN MET LLYS LLYS CLN CLN	Frax SSR ASN LEO HE1 HE1 VC2 VV2 VV3 TE4 F67 E68
• Molecule 25: 28S ribosom	al protein S11. mitocl	SSEELSEES ondrial	dtu LYS SER SER SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
Chain AI:	60%	10%	30%
MET ALA ALA VALA VALA VALA ARG ALA ARG ALA ALA ALA ARG ALA ARG ARG THR THR THR THR THR THR THR THR THR	ALA ALA ARG VAL VAL VAL ALA ARG ALA GLY THR THR THR THR CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	ALA ARG GLN LEU CLN GLN ASP ALA ALA ALA LYS	L CLU VAL GLU GLU GLN GLN GLN ALA ALA ALA PRO SER HIS HIS FIS
669 571 571 874 874 879 881 881 881 881 881 882 882 882 881 841 8 119 8 119 8 119 8 113 8 8 113 8 8 113 8 8 8 8 8 8 8 8 8	R146 V151 R158 R158 8174 D177 1131 T131 R187	L194	
• Molecule 26: 28S ribosom	al protein S12, mitocl	nondrial	
Chain AJ:	66%	12%	22%
MET SER SER TRP SER CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	PAL PAR ARG ARG THR THR CTR SET A SET A 33 A 35 A 31 A 35 A 35 A 35 A 35 A 35	L 49 G 50 P 51 B 53 G 55 G 55 G 55 G 55 G 55 G 55 G 55 G	K72 R84 L85 R89 R89 P96 P96 R114 R114 R112
x130 131 ×138			
• Molecule 27: 28S ribosom	al protein S14, mitocl	nondrial	
Chain AK:	70%	9%	21%
MET ALLA ALLA ALLA ALLA PHE CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLE	ALA SER GLY VAL VAL ARC SER R36 ES D49 E50 E50	069 V70 D72 B72 B73 B72 B73 B78 B90 S95	R1 03 R1 12 N1 28
• Molecule 28: 28S ribosom	al protein S15, mitocl	nondrial	
Chain AL:	57%	7%	36%
MET LEU LEU VAL VAL TRP TRP TRP TRP TRP TRP TRP TRP TRP TRP	LEU VAL PRO GLY CLY CLY PRO GLY GLY SER ALA FRO CLY SER ALA ASN	GLN TRP GLY GLY LEU GLN GLN GLN ARG SER LEU LEU	GLN ALA ALA ARG ARG CLY ARG ARG VAL VAL VAL VAL VAL VAL VAL VAL VAL ARG ALA OCTON

WORLDWIDE PROTEIN DATA BANK

• Molecule 46: 39S ribosomal protein L4, mitochondrial

• Molecule 49: 395	S ribosomal protein L11, mito	chondrial	
Chain XJ:	82%	6	5% • 11%
MET SER SER LEY GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	EPHU VALU GLY GLY GLY KK68 KK68 KK68 KK68 KK68 KK68 FP55 FP55 FP55 FP55	C 105 C 105 C 105 C 106 C 106 M 109 M 124 M 131 M 142	R154 V155 D158 D158 L159 SER E160 A187 A187
LYS			
• Molecule 50: 395	S ribosomal protein L13, mito	chondrial	
Chain XK:	90%		10% •
MET 82 82 83 40 40 426 836 836 836	040 641 142 142 673 6110 6110 6114 1136 6136 6136 6136 6136 1336 1137 1137		
• Molecule 51: 395	S ribosomal protein L14, mito	chondrial	
Chain XL:	66%	13%	21%
MET ALA PHE PHE THE CLY GLY GLY FLEU FLEU PHE CYS VVA	VAL SVAL ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	T36 R37 N43 R53 R56 C57 K63 K81	M91 M96 R99 K117 K120 I140
A141 0142 N143 V145 V145			
• Molecule 52: 398	S ribosomal protein L15, mito	chondrial	
Chain XM:	79%		18% •
MET ALA ALA GLY PRO FRO GLY GLY GLY GLY A10	R21 N26 N30 R33 R33 R33 R33 R44 R47 R47 R54 R57 R57 R57 R57 R57 R57	175 176 177 177 177 177 177 177 177 177 177	q102 1103 1106 1106 1106 1106 1125 1133 1133 1133 1148
N153 V156 Q157 A177 A177 R182 I186	F193 P201 F201 F202 R203 B216 D216 A217 K218 K218 K218 F235 E231 E235 E235	M265 L266 C257 T268 D261 Y293 S296 S296	
• Molecule 53: 395	S ribosomal protein L16, mito	chondrial	
Chain XN:	76%	12%	6 12%
MET TRP ARG LEU LEU ALA ALA ALA ALA PLU LEU LEU	VAL PRO LEU PRO LEU SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	S70 D71 172 R73 E78 A79 E81 E81 E81 E81 C85 K129	K134 K134 K155 K155 R158 R158 R158 Q173 G173 G174
F1 75 Q1 78 K1 92 R1 92 R1 92 R1 93 R1 98 R201 D201 D201	E203 E204 N208 N211 D234 L235 R250 V251		

• Molecule 54: 39S ribosomal protein L17, mitochondrial

Chain XO:	72%	15%	13%	-
MET ARG LEU SER ALA ALA ALA	19 126 126 126 128 129 160 160 160 160 160 160 160 160 160 160	E124 C129 L130 S140	N146 L149 L152	<mark>Q160</mark> GLU ALA SER
ASN HIS SER SER HIS THR ALA GLN	THR PRO GLY ILE			
• Molecule	55: 39S ribosomal protein L18, mitochondrial			
Chain XP:	71%	8% •	21%	-
MET ALA LEU ARG SER ARG PHE TRP	GLY LLEU PHE VAL VAL VAL VAL ARG ARG PHE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	R79 L80 R81 H87	E94 K113 H114 L115 Y116	E137
A138 S162 E166 E179				
• Molecule	56: 39S ribosomal protein L19, mitochondrial			
Chain XQ:	72%	9%	18%	
MET ALA ALA CYS CYS TLE ALA ALA GLY	HIS THR ALA ALA ALA ALA ALA GLY GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	GLN SER THR GLY PRO SER	GLU PRO GLY ALA PHE QSS	I62 V63 D64 K65
H66 R67 P68 V69 E70 P71	E72 E79 E79 E79 H103 H103 H103 H103 H103 H103 H103 H103	N237 F238 D268 M269 M270	E279 W283 S292	
• Molecule	57: 39S ribosomal protein L20, mitochondrial			
Chain XR:	83%		11% 6%	
MET VAL PHE LEU ALA GLN LEU	TRP R17 R17 R20 R36 R37 R65 R65 R65 R65 R65 R65 R65 R65			
• Molecule	58: 39S ribosomal protein L21, mitochondrial			
Chain XS:	73%	5%	22%	I
MET ALA ALA SER SER SER LEU THR VAL	THR LEU GLY ARG CLEU ARG ARG ARG ARA SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	THR S45 P48	H76 W106 1114	E126 R127 R155

• Molecule 59: 39S ribosomal protein L22, mitochondrial

Chain XT:	71%	9%	19%	
MET ALA ALA ALA ALA VAL LEU GLN GLN GLY GLY	ALA LLEU TRP ASN ASN ASN ASN ASN ASN CLY CLU CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	K84 W88 K92	199 1103 E119 E119 E123	D126 M127
R137 R149 R149 G160 R161 R163 R163	0172 1203 1206 1212 1212			
• Molecule 60	: 39S ribosomal protein L23, mitochondrial			
Chain XU:	81%	:	11% 8%	
MET A2 L9 Y10 R11 L12 C13 C13 C13 C13 C13 C13 C13 C13 C13 C13	L17 P31 P31 P31 P31 P45 P45 P45 P45 P45 P73 P73 P73 P73 P73 P73 P73 P73 C11 C73 C12 C73 C12 C73 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	ALA ALA ASP D125 L153		
• Molecule 61	: 39S ribosomal protein L24, mitochondrial			
Chain XV:	86%		8% 6%	
MET ARG LEU SER ALA LEU LEU ALA ALA	SER LYKS VAL 115 VAL 156 V64 V64 V77 V77 V77 C15 146 C141 C141 C141 C141 C141 C141 C141	N152 D163 D181	G203 G203 K211 K212 K212 Y216	
• Molecule 62	: 39S ribosomal protein L27, mitochondrial			
Chain XW:	66%	9% •	25%	-
MET ALA SER VAL VAL LEU LEU LEU ARG THR	ARG THR ALA ALA ALA ALA SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	H62 H62 N65 R74	H107 E112 D115 L116	R119 L120 P121
K122 V125 L148				
• Molecule 63	: 39S ribosomal protein L28, mitochondrial			
Chain XX:	84%		11% 5%	
MET P2 K5 R44 Q76 W80	681 682 883 893 894 100 8110 1118 1118 1118 1118 1118 1118	R163 R168 A201 T207	E210 L226 1229	L243 S244 GLU PRO
ALA VAL VAL CLN GLN LYS ARG ALA SER GLY GLN				
• Molecule 64	: 39S ribosomal protein L47, mitochondrial			
Chain XY:	61% 10%	2	9%	
MET ALA ALA ALA ALA GLY CLU LEU LEU CYS	ARG ARG VAL SER SER ALA ALA SER SER ARG SER ALA CVS CLN VAL THR CLU VAL CLU CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LHR PRO ASN VAL THR SER PHE	HIS GLN TYR ARG LEU LEU HIS THR	THR LEU SER

ARG 1475 663 663 663 676 876 878 878 878 878 878 878 878 878	E161 R175 R175 R180 R193 R197 R197 R197 F290 F200 F200	H207 R213 K220 E224 K230	H240 LEU ALA ALA ALA ALA GLU CLN CLN CLN SER SER SER SER VAL
• Molecule 65: 39S ribosomal	protein L30, mitochon	drial	
Chain XZ:	63%	11%	25%
MET ALA ALA ALA CLY CLEU ARG ARG CLU PRO PRO PRO PRO PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	VAL SER LEU LEU THR TRP TRP TRP TRP TRP TRP TRP TRP TRP TR	E54 R71 K73 K73 S74 R77 V80	W30 W31 K83 K83 K83 D84 I86 M88 W107 W106 W107
V113 L124 L151 V154 V154 Q10 Q10 Q10 ALA ALA ALA ALA ALA ALA SER			
• Molecule 66: 39S ribosomal	protein L42, mitochon	drial	
Chain a:	68%	32	%
MET VALA VALA ALA ALA ALA ALA ALA VAL CVAL C	ALN ALX ALX ALA ALA TUBU TUBU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	P76 ARG ASP ASP PRO PRO PRO ASN ASN	E88 [95 [95 [99 [199 [100 [100 [101 E101 R142
• Molecule 67: 39S ribosomal	protein L43, mitochor	drial	
Chain b:	69%	31	%
MET 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	ILE LEU LEU LEU PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	PRU ILE SER SER SER LEU LLEU ALA PRO	ALA PRO LEU SER VAL SER VAL SER CYS FRO FRO TLEU
VAL PRO ALA LEU THR THR VAL CYS SER ALA			
• Molecule 68: 39S ribosomal	protein L44, mitochon	ıdrial	
Chain c:	83%		17%
MET ALA SER GLY CGLY VAL LEU ALA CLN GLN GLN GLN GLN CTS CLN CTS CLN CAL ALA PRO PAL ALA	LYS LEU VAL PRO PRO PRO PRO PRO PRO CLY CLY CLY CLE CLY CLY	GLU ALA VAL LEU LEU ASN L119 R302	V316 SER SER LYS PRO LYS GLU THR LEU ALA ALA GLU CYS
SER TILE ALA SER			
• Molecule 69: 39S ribosomal	protein L45, mitochon	drial	
Chain d:	70%	29	0%
MET ALA ALA ALA ALA PRO PRO CLY CLEU CVS SER SER PHE SER PHE CLY TRP PHE CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	PRO VAL LEVU VAL FIR OLIN GLIN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS ARG PHE THR PRO PRO TYR GLN BOD	LYS PHE LYS THR GLU CLU CLU CLV GLU GLU HG4 A70 A70
L72 K78 K78 K78 K79 B80 B80 A100 A100 A100 A10 A14 A14 A14 A14 A14 A14 A14 A14 A14 A14	HRG GLU GLU GLU GLU GLU CYS LYS T115 M202 M203 M203 M203 M203 M207	P289 TYR GLU GLU GLU GLN GLN CUN	diu ALA GLU CYS PRO PRO FRO ALA ALA
	W O R L D W I PROTEIN DATA B	D E AN K	

• Molecule 70: 39	S ribosomal protein L46, mitoo	chondrial	
Chain e:	77%	22%	
MET ALA ALA PRO PRO VAL ARG THR THR LEU CLU CLU CLU ALA	GLY TRP ARG ARG ARG ARG GLY GLY GLY GLY SER SER SER SER SER SER ALA ALA ALA ALA ALA	ALA ALA PRO SER SER SER SER ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ASP TLE
LEU L116 L129 q130 M144 D145 d166 d166	V170 4193 4193 4202 4205 4202 412 412 412 412 412 412 412 41	C241 ◀ F243 ♦ A247 ♦ M248 ♦ M248 ♦ K274 ♦ L279 ♦	
• Molecule 71: 39	S ribosomal protein L48, mitoo	chondrial	
Chain f:	67%	33%	
MET SER CLT CLT CLT CLT CLT CLT CLT CLT CLT CTS ARG ASN	ASN THR THR PHE CLN CLN CLN CLN CLN ARG PHE CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	VAL VAL CLY CLY CLY CLY CLY SER SER ARC PRO PRO PRO CLY SER CLY SER CLY SER CLY SER CLY SER CLY SER CLY SER CLY SER CLY SER CLY SER CLY CLY SER CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	VAL
GLU VAL ARG ALA ALA ALA ASN ASN CLY CLY CLY CLY CLY	ASP ASP GLN GLN M144 L146 K210 K210 K212		
• Molecule 72: 39	S ribosomal protein L49, mitoo	chondrial	
Chain g:	79%	• 20%	
MET ALA ALA ALA PHE PHE ALA ALA CLEU CLEU CLEU TRP TRP	ARG CLY VAL ARG ARG ARG CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	E64 1377 F168	
• Molecule 73: 39	S ribosomal protein L50, mitoo	chondrial	
Chain h:	68%	• 32%	
MET ALA ALA ALA ALA ALA ALA SER SER CLY THR THR ARG ARG ARG	PHE MET TRP TRP TRP TRP SRR CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	MAL VAL VAL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	D106
Listen and the second se			
• Molecule 74: 39	S ribosomal protein L51, mitoo	chondrial	
Chain i:	76%	24%	
NET ALA GLY GLY ASN LEU LEU SER GLY ALA ALA ARG ARG ARG	TRP TRP ASP TASP VAL PRO CYS ALA ALA ALA ALA CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS		
• Molecule 75: 39	S ribosomal protein L52, mitod	chondrial	

Chain j:	70%	30%	
MET ALA LEU GLY THR VAL LEU PHE THR GLY	VAL ARG ARG ARG ARG ARG CYS SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALLI SER LLFU SER SER PRO SER SER CLIN	
• Molecule 76:	39S ribosomal protein L53, m	itochondrial	
Chain k:	85%	15%	
MET A2 R7 A96 A86 A16 A14 A14	SER SER ASP CLY ASP CLY ALA ASP CLY ALA ASP ASP ARG		
• Molecule 77:	39S ribosomal protein L54, m	itochondrial	
Chain l:	58%	42%	
MET ALA THR LYS LYS ARG GLY ALA THR ARA	THR TRP ALA GLY GLY GLY GLY GLU CLEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ASP TYR ATA LYS LYS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	
E30 A00 E38 E108 E108	ktia6 ARG LEU		
• Molecule 78:	39S ribosomal protein L55, m	itochondrial	
Chain m:	47%	53%	
MET ALA ALA ALA CLY CLY SER LEU LEU LEU LEU LEU LEU LEU	ARG GLM SER THR THR VAL LYS LYS CLY CLY CLY CLY CLY CLY CLY CLY CLY THR CLY TRP SER SER SER SER SER ALG	SSF S35 T83 LEU LEU S94 ARG GLN GLN CLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	SER ASP LEU
HIS VAL GLU ARG ARG ARG GLN PHE TRP TRP TRP	THR LLYS		
• Molecule 79:	Ribosomal protein 63, mitoch	ondrial	
Chain o:	92%	8%	
MET PHE LEU THR ALA LEU TRP R9 R9			
• Molecule 80:	Peptidyl-tRNA hydrolase ICT	1, mitochondrial	
Chain p:	62%	38%	
MET MET ALA ALA ALA ALA ARG CYS CYS LEU TRP GLY CLEU CLEU	ARG ARG ALA ALA ALA LEU TRP PRO PRO PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA CYS CYS PRO CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	LYS LYS GJY THR THR CJY CJY CJY CJY CJY CJY SFR SFR SFR SFR SFR SFR SFR SFR SFR SFR	GLY GLM ASN VAL

• Molecule 86: 39S ribosomal protein S30, mitochondrial

Chain s:	84%	16%
MET ALA ALA ALA ALA ALA CYS CYS CYS CYS CYS EEU LEU LEU LEU CRU ARG ARG CLY	PRO ARG SER SER LLEU LLEU LLEU LLEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	P119 P119 PR0 PR0 PR0 G11 PR0 G11 PR0 G11 PR0 C11U PR0 PR0 PR0 A1A
LEU ASP LEU B234 C234 C330 C330 C330 C10 C10 C10 C10 C10 C10 C10 C10 C10 C1	LEU GLU ASN	
• Molecule 87: 39	S ribosomal protein L12, mitochondri	al
Chain t1: 23	3% • 77%	
MET LEU PRO ALA ALA ALA ALA ALA ALA ALA CY CYS CYS	LEU LEU LEU ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	HIS ARD CYS CYS E-15 P- P- P- P- P- P- P- P- P- P- P- P- P-
110 A11 S12 L13 T14 L15 L15 E17 E17 S19	121 121 121 122 123 123 123 123 123 123	ALA ALA VAL ALA ALA ALA ALA ALA ALA ALA
THR VAL ARG LEU THR GLU GLU ALA PRO VAL ASP LYS VAL VAL	LYS LEU TLE CYS CLU TLE CYS CLU TYR LYS CLY CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	TILE ALAS ALAS ALAS ALA ALA ALA ALA ALA ALA
VAL GLY GLY THR VAL LEU GLU GLU		
• Molecule 87: 39	S ribosomal protein L12, mitochondri	al
Chain t2: 10%	85%	
MET LLEU PRO ALA ALA ALA ALA ALA ALA PRO CTR PRO CYS	LEU LEU ARG ARA ARA ARA ARA ARA ARA ARA ARA ARA	HIES ARG CTAS ARG CTAS CTAS CTAS ALA ALA ALA ALA ALA ALA ALA ALA ALA A
PR0 P1 K2 L3 Q4 Q5 C5 C5 C9 D9	110 A11 S12 L13 T14 T14 T14 T18 M22 T28 K27 T28 K27 T18 C18 C18 C18 C18 C18 C18 C18 C18 C18 C	dLY VAL MET MET MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
ARG THR HIS PHE THR VAL LEU GLU ALA LYS PRO	VAL VAL LYS LYS LYS LYS LITE LITE LYS ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	LEU GLN GLN GLN GLU GLU ALA ALA ALA ALA ALA ALA CLU CLY CLV CLV CLV CLV CLV CLV CLV
ALA LEU CLEU CLU ALA VAL CLY CLY CLU CLU		
• Molecule 87: 39	S ribosomal protein L12, mitochondri	al
Chain t3: 15%	85%	
MET LEU PRO ALA ALA ALA ALA ALA ALC FRO CLY CYS	LEU GLY ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	HIS GIA ARG CYS GIU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
R0 75 85 85 85 85 85 85 85 85 85 85 85 85 85	110 811 113 114 115 115 115 118 118 118 118 112 121 123 123 123 123 123 123 123 123	ASP VAL CEV VAL LEU VAL MET GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A

I G I G I G G I G I G I G I G I G I G I	

ALA GLU LYS TILE LYS ALA ALA ALA ALA CLU GLU CLU CLU CLU CLU CLU CLU CLU CLU

• Molecule 87: 39S ribosomal protein L12, mitochondrial

_	15%	
Chain t4:	15%	85%
MET LEU PRO ALA ALA ALA ARG PRO PRO LLEU	LIN CASE PRO PRO PRO PRO ALA ALA ALA ALA ALA ALA ALA VAL VAL VAL	ARG HIS ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
PRO P1 K2 I3 Q4 Q5 L6	 V/ Q8 A11 A11	K256 K27 K27 K27 K27 K27 K26 K27 K26 K28 K128 K128 K128 K128 K128 K128 K128
ILE PRO ILE ALA LYS GLU ARG THR HIS	THR VAL ARG LEU THR THR THR ALA ALA ALA ALA ASP LYS LYS LYS LYS LYS CUU CUS CUU CUS CUS CUS CUS CUS CUS CU	GUY ALL ALL ALL ALL CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL
ALA GLU CYS ILFE LYS ALA ALA ALA CLU GLU	VAL VAL GLY THR VAL VAL LLEU GLU GLU	
• Molecule 8	7: 39S ribosomal protein L12, mi	tochondrial
Chain t5:	15%	85%
MET LEU PRO ALA ALA ALA ARG PRO LLEU	LLF CYS CYS CYS CYS CYS CYS ALA ALA ALA ALA ALA ALA CYS CYS CYS CYS CYS CYS	ARG HIS ARG SER ARG GLY GLN GLN GLN GLU ALA ALA ALA ALA ALA ALA GLU CYS GLU CYS GLU CYS GLU CYS CYS CYS GLU
PR0 P1 K2 L3 Q5 L6	v, 110 110 110 1114 1115 113 114 115 115 118 118 118 118 118 118 118 118	K27 72 128 128 128 128 128 128 128 128 128 12
ILE PRO ILE ALA LYS GLU ARG HIS	THR VAL ARG LEU THR THR THR ALA ALA ALA ALA LYS LYS LYS LYS LYS CLU STL LTS CLU STL CLU STL CLU STL CLU STL CLU STL CLU STL CLU STL CLU STL CLU STL CLU STL STL STL STL STL STL STL STL STL STL	GLY ALK ALK ALK CLU CLY CLN CLN CLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
ALA GLU LYS LYS ILE LYS ALA ALA LEU GLU	VALA VALA GLY CHY THR VALL LEU CLEU CLU	
• Molecule 8	7: 39S ribosomal protein L12, mi	tochondrial
Chain t6:	14%	86%
MET LEU PRO ALA ALA ALA ARG PRO LEU	LINF CYS CYS CYS CYS CYS CYS ALA ALA ALA ALA ALA ARG CYS CYS CYS VAL VAL VAL	ARG MHET ARG SER SER SER SER SER SER SER ALZ ALZ ALA ALA ALA ALA ALA ALA ALA ALA
*****	•••••	•••
PRO PRO I 3 Q4 Q5 V7	411 110 110 113 113 113 113 113 113 113 1	A.20 LEU LEU LEU LEU LEU VAL VAL VAL VAL VAL VAL VAL ALA ALA ALA
ILE PRO ILE ALA LYS GLU ARG THR HIS	THR VAL ARG LEU THR THR CLU THR ALA CUU ALA CVAL LYS CLYS CLYS CLYS CLYS CLYS CLNS CLNS CLNS CLNS CLNS CLNS CLNS CLN	GLY ASN ALL ALN CLU CLN CLN CLN CLN CLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU

ALA GLU CLYS CLYS CLYS ALA ALA ALA CLU GLU VAL VAL VAL VAL LEU VAL CLEU

• Molecule 88: Quinupristin

Chain A:	25%	12%	62%
MHW1 T2 DBB3 P4 F5 MHV6 0047 MHT8			

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	24491	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.304	Depositor
Minimum map value	-0.137	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.02	Depositor
Map size (Å)	546.0, 546.0, 546.0	wwPDB
Map dimensions	520, 520, 520	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.05, 1.05, 1.05	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: P5P, GTP, ZN, MHU, MHV, DOL, MHT, MG, DBB, 004, MHW, Y5P

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.30	0/895	0.45	0/1201	
2	1	0.27	0/444	0.48	0/591	
3	2	0.35	0/382	0.43	0/507	
4	3	0.35	0/852	0.45	0/1136	
5	4	0.29	0/349	0.45	0/461	
6	5	0.28	0/3299	0.43	0/4495	
7	6	0.28	0/3041	0.42	0/4137	
8	7	0.26	0/2420	0.42	0/3270	
9	8	1.79	1/1199~(0.1%)	0.46	2/1612~(0.1%)	
10	9	0.29	0/1024	0.42	0/1379	
11	XA	0.39	0/35612	0.78	1/55425~(0.0%)	
12	A0	0.23	0/1727	0.42	0/2338	
13	A1	0.24	0/2276	0.40	0/3079	
14	A2	0.26	0/939	0.42	0/1256	
15	A3	0.29	0/621	0.46	0/820	
16	A4	0.25	0/4559	0.41	0/6149	
17	AA	0.27	0/21952	0.76	1/34164~(0.0%)	
18	AB	0.26	0/1819	0.41	0/2462	
19	AC	0.27	0/1112	0.42	0/1505	
20	AD	0.25	0/2768	0.44	0/3707	
21	AE	0.26	0/989	0.44	0/1335	
22	AF	0.25	0/1708	0.40	0/2291	
23	AG	0.25	0/2559	0.41	0/3429	
24	AH	0.26	0/1128	0.43	0/1529	
25	AI	0.26	0/1031	0.43	0/1390	
26	AJ	0.26	0/854	0.45	0/1148	
27	AK	0.24	0/879	0.43	0/1182	
28	AL	0.26	0/1406	0.40	0/1878	
29	AM	0.25	0/941	0.41	0/1265	
30	AN	0.26	0/864	0.44	0/1169	
31	AO	0.25	0/1580	0.40	0/2150	
32	AP	0.27	0/782	0.40	0/1050	

Mol Chain		Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	AQ	0.28	0/746	0.43	0/993	
34	AR	0.26	0/2103	0.51	3/2842~(0.1%)	
35	AS	0.26	0/1127	0.40	0/1518	
36	AT	0.26	0/1361	0.42	0/1829	
37	AU	0.24	0/1482	0.39	0/1987	
38	AV	0.24	0/2925	0.40	0/3948	
39	AW	0.25	0/778	0.45	0/1048	
40	AX	0.25	0/2886	0.43	0/3909	
41	AY	0.25	0/985	0.39	0/1329	
42	AZ	0.25	0/748	0.39	0/1000	
43	XB	0.22	0/1400	0.73	0/2168	
44	XD	0.30	0/1879	0.48	0/2527	
45	XE	0.30	0/2465	0.45	0/3344	
46	XF	0.34	0/2071	0.45	0/2817	
47	XH	0.28	0/798	0.44	0/1073	
48	XI	0.26	0/1727	0.43	0/2340	
49	XJ	0.24	0/1309	0.40	0/1764	
50	XK	0.31	0/1495	0.41	0/2029	
51	XL	0.29	0/904	0.44	0/1218	
52	XM	0.32	0/2359	0.45	0/3185	
53	XN	0.30	0/1825	0.46	0/2458	
54	XO	0.28	0/1269	0.45	0/1708	
55	XP	0.28	0/1190	0.44	0/1611	
56	XQ	0.27	0/2026	0.44	0/2734	
57	XR	0.33	0/1174	0.45	0/1572	
58	XS	0.33	0/1311	0.47	0/1778	
59	XT	0.33	0/1402	0.44	0/1886	
60	XU	0.30	0/1200	0.42	0/1623	
61	XV	0.27	0/1693	0.43	0/2297	
62	XW	0.33	0/893	0.47	0/1204	
63	XX	0.31	$1/2090 \ (0.0\%)$	0.43	0/2825	
64	XY	0.28	0/1571	0.40	0/2106	
65	XZ	0.31	0/1003	0.46	0/1354	
66	a	0.29	0/838	0.44	0/1138	
67	b	0.31	0/1202	0.47	0/1626	
68	С	0.27	0/2264	0.42	0/3059	
69	d	0.26	0/1807	0.42	0/2450	
70	e	1.45	6/1797 (0.3%)	0.43	0/2422	
71	f	0.27	0/1169	0.43	0/1576	
72	g	0.35	1/1134 (0.1%)	0.45	0/1547	
73	h	0.25	0/905	0.44	0/1233	
74	i	0.33	0/849	0.47	0/1135	
75	j	0.28	0/703	0.41	0/947	

Mal	Mol Chain		ond lengths	B	ond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
76	k	0.24	0/743	0.44	0/1003
77	1	0.24	0/692	0.38	0/939
78	m	0.24	0/508	0.45	0/682
79	0	0.31	0/818	0.44	0/1097
80	р	0.25	0/1071	0.43	0/1433
81	q	0.26	0/1413	0.42	0/1906
82	r	0.28	0/1282	0.42	0/1734
86	S	0.29	0/3114	0.45	0/4225
87	t1	0.25	0/366	0.38	0/497
87	t2	0.22	0/238	0.38	0/319
87	t3	0.23	0/238	0.37	0/319
87	t4	0.23	0/229	0.36	0/308
87	t5	0.23	0/229	0.37	0/308
87	t6	0.24	0/213	0.40	0/286
88	A	0.55	0/13	0.66	0/15
All	All	0.36	9/176041 (0.0%)	0.58	$7/249738 \ (0.0\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
44	XD	0	1
48	XI	0	1
50	XK	0	1
55	XP	0	1
71	f	0	1
88	А	2	3
All	All	2	8

All (9) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
9	8	99	ARG	CG-CD	61.33	3.05	1.51
70	е	84	TYR	CD2-CE2	32.53	1.88	1.39
70	е	84	TYR	CD1-CE1	31.48	1.86	1.39
70	е	84	TYR	CE2-CZ	22.46	1.67	1.38
70	е	84	TYR	CE1-CZ	21.25	1.66	1.38
70	е	84	TYR	CG-CD1	18.96	1.63	1.39
70	е	84	TYR	CG-CD2	17.05	1.61	1.39
72	g	36	PRO	N-CD	6.05	1.56	1.47

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
63	XX	149	PRO	N-CD	5.45	1.55	1.47

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
34	AR	309	PRO	O-C-N	11.63	141.32	122.70
34	AR	309	PRO	CA-C-N	-8.78	97.89	117.20
34	AR	309	PRO	C-N-CA	-5.91	106.92	121.70
9	8	99	ARG	CG-CD-NE	5.87	124.12	111.80
11	XA	2098	G	O4'-C1'-N9	5.61	112.69	108.20
9	8	99	ARG	CB-CG-CD	5.61	126.17	111.60
17	AA	765	С	C2-N1-C1'	5.54	124.89	118.80

All (2) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
88	А	2	THR	CB
88	А	4	PRO	CA

All (8) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
88	А	3	DBB	Peptide
88	А	4	PRO	Peptide
88	А	5	MHU	Peptide
44	XD	206	TYR	Peptide
48	XI	197	LEU	Peptide
50	XK	137	ILE	Peptide
55	XP	114	HIS	Peptide
71	f	138	GLN	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	880	903	903	9	0
2	1	439	480	480	7	0

Mol	Chain	Non H	H(model)	H(addad)	Clashos	Symm Clashos
2	0 IIaiii	276	407	11(auteu)	Olasiles	O O
		070	407	400	2 16	0
4	3	001 241	000	000	10	0
	4	341			4	0
	0 6	3204 2047		3201	30	0
(0 7	2947	2841	2840	41	0
8	(2305	2373	2372	24	0
9	8	1175	1202	1202	9	0
10	9	996	987	987	4	0
	XA	31832	16162	16171	219	0
12	A0	1684	1685	1685	16	0
13	Al	2230	2261	2261	38	0
14	A2	925	964	964	17	0
15	A3	610	682	682	5	0
16	A4	4470	4485	4486	67	0
17	AA	19628	9965	9972	134	0
18	AB	1776	1769	1769	15	0
19	AC	1082	1088	1088	13	0
20	AD	2716	2785	2785	28	0
21	AE	972	1001	1001	14	0
22	AF	1668	1715	1716	23	0
23	AG	2505	2492	2490	28	0
24	AH	1105	1136	1136	18	0
25	AI	1011	1052	1052	13	0
26	AJ	838	887	887	16	0
27	AK	861	885	885	13	0
28	AL	1382	1472	1472	15	0
29	AM	920	951	951	9	0
30	AN	846	908	908	10	0
31	AO	1528	1489	1489	20	0
32	AP	765	796	796	8	0
33	AQ	734	749	749	9	0
34	AR	2060	2074	2074	30	0
35	AS	1100	1103	1103	10	0
36	AT	1330	1342	1343	16	0
37	AU	1461	1471	1471	21	0
38	AV	2867	2863	2862	25	0
39	AW	766	785	785	5	0
40	AX	2814	2805	2804	30	0
41	AY	956	912	911	20	0
42	AZ	731	734	734	7	0
43	XB	1255	635	640	5	0
44	XD	1842	1896	1896	27	0

		i previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
45	XE	2396	2403	2402	29	0
46	XF	2013	2045	2044	29	0
47	XH	784	832	832	10	0
48	XI	1691	1783	1783	14	0
49	XJ	1291	1367	1364	7	0
50	XK	1451	1448	1448	9	0
51	XL	889	941	941	14	0
52	XM	2305	2378	2378	36	0
53	XN	1778	1808	1808	18	0
54	XO	1245	1283	1283	17	0
55	XP	1164	1162	1162	12	0
56	XQ	1978	2022	2022	20	0
57	XR	1153	1214	1214	15	0
58	XS	1284	1354	1354	8	0
59	XT	1368	1410	1410	15	0
60	XU	1171	1164	1164	11	0
61	XV	1648	1656	1654	12	0
62	XW	871	898	898	13	0
63	XX	2035	2054	2054	21	0
64	XY	1534	1575	1575	19	0
65	XZ	978	1030	1030	13	0
66	a	813	777	777	0	0
67	b	1178	1180	1180	0	0
68	с	2217	2220	2220	0	0
69	d	1758	1743	1742	0	0
70	е	1762	1767	1767	0	0
71	f	1149	1165	1165	0	0
72	g	1097	1086	1085	0	0
73	h	882	866	867	0	0
74	i	827	857	857	0	0
75	j	689	678	678	0	0
76	k	732	745	745	0	0
77	1	673	654	653	0	0
78	m	500	525	525	0	0
79	0	797	804	804	0	0
80	р	1058	1083	1083	0	0
81	q	1379	1359	1359	0	0
82	r	1247	1267	1267	0	0
83	r1	216	0	145	0	0
84	r3	1459	0	831	0	0
85	r4	1485	0	834	0	0
86	S	3036	3023	3022	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
87	t1	354	379	374	0	0
87	t2	238	268	270	0	0
87	t3	238	268	270	0	0
87	t4	229	255	257	0	0
87	t5	229	255	257	0	0
87	t6	214	236	236	0	0
88	А	73	67	64	5	0
89	0	1	0	0	0	0
89	4	1	0	0	0	0
89	AB	1	0	0	0	0
89	AO	1	0	0	0	0
89	AP	1	0	0	0	0
89	AT	1	0	0	0	0
89	XI	1	0	0	0	0
90	AA	46	0	0	0	0
90	XA	143	0	0	0	0
90	XD	1	0	0	0	0
90	XE	1	0	0	0	0
90	XI	1	0	0	0	0
90	XM	1	0	0	0	0
90	XW	1	0	0	0	0
90	g	1	0	0	0	0
91	XA	48	50	50	1	0
92	AX	32	10	12	0	0
All	All	170662	143052	144870	1143	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (1143) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
16:A4:67:LYS:HE2	41:AY:312:GLU:OE2	1.41	1.17
13:A1:77:LYS:CD	16:A4:91:ASP:OD2	1.94	1.13
13:A1:77:LYS:CG	16:A4:91:ASP:OD2	2.08	1.01
13:A1:77:LYS:HD2	16:A4:91:ASP:OD2	1.61	0.98
34:AR:305:HIS:HD2	34:AR:314:ALA:HB2	1.27	0.97
13:A1:77:LYS:HG3	16:A4:91:ASP:OD2	1.66	0.93
34:AR:305:HIS:HD2	34:AR:314:ALA:CB	1.83	0.92
16:A4:67:LYS:CE	41:AY:312:GLU:OE2	2.19	0.91
53:XN:134:LYS:NZ	53:XN:141:GLY:O	2.04	0.90

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:AA:1032:C:OP1	32:AP:109:LYS:NZ	2.04	0.89
44:XD:132:ASP:OD2	44:XD:135:ARG:NH1	2.05	0.89
17:AA:728:C:OP1	30:AN:5:ARG:NH2	2.05	0.88
7:6:356:ARG:NH1	11:XA:2090:A:OP1	2.06	0.88
48:XI:51:THR:O	53:XN:250:ARG:NH1	2.07	0.88
11:XA:1777:A:N6	11:XA:1780:U:OP2	2.08	0.87
22:AF:79:ALA:O	23:AG:312:GLN:NE2	2.08	0.87
11:XA:1680:A:OP1	64:XY:230:LYS:NZ	2.08	0.86
37:AU:126:GLN:OE1	37:AU:129:ARG:NH2	2.09	0.86
63:XX:144:TYR:O	63:XX:148:THR:HG23	1.75	0.86
34:AR:305:HIS:CD2	34:AR:314:ALA:HB2	2.11	0.85
11:XA:2537:G:O2'	11:XA:2634:U:OP2	1.95	0.85
60:XU:11:ARG:NH2	61:XV:212:LYS:O	2.09	0.84
17:AA:1530:A:OP1	38:AV:64:LYS:NZ	2.11	0.84
11:XA:3063:G:O2'	11:XA:3066:C:OP2	1.96	0.83
12:A0:49:ARG:NH2	37:AU:41:ARG:O	2.12	0.83
11:XA:2261:C:O2'	58:XS:184:ARG:NH1	2.11	0.83
16:A4:108:LEU:CD2	20:AD:154:VAL:HG11	2.09	0.82
52:XM:202:LYS:NZ	52:XM:293:TYR:O	2.11	0.82
23:AG:310:ARG:NH1	40:AX:383:LEU:O	2.12	0.81
7:6:160:ASP:OD2	7:6:267:ARG:NH1	2.13	0.81
27:AK:72:ASP:OD1	27:AK:73:GLU:N	2.13	0.81
29:AM:93:LEU:O	34:AR:175:ARG:NH2	2.14	0.81
11:XA:3068:G:N2	11:XA:3068:G:OP2	2.13	0.81
23:AG:103:ASP:OD1	23:AG:106:ARG:NH2	2.14	0.81
7:6:117:VAL:O	7:6:121:ARG:NH2	2.13	0.81
11:XA:2187:C:O3'	49:XJ:106:LYS:NZ	2.14	0.81
11:XA:1957:A:O4'	59:XT:163:ARG:NH1	2.14	0.80
26:AJ:50:GLY:O	26:AJ:89:ARG:NH1	2.14	0.80
13:A1:154:THR:OG1	24:AH:172:VAL:O	1.99	0.80
29:AM:55:ASP:OD2	36:AT:146:GLN:NE2	2.14	0.80
17:AA:868:C:OP2	17:AA:870:C:N4	2.15	0.80
51:XL:31:ALA:N	51:XL:91:MET:SD	2.54	0.80
23:AG:198:ARG:N	23:AG:246:ARG:O	2.13	0.80
52:XM:53:HIS:O	52:XM:58:GLN:NE2	2.15	0.80
17:AA:659:U:OP1	20:AD:226:ARG:NH2	2.15	0.79
11:XA:1699:C:OP2	64:XY:197:LYS:NZ	2.14	0.79
20:AD:307:LYS:NZ	34:AR:103:TYR:OH	2.16	0.79
1:0:139:ARG:NH2	11:XA:2322:C:OP1	2.16	0.79
11:XA:2724:G:OP1	46:XF:131:LYS:NZ	2.15	0.79
25:AI:71:SER:O	25:AI:74:ARG:NH1	2.15	0.79

A 4 1	A t a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:AA:780:C:N3	28:AL:197:ARG:NH2	2.31	0.79
17:AA:1589:C:OP1	25:AI:187:ARG:NH1	2.16	0.79
14:A2:38:ARG:NH2	17:AA:1184:U:OP1	2.16	0.79
16:A4:108:LEU:CD2	20:AD:154:VAL:CG1	2.61	0.78
11:XA:3203:A:O3'	45:XE:300:LYS:NZ	2.17	0.78
4:3:104:ARG:NH1	4:3:160:LYS:O	2.16	0.78
15:A3:155:ARG:NH2	17:AA:1154:A:OP2	2.16	0.78
17:AA:825:U:N3	17:AA:827:A:OP1	2.17	0.78
11:XA:2166:C:O2	11:XA:2214:A:N6	2.17	0.78
31:AO:185:SER:O	34:AR:183:LYS:NZ	2.17	0.78
14:A2:9:ARG:NH2	17:AA:1021:U:OP2	2.16	0.77
40:AX:53:GLU:N	40:AX:67:HIS:O	2.17	0.77
47:XH:134:PRO:O	47:XH:138:LYS:NZ	2.17	0.77
17:AA:1557:A:O2'	26:AJ:72:LYS:NZ	2.18	0.77
35:AS:6:LEU:O	35:AS:15:ARG:NH1	2.17	0.77
24:AH:122:GLN:OE1	27:AK:112:ARG:NH1	2.18	0.77
6:5:33:TRP:O	6:5:39:ARG:NH2	2.18	0.77
4:3:175:ASP:O	4:3:178:GLN:NE2	2.18	0.77
22:AF:126:TYR:O	22:AF:134:GLN:NE2	2.18	0.77
58:XS:72:GLU:O	58:XS:76:HIS:ND1	2.16	0.77
49:XJ:85:PRO:O	49:XJ:124:LYS:NZ	2.18	0.77
60:XU:16:GLN:NE2	60:XU:17:LEU:O	2.18	0.77
8:7:190:ASP:O	8:7:295:ARG:NH1	2.17	0.77
22:AF:52:ARG:NH2	23:AG:360:GLU:OE1	2.17	0.76
22:AF:122:GLN:NE2	22:AF:138:GLU:O	2.18	0.76
27:AK:90:ARG:NH2	27:AK:95:SER:O	2.18	0.76
46:XF:75:GLU:OE2	46:XF:210:ARG:NE	2.18	0.76
9:8:110:GLU:OE2	9:8:114:ARG:NE	2.18	0.76
56:XQ:71:PRO:O	56:XQ:73:ARG:NH1	2.18	0.76
17:AA:860:A:N7	17:AA:919:A:O2'	2.18	0.76
47:XH:84:GLU:OE1	63:XX:44:ARG:NH2	2.18	0.76
11:XA:2954:C:O2	53:XN:182:LYS:NZ	2.18	0.76
7:6:27:ARG:N	11:XA:2832:A:N1	2.34	0.76
11:XA:1800:G:N1	11:XA:1803:A:OP2	2.19	0.76
32:AP:140:TYR:O	32:AP:141:ARG:NE	2.18	0.76
1:0:163:GLU:N	1:0:163:GLU:OE1	2.18	0.75
11:XA:2248:U:OP1	57:XR:99:ARG:NH2	2.17	0.75
26:AJ:96:PRO:O	26:AJ:127:ARG:NH2	2.19	0.75
7:6:136:ARG:NH1	55:XP:137:GLU:OE2	2.19	0.75
34:AR:176:GLU:OE2	34:AR:182:ARG:NE	2.20	0.74
11:XA:1689:C:OP2	63:XX:5:LYS:NZ	2.20	0.74

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:AA:701:G:N2	17:AA:841:A:O2'	2.20	0.74
17:AA:826:A:OP1	26:AJ:55:ARG:NH1	2.20	0.74
56:XQ:118:ARG:NH2	56:XQ:202:VAL:O	2.19	0.74
16:A4:108:LEU:HD21	20:AD:154:VAL:HG11	1.68	0.74
18:AB:137:TYR:O	18:AB:264:ARG:NH2	2.21	0.74
11:XA:1700:U:O4	64:XY:193:ARG:NH2	2.20	0.74
23:AG:382:PRO:O	24:AH:131:ARG:NH1	2.20	0.74
16:A4:269:HIS:O	16:A4:270:ARG:NE	2.20	0.74
16:A4:108:LEU:HD21	20:AD:154:VAL:CG1	2.18	0.74
38:AV:173:PHE:O	38:AV:178:THR:OG1	2.04	0.74
54:XO:82:GLU:N	54:XO:82:GLU:OE1	2.21	0.74
14:A2:60:GLU:O	14:A2:62:ARG:NH1	2.21	0.73
41:AY:340:SER:OG	41:AY:377:ARG:NH2	2.21	0.73
37:AU:77:GLU:OE1	37:AU:81:LYS:NZ	2.22	0.73
38:AV:192:LYS:NZ	38:AV:194:THR:O	2.21	0.73
13:A1:74:ALA:O	13:A1:110:ASN:ND2	2.21	0.73
14:A2:42:GLU:N	22:AF:241:TRP:O	2.22	0.73
21:AE:105:CYS:SG	32:AP:64:LYS:NZ	2.61	0.73
36:AT:89:ASP:OD2	37:AU:120:ARG:NH2	2.22	0.73
18:AB:219:THR:O	18:AB:233:THR:OG1	2.05	0.73
8:7:238:ASP:OD1	8:7:239:PHE:N	2.22	0.73
61:XV:150:SER:O	61:XV:152:ARG:NH1	2.22	0.73
29:AM:20:ARG:NH1	29:AM:42:PRO:O	2.21	0.73
42:AZ:26:THR:HG1	42:AZ:30:SER:HG	1.33	0.73
24:AH:74:LYS:N	24:AH:175:THR:O	2.22	0.73
11:XA:1729:U:OP2	63:XX:100:ARG:NH1	2.22	0.72
22:AF:129:ALA:O	22:AF:134:GLN:NE2	2.21	0.72
6:5:30:ALA:N	44:XD:201:GLY:O	2.22	0.72
5:4:84:ARG:NE	11:XA:3188:U:OP2	2.21	0.72
45:XE:345:ILE:O	56:XQ:172:GLN:NE2	2.22	0.72
11:XA:2864:U:O5'	62:XW:50:ARG:NH1	2.22	0.72
14:A2:12:ARG:NH2	17:AA:1125:A:O4'	2.23	0.72
40:AX:121:ALA:N	40:AX:299:ASN:OD1	2.22	0.72
17:AA:1314:C:N3	22:AF:36:ARG:NH2	2.38	0.72
49:XJ:154:ARG:NH1	49:XJ:155:VAL:O	2.23	0.72
2:1:23:GLU:N	2:1:23:GLU:OE1	2.23	0.72
52:XM:72:THR:OG1	52:XM:77:ARG:NH2	2.23	0.72
10:9:22:THR:OG1	10:9:36:ARG:NH1	2.22	0.72
17:AA:947:U:OP1	28:AL:162:GLN:NE2	2.22	0.71
38:AV:96:ARG:NH1	38:AV:101:CYS:SG	2.63	0.71
40:AX:206:GLU:OE1	40:AX:249:ARG:NH1	2.23	0.71

	1.5	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
16:A4:479:GLU:HA	16:A4:482:ILE:HD12	1.71	0.71
40:AX:111:TYR:O	40:AX:115:THR:OG1	2.08	0.71
22:AF:231:GLU:O	22:AF:234:ARG:NE	2.23	0.71
52:XM:148:PHE:O	52:XM:170:ASN:ND2	2.23	0.71
11:XA:2144:A:OP1	57:XR:57:ARG:NH1	2.24	0.71
40:AX:174:ASN:OD1	40:AX:177:ARG:NH1	2.23	0.71
46:XF:167:MET:SD	46:XF:276:GLN:NE2	2.63	0.71
52:XM:203:ARG:NH2	52:XM:261:ASP:O	2.23	0.71
20:AD:97:GLU:N	20:AD:97:GLU:OE1	2.22	0.71
23:AG:272:SER:OG	23:AG:347:ALA:O	2.08	0.71
38:AV:132:LYS:O	38:AV:136:GLY:N	2.23	0.71
48:XI:224:HIS:O	48:XI:228:GLN:N	2.24	0.71
41:AY:303:GLN:NE2	41:AY:307:GLU:OE1	2.24	0.70
53:XN:201:ASP:OD1	53:XN:202:GLN:N	2.24	0.70
11:XA:2712:G:N2	45:XE:257:MET:SD	2.64	0.70
34:AR:305:HIS:CD2	34:AR:314:ALA:HA	2.27	0.70
37:AU:40:GLU:N	37:AU:40:GLU:OE1	2.23	0.70
16:A4:470:GLN:OE1	16:A4:472:ASP:N	2.25	0.70
21:AE:27:GLU:OE1	37:AU:170:ARG:NH1	2.23	0.70
7:6:360:ARG:NH2	11:XA:2869:A:N7	2.39	0.70
40:AX:56:PRO:O	40:AX:59:HIS:NE2	2.24	0.70
13:A1:256:SER:O	13:A1:260:ARG:NH1	2.24	0.69
32:AP:65:CYS:SG	32:AP:68:CYS:N	2.65	0.69
45:XE:69:ASP:OD1	45:XE:154:ARG:NH1	2.26	0.69
52:XM:153:ASN:ND2	52:XM:256:LEU:O	2.25	0.69
59:XT:126:ASP:OD1	59:XT:127:MET:N	2.24	0.69
61:XV:181:ASP:O	64:XY:93:LYS:NZ	2.23	0.69
11:XA:1696:C:OP2	64:XY:180:LYS:NZ	2.24	0.69
6:5:144:ARG:O	6:5:194:LYS:NZ	2.26	0.69
2:1:53:ARG:NH2	11:XA:2879:A:O2'	2.26	0.69
11:XA:2293:A:N6	52:XM:37:GLU:OE2	2.26	0.69
1:0:95:ARG:NH1	11:XA:1821:A:OP2	2.25	0.69
11:XA:2167:A:N6	11:XA:2212:C:OP2	2.26	0.69
13:A1:154:THR:OG1	24:AH:171:GLU:OE2	2.10	0.69
20:AD:283:GLU:O	20:AD:356:GLN:NE2	2.27	0.68
22:AF:70:LYS:O	23:AG:365:ARG:NH1	2.26	0.68
11:XA:2457:A:O2'	54:XO:17:ARG:NH2	2.27	0.68
19:AC:89:ASP:OD1	19:AC:90:VAL:N	2.26	0.68
34:AR:305:HIS:CD2	34:AR:314:ALA:CA	2.77	0.68
11:XA:2634:U:OP1	44:XD:278:LYS:NZ	2.27	0.68
13:A1:77:LYS:CE	16:A4:91:ASP:OD2	2.41	0.68

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:XA:1878:U:O3'	46:XF:92:ARG:NH2	2.27	0.67
11:XA:2928:C:OP2	11:XA:3073:C:O2'	2.12	0.67
45:XE:54:SER:OG	45:XE:57:ASN:OD1	2.11	0.67
7:6:55:ASP:OD2	7:6:59:ARG:NH1	2.27	0.67
11:XA:2515:U:O2'	44:XD:282:ALA:O	2.11	0.67
63:XX:80:TRP:O	63:XX:131:THR:OG1	2.13	0.67
25:AI:81:GLU:O	25:AI:148:ARG:NH1	2.27	0.67
11:XA:1962:A:OP2	11:XA:2501:C:N4	2.27	0.67
18:AB:111:LEU:O	18:AB:113:HIS:ND1	2.27	0.67
40:AX:266:ASN:ND2	40:AX:311:SER:O	2.28	0.67
62:XW:62:HIS:N	62:XW:65:ASN:OD1	2.26	0.67
11:XA:3078:C:N4	11:XA:3079:G:O6	2.28	0.67
12:A0:13:GLU:OE1	12:A0:16:ARG:NH1	2.28	0.67
56:XQ:226:PRO:O	56:XQ:229:TRP:NE1	2.28	0.67
29:AM:59:ASN:ND2	29:AM:63:GLU:OE2	2.28	0.67
34:AR:70:PHE:O	34:AR:76:GLN:NE2	2.28	0.67
50:XK:36:SER:O	50:XK:40:GLN:NE2	2.27	0.67
30:AN:62:ASP:OD1	30:AN:88:VAL:N	2.27	0.66
11:XA:3012:U:O4'	11:XA:3173:G:N2	2.27	0.66
46:XF:126:LYS:NZ	46:XF:130:GLN:OE1	2.28	0.66
3:2:49:ARG:NH2	11:XA:2500:A:N1	2.43	0.66
11:XA:2195:A:O2'	11:XA:2196:A:O5'	2.13	0.66
11:XA:2466:A:OP1	56:XQ:232:ARG:NH1	2.28	0.66
4:3:179:LYS:O	7:6:370:ARG:NH2	2.28	0.66
56:XQ:103:ARG:NH2	56:XQ:167:TYR:OH	2.27	0.66
64:XY:76:GLN:NE2	64:XY:78:LYS:O	2.28	0.66
6:5:149:ASN:ND2	6:5:152:GLU:OE2	2.29	0.66
28:AL:149:ASP:OD2	28:AL:152:HIS:ND1	2.29	0.66
54:XO:58:LYS:NZ	56:XQ:270:MET:SD	2.67	0.66
17:AA:1293:C:N4	33:AQ:80:ARG:O	2.28	0.66
11:XA:2755:A:O2'	63:XX:112:ARG:NH2	2.29	0.66
42:AZ:54:ASN:ND2	42:AZ:57:THR:OG1	2.29	0.66
17:AA:798:C:OP1	29:AM:10:LYS:N	2.29	0.66
16:A4:478:TYR:CE2	16:A4:482:ILE:HD11	2.31	0.66
21:AE:5:GLU:OE2	21:AE:96:HIS:ND1	2.28	0.66
7:6:212:SER:OG	7:6:275:GLN:O	2.14	0.65
7:6:283:GLU:OE2	7:6:307:HIS:NE2	2.29	0.65
11:XA:3220:A:OP1	45:XE:260:LYS:NZ	2.29	0.65
60:XU:9:LEU:N	64:XY:183:GLN:OE1	2.29	0.65
4:3:113:ARG:NH1	52:XM:75:TYR:O	2.30	0.65
7:6:114:ARG:NH1	43:XB:1643:A:OP1	2.30	0.65

A + a 1	At arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:XA:2191:A:N6	11:XA:2198:A:OP2	2.30	0.65
53:XN:234:ASP:OD1	53:XN:235:LEU:N	2.30	0.65
4:3:98:SER:OG	4:3:102:GLY:N	2.30	0.65
48:XI:101:ASN:OD1	48:XI:151:ASN:N	2.30	0.65
16:A4:198:TYR:O	16:A4:239:ARG:NH1	2.28	0.65
17:AA:769:G:N2	17:AA:772:A:OP2	2.28	0.64
27:AK:28:HIS:NE2	42:AZ:60:GLU:OE2	2.29	0.64
26:AJ:84:ARG:NH1	26:AJ:85:LEU:O	2.31	0.64
2:1:34:ARG:NH2	2:1:38:ARG:O	2.30	0.64
17:AA:1053:A:N1	17:AA:1100:C:O2'	2.31	0.64
18:AB:149:ARG:NH2	33:AQ:82:ASP:OD1	2.31	0.64
19:AC:113:ARG:NH2	24:AH:166:GLU:OE1	2.31	0.64
32:AP:82:GLN:NE2	32:AP:133:PRO:O	2.30	0.64
63:XX:118:ILE:O	63:XX:168:ARG:NH1	2.30	0.64
17:AA:1389:G:N2	17:AA:1416:A:N7	2.46	0.64
11:XA:3127:G:O2'	11:XA:3130:A:N6	2.30	0.64
16:A4:478:TYR:CD2	16:A4:482:ILE:HD11	2.32	0.64
1:0:181:ARG:NH1	1:0:186:THR:O	2.31	0.63
17:AA:1411:G:O3'	40:AX:279:LYS:NZ	2.31	0.63
17:AA:1433:A:N3	17:AA:1458:A:N6	2.46	0.63
47:XH:58:ARG:NH1	47:XH:77:HIS:O	2.30	0.63
22:AF:119:LYS:NZ	40:AX:398:LEU:O	2.31	0.63
50:XK:10:GLN:NE2	59:XT:203:LEU:O	2.30	0.63
6:5:334:LYS:N	6:5:362:THR:OG1	2.30	0.63
33:AQ:20:GLU:OE1	33:AQ:24:ARG:NH1	2.32	0.63
34:AR:305:HIS:HD2	34:AR:314:ALA:CA	2.10	0.63
17:AA:826:A:N7	26:AJ:55:ARG:NE	2.46	0.63
38:AV:131:ASN:ND2	38:AV:134:GLN:OE1	2.32	0.63
11:XA:1761:A:O2'	11:XA:1762:A:O5'	2.16	0.63
17:AA:678:U:N3	17:AA:920:G:O6	2.32	0.63
6:5:174:GLU:OE1	6:5:298:ASN:ND2	2.33	0.62
16:A4:455:ASN:O	16:A4:486:TYR:OH	2.17	0.62
17:AA:751:A:OP1	30:AN:47:LYS:NZ	2.31	0.62
51:XL:35:MET:N	51:XL:57:CYS:O	2.30	0.62
10:9:74:VAL:O	64:XY:83:ALA:N	2.32	0.62
25:AI:79:LYS:N	25:AI:82:GLU:OE2	2.31	0.62
16:A4:108:LEU:HD22	20:AD:154:VAL:HG11	1.82	0.62
22:AF:151:ASN:O	22:AF:223:LYS:NZ	2.33	0.62
36:AT:91:GLU:OE2	37:AU:123:ARG:NH1	2.33	0.62
11:XA:1689:C:O2	64:XY:213:ARG:NH2	2.33	0.62
38:AV:321:GLU:O	38:AV:326:LYS:NZ	2.32	0.62

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:XA:2531:U:O4	44:XD:246:ARG:NH2	2.33	0.61
11:XA:2643:G:O2'	11:XA:2645:G:OP2	2.18	0.61
16:A4:67:LYS:HE2	41:AY:312:GLU:CD	2.19	0.61
28:AL:169:ASN:OD1	28:AL:170:LEU:N	2.33	0.61
12:A0:87:TRP:O	31:AO:215:ARG:NH2	2.33	0.61
11:XA:2655:G:N2	11:XA:2659:C:O2'	2.33	0.61
4:3:113:ARG:NH2	11:XA:1750:G:OP2	2.33	0.61
4:3:168:ARG:NH2	4:3:170:ASN:OD1	2.33	0.61
38:AV:222:SER:OG	38:AV:277:ARG:NH1	2.33	0.61
17:AA:668:U:O2'	31:AO:83:GLY:O	2.18	0.61
34:AR:308:HIS:C	34:AR:310:ASP:H	1.98	0.61
56:XQ:279:GLU:OE2	56:XQ:283:TRP:NE1	2.32	0.60
20:AD:136:ARG:N	42:AZ:67:PHE:O	2.34	0.60
11:XA:2822:C:O2'	11:XA:2915:C:OP2	2.19	0.60
17:AA:752:C:O2'	17:AA:793:C:N4	2.34	0.60
36:AT:95:ASN:OD1	36:AT:96:LYS:N	2.34	0.60
7:6:308:GLN:NE2	7:6:311:MET:SD	2.74	0.60
18:AB:77:GLU:OE2	18:AB:259:ARG:NH1	2.34	0.60
11:XA:2581:A:O2'	11:XA:2583:C:N4	2.34	0.60
56:XQ:227:LYS:O	56:XQ:229:TRP:N	2.35	0.60
9:8:100:GLU:N	9:8:100:GLU:OE1	2.34	0.60
23:AG:219:MET:SD	23:AG:223:ARG:NH2	2.75	0.60
1:0:136:GLU:OE1	1:0:177:ARG:NH2	2.35	0.60
61:XV:54:TRP:NE1	61:XV:56:LEU:O	2.35	0.60
11:XA:2294:A:OP2	52:XM:39:ARG:NH2	2.33	0.59
36:AT:109:ASN:ND2	36:AT:111:GLU:OE2	2.35	0.59
45:XE:63:GLN:NE2	45:XE:67:ASP:OD2	2.35	0.59
11:XA:3082:G:N2	11:XA:3085:A:OP2	2.32	0.59
16:A4:67:LYS:CE	41:AY:312:GLU:CD	2.69	0.59
16:A4:99:SER:N	16:A4:102:GLU:OE2	2.33	0.59
34:AR:305:HIS:CD2	34:AR:314:ALA:CB	2.75	0.59
6:5:143:PRO:HA	6:5:146:HIS:HD1	1.66	0.59
11:XA:2499:U:OP2	11:XA:2504:A:N6	2.26	0.59
13:A1:77:LYS:HE3	16:A4:91:ASP:OD1	2.03	0.59
11:XA:1958:G:OP2	59:XT:160:GLY:N	2.36	0.59
17:AA:1162:A:OP1	26:AJ:47:ARG:NH1	2.31	0.59
16:A4:339:LEU:O	16:A4:374:HIS:NE2	2.36	0.59
16:A4:443:ASP:O	16:A4:446:LYS:NZ	2.35	0.59
17:AA:897:C:OP1	26:AJ:114:ARG:NH2	2.35	0.59
61:XV:66:GLU:N	61:XV:66:GLU:OE1	2.35	0.59
8:7:192:TRP:O	8:7:295:ARG:NH1	2.36	0.59

A + 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
20:AD:127:ASN:O	42:AZ:72:ARG:NH1	2.35	0.58
11:XA:2063:G:N2	62:XW:56:MET:SD	2.76	0.58
38:AV:201:GLU:OE1	38:AV:233:LYS:NZ	2.35	0.58
53:XN:80:THR:OG1	53:XN:81:GLU:OE1	2.20	0.58
62:XW:115:ASP:O	62:XW:119:ARG:NE	2.33	0.58
13:A1:83:LEU:O	13:A1:99:LYS:NZ	2.35	0.58
11:XA:3066:C:O2'	45:XE:233:GLN:OE1	2.22	0.58
41:AY:292:GLN:OE1	41:AY:292:GLN:N	2.37	0.58
58:XS:126:GLU:N	58:XS:126:GLU:OE1	2.36	0.58
13:A1:77:LYS:HE3	16:A4:91:ASP:OD2	2.03	0.58
13:A1:81:VAL:O	13:A1:99:LYS:NZ	2.37	0.58
37:AU:110:GLN:O	37:AU:114:ARG:NE	2.36	0.58
13:A1:100:GLU:O	19:AC:156:GLN:NE2	2.36	0.58
13:A1:312:TYR:OH	40:AX:338:ASP:O	2.22	0.58
49:XJ:27:GLY:O	49:XJ:58:LYS:NZ	2.36	0.58
17:AA:1048:C:O2'	17:AA:1049:A:OP1	2.22	0.57
26:AJ:107:ILE:N	26:AJ:131:ASP:OD2	2.31	0.57
40:AX:214:GLU:OE2	40:AX:232:ARG:NH2	2.37	0.57
55:XP:79:ARG:NH1	55:XP:94:GLU:OE2	2.35	0.57
10:9:127:LEU:O	10:9:134:ASN:ND2	2.36	0.57
46:XF:215:SER:OG	46:XF:257:GLN:N	2.35	0.57
11:XA:1856:A:OP2	11:XA:2986:C:O2'	2.21	0.57
11:XA:2472:A:O2'	11:XA:2478:G:N7	2.33	0.57
13:A1:118:ALA:O	13:A1:122:HIS:ND1	2.37	0.57
18:AB:109:SER:OG	35:AS:62:ASP:OD1	2.22	0.57
62:XW:115:ASP:OD1	62:XW:116:LEU:N	2.38	0.57
11:XA:2511:C:O2'	44:XD:257:ILE:O	2.20	0.57
14:A2:102:ASN:OD1	14:A2:103:LYS:N	2.38	0.57
39:AW:132:GLU:O	39:AW:135:GLN:NE2	2.34	0.57
11:XA:1844:A:OP2	57:XR:48:ARG:NH2	2.37	0.57
14:A2:24:ASN:OD1	14:A2:25:LYS:N	2.37	0.57
11:XA:1755:A:O2'	47:XH:64:LEU:O	2.16	0.57
11:XA:1889:C:OP1	52:XM:133:LYS:NZ	2.36	0.57
17:AA:1014:A:O2'	17:AA:1031:G:O4'	2.20	0.57
31:AO:228:SER:OG	37:AU:52:GLU:OE2	2.21	0.57
33:AQ:55:GLU:OE2	33:AQ:59:ARG:NE	2.38	0.57
34:AR:202:ARG:NE	34:AR:233:ALA:O	2.37	0.57
6:5:201:ARG:NH2	6:5:418:TYR:O	2.37	0.56
11:XA:1805:A:OP2	61:XV:94:HIS:NE2	2.38	0.56
50:XK:110:GLY:O	50:XK:114:LYS:NZ	2.37	0.56
11:XA:2744:U:O2'	11:XA:2746:U:O4	2.21	0.56

	A t a ma 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:AA:869:C:OP2	31:AO:97:ARG:NH2	2.37	0.56
20:AD:283:GLU:OE2	35:AS:21:ARG:NH1	2.37	0.56
34:AR:308:HIS:C	34:AR:310:ASP:N	2.57	0.56
44:XD:111:ARG:NH1	44:XD:243:THR:OG1	2.38	0.56
10:9:134:ASN:OD1	10:9:135:PHE:N	2.38	0.56
11:XA:2192:A:OP1	49:XJ:142:ARG:NE	2.37	0.56
45:XE:124:VAL:O	45:XE:281:ASN:ND2	2.38	0.56
56:XQ:268:ASP:OD1	56:XQ:269:MET:N	2.38	0.56
52:XM:88:SER:O	52:XM:134:ARG:NE	2.39	0.56
30:AN:31:THR:OG1	36:AT:65:MET:SD	2.64	0.56
32:AP:49:ASP:OD2	39:AW:82:SER:N	2.38	0.56
7:6:119:GLU:N	7:6:119:GLU:OE1	2.38	0.56
7:6:283:GLU:OE1	7:6:283:GLU:N	2.37	0.56
11:XA:1864:A:OP1	57:XR:17:ARG:NH1	2.36	0.56
20:AD:342:MET:SD	20:AD:342:MET:N	2.75	0.56
51:XL:43:ASN:ND2	51:XL:117:THR:OG1	2.39	0.56
15:A3:142:LYS:NZ	17:AA:1490:U:OP1	2.38	0.56
17:AA:1429:C:OP1	23:AG:388:ARG:NH2	2.38	0.56
40:AX:170:GLN:OE1	40:AX:175:LYS:NZ	2.36	0.56
20:AD:285:TYR:OH	20:AD:372:GLU:OE1	2.24	0.56
11:XA:2813:U:N3	11:XA:2817:G:OP2	2.38	0.55
17:AA:769:G:OP1	30:AN:24:LYS:NZ	2.39	0.55
57:XR:149:HIS:O	65:XZ:151:LEU:N	2.39	0.55
19:AC:74:GLY:O	27:AK:103:ARG:NH2	2.38	0.55
23:AG:276:ARG:NH1	23:AG:373:ASP:OD2	2.39	0.55
51:XL:120:LYS:O	51:XL:143:ASN:ND2	2.40	0.55
11:XA:2171:U:N3	11:XA:2198:A:N7	2.52	0.55
65:XZ:84:ASP:OD1	65:XZ:85:ILE:N	2.39	0.55
13:A1:282:GLU:N	13:A1:282:GLU:OE1	2.39	0.55
45:XE:286:ASN:OD1	45:XE:287:GLY:N	2.40	0.55
59:XT:84:LYS:N	59:XT:172:CYS:SG	2.80	0.55
60:XU:30:ARG:O	64:XY:121:ARG:NH1	2.39	0.55
17:AA:1278:C:OP2	20:AD:269:ARG:NH1	2.39	0.55
16:A4:175:GLN:O	16:A4:180:GLY:N	2.40	0.55
17:AA:1108:C:N4	17:AA:1125:A:N7	2.53	0.55
32:AP:111:ILE:HG22	32:AP:115:GLN:HE22	1.70	0.55
39:AW:137:GLY:O	39:AW:139:ARG:NH1	2.40	0.55
11:XA:2658:U:O2	51:XL:33:GLN:NE2	2.38	0.55
13:A1:156:TYR:O	13:A1:167:ARG:NH1	2.40	0.55
16:A4:264:ARG:HE	16:A4:293:THR:HG22	1.72	0.55
33:AQ:27:ASN:OD1	33:AQ:28:ARG:N	2.40	0.55

A + a 1	At am 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
54:XO:129:CYS:SG	54:XO:130:LEU:N	2.80	0.55
25:AI:94:ASN:OD1	25:AI:95:THR:N	2.39	0.55
37:AU:58:GLU:OE2	37:AU:62:HIS:NE2	2.39	0.55
23:AG:295:VAL:N	23:AG:298:ILE:O	2.40	0.55
21:AE:44:GLU:OE1	21:AE:60:ARG:NH2	2.40	0.55
2:1:47:ASP:O	2:1:51:LYS:N	2.38	0.54
11:XA:2614:U:O3'	51:XL:53:ARG:NH1	2.39	0.54
17:AA:948:U:OP2	17:AA:1045:G:N2	2.39	0.54
36:AT:130:GLY:N	36:AT:135:CYS:SG	2.80	0.54
38:AV:370:GLU:OE2	38:AV:370:GLU:N	2.40	0.54
12:A0:30:ASP:OD1	12:A0:31:SER:N	2.40	0.54
18:AB:103:GLU:OE2	35:AS:52:ARG:NH2	2.34	0.54
35:AS:7:GLU:N	35:AS:7:GLU:OE1	2.39	0.54
60:XU:71:ARG:NH2	60:XU:73:GLN:OE1	2.40	0.54
4:3:124:ARG:NH2	11:XA:2868:C:OP1	2.40	0.54
17:AA:1322:C:OP1	19:AC:43:ARG:NH1	2.38	0.54
63:XX:83:GLU:N	63:XX:83:GLU:OE1	2.40	0.54
12:A0:96:ARG:N	12:A0:117:ILE:O	2.38	0.54
12:A0:132:GLU:OE1	12:A0:205:ALA:N	2.41	0.54
17:AA:722:C:N3	17:AA:798:C:O2'	2.41	0.54
17:AA:1033:U:O2'	21:AE:93:ILE:O	2.26	0.54
36:AT:97:GLU:OE1	36:AT:97:GLU:N	2.39	0.54
11:XA:2065:A:OP2	62:XW:74:ARG:NH1	2.38	0.54
22:AF:207:HIS:NE2	22:AF:211:GLU:OE2	2.41	0.54
46:XF:220:ASP:O	46:XF:245:ALA:N	2.41	0.54
1:0:108:ASP:OD1	1:0:109:VAL:N	2.41	0.54
7:6:86:GLU:OE2	7:6:86:GLU:N	2.39	0.54
17:AA:700:A:OP2	37:AU:27:ARG:NH1	2.40	0.54
19:AC:76:LEU:O	27:AK:103:ARG:NH2	2.38	0.54
11:XA:2506:A:N6	11:XA:3093:C:O4'	2.39	0.54
11:XA:2754:A:N3	63:XX:108:GLN:NE2	2.56	0.54
17:AA:1265:C:OP1	27:AK:112:ARG:NH1	2.34	0.54
18:AB:211:ASP:OD1	18:AB:212:ALA:N	2.41	0.54
11:XA:2472:A:OP1	51:XL:37:ARG:NH2	2.37	0.54
53:XN:71:ASP:OD2	53:XN:129:LYS:NZ	2.37	0.53
17:AA:949:U:OP1	28:AL:168:LYS:NZ	2.41	0.53
36:AT:9:ILE:O	36:AT:12:THR:OG1	2.25	0.53
11:XA:2111:C:OP1	48:XI:35:ARG:NH1	2.42	0.53
30:AN:53:ASP:OD2	30:AN:57:GLN:N	2.41	0.53
17:AA:1347:G:OP1	27:AK:36:ARG:NH1	2.36	0.53
12:A0:90:ASP:OD1	31:AO:215:ARG:NH1	2.42	0.53

A + a 1	At and 9	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
13:A1:77:LYS:HE3	16:A4:91:ASP:CG	2.29	0.53
52:XM:216:ASP:OD1	52:XM:218:LYS:N	2.42	0.53
11:XA:1883:G:N7	46:XF:281:ARG:NH1	2.56	0.53
11:XA:3096:U:C5	88:A:7:004:O	2.61	0.53
17:AA:1430:A:OP1	23:AG:388:ARG:NH2	2.38	0.53
23:AG:244:PHE:O	23:AG:246:ARG:NH1	2.42	0.53
8:7:36:SER:N	8:7:39:GLU:OE2	2.42	0.53
55:XP:71:PHE:HB3	55:XP:72:PRO:HD3	1.91	0.53
7:6:252:CYS:SG	7:6:286:ARG:NH2	2.81	0.53
7:6:364:ARG:NE	11:XA:2859:A:OP2	2.35	0.53
31:AO:65:GLN:O	31:AO:69:GLY:N	2.40	0.53
8:7:152:CYS:SG	8:7:156:ARG:NH1	2.80	0.53
11:XA:2029:A:O2'	11:XA:2030:U:OP1	2.25	0.53
17:AA:1143:C:N4	17:AA:1576:G:OP1	2.41	0.53
40:AX:157:ASP:OD1	40:AX:158:ALA:N	2.42	0.53
13:A1:56:ARG:NH2	16:A4:83:THR:O	2.41	0.53
44:XD:86:ASP:OD2	44:XD:87:HIS:ND1	2.41	0.53
54:XO:41:ARG:NE	54:XO:124:GLU:OE1	2.36	0.53
11:XA:1747:G:OP2	11:XA:1749:C:N4	2.41	0.52
11:XA:3119:C:C2	11:XA:3120:C:C5	2.97	0.52
31:AO:81:HIS:ND1	31:AO:82:LYS:O	2.42	0.52
38:AV:159:ASP:OD1	38:AV:160:ALA:N	2.41	0.52
17:AA:1049:A:OP2	28:AL:198:ARG:NH2	2.42	0.52
17:AA:1234:C:O2'	17:AA:1235:U:OP1	2.23	0.52
17:AA:1431:G:N2	17:AA:1458:A:OP2	2.39	0.52
64:XY:154:ARG:NH1	64:XY:160:GLN:O	2.42	0.52
64:XY:206:ASP:OD1	64:XY:207:HIS:N	2.43	0.52
16:A4:108:LEU:CD2	20:AD:154:VAL:HG12	2.39	0.52
17:AA:1526:U:O2'	17:AA:1527:A:O4'	2.20	0.52
35:AS:18:ASP:OD1	35:AS:19:LEU:N	2.42	0.52
45:XE:334:ASP:OD1	45:XE:335:GLU:N	2.39	0.52
18:AB:94:LYS:NZ	18:AB:112:ASP:OD1	2.41	0.52
11:XA:1742:G:O2'	11:XA:1754:G:O6	2.25	0.52
14:A2:113:ASN:OD1	14:A2:114:LYS:N	2.42	0.52
25:AI:158:ARG:NH2	25:AI:177:ASP:OD2	2.43	0.52
6:5:300:ARG:HA	6:5:303:ARG:HE	1.75	0.52
12:A0:50:LEU:O	12:A0:55:TRP:NE1	2.42	0.52
37:AU:178:GLU:N	37:AU:178:GLU:OE1	2.41	0.52
63:XX:150:LYS:HG3	63:XX:159:MET:CE	2.39	0.52
18:AB:153:TYR:O	18:AB:157:ASN:ND2	2.43	0.52
38:AV:47:HIS:N	38:AV:78:ASN:OD1	2.43	0.52

	A t a ma 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
47:XH:108:ARG:NH1	47:XH:143:GLU:OE2	2.38	0.52
8:7:262:ASP:OD1	8:7:263:VAL:N	2.42	0.52
20:AD:266:ASP:OD1	20:AD:269:ARG:NH2	2.43	0.52
54:XO:64:LYS:NZ	54:XO:97:TYR:O	2.39	0.52
44:XD:113:ARG:O	44:XD:147:ARG:NH2	2.43	0.52
44:XD:264:ARG:HE	44:XD:270:PRO:HD3	1.75	0.52
35:AS:75:TYR:OH	39:AW:91:GLN:O	2.27	0.51
7:6:239:ASN:OD1	7:6:275:GLN:NE2	2.42	0.51
11:XA:1769:C:N4	46:XF:105:ASN:OD1	2.43	0.51
11:XA:3050:U:O3'	51:XL:63:LYS:NZ	2.42	0.51
13:A1:53:LEU:HB2	16:A4:518:GLU:OE2	2.10	0.51
38:AV:271:GLU:N	38:AV:271:GLU:OE1	2.44	0.51
13:A1:152:ASP:N	13:A1:152:ASP:OD1	2.42	0.51
65:XZ:71:ARG:NH1	65:XZ:73:LYS:O	2.43	0.51
11:XA:1847:U:OP1	52:XM:47:ARG:NE	2.43	0.51
16:A4:478:TYR:O	16:A4:482:ILE:HG13	2.11	0.51
11:XA:2139:U:OP2	65:XZ:74:SER:N	2.36	0.51
11:XA:2148:A:OP2	57:XR:65:ARG:NH1	2.43	0.51
16:A4:98:ALA:N	16:A4:102:GLU:OE2	2.44	0.51
27:AK:49:ASP:OD1	27:AK:50:GLU:N	2.43	0.51
7:6:133:ASP:OD1	7:6:134:ALA:N	2.42	0.51
12:A0:61:GLU:OE2	12:A0:139:TRP:N	2.43	0.51
17:AA:901:G:OP1	20:AD:117:ARG:NH1	2.44	0.51
47:XH:95:GLU:OE2	47:XH:112:VAL:N	2.44	0.51
48:XI:181:ILE:O	48:XI:184:THR:N	2.42	0.51
58:XS:127:ARG:NH2	58:XS:157:GLU:OE1	2.39	0.51
11:XA:1877:U:O3'	52:XM:30:ASN:ND2	2.44	0.51
11:XA:2182:G:O2'	11:XA:2183:C:O4'	2.23	0.51
13:A1:196:GLU:N	13:A1:196:GLU:OE1	2.44	0.51
29:AM:71:ASP:OD1	29:AM:72:ARG:N	2.44	0.51
11:XA:2145:G:O2'	11:XA:2147:G:OP1	2.28	0.51
17:AA:873:G:O2'	17:AA:921:U:O2	2.28	0.51
11:XA:1672:C:OP1	59:XT:50:LYS:N	2.44	0.50
17:AA:710:U:OP2	29:AM:13:ARG:NH1	2.45	0.50
16:A4:95:LEU:HD11	19:AC:132:TYR:HB2	1.93	0.50
38:AV:235:GLU:O	38:AV:239:GLY:N	2.45	0.50
41:AY:344:GLN:N	41:AY:344:GLN:OE1	2.45	0.50
7:6:114:ARG:NH2	55:XP:116:TYR:O	2.45	0.50
11:XA:2082:G:N2	65:XZ:88:MET:SD	2.74	0.50
22:AF:108:ARG:O	22:AF:112:ILE:HG12	2.10	0.50
4:3:116:ARG:NH2	4:3:159:ASP:OD1	2.45	0.50

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:XA:2104:A:OP1	53:XN:73:ARG:NH1	2.37	0.50
46:XF:191:ASP:OD1	46:XF:192:SER:N	2.45	0.50
55:XP:81:ARG:NH1	55:XP:94:GLU:OE1	2.43	0.50
1:0:98:GLN:NE2	11:XA:2709:A:N3	2.60	0.50
6:5:384:GLN:NE2	11:XA:2395:A:O2'	2.44	0.50
7:6:198:ALA:O	7:6:254:TYR:OH	2.26	0.50
11:XA:2665:U:OP2	54:XO:17:ARG:HD2	2.12	0.50
17:AA:1517:A:O2'	17:AA:1518:C:O4'	2.28	0.50
23:AG:312:GLN:OE1	23:AG:345:ARG:NH2	2.45	0.50
38:AV:108:THR:O	38:AV:111:THR:OG1	2.27	0.50
46:XF:199:ASP:N	46:XF:199:ASP:OD1	2.43	0.50
63:XX:76:GLN:NE2	63:XX:154:CYS:O	2.44	0.50
8:7:51:GLU:OE2	8:7:54:ARG:NH2	2.42	0.50
11:XA:2182:G:N2	11:XA:2199:A:N3	2.59	0.50
40:AX:161:TRP:NE1	40:AX:183:GLU:OE2	2.45	0.50
6:5:160:HIS:HA	6:5:164:TRP:HB2	1.93	0.50
6:5:337:GLU:N	6:5:337:GLU:OE1	2.45	0.50
22:AF:35:SER:OG	22:AF:36:ARG:N	2.43	0.50
28:AL:75:ASP:OD2	37:AU:153:LYS:NZ	2.38	0.50
45:XE:316:PHE:HB3	45:XE:317:PRO:HD3	1.94	0.50
17:AA:1199:G:N1	17:AA:1424:U:N3	2.60	0.50
46:XF:103:GLN:OE1	46:XF:249:ASN:ND2	2.44	0.50
52:XM:255:MET:O	52:XM:258:THR:OG1	2.28	0.50
23:AG:379:ARG:NH2	24:AH:133:GLN:OE1	2.44	0.49
47:XH:120:ARG:NH2	63:XX:136:ASP:OD2	2.43	0.49
3:2:85:LYS:NZ	11:XA:1792:G:OP2	2.42	0.49
11:XA:2387:U:O2'	11:XA:2406:A:N6	2.45	0.49
21:AE:85:ASP:OD1	44:XD:171:ARG:NH1	2.42	0.49
24:AH:161:GLN:HA	24:AH:164:LEU:CD1	2.42	0.49
34:AR:135:ARG:NH1	34:AR:236:GLU:OE2	2.45	0.49
34:AR:200:GLU:N	34:AR:200:GLU:OE2	2.40	0.49
2:1:20:MET:SD	2:1:20:MET:N	2.85	0.49
6:5:361:THR:OG1	6:5:363:ASP:OD1	2.27	0.49
24:AH:75:ARG:N	24:AH:175:THR:OG1	2.45	0.49
17:AA:1225:C:O2'	17:AA:1449:G:O2'	2.28	0.49
40:AX:171:SER:OG	40:AX:178:PHE:O	2.31	0.49
11:XA:2149:G:OP2	57:XR:65:ARG:NH2	2.46	0.49
11:XA:2715:A:O2'	45:XE:245:THR:O	2.29	0.49
11:XA:2939:C:H2'	11:XA:2940:A:O4'	2.11	0.49
17:AA:1048:C:O2'	28:AL:196:TYR:O	2.18	0.49
17:AA:1079:G:O6	17:AA:1080:A:N6	2.40	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
11:XA:1674:A:N7	59:XT:47:ILE:N	2.61	0.49
11:XA:2662:A:OP1	45:XE:220:LYS:NZ	2.37	0.49
17:AA:1289:G:O2'	17:AA:1297:G:OP2	2.27	0.49
46:XF:49:ARG:NH1	46:XF:270:GLU:OE1	2.42	0.49
11:XA:2830:A:N6	11:XA:2837:A:OP2	2.36	0.49
11:XA:1787:G:N2	11:XA:1790:A:OP2	2.39	0.49
11:XA:1990:G:OP1	44:XD:269:ARG:NH2	2.42	0.49
37:AU:52:GLU:N	37:AU:52:GLU:OE1	2.43	0.49
17:AA:1024:G:N2	17:AA:1027:A:OP2	2.43	0.49
17:AA:1227:G:OP1	24:AH:128:LYS:NZ	2.42	0.49
65:XZ:106:VAL:O	65:XZ:110:LEU:HD23	2.13	0.49
12:A0:82:ARG:NH2	12:A0:138:ASP:O	2.40	0.48
13:A1:216:ARG:NH1	41:AY:326:SER:O	2.45	0.48
17:AA:1264:C:O3'	27:AK:112:ARG:NH2	2.46	0.48
21:AE:53:ALA:N	21:AE:56:GLN:O	2.39	0.48
23:AG:276:ARG:HG3	23:AG:277:LYS:H	1.78	0.48
13:A1:142:LYS:O	13:A1:146:HIS:ND1	2.43	0.48
53:XN:85:GLY:O	53:XN:192:ARG:NH2	2.43	0.48
11:XA:2017:U:OP1	52:XM:54:LYS:NZ	2.41	0.48
14:A2:50:SER:O	14:A2:53:MET:HG2	2.13	0.48
17:AA:850:U:O2'	37:AU:27:ARG:NH2	2.46	0.48
54:XO:140:SER:O	54:XO:146:ASN:ND2	2.46	0.48
17:AA:662:U:H2'	17:AA:663:A:O4'	2.14	0.48
17:AA:843:G:N1	17:AA:847:G:O6	2.46	0.48
17:AA:989:U:OP1	25:AI:94:ASN:ND2	2.45	0.48
23:AG:362:GLU:OE2	23:AG:365:ARG:NH1	2.44	0.48
9:8:186:GLN:N	9:8:186:GLN:OE1	2.46	0.48
16:A4:61:LYS:HA	24:AH:69:PRO:HA	1.94	0.48
17:AA:1212:U:O2'	17:AA:1214:A:N6	2.45	0.48
13:A1:255:ASN:OD1	13:A1:256:SER:N	2.47	0.48
22:AF:114:THR:HG22	22:AF:202:PRO:HA	1.94	0.48
40:AX:51:THR:O	40:AX:67:HIS:N	2.45	0.48
51:XL:140:ILE:O	51:XL:142:GLN:NE2	2.47	0.48
32:AP:111:ILE:O	32:AP:115:GLN:NE2	2.47	0.48
56:XQ:108:ILE:O	56:XQ:108:ILE:HG13	2.14	0.48
8:7:287:GLN:N	8:7:288:PRO:CD	2.77	0.48
46:XF:91:PRO:O	46:XF:176:VAL:HG21	2.14	0.48
63:XX:148:THR:HG21	63:XX:153:LEU:HD13	1.96	0.48
4:3:131:LYS:NZ	11:XA:2909:G:O6	2.41	0.48
6:5:177:CYS:O	6:5:180:ILE:HG22	2.14	0.48
17:AA:1516:G:O6	17:AA:1517:A:N6	2.47	0.48

	A t a ma 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
45:XE:280:HIS:O	45:XE:281:ASN:OD1	2.32	0.48
1:0:86:THR:OG1	11:XA:2684:C:OP1	2.26	0.48
11:XA:2529:U:O2'	44:XD:206:TYR:O	2.32	0.48
11:XA:2529:U:N3	44:XD:205:GLN:OE1	2.44	0.48
11:XA:2939:C:O2'	11:XA:2940:A:H5'	2.14	0.48
13:A1:86:ARG:NH1	13:A1:96:PRO:O	2.45	0.48
22:AF:201:MET:N	22:AF:202:PRO:HD2	2.29	0.48
46:XF:280:TYR:CE2	52:XM:125:ARG:HD3	2.49	0.48
50:XK:130:ASP:OD1	50:XK:131:GLU:N	2.46	0.48
4:3:169:ARG:NH2	4:3:182:ASP:OD1	2.47	0.47
8:7:203:THR:HG21	8:7:279:GLU:HB2	1.96	0.47
43:XB:1644:G:O6	55:XP:87:HIS:NE2	2.45	0.47
47:XH:84:GLU:OE2	47:XH:89:ARG:NH2	2.47	0.47
7:6:62:GLU:O	7:6:66:GLN:OE1	2.31	0.47
17:AA:1121:A:OP2	20:AD:297:ARG:NH2	2.47	0.47
17:AA:1462:G:C2	17:AA:1463:G:C5	3.02	0.47
11:XA:2381:A:N6	11:XA:2412:A:N1	2.62	0.47
14:A2:32:ARG:NH1	17:AA:1599:A:OP2	2.47	0.47
34:AR:137:PRO:O	34:AR:139:ASN:ND2	2.48	0.47
52:XM:225:ASP:OD2	52:XM:228:LYS:NZ	2.47	0.47
61:XV:103:ASP:OD1	61:XV:104:TYR:N	2.47	0.47
7:6:320:GLN:N	7:6:320:GLN:OE1	2.48	0.47
22:AF:201:MET:N	22:AF:201:MET:SD	2.87	0.47
31:AO:161:GLY:O	34:AR:223:ARG:NH2	2.48	0.47
48:XI:163:GLU:O	48:XI:166:ARG:HG3	2.14	0.47
11:XA:1672:C:O2'	59:XT:149:ARG:O	2.32	0.47
42:AZ:77:ASP:O	42:AZ:80:ASP:OD1	2.33	0.47
11:XA:2096:U:O4	52:XM:57:ARG:NH1	2.46	0.47
11:XA:2293:A:C6	52:XM:39:ARG:HD2	2.49	0.47
11:XA:2529:U:OP2	44:XD:208:ARG:NH1	2.48	0.47
11:XA:3047:G:O3'	51:XL:81:LYS:NZ	2.48	0.47
16:A4:366:GLU:OE1	16:A4:366:GLU:N	2.42	0.47
17:AA:1234:C:H2'	17:AA:1234:C:O2	2.14	0.47
17:AA:1526:U:O2'	17:AA:1526:U:O2	2.32	0.47
17:AA:1598:G:OP1	33:AQ:57:TYR:OH	2.27	0.47
21:AE:56:GLN:OE1	21:AE:56:GLN:N	2.47	0.47
22:AF:38:SER:OG	22:AF:40:GLU:OE1	2.10	0.47
36:AT:36:THR:O	36:AT:45:ARG:NE	2.48	0.47
13:A1:69:VAL:HA	16:A4:81:ASP:OD2	2.15	0.47
17:AA:1225:C:HO2'	17:AA:1449:G:HO2'	1.63	0.47
17:AA:1239:C:O2	17:AA:1351:G:N2	2.47	0.47

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
21:AE:96:HIS:O	21:AE:100:GLN:NE2	2.41	0.47
7:6:50:LYS:HA	62:XW:121:PRO:HA	1.96	0.47
7:6:286:ARG:NE	7:6:295:GLN:O	2.44	0.47
11:XA:1834:U:C4	59:XT:206:ARG:HA	2.50	0.47
11:XA:1878:U:O2'	46:XF:92:ARG:NH2	2.48	0.47
11:XA:2951:A:H2'	11:XA:2952:U:H6	1.80	0.47
41:AY:367:LYS:O	41:AY:370:VAL:HG12	2.14	0.47
41:AY:378:ASN:O	41:AY:382:GLU:OE1	2.32	0.47
11:XA:2552:U:C2	11:XA:2553:G:C8	3.03	0.47
11:XA:2826:G:OP1	62:XW:49:ARG:NH1	2.44	0.47
17:AA:782:A:O2'	30:AN:46:ARG:NH1	2.47	0.47
22:AF:111:MET:O	22:AF:114:THR:OG1	2.27	0.47
44:XD:124:GLU:HG3	44:XD:142:VAL:HG22	1.97	0.47
11:XA:2385:U:OP1	44:XD:71:LYS:NZ	2.45	0.46
52:XM:193:PHE:CZ	52:XM:201:PRO:HD3	2.50	0.46
65:XZ:80:TYR:HA	65:XZ:83:LYS:HG2	1.97	0.46
2:1:34:ARG:NH2	2:1:35:ASN:O	2.48	0.46
7:6:188:TYR:N	7:6:191:ASN:OD1	2.46	0.46
7:6:206:TYR:OH	7:6:242:GLY:O	2.14	0.46
52:XM:100:ARG:O	52:XM:104:LEU:HG	2.15	0.46
53:XN:78:GLU:OE2	53:XN:158:ARG:NE	2.48	0.46
57:XR:36:ASN:OD1	57:XR:37:ARG:N	2.49	0.46
65:XZ:81:TRP:O	65:XZ:84:ASP:OD1	2.34	0.46
8:7:143:TRP:HE3	8:7:179:PHE:HB3	1.81	0.46
17:AA:1200:G:N2	17:AA:1418:G:O2'	2.49	0.46
26:AJ:47:ARG:HE	26:AJ:48:LYS:H	1.62	0.46
63:XX:147:LYS:O	63:XX:147:LYS:HG2	2.15	0.46
64:XY:151:ASP:OD1	64:XY:152:ALA:N	2.48	0.46
11:XA:3148:C:O2'	45:XE:106:MET:SD	2.73	0.46
40:AX:130:LYS:O	40:AX:130:LYS:HG3	2.15	0.46
44:XD:216:LEU:HD23	44:XD:216:LEU:H	1.81	0.46
61:XV:148:THR:HG22	61:XV:149:ARG:H	1.80	0.46
8:7:306:LEU:O	8:7:306:LEU:HG	2.15	0.46
11:XA:3175:A:OP2	11:XA:3187:C:N4	2.48	0.46
12:A0:101:ARG:NH1	17:AA:1528:A:OP1	2.48	0.46
14:A2:17:ARG:NE	17:AA:1022:A:OP2	2.48	0.46
16:A4:95:LEU:HD11	19:AC:132:TYR:CB	2.45	0.46
17:AA:1400:U:OP2	42:AZ:32:LYS:NZ	2.48	0.46
18:AB:156:GLU:OE1	23:AG:163:HIS:ND1	2.48	0.46
17:AA:701:G:OP1	37:AU:38:LYS:NZ	2.47	0.46
17:AA:928:A:O3'	20:AD:419:ARG:NH1	2.48	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
37:AU:88:GLY:O	37:AU:92:GLU:OE1	2.32	0.46
54:XO:86:ILE:HB	54:XO:87:PRO:HD3	1.98	0.46
11:XA:2182:G:H2'	11:XA:2183:C:C6	2.51	0.46
11:XA:3066:C:C2'	11:XA:3067:U:H5'	2.46	0.46
16:A4:90:GLN:CG	19:AC:133:TYR:HE1	2.29	0.46
52:XM:85:GLU:O	52:XM:90:ARG:NH2	2.49	0.46
65:XZ:107:ASN:HA	65:XZ:110:LEU:CD2	2.46	0.46
6:5:242:ARG:HA	6:5:245:ILE:HG12	1.97	0.46
9:8:165:ASP:OD1	9:8:165:ASP:N	2.48	0.46
11:XA:1671:G:C6	11:XA:1818:A:N1	2.83	0.46
11:XA:2086:A:H2'	11:XA:2087:U:C6	2.51	0.46
14:A2:9:ARG:O	14:A2:20:VAL:N	2.48	0.46
38:AV:144:PHE:CZ	38:AV:167:VAL:HG21	2.51	0.46
41:AY:377:ARG:O	41:AY:381:ASN:ND2	2.47	0.46
21:AE:38:ASP:OD1	21:AE:39:LEU:N	2.45	0.46
34:AR:221:GLN:OE1	34:AR:223:ARG:NH2	2.48	0.46
40:AX:69:ASN:OD1	40:AX:70:ILE:N	2.48	0.46
57:XR:65:ARG:O	57:XR:69:ILE:HG12	2.16	0.46
7:6:37:ASN:ND2	62:XW:125:VAL:O	2.42	0.46
11:XA:2151:A:OP2	11:XA:2249:G:N1	2.40	0.46
25:AI:140:LYS:NZ	25:AI:168:GLY:O	2.46	0.46
30:AN:59:THR:OG1	30:AN:62:ASP:OD2	2.24	0.46
44:XD:253:ASN:OD1	44:XD:254:LYS:N	2.49	0.46
6:5:201:ARG:NH2	6:5:420:HIS:O	2.50	0.45
6:5:391:VAL:O	6:5:391:VAL:HG13	2.16	0.45
7:6:39:ASP:OD1	7:6:40:ILE:N	2.49	0.45
11:XA:3096:U:H2'	88:A:7:004:CG2	2.46	0.45
16:A4:67:LYS:CD	41:AY:312:GLU:OE2	2.64	0.45
17:AA:1012:A:O2'	17:AA:1065:C:N4	2.47	0.45
41:AY:367:LYS:O	41:AY:371:GLU:OE1	2.33	0.45
43:XB:1620:A:N3	43:XB:1620:A:H2'	2.31	0.45
11:XA:1868:G:H2'	52:XM:40:PRO:HG3	1.97	0.45
11:XA:3061:G:H2'	11:XA:3062:U:O4'	2.16	0.45
16:A4:66:ASP:OD1	16:A4:67:LYS:N	2.49	0.45
16:A4:556:LYS:HD3	16:A4:595:MET:HE1	1.98	0.45
34:AR:176:GLU:N	34:AR:176:GLU:OE1	2.49	0.45
50:XK:24:LYS:O	50:XK:26:GLN:NE2	2.49	0.45
53:XN:204:GLU:OE1	53:XN:208:ASN:ND2	2.48	0.45
54:XO:113:ARG:NH1	54:XO:116:ASP:OD2	2.49	0.45
57:XR:96:GLU:OE1	57:XR:96:GLU:N	2.49	0.45
16:A4:164:ARG:H	16:A4:167:LYS:HE3	1.82	0.45

A 4 a 1	A t a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
45:XE:257:MET:HB2	45:XE:258:PRO:CD	2.47	0.45
46:XF:70:ARG:NE	46:XF:194:GLU:OE1	2.49	0.45
14:A2:44:THR:HG22	14:A2:45:CYS:N	2.31	0.45
4:3:131:LYS:O	4:3:136:LYS:NZ	2.48	0.45
11:XA:2574:G:O2'	11:XA:2575:U:P	2.75	0.45
59:XT:99:ILE:O	59:XT:103:LEU:HD23	2.17	0.45
11:XA:1939:G:O2'	11:XA:1973:G:H4'	2.16	0.45
11:XA:2139:U:O4	65:XZ:77:ARG:NH1	2.49	0.45
20:AD:191:ARG:NH1	31:AO:79:ARG:O	2.49	0.45
52:XM:231:GLU:O	52:XM:235:GLU:OE1	2.34	0.45
5:4:99:LYS:NZ	11:XA:3013:G:O3'	2.48	0.45
11:XA:2060:A:O2'	11:XA:2061:C:OP2	2.32	0.45
27:AK:70:VAL:HA	27:AK:73:GLU:OE2	2.17	0.45
36:AT:48:VAL:HA	36:AT:52:ILE:HD13	1.98	0.45
45:XE:209:LYS:NZ	45:XE:263:ASN:OD1	2.43	0.45
46:XF:177:ALA:HB1	46:XF:253:MET:SD	2.57	0.45
56:XQ:199:THR:O	56:XQ:199:THR:HG23	2.17	0.45
63:XX:207:THR:N	63:XX:210:GLU:OE2	2.38	0.45
88:A:1:MHW:OG1	88:A:1:MHW:O	2.33	0.45
8:7:199:LEU:O	8:7:203:THR:HG23	2.17	0.45
8:7:279:GLU:OE2	8:7:313:TRP:NE1	2.50	0.45
21:AE:106:GLU:OE1	21:AE:106:GLU:N	2.49	0.45
28:AL:86:ASP:OD1	28:AL:87:ASP:N	2.50	0.45
29:AM:50:GLN:NE2	36:AT:129:PHE:O	2.47	0.45
7:6:182:ASP:OD1	7:6:182:ASP:N	2.50	0.45
11:XA:2458:A:O2'	45:XE:215:PHE:O	2.27	0.45
45:XE:310:LEU:HG	45:XE:310:LEU:O	2.17	0.45
55:XP:162:SER:O	55:XP:166:GLU:OE1	2.35	0.45
60:XU:31:PRO:O	64:XY:121:ARG:NH2	2.50	0.45
11:XA:3118:U:C2	11:XA:3119:C:C5	3.05	0.45
14:A2:53:MET:SD	22:AF:234:ARG:HD2	2.57	0.45
17:AA:1199:G:N1	17:AA:1424:U:C4	2.85	0.45
17:AA:1428:G:OP1	23:AG:390:LYS:NZ	2.45	0.45
17:AA:1433:A:C4	17:AA:1458:A:N6	2.84	0.45
18:AB:82:ARG:NH2	18:AB:86:ASP:OD1	2.48	0.45
56:XQ:225:LYS:HG2	56:XQ:226:PRO:HD2	1.99	0.45
6:5:80:ARG:NH2	6:5:82:TYR:OH	2.50	0.44
7:6:379:ILE:HD13	11:XA:1882:A:C5	2.52	0.44
11:XA:2234:C:O2'	11:XA:2688:C:O2'	2.29	0.44
24:AH:126:ILE:O	24:AH:127:TYR:CG	2.70	0.44
47:XH:134:PRO:HA	47:XH:137:LYS:HG2	1.99	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:5:270:ILE:HG22	6:5:270:ILE:O	2.17	0.44
6:5:286:PRO:O	6:5:324:GLN:NE2	2.50	0.44
16:A4:482:ILE:CG2	16:A4:519:TYR:HE2	2.30	0.44
18:AB:239:ASN:ND2	18:AB:242:SER:OG	2.51	0.44
44:XD:172:MET:SD	44:XD:172:MET:N	2.88	0.44
46:XF:142:ARG:HA	46:XF:149:GLY:HA2	1.99	0.44
47:XH:133:SER:OG	47:XH:135:GLU:HG3	2.17	0.44
60:XU:58:GLU:OE2	60:XU:65:VAL:N	2.46	0.44
6:5:230:LEU:O	6:5:289:HIS:N	2.47	0.44
11:XA:2195:A:HO2'	11:XA:2196:A:P	2.39	0.44
31:AO:148:LYS:O	31:AO:151:THR:OG1	2.27	0.44
38:AV:96:ARG:NH1	38:AV:101:CYS:O	2.50	0.44
46:XF:228:GLN:HA	46:XF:231:VAL:HG12	1.99	0.44
48:XI:50:VAL:O	53:XN:211:ASN:ND2	2.50	0.44
5:4:88:TRP:NE1	11:XA:2160:A:OP2	2.39	0.44
7:6:209:GLU:N	7:6:209:GLU:OE1	2.51	0.44
11:XA:1791:G:HO2'	11:XA:2006:C:HO2'	1.63	0.44
17:AA:1262:C:C4	17:AA:1263:G:C5	3.06	0.44
28:AL:136:ILE:O	28:AL:140:GLU:OE1	2.36	0.44
37:AU:112:GLU:OE2	37:AU:115:ARG:NH1	2.50	0.44
41:AY:277:LEU:O	41:AY:281:GLU:OE1	2.36	0.44
48:XI:137:ASP:N	48:XI:137:ASP:OD1	2.50	0.44
62:XW:112:GLU:O	62:XW:115:ASP:OD1	2.35	0.44
11:XA:3153:U:C2'	11:XA:3154:U:H5'	2.48	0.44
17:AA:682:A:N6	17:AA:865:A:H61	2.16	0.44
17:AA:723:A:OP1	17:AA:724:C:N4	2.45	0.44
17:AA:1214:A:O2'	17:AA:1238:C:O2	2.31	0.44
55:XP:72:PRO:O	55:XP:74:ARG:NH2	2.50	0.44
9:8:104:VAL:HG23	9:8:104:VAL:O	2.18	0.44
11:XA:1849:C:OP2	52:XM:53:HIS:NE2	2.51	0.44
11:XA:2111:C:H1'	11:XA:2944:C:O2'	2.18	0.44
11:XA:3143:U:O4	11:XA:3144:A:N6	2.51	0.44
17:AA:1459:A:O2'	17:AA:1460:C:O4'	2.33	0.44
21:AE:41:ASN:OD1	21:AE:43:GLY:N	2.51	0.44
61:XV:163:ASP:N	61:XV:163:ASP:OD1	2.51	0.44
11:XA:1692:A:O2'	64:XY:175:ARG:NH1	2.51	0.44
17:AA:702:C:O2'	17:AA:842:C:O2	2.27	0.44
40:AX:337:LEU:HG	40:AX:337:LEU:O	2.17	0.44
62:XW:115:ASP:C	62:XW:119:ARG:HE	2.16	0.44
7:6:159:ARG:NH2	7:6:160:ASP:OD1	2.51	0.44
11:XA:2453:G:O6	11:XA:2672:A:N6	2.50	0.44

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
17:AA:1106:C:O2'	17:AA:1108:C:OP2	2.28	0.44	
17:AA:1278:C:OP2	20:AD:270:LYS:NZ	2.49	0.44	
29:AM:68:LEU:O	34:AR:161:ILE:N	2.51	0.44	
31:AO:125:GLN:OE1	31:AO:125:GLN:N	2.49	0.44	
40:AX:297:MET:O	40:AX:297:MET:HG2	2.18	0.44	
52:XM:103:TYR:O	52:XM:106:ASP:OD1	2.36	0.44	
55:XP:71:PHE:HB2	62:XW:107:HIS:HA	2.00	0.44	
4:3:113:ARG:HH12	52:XM:76:ILE:HA	1.82	0.44	
11:XA:3169:C:O2'	11:XA:3170:C:O4'	2.31	0.44	
12:A0:107:GLN:O	38:AV:97:HIS:NE2	2.48	0.44	
46:XF:102:TRP:CZ2	46:XF:164:MET:HE1	2.53	0.44	
54:XO:149:LEU:HA	54:XO:152:LEU:CD2	2.47	0.44	
65:XZ:50:PRO:O	65:XZ:54:GLU:OE1	2.35	0.44	
11:XA:1828:A:H4'	11:XA:1829:A:C8	2.53	0.43	
11:XA:1953:A:O2'	11:XA:2463:A:OP1	2.35	0.43	
11:XA:1961:A:O4'	59:XT:161:ARG:HA	2.18	0.43	
17:AA:708:C:O2'	17:AA:842:C:OP1	2.36	0.43	
17:AA:826:A:N7	26:AJ:55:ARG:CZ	2.81	0.43	
26:AJ:49:LEU:HD23	26:AJ:50:GLY:H	1.83	0.43	
52:XM:156:VAL:O	52:XM:177:ALA:N	2.51	0.43	
56:XQ:107:HIS:O	56:XQ:108:ILE:HG13	2.17	0.43	
59:XT:123:GLU:O	59:XT:126:ASP:OD1	2.36	0.43	
60:XU:80:ARG:NH2	60:XU:84:ASN:OD1	2.51	0.43	
61:XV:147:SER:OG	61:XV:152:ARG:N	2.49	0.43	
36:AT:96:LYS:O	36:AT:100:GLU:OE1	2.37	0.43	
52:XM:156:VAL:HG22	52:XM:157:GLN:H	1.83	0.43	
53:XN:70:SER:O	53:XN:155:LYS:NZ	2.51	0.43	
8:7:38:THR:O	8:7:42:GLU:OE1	2.37	0.43	
11:XA:1775:A:OP1	46:XF:148:GLY:N	2.42	0.43	
11:XA:1846:C:OP2	58:XS:177:ARG:N	2.39	0.43	
17:AA:918:A:O2'	17:AA:919:A:O4'	2.35	0.43	
17:AA:1449:G:C2	17:AA:1450:C:C6	3.06	0.43	
38:AV:79:ILE:HG12	38:AV:84:GLU:HB3	2.01	0.43	
41:AY:375:TRP:CZ2	41:AY:379:TYR:CE2	3.06	0.43	
48:XI:34:THR:OG1	48:XI:36:HIS:O	2.31	0.43	
48:XI:181:ILE:O	48:XI:184:THR:OG1	2.29	0.43	
52:XM:21:ARG:O	52:XM:26:ASN:ND2	2.51	0.43	
20:AD:407:ASP:OD1	20:AD:407:ASP:N	2.45	0.43	
31:AO:67:ARG:NH2	31:AO:68:TYR:OH	2.51	0.43	
34:AR:89:LYS:O	34:AR:92:LYS:NZ	2.48	0.43	
38:AV:106:ASN:OD1	38:AV:107:TRP:N	2.52	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
9:8:138:ALA:O	9:8:141:GLU:HG3	2.18	0.43	
38:AV:316:GLN:NE2	38:AV:321:GLU:O	2.52	0.43	
40:AX:63:HIS:O	40:AX:63:HIS:ND1	2.51	0.43	
40:AX:164:ASN:OD1	40:AX:166:ARG:NH1	2.51	0.43	
53:XN:174:GLY:O	53:XN:178:GLN:OE1	2.36	0.43	
53:XN:200:LYS:O	53:XN:203:GLU:HG3	2.18	0.43	
11:XA:2714:A:P	45:XE:239:ARG:HH11	2.42	0.43	
17:AA:777:G:C2	17:AA:778:C:C6	3.07	0.43	
23:AG:321:ASP:C	23:AG:321:ASP:OD1	2.57	0.43	
30:AN:85:VAL:HG13	30:AN:86:PHE:N	2.34	0.43	
46:XF:77:VAL:O	46:XF:77:VAL:HG13	2.18	0.43	
56:XQ:237:ASN:OD1	56:XQ:238:PHE:N	2.51	0.43	
64:XY:161:GLU:OE1	64:XY:161:GLU:N	2.51	0.43	
6:5:254:GLU:OE2	6:5:256:PHE:N	2.49	0.43	
7:6:144:GLY:N	7:6:145:PRO:CD	2.82	0.43	
11:XA:1799:U:H2'	11:XA:1800:G:O4'	2.19	0.43	
11:XA:2066:C:O2'	11:XA:2067:C:OP1	2.33	0.43	
14:A2:64:ASP:OD1	14:A2:65:ALA:N	2.52	0.43	
16:A4:634:ALA:HB3	16:A4:641:ILE:HG21	2.01	0.43	
17:AA:990:U:H2'	17:AA:991:G:O4'	2.18	0.43	
17:AA:1282:G:N2	17:AA:1286:A:OP2	2.38	0.43	
26:AJ:49:LEU:HD23	26:AJ:50:GLY:N	2.34	0.43	
30:AN:66:LEU:HD13	30:AN:79:HIS:HB3	2.00	0.43	
35:AS:116:LYS:O	35:AS:120:GLU:OE1	2.36	0.43	
40:AX:169:LEU:O	40:AX:179:ASP:N	2.51	0.43	
44:XD:177:ARG:O	44:XD:244:VAL:HG11	2.19	0.43	
58:XS:106:TRP:CD2	58:XS:114:ILE:HD11	2.54	0.43	
63:XX:93:ASN:O	63:XX:94:ASN:OD1	2.36	0.43	
1:0:145:GLU:OE2	1:0:173:ARG:NH2	2.51	0.43	
11:XA:2692:G:N1	11:XA:2696:A:OP2	2.38	0.43	
11:XA:2802:A:H2'	11:XA:2803:A:O4'	2.18	0.43	
13:A1:53:LEU:CB	16:A4:518:GLU:HG2	2.49	0.43	
16:A4:64:THR:HG22	24:AH:64:THR:HG23	2.01	0.43	
17:AA:806:C:OP2	17:AA:807:A:N6	2.37	0.43	
23:AG:107:ALA:O	23:AG:111:LEU:HD23	2.19	0.43	
34:AR:212:GLU:OE2	34:AR:212:GLU:N	2.51	0.43	
8:7:160:ASP:OD1	8:7:160:ASP:N	2.51	0.43	
11:XA:1795:A:H2'	11:XA:1796:A:O4'	2.18	0.43	
11:XA:2216:A:N3	48:XI:150:HIS:NE2	2.63	0.43	
11:XA:2674:U:H2'	11:XA:2675:G:O4'	2.19	0.43	
43:XB:1630:A:N1	43:XB:1637:C:N4	2.66	0.43	

	At arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
48:XI:66:PRO:O	48:XI:67:SER:OG	2.33	0.43
48:XI:181:ILE:O	48:XI:182:ASP:OD1	2.37	0.43
60:XU:44:ILE:HB	60:XU:45:PRO:CD	2.49	0.43
63:XX:148:THR:O	63:XX:148:THR:OG1	2.36	0.43
7:6:58:ARG:O	7:6:62:GLU:OE1	2.37	0.43
11:XA:1698:C:O2'	11:XA:1702:A:N3	2.45	0.43
11:XA:2938:A:OP1	11:XA:2984:A:N6	2.52	0.43
12:A0:194:GLN:O	12:A0:197:ARG:NH1	2.52	0.43
13:A1:53:LEU:HB3	16:A4:518:GLU:HG2	2.01	0.43
17:AA:995:A:P	25:AI:120:ALA:HB2	2.59	0.43
17:AA:1211:G:N1	17:AA:1354:A:C6	2.87	0.43
25:AI:151:VAL:HG21	25:AI:158:ARG:HG3	2.01	0.43
31:AO:107:ILE:HD11	31:AO:146:GLN:HB3	2.01	0.43
6:5:143:PRO:HA	6:5:146:HIS:ND1	2.31	0.42
11:XA:1885:A:OP2	46:XF:168:LYS:NZ	2.52	0.42
11:XA:2143:G:C6	11:XA:2258:A:C2	3.07	0.42
11:XA:2933:G:N2	11:XA:2936:U:O2	2.41	0.42
11:XA:3096:U:H3'	88:A:7:004:CD2	2.49	0.42
17:AA:805:C:O4'	17:AA:805:C:O2	2.36	0.42
40:AX:159:HIS:NE2	40:AX:266:ASN:OD1	2.52	0.42
41:AY:376:PHE:O	41:AY:380:PHE:CD2	2.71	0.42
44:XD:251:ASP:OD1	44:XD:251:ASP:C	2.57	0.42
54:XO:113:ARG:O	54:XO:117:ARG:NH1	2.52	0.42
6:5:200:ARG:NH1	6:5:234:ASP:OD2	2.52	0.42
8:7:95:LEU:O	59:XT:137:ARG:NH2	2.45	0.42
16:A4:243:ASN:O	16:A4:247:ILE:HG12	2.19	0.42
16:A4:372:TYR:O	16:A4:376:ILE:HG12	2.19	0.42
17:AA:770:C:O2'	17:AA:771:A:OP1	2.32	0.42
34:AR:128:MET:SD	34:AR:128:MET:N	2.88	0.42
44:XD:163:ILE:HG22	44:XD:164:LEU:N	2.33	0.42
45:XE:271:LEU:HD12	45:XE:286:ASN:O	2.19	0.42
46:XF:90:ALA:O	46:XF:176:VAL:HG23	2.18	0.42
49:XJ:75:ASP:O	49:XJ:76:ARG:HB3	2.20	0.42
54:XO:60:ILE:HD11	54:XO:104:TYR:CG	2.53	0.42
57:XR:85:ALA:O	57:XR:89:ASN:OD1	2.37	0.42
6:5:173:ARG:HA	6:5:176:TYR:CE2	2.53	0.42
17:AA:908:C:N4	17:AA:909:G:O6	2.52	0.42
18:AB:186:THR:HG23	18:AB:186:THR:O	2.20	0.42
38:AV:372:ILE:O	38:AV:376:GLU:OE1	2.36	0.42
8:7:238:ASP:OD1	8:7:238:ASP:C	2.58	0.42
11:XA:3148:C:OP1	45:XE:211:ILE:HG12	2.19	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
17:AA:1134:G:N7	26:AJ:35:GLN:NE2	2.67	0.42
20:AD:250:GLY:N	20:AD:326:LEU:O	2.52	0.42
27:AK:69:ASP:O	27:AK:73:GLU:OE1	2.37	0.42
28:AL:137:ARG:HA	28:AL:140:GLU:OE2	2.19	0.42
43:XB:1607:U:O2'	43:XB:1608:G:H5'	2.20	0.42
58:XS:114:ILE:CG2	58:XS:193:LEU:HB2	2.48	0.42
4:3:125:ARG:HE	4:3:147:PHE:HE1	1.66	0.42
11:XA:2326:C:O2'	54:XO:31:ASN:OD1	2.30	0.42
46:XF:237:LEU:HD11	46:XF:240:PHE:HB2	2.01	0.42
56:XQ:118:ARG:NH2	56:XQ:204:MET:O	2.53	0.42
58:XS:155:ARG:NE	58:XS:157:GLU:OE2	2.52	0.42
60:XU:40:VAL:HG12	60:XU:41:GLN:N	2.34	0.42
11:XA:2726:C:O2	11:XA:2937:A:N1	2.53	0.42
11:XA:3212:C:O2	11:XA:3212:C:O4'	2.36	0.42
16:A4:638:SER:OG	16:A4:640:PRO:HD2	2.20	0.42
23:AG:140:TRP:HA	23:AG:146:PRO:HA	2.02	0.42
31:AO:163:LEU:HD23	31:AO:163:LEU:H	1.83	0.42
56:XQ:225:LYS:CG	56:XQ:226:PRO:HD2	2.49	0.42
4:3:95:THR:HG21	4:3:105:LYS:HD3	2.01	0.42
7:6:51:TYR:CZ	62:XW:122:LYS:HA	2.54	0.42
8:7:53:ALA:HA	8:7:56:LEU:CD2	2.50	0.42
11:XA:1917:A:C8	11:XA:1983:U:C4	3.08	0.42
11:XA:1970:G:H2'	11:XA:1971:A:O4'	2.19	0.42
11:XA:2605:C:OP2	11:XA:2606:U:O2'	2.29	0.42
16:A4:319:LEU:HA	16:A4:322:HIS:CD2	2.55	0.42
16:A4:643:GLU:O	16:A4:646:THR:OG1	2.34	0.42
17:AA:1235:U:H5"	17:AA:1236:C:OP2	2.20	0.42
17:AA:1265:C:H4'	24:AH:122:GLN:HG3	2.01	0.42
26:AJ:49:LEU:HD23	26:AJ:51:PRO:HD2	2.02	0.42
35:AS:15:ARG:O	35:AS:18:ASP:OD1	2.38	0.42
36:AT:55:ILE:O	36:AT:59:ASN:OD1	2.38	0.42
37:AU:102:HIS:O	37:AU:106:MET:SD	2.78	0.42
60:XU:13:GLY:O	61:XV:211:LYS:NZ	2.45	0.42
63:XX:82:GLY:N	63:XX:83:GLU:OE1	2.53	0.42
11:XA:1939:G:O5'	44:XD:259:LYS:NZ	2.49	0.42
11:XA:2470:G:O2'	51:XL:36:THR:HG22	2.20	0.42
11:XA:2517:U:OP1	44:XD:287:ARG:NH2	2.53	0.42
11:XA:2714:A:OP2	45:XE:239:ARG:NH1	2.53	0.42
11:XA:3180:A:C4	11:XA:3190:A:C6	3.08	0.42
12:A0:44:PRO:O	12:A0:45:PHE:HB3	2.19	0.42
13:A1:267:LEU:O	13:A1:270:LYS:NZ	2.43	0.42

	1.5	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
16:A4:68:VAL:HG13	41:AY:302:ILE:HG23	2.01	0.42	
16:A4:109:ALA:O	19:AC:134:PHE:HD1	2.02	0.42	
36:AT:116:GLU:O	36:AT:119:GLU:HG3	2.20	0.42	
40:AX:393:ARG:O	40:AX:397:TYR:CD2	2.72	0.42	
41:AY:377:ARG:HA	41:AY:380:PHE:CE2	2.55	0.42	
50:XK:7:ALA:HB3	50:XK:8:PRO:HD3	2.01	0.42	
61:XV:77:VAL:HG23	61:XV:89:GLY:N	2.35	0.42	
16:A4:335:PHE:HA	16:A4:338:ILE:HG22	2.01	0.42	
27:AK:72:ASP:OD1	27:AK:72:ASP:C	2.56	0.42	
34:AR:140:ASP:OD1	34:AR:141:VAL:N	2.53	0.42	
52:XM:102:GLN:HA	52:XM:105:ILE:HG12	2.00	0.42	
55:XP:87:HIS:O	55:XP:118:THR:OG1	2.27	0.42	
63:XX:207:THR:OG1	63:XX:210:GLU:OE1	2.37	0.42	
2:1:23:GLU:OE2	2:1:57:VAL:N	2.51	0.42	
8:7:68:LYS:HG2	8:7:78:VAL:HG12	2.01	0.42	
11:XA:3122:U:O2	11:XA:3122:U:O4'	2.37	0.42	
16:A4:640:PRO:O	16:A4:643:GLU:HG2	2.20	0.42	
23:AG:115:GLY:N	24:AH:84:ASP:OD2	2.53	0.42	
25:AI:181:ILE:HG13	25:AI:181:ILE:O	2.20	0.42	
33:AQ:26:LEU:O	33:AQ:29:ILE:HG22	2.19	0.42	
45:XE:221:ARG:HA	45:XE:261:MET:SD	2.60	0.42	
51:XL:96:MET:SD	51:XL:96:MET:N	2.93	0.42	
53:XN:172:VAL:HG13	53:XN:175:PHE:CZ	2.55	0.42	
53:XN:198:MET:O	53:XN:201:ASP:OD1	2.38	0.42	
64:XY:94:SER:OG	64:XY:95:ASN:N	2.53	0.42	
11:XA:2944:C:H2'	11:XA:2945:A:O4'	2.20	0.41	
22:AF:116:GLU:O	22:AF:120:ARG:HG2	2.19	0.41	
34:AR:67:LYS:N	34:AR:68:PRO:CD	2.83	0.41	
6:5:306:PRO:O	6:5:310:ARG:NE	2.47	0.41	
11:XA:2400:C:O2'	11:XA:2401:A:O5'	2.36	0.41	
17:AA:1231:A:O2'	17:AA:1236:C:N4	2.48	0.41	
17:AA:1464:G:H2'	17:AA:1465:C:C6	2.56	0.41	
25:AI:174:SER:OG	33:AQ:13:MET:SD	2.78	0.41	
31:AO:151:THR:O	31:AO:154:ILE:HG22	2.20	0.41	
46:XF:284:TYR:HB2	46:XF:285:PRO:HD2	2.02	0.41	
50:XK:42:LEU:O	57:XR:74:ALA:HB2	2.20	0.41	
59:XT:88:TRP:CZ3	59:XT:92:LYS:HD2	2.55	0.41	
65:XZ:124:LEU:HD12	65:XZ:124:LEU:O	2.21	0.41	
7:6:379:ILE:O	7:6:380:TYR:CG	2.73	0.41	
8:7:235:TYR:O	8:7:238:ASP:OD1	2.38	0.41	
11:XA:2411:U:O4	11:XA:2412:A:N6	2.54	0.41	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
16:A4:455:ASN:HA	16:A4:486:TYR:CE1	2.55	0.41
17:AA:1440:G:H2'	17:AA:1441:A:C8	2.55	0.41
23:AG:200:LEU:O	23:AG:218:TYR:OH	2.35	0.41
24:AH:123:SER:OG	24:AH:124:VAL:N	2.50	0.41
39:AW:162:VAL:HG12	39:AW:162:VAL:O	2.20	0.41
45:XE:50:ASP:HA	45:XE:53:LEU:HD21	2.02	0.41
57:XR:17:ARG:HA	57:XR:20:ARG:HG2	2.02	0.41
59:XT:119:GLU:O	59:XT:123:GLU:OE1	2.37	0.41
63:XX:163:ARG:HG3	63:XX:201:ALA:O	2.20	0.41
11:XA:2714:A:N6	11:XA:3101:A:O2'	2.50	0.41
20:AD:273:ASN:HA	20:AD:276:VAL:HG12	2.03	0.41
31:AO:105:CYS:HB2	31:AO:106:PRO:HD2	2.01	0.41
53:XN:201:ASP:OD1	53:XN:201:ASP:C	2.59	0.41
57:XR:73:THR:HG22	57:XR:77:GLN:OE1	2.21	0.41
17:AA:1024:G:C4	17:AA:1026:A:OP2	2.74	0.41
17:AA:1399:A:H2'	17:AA:1400:U:C6	2.55	0.41
6:5:393:LYS:O	6:5:396:VAL:HG12	2.21	0.41
7:6:321:CYS:SG	7:6:322:ARG:N	2.93	0.41
9:8:169:PHE:HB2	9:8:170:PRO:HD3	2.03	0.41
13:A1:53:LEU:HB2	16:A4:518:GLU:CG	2.51	0.41
13:A1:66:TRP:CG	23:AG:91:MET:HG2	2.55	0.41
13:A1:91:VAL:O	13:A1:94:GLY:N	2.54	0.41
16:A4:561:SER:O	16:A4:563:PRO:HD3	2.21	0.41
16:A4:616:ASP:HA	16:A4:619:LYS:HG2	2.01	0.41
16:A4:639:LEU:N	16:A4:640:PRO:CD	2.83	0.41
17:AA:865:A:H2'	17:AA:866:A:N9	2.36	0.41
17:AA:1578:A:H2'	17:AA:1579:C:C6	2.56	0.41
20:AD:245:VAL:HG22	20:AD:271:ALA:HB1	2.02	0.41
22:AF:112:ILE:HD12	40:AX:397:TYR:CD1	2.56	0.41
22:AF:192:ARG:HG3	22:AF:192:ARG:O	2.21	0.41
23:AG:171:ASN:O	23:AG:175:HIS:ND1	2.50	0.41
26:AJ:61:VAL:O	26:AJ:84:ARG:N	2.51	0.41
40:AX:371:ALA:O	40:AX:373:THR:N	2.53	0.41
44:XD:194:ASN:OD1	44:XD:243:THR:HG23	2.21	0.41
45:XE:82:ASP:O	45:XE:84:PRO:HD3	2.20	0.41
52:XM:133:LYS:C	52:XM:134:ARG:HG2	2.40	0.41
64:XY:220:LYS:O	64:XY:224:GLU:OE1	2.38	0.41
4:3:180:TYR:CD2	7:6:363:LEU:HD21	2.56	0.41
11:XA:2475:U:C2	11:XA:2477:G:OP2	2.74	0.41
11:XA:3127:G:C2	11:XA:3129:A:OP2	2.74	0.41
12:A0:125:GLU:OE1	12:A0:125:GLU:N	2.53	0.41

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
28:AL:100:LYS:O	28:AL:104:LEU:HG	2.20	0.41	
31:AO:54:GLU:N	31:AO:55:PRO:CD	2.84	0.41	
34:AR:145:ASP:OD2	34:AR:148:LEU:N	2.50	0.41	
38:AV:63:ARG:O	38:AV:64:LYS:HG3	2.21	0.41	
50:XK:135:GLU:HA	50:XK:138:LEU:CD2	2.51	0.41	
54:XO:26:ILE:HA	54:XO:29:LEU:CD2	2.50	0.41	
11:XA:3117:C:C2	11:XA:3118:U:C5	3.09	0.41	
13:A1:291:GLU:O	13:A1:294:LYS:HG3	2.20	0.41	
17:AA:842:C:H2'	17:AA:843:G:O4'	2.21	0.41	
17:AA:1173:C:H2'	17:AA:1174:U:C6	2.55	0.41	
17:AA:1485:G:H2'	17:AA:1486:C:O4'	2.20	0.41	
31:AO:148:LYS:O	31:AO:152:GLN:OE1	2.39	0.41	
33:AQ:24:ARG:O	33:AQ:27:ASN:OD1	2.39	0.41	
48:XI:112:MET:O	48:XI:116:LEU:HD23	2.21	0.41	
51:XL:99:ARG:NH1	56:XQ:161:GLU:OE2	2.54	0.41	
56:XQ:79:GLU:OE2	56:XQ:167:TYR:OH	2.30	0.41	
6:5:120:ALA:HB3	6:5:314:ILE:HD11	2.03	0.41	
7:6:189:CYS:O	55:XP:138:ALA:HA	2.21	0.41	
8:7:147:ALA:O	8:7:150:MET:HG2	2.21	0.41	
8:7:217:GLU:HG2	8:7:256:ARG:HB3	2.02	0.41	
8:7:225:VAL:O	8:7:229:ILE:HG12	2.21	0.41	
11:XA:1882:A:N6	11:XA:1893:A:O4'	2.54	0.41	
11:XA:2151:A:H2'	11:XA:2152:A:C8	2.56	0.41	
11:XA:2417:C:H5"	11:XA:2418:A:OP1	2.21	0.41	
11:XA:2476:C:N3	11:XA:3069:A:H5'	2.35	0.41	
91:XA:5144:DOL:H462	88:A:3:DBB:HG1	2.01	0.41	
12:A0:201:TRP:CD2	17:AA:844:A:C2	3.09	0.41	
13:A1:295:SER:O	13:A1:299:LEU:HD23	2.21	0.41	
16:A4:416:PHE:CE2	16:A4:457:TYR:CG	3.09	0.41	
16:A4:491:GLN:O	16:A4:495:HIS:ND1	2.45	0.41	
18:AB:60:ASP:OD2	18:AB:64:ASN:ND2	2.54	0.41	
37:AU:123:ARG:O	37:AU:127:GLU:OE1	2.38	0.41	
38:AV:141:ASN:OD1	38:AV:142:PHE:N	2.54	0.41	
40:AX:350:PRO:O	40:AX:354:GLU:OE1	2.39	0.41	
52:XM:182:ARG:O	52:XM:186:ILE:HD12	2.21	0.41	
52:XM:209:GLU:N	52:XM:209:GLU:OE1	2.53	0.41	
55:XP:113:LYS:HG3	55:XP:114:HIS:N	2.36	0.41	
56:XQ:153:ASN:OD1	56:XQ:154:VAL:N	2.54	0.41	
63:XX:226:LEU:HA	63:XX:229:ILE:HG12	2.02	0.41	
5:4:99:LYS:NZ	11:XA:3013:G:O2'	2.49	0.41	
6:5:155:LEU:HA	6:5:158:ILE:HG22	2.02	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
7:6:107:LYS:HA	7:6:110:ILE:HG22	2.03	0.41
9:8:128:GLU:O	9:8:131:MET:HG3	2.21	0.41
11:XA:2401:A:OP1	44:XD:262:ARG:NH1	2.54	0.41
11:XA:3013:G:O6	11:XA:3025:A:C6	2.74	0.41
11:XA:3025:A:C2	11:XA:3026:U:C5	3.09	0.41
19:AC:58:ALA:HB1	19:AC:59:PRO:HD2	2.02	0.41
35:AS:114:GLU:HG2	35:AS:115:GLU:N	2.36	0.41
40:AX:374:GLU:HG2	40:AX:375:GLU:N	2.35	0.41
45:XE:248:ILE:HG13	45:XE:250:ARG:HG2	2.03	0.41
11:XA:3169:C:H2'	11:XA:3170:C:C6	2.56	0.40
17:AA:917:C:OP2	31:AO:91:ARG:NH2	2.55	0.40
19:AC:86:THR:O	19:AC:89:ASP:OD1	2.39	0.40
19:AC:89:ASP:OD1	19:AC:89:ASP:C	2.58	0.40
20:AD:96:ASP:OD1	20:AD:96:ASP:N	2.54	0.40
25:AI:69:GLU:HA	25:AI:70:GLU:HA	1.91	0.40
9:8:116:LEU:O	9:8:119:LYS:HG3	2.22	0.40
11:XA:1858:G:H2'	11:XA:1859:A:O4'	2.21	0.40
11:XA:1977:U:H2'	11:XA:1978:A:H8	1.86	0.40
11:XA:2558:A:C4'	11:XA:2559:U:OP2	2.68	0.40
11:XA:3149:C:N4	11:XA:3161:G:N7	2.69	0.40
11:XA:3189:C:C2'	11:XA:3190:A:OP2	2.70	0.40
13:A1:104:GLU:HA	13:A1:107:LYS:HG2	2.02	0.40
17:AA:674:U:N3	17:AA:675:A:N7	2.69	0.40
17:AA:1048:C:O2	28:AL:196:TYR:N	2.54	0.40
17:AA:1326:A:N3	20:AD:108:ALA:HB3	2.36	0.40
23:AG:376:VAL:HG12	23:AG:377:ARG:N	2.36	0.40
24:AH:178:GLU:OE1	24:AH:178:GLU:N	2.54	0.40
37:AU:100:ALA:O	37:AU:104:GLU:OE1	2.38	0.40
65:XZ:110:LEU:HA	65:XZ:113:VAL:HG22	2.04	0.40
13:A1:189:LYS:O	13:A1:193:LEU:HD23	2.21	0.40
14:A2:48:GLU:O	14:A2:51:VAL:HG12	2.22	0.40
15:A3:156:LYS:O	15:A3:159:GLU:HG3	2.21	0.40
15:A3:184:GLU:HG3	15:A3:185:ALA:H	1.87	0.40
21:AE:20:ALA:O	21:AE:23:LYS:HG2	2.21	0.40
49:XJ:107:GLU:OE1	49:XJ:109:ALA:N	2.51	0.40
50:XK:73:GLU:OE1	50:XK:73:GLU:N	2.54	0.40
11:XA:1764:C:H3'	11:XA:1765:C:C5'	2.52	0.40
11:XA:2292:G:N1	57:XR:10:LEU:N	2.69	0.40
11:XA:2372:U:O2	11:XA:2372:U:O4'	2.39	0.40
14:A2:95:GLU:HA	14:A2:95:GLU:OE2	2.22	0.40
16:A4:167:LYS:HG3	16:A4:168:ALA:N	2.37	0.40

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
16:A4:409:ASP:O	16:A4:412:ASP:OD2	2.40	0.40
17:AA:674:U:O4'	17:AA:826:A:H2	2.04	0.40
21:AE:15:ARG:HA	21:AE:18:THR:OG1	2.22	0.40
24:AH:170:MET:SD	24:AH:172:VAL:HG13	2.62	0.40
36:AT:150:PRO:HA	36:AT:153:VAL:O	2.21	0.40
51:XL:36:THR:O	51:XL:56:ARG:HA	2.21	0.40
64:XY:198:ARG:HG3	64:XY:200:PHE:CE1	2.56	0.40
6:5:378:SER:OG	6:5:379:ASP:N	2.55	0.40
8:7:276:PHE:H	8:7:303:PRO:HA	1.85	0.40
11:XA:1937:A:H2'	11:XA:1938:A:O4'	2.22	0.40
11:XA:2245:A:H1'	11:XA:2246:A:C8	2.56	0.40
11:XA:2877:C:H2'	11:XA:2878:G:O4'	2.22	0.40
11:XA:3009:C:O2	11:XA:3009:C:O5'	2.39	0.40
15:A3:187:GLU:O	28:AL:212:ARG:NH2	2.42	0.40
17:AA:1230:C:N4	17:AA:1447:G:C4	2.90	0.40
17:AA:1262:C:C2	17:AA:1334:G:N2	2.90	0.40
17:AA:1592:U:O2'	17:AA:1593:U:H5'	2.21	0.40
28:AL:137:ARG:HA	28:AL:140:GLU:CD	2.42	0.40
34:AR:72:ASP:N	34:AR:72:ASP:OD1	2.55	0.40
34:AR:208:ILE:O	34:AR:214:ASN:ND2	2.53	0.40
38:AV:338:HIS:ND1	38:AV:342:GLN:OE1	2.54	0.40
41:AY:339:GLU:N	41:AY:339:GLU:OE1	2.54	0.40
45:XE:213:LYS:O	54:XO:9:ILE:HG21	2.22	0.40
46:XF:52:GLU:N	46:XF:52:GLU:OE1	2.55	0.40
46:XF:141:ILE:O	46:XF:142:ARG:HB2	2.21	0.40
52:XM:252:LEU:H	52:XM:252:LEU:HD23	1.87	0.40
54:XO:94:ALA:HB3	54:XO:95:PRO:HD3	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	106/188~(56%)	102 (96%)	4 (4%)	0	100	100
2	1	51/65~(78%)	50 (98%)	1 (2%)	0	100	100
3	2	44/92~(48%)	43 (98%)	1 (2%)	0	100	100
4	3	93/188~(50%)	92 (99%)	1 (1%)	0	100	100
5	4	36/103~(35%)	35~(97%)	1 (3%)	0	100	100
6	5	391/423~(92%)	366~(94%)	25 (6%)	0	100	100
7	6	350/380~(92%)	327~(93%)	23 (7%)	0	100	100
8	7	285/338~(84%)	266 (93%)	19 (7%)	0	100	100
9	8	137/206~(66%)	133 (97%)	4 (3%)	0	100	100
10	9	122/137~(89%)	117 (96%)	5 (4%)	0	100	100
12	A0	197/218~(90%)	186 (94%)	11 (6%)	0	100	100
13	A1	273/323~(84%)	258 (94%)	15 (6%)	0	100	100
14	A2	114/118~(97%)	112 (98%)	2 (2%)	0	100	100
15	A3	67/199~(34%)	66 (98%)	1 (2%)	0	100	100
16	A4	526/689~(76%)	493 (94%)	33 (6%)	0	100	100
18	AB	216/296~(73%)	209 (97%)	7 (3%)	0	100	100
19	AC	130/167~(78%)	127 (98%)	3 (2%)	0	100	100
20	AD	341/430~(79%)	325 (95%)	16 (5%)	0	100	100
21	AE	120/125~(96%)	116 (97%)	4 (3%)	0	100	100
22	AF	197/242~(81%)	194 (98%)	3 (2%)	0	100	100
23	AG	300/396~(76%)	289 (96%)	11 (4%)	0	100	100
24	AH	133/201~(66%)	123 (92%)	10 (8%)	0	100	100
25	AI	134/194~(69%)	128 (96%)	6 (4%)	0	100	100
26	AJ	106/138~(77%)	99~(93%)	7 (7%)	0	100	100
27	AK	99/128~(77%)	97 (98%)	2 (2%)	0	100	100
28	AL	162/257~(63%)	159 (98%)	3 (2%)	0	100	100
29	AM	114/137~(83%)	111 (97%)	3 (3%)	0	100	100
30	AN	105/130~(81%)	101 (96%)	4 (4%)	0	100	100
31	AO	$\overline{183/258}$ (71%)	178 (97%)	5 (3%)	0	100	100
32	AP	93/142~(66%)	87 (94%)	6 (6%)	0	100	100
33	AQ	83/87~(95%)	78 (94%)	5 (6%)	0	100	100
34	AR	248/360~(69%)	237 (96%)	11 (4%)	0	100	100

Continued	from	mroniono	maaa
Commueu	JIOIII	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
35	AS	131/190~(69%)	124 (95%)	7 (5%)	0	100	100
36	AT	160/173~(92%)	149 (93%)	11 (7%)	0	100	100
37	AU	171/205~(83%)	169~(99%)	2(1%)	0	100	100
38	AV	341/414~(82%)	322 (94%)	19 (6%)	0	100	100
39	AW	95/187~(51%)	92 (97%)	3 (3%)	0	100	100
40	AX	346/398~(87%)	327 (94%)	19 (6%)	0	100	100
41	AY	111/395~(28%)	103 (93%)	8 (7%)	0	100	100
42	AZ	84/106 (79%)	82 (98%)	2 (2%)	0	100	100
44	XD	234/305~(77%)	222 (95%)	10 (4%)	2 (1%)	17	54
45	XE	302/348~(87%)	286 (95%)	16 (5%)	0	100	100
46	XF	248/311 (80%)	241 (97%)	7 (3%)	0	100	100
47	XH	93/267~(35%)	90 (97%)	3 (3%)	0	100	100
48	XI	209/261~(80%)	193 (92%)	16 (8%)	0	100	100
49	XJ	168/192~(88%)	157 (94%)	11 (6%)	0	100	100
50	XK	175/178~(98%)	169 (97%)	6 (3%)	0	100	100
51	XL	113/145~(78%)	107 (95%)	6 (5%)	0	100	100
52	XM	285/296~(96%)	276 (97%)	9 (3%)	0	100	100
53	XN	219/251~(87%)	210 (96%)	9 (4%)	0	100	100
54	XO	150/175~(86%)	144 (96%)	6 (4%)	0	100	100
55	XP	141/180~(78%)	133 (94%)	8 (6%)	0	100	100
56	XQ	236/292~(81%)	225 (95%)	11 (5%)	0	100	100
57	XR	138/149~(93%)	132 (96%)	6 (4%)	0	100	100
58	XS	158/205~(77%)	152 (96%)	6 (4%)	0	100	100
59	XT	164/206~(80%)	159 (97%)	5 (3%)	0	100	100
60	XU	137/153~(90%)	132 (96%)	5 (4%)	0	100	100
61	XV	200/216~(93%)	192 (96%)	8 (4%)	0	100	100
62	XW	109/148~(74%)	103 (94%)	6 (6%)	0	100	100
63	XX	241/256~(94%)	234 (97%)	7 (3%)	0	100	100
64	XY	176/250~(70%)	171 (97%)	5 (3%)	0	100	100
65	XZ	118/161~(73%)	115 (98%)	3 (2%)	0	100	100
66	a	93/142~(66%)	84 (90%)	9 (10%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
67	b	146/215~(68%)	134 (92%)	12 (8%)	0	100	100
68	с	271/332~(82%)	260 (96%)	11 (4%)	0	100	100
69	d	212/306~(69%)	200 (94%)	11 (5%)	1 (0%)	29	66
70	е	211/279~(76%)	204 (97%)	7 (3%)	0	100	100
71	f	139/212~(66%)	133 (96%)	6 (4%)	0	100	100
72	g	130/166~(78%)	123 (95%)	7 (5%)	0	100	100
73	h	106/158~(67%)	100 (94%)	6 (6%)	0	100	100
74	i	95/128 (74%)	93~(98%)	2 (2%)	0	100	100
75	j	84/123~(68%)	83 (99%)	1 (1%)	0	100	100
76	k	93/112 (83%)	86 (92%)	7 (8%)	0	100	100
77	1	78/138~(56%)	70 (90%)	8 (10%)	0	100	100
78	m	58/128 (45%)	54 (93%)	4 (7%)	0	100	100
79	0	92/102~(90%)	88 (96%)	4 (4%)	0	100	100
80	р	119/206~(58%)	114 (96%)	5 (4%)	0	100	100
81	q	162/222 (73%)	160 (99%)	2 (1%)	0	100	100
82	r	144/196~(74%)	140 (97%)	4 (3%)	0	100	100
86	s	366/439~(83%)	348 (95%)	18 (5%)	0	100	100
87	t1	45/198~(23%)	42 (93%)	3 (7%)	0	100	100
87	t2	28/198 (14%)	28 (100%)	0	0	100	100
87	t3	28/198~(14%)	28 (100%)	0	0	100	100
87	t4	27/198~(14%)	26 (96%)	1 (4%)	0	100	100
87	t5	27/198~(14%)	26 (96%)	1 (4%)	0	100	100
87	t6	25/198~(13%)	25 (100%)	0	0	100	100
88	А	2/8~(25%)	0	1 (50%)	1 (50%)	0	0
All	All	13790/19168~(72%)	13164 (96%)	622 (4%)	4 (0%)	100	100

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
88	А	4	PRO
44	XD	207	ILE
44	XD	208	ARG
69	d	289	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	97/164~(59%)	97~(100%)	0	100	100
2	1	50/60~(83%)	50~(100%)	0	100	100
3	2	40/72~(56%)	40 (100%)	0	100	100
4	3	88/166~(53%)	88 (100%)	0	100	100
5	4	37/89~(42%)	37~(100%)	0	100	100
6	5	353/368~(96%)	351~(99%)	2 (1%)	86	93
7	6	313/332~(94%)	311~(99%)	2 (1%)	86	93
8	7	267/303~(88%)	267~(100%)	0	100	100
9	8	128/190~(67%)	127~(99%)	1 (1%)	81	89
10	9	104/112~(93%)	104 (100%)	0	100	100
12	A0	176/190~(93%)	175~(99%)	1 (1%)	86	93
13	A1	253/291~(87%)	251~(99%)	2 (1%)	81	89
14	A2	99/101~(98%)	97~(98%)	2 (2%)	55	74
15	A3	63/166~(38%)	63~(100%)	0	100	100
16	A4	494/609~(81%)	490 (99%)	4 (1%)	81	89
18	AB	192/249~(77%)	192~(100%)	0	100	100
19	AC	115/143~(80%)	115~(100%)	0	100	100
20	AD	283/357~(79%)	281~(99%)	2(1%)	84	91
21	AE	104/107~(97%)	104 (100%)	0	100	100
22	AF	178/209~(85%)	178~(100%)	0	100	100
23	AG	264/342~(77%)	264~(100%)	0	100	100
24	AH	125/180~(69%)	125 (100%)	0	100	100
25	AI	104/147~(71%)	104 (100%)	0	100	100
26	AJ	93/118~(79%)	93 (100%)	0	100	100
27	AK	91/113~(80%)	91 (100%)	0	100	100
28	AL	152/226~(67%)	152 (100%)	0	100	100

α \cdot \cdot \cdot	ſ		
Continued	from	previous	page
		1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
29	AM	95/113~(84%)	95 (100%)	0	100	100
30	AN	93/115~(81%)	93~(100%)	0	100	100
31	AO	166/230~(72%)	166~(100%)	0	100	100
32	AP	86/123~(70%)	86 (100%)	0	100	100
33	AQ	77/79~(98%)	77 (100%)	0	100	100
34	AR	229/318~(72%)	228 (100%)	1 (0%)	91	95
35	AS	115/164~(70%)	115 (100%)	0	100	100
36	AT	150/157~(96%)	150 (100%)	0	100	100
37	AU	149/174~(86%)	148 (99%)	1 (1%)	84	91
38	AV	315/364~(86%)	314 (100%)	1 (0%)	92	96
39	AW	84/158~(53%)	84 (100%)	0	100	100
40	AX	307/351~(88%)	304 (99%)	3 (1%)	76	86
41	AY	104/357~(29%)	104 (100%)	0	100	100
42	AZ	79/95~(83%)	79~(100%)	0	100	100
44	XD	190/245~(78%)	190 (100%)	0	100	100
45	XE	259/290~(89%)	259~(100%)	0	100	100
46	XF	217/262~(83%)	217 (100%)	0	100	100
47	XH	86/228~(38%)	86 (100%)	0	100	100
48	XI	194/232~(84%)	194 (100%)	0	100	100
49	XJ	133/150~(89%)	132 (99%)	1 (1%)	81	89
50	XK	155/156~(99%)	154 (99%)	1 (1%)	86	93
51	XL	98/124~(79%)	98 (100%)	0	100	100
52	XM	245/249~(98%)	244 (100%)	1 (0%)	91	95
53	XN	188/211~(89%)	188 (100%)	0	100	100
54	XO	133/150~(89%)	133 (100%)	0	100	100
55	XP	125/155~(81%)	125 (100%)	0	100	100
56	XQ	220/256~(86%)	220 (100%)	0	100	100
57	XR	118/126~(94%)	118 (100%)	0	100	100
58	XS	145/180 (81%)	145 (100%)	0	100	100
59	XT	146/176~(83%)	145 (99%)	1 (1%)	84	91
60	XU	126/135~(93%)	126 (100%)	0	100	100

$Continued \ from \ previous \ page.$	••
---------------------------------------	----

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
61	XV	179/191~(94%)	179 (100%)	0	100	100
62	XW	91/119~(76%)	90 (99%)	1 (1%)	73	85
63	XX	219/229~(96%)	219 (100%)	0	100	100
64	XY	161/223~(72%)	161 (100%)	0	100	100
65	XZ	111/147 (76%)	111 (100%)	0	100	100
66	a	93/133~(70%)	93 (100%)	0	100	100
67	b	130/186 (70%)	130 (100%)	0	100	100
68	с	241/288 (84%)	240 (100%)	1 (0%)	91	95
69	d	196/274~(72%)	196 (100%)	0	100	100
70	е	188/236~(80%)	188 (100%)	0	100	100
71	f	128/188~(68%)	128 (100%)	0	100	100
72	g	122/148 (82%)	122 (100%)	0	100	100
73	h	103/148 (70%)	102 (99%)	1 (1%)	76	86
74	i	86/110 (78%)	86 (100%)	0	100	100
75	j	68/97~(70%)	68 (100%)	0	100	100
76	k	80/90 (89%)	80 (100%)	0	100	100
77	1	74/116~(64%)	74 (100%)	0	100	100
78	m	54/113 (48%)	54 (100%)	0	100	100
79	0	80/87~(92%)	80 (100%)	0	100	100
80	р	117/181~(65%)	117 (100%)	0	100	100
81	q	141/178 (79%)	140 (99%)	1 (1%)	84	91
82	r	138/169~(82%)	138 (100%)	0	100	100
86	S	326/381~(86%)	326 (100%)	0	100	100
87	t1	41/158 (26%)	40 (98%)	1 (2%)	49	71
87	t2	29/158 (18%)	29 (100%)	0	100	100
87	t3	29/158 (18%)	29 (100%)	0	100	100
87	t4	28/158 (18%)	28 (100%)	0	100	100
87	t5	28/158 (18%)	28 (100%)	0	100	100
87	t6	26/158~(16%)	26 (100%)	0	100	100
88	А	2/2~(100%)	2 (100%)	0	100	100
All	All	12399/16509~(75%)	12368 (100%)	31 (0%)	92	96

Mol	Chain	Res	Type
6	5	310	ARG
6	5	395	ARG
7	6	52	ARG
7	6	99	ARG
9	8	119	LYS
12	A0	113	LYS
13	A1	167	ARG
13	A1	294	LYS
14	A2	37	ARG
14	A2	40	LYS
16	A4	158	LYS
16	A4	242	ASN
16	A4	403	LYS
16	A4	594	LYS
20	AD	186	LYS
20	AD	393	LYS
34	AR	99	LYS
37	AU	114	ARG
38	AV	64	LYS
40	AX	163	LYS
40	AX	232	ARG
40	AX	275	LYS
49	XJ	154	ARG
50	XK	150	LYS
52	XM	44	ARG
59	XT	163	ARG
62	XW	119	ARG
68	с	302	ARG
73	h	75	LYS
81	q	140	ARG
87	t1	21[A]	LEU

All (31) residues with a non-rotameric sidechain are listed below:

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (27) such sidechains are listed below:

Mol	Chain	Res	Type
14	A2	59	ASN
14	A2	90	GLN
16	A4	72	GLN
16	A4	242	ASN
16	A4	566	GLN
16	A4	590	GLN

Mol	Chain	Res	Type
16	A4	656	ASN
18	AB	239	ASN
27	AK	60	ASN
31	AO	160	HIS
33	AQ	79	ASN
34	AR	139	ASN
35	AS	91	ASN
38	AV	342	GLN
40	AX	110	HIS
40	AX	347	ASN
40	AX	394	HIS
46	XF	241	ASN
48	XI	235	GLN
49	XJ	47	ASN
55	XP	96	GLN
67	b	90	HIS
72	g	93	ASN
75	j	107	ASN
76	k	15	GLN
77	1	135	ASN
86	S	343	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	XA	1490/1559~(95%)	268~(17%)	7~(0%)
17	AA	916/954~(96%)	160 (17%)	3(0%)
43	XB	54/72~(75%)	10 (18%)	0
83	r1	0/12	-	-
84	r3	0/75	-	-
85	r4	0/76	-	-
All	All	2460/2748~(89%)	438 (17%)	10~(0%)

All (438) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
11	XA	1681	G
11	XA	1685	С
11	XA	1689	С
11	XA	1692	А
11	XA	1693	С

Mol	Chain	Res	Type
11	XA	1695	С
11	XA	1699	С
11	XA	1700	U
11	XA	1704	U
11	XA	1707	С
11	XA	1708	А
11	XA	1709	G
11	XA	1710	А
11	XA	1711	С
11	XA	1712	А
11	XA	1715	С
11	XA	1724	А
11	XA	1727	А
11	XA	1733	C
11	XA	1734	С
11	XA	1736	А
11	XA	1737	A
11	XA	1741	A
11	XA	1748	G
11	XA	1762	A
11	XA	1763	A
11	XA	1764	С
11	XA	1765	С
11	XA	1770	G
11	XA	1777	A
11	XA	1799	U
11	XA	1804	A
11	XA	1805	A
11	XA	1809	U
11	XA	1810	A
11	XA	1811	A
11	XA	1821	A
11	XA	1823	A
11	XA	1827	C
11	XA	1828	A
11	XA	1829	A
11	XA	1832	A
11	XA	1836	A
11	XA	1844	A
11	XA	1853	A
11	XA	1854	U
11	XA	1856	A

Mol	Chain	Res	Type
11	XA	1869	А
11	XA	1872	U
11	XA	1878	U
11	XA	1882	А
11	XA	1886	G
11	XA	1887	А
11	XA	1893	А
11	XA	1902	С
11	XA	1903	С
11	XA	1909	А
11	XA	1918	G
11	XA	1919	С
11	XA	1937	А
11	XA	1940	A
11	XA	1944	С
11	XA	1950	U
11	XA	1958	G
11	XA	1974	А
11	XA	1975	U
11	XA	1985	G
11	XA	1992	С
11	XA	1993	А
11	XA	1994	А
11	XA	2001	С
11	XA	2002	G
11	XA	2003	А
11	XA	2010	U
11	XA	2015	G
11	XA	2022	G
11	XA	2030	U
11	XA	2036	С
11	XA	2037	U
11	XA	2039	A
11	XA	2055	U
11	XA	2060	A
11	XA	2067	С
11	XA	2079	С
11	XA	2099	U
11	XA	2111	С
11	XA	2113	G
11	XA	2125	С
11	XA	2126	U

Mol	Chain	Res	Type
11	XA	2134	А
11	XA	2135	А
11	XA	2147	G
11	XA	2159	U
11	XA	2168	U
11	XA	2169	А
11	XA	2176	С
11	XA	2177	U
11	XA	2178	А
11	XA	2179	А
11	XA	2180	А
11	XA	2181	А
11	XA	2182	G
11	XA	2188	А
11	XA	2195	А
11	XA	2196	A
11	XA	2198	А
11	XA	2200	А
11	XA	2230	А
11	XA	2236	С
11	XA	2237	А
11	XA	2241	А
11	XA	2243	А
11	XA	2244	U
11	XA	2245	А
11	XA	2251	А
11	XA	2260	А
11	XA	2262	С
11	XA	2263	C
11	XA	2283	С
11	XA	2284	С
11	XA	2285	U
11	XA	2297	А
11	XA	2299	U
11	XA	2300	G
11	XA	2316	U
11	XA	2322	C
11	XA	2332	С
11	XA	2345	G
11	XA	2357	С
11	XA	2374	A
11	XA	2375	С

Mol	Chain	Res	Type
11	XA	2379	С
11	XA	2381	А
11	XA	2390	А
11	XA	2407	U
11	XA	2414	С
11	XA	2415	С
11	XA	2418	А
11	XA	2432	А
11	XA	2446	А
11	XA	2451	А
11	XA	2458	А
11	XA	2478	G
11	XA	2485	U
11	XA	2493	C
11	XA	2520	С
11	XA	2523	С
11	XA	2527	А
11	XA	2540	С
11	XA	2557	С
11	XA	2558	А
11	XA	2559	U
11	XA	2570	С
11	XA	2575	U
11	XA	2576	А
11	XA	2577	С
11	XA	2578	С
11	XA	2579	С
11	XA	2581	А
11	XA	2592	G
11	XA	2594	U
11	XA	2601	A
11	XA	2602	U
11	XA	2603	С
11	XA	2618	U
11	XA	2626	U
11	XA	2627	G
11	XA	2628	U
11	XA	2633	A
11	XA	2635	G
11	XA	2654	U
11	XA	2656	U
11	XA	2659	С

Mol	Chain	Res	Type
11	XA	2683	С
11	XA	2686	G
11	XA	2694	А
11	XA	2695	G
11	XA	2696	А
11	XA	2706	А
11	XA	2715	А
11	XA	2718	С
11	XA	2719	G
11	XA	2722	А
11	XA	2723	А
11	XA	2724	G
11	XA	2725	А
11	XA	2732	G
11	XA	2733	G
11	XA	2740	A
11	XA	2758	G
11	XA	2788	С
11	XA	2789	С
11	XA	2791	А
11	XA	2810	G
11	XA	2832	А
11	XA	2833	А
11	XA	2847	С
11	XA	2854	U
11	XA	2859	А
11	XA	2864	U
11	XA	2865	С
11	XA	2869	A
11	XA	2871	U
11	XA	2879	A
11	XA	2893	A
11	XA	2906	С
11	XA	2910	A
11	XA	2913	А
11	XA	2916	G
11	XA	2917	G
11	XA	2918	A
11	XA	2919	A
11	XA	2921	A
11	XA	2928	С
11	XA	2935	А

Mol	Chain	Res	Type
11	XA	2939	С
11	XA	2946	А
11	XA	2952	U
11	XA	2956	А
11	XA	2962	С
11	XA	2963	А
11	XA	2989	G
11	XA	2990	А
11	XA	2992	G
11	XA	3000	А
11	XA	3005	A
11	XA	3007	С
11	XA	3016	G
11	XA	3021	С
11	XA	3041	U
11	XA	3049	U
11	XA	3053	А
11	XA	3054	G
11	XA	3060	С
11	XA	3065	U
11	XA	3067	U
11	XA	3069	А
11	XA	3073	С
11	XA	3089	А
11	XA	3090	G
11	XA	3096	U
11	XA	3100	U
11	XA	3122	U
11	XA	3124	U
11	XA	3129	А
11	XA	3150	U
11	XA	3151	A
11	XA	3154	U
11	XA	3157	С
11	XA	3158	А
11	XA	3160	A
11	XA	3162	С
11	XA	3169	C
11	XA	3172	С
11	XA	3177	A
11	XA	3182	А
11	XA	3184	С

Mol	Chain	Res	Type
11	XA	3189	С
11	XA	3190	A
11	XA	3194	U
11	XA	3208	С
11	XA	3209	А
11	XA	3210	С
11	XA	3212	С
11	XA	3217	А
11	XA	3218	А
11	XA	3219	G
11	XA	3228	U
17	AA	651	А
17	AA	680	U
17	AA	688	A
17	AA	694	C
17	AA	700	A
17	AA	704	U
17	AA	721	U
17	AA	722	С
17	AA	730	А
17	AA	753	А
17	AA	757	А
17	AA	761	А
17	AA	766	G
17	AA	771	А
17	AA	791	G
17	AA	792	С
17	AA	794	U
17	AA	796	G
17	AA	811	G
17	AA	814	A
17	AA	825	U
17	AA	829	C
17	AA	830	U
17	AA	832	U
17	AA	835	С
17	AA	836	А
17	AA	851	A
17	AA	856	A
17	AA	860	A
17	AA	861	U
17	AA	865	А

Mol	Chain	Res	Type
17	AA	866	А
17	AA	868	С
17	AA	869	С
17	AA	880	С
17	AA	881	А
17	AA	890	С
17	AA	893	G
17	AA	897	С
17	AA	899	G
17	AA	903	U
17	AA	905	А
17	AA	917	С
17	AA	919	А
17	AA	923	A
17	AA	932	C
17	AA	933	G
17	AA	938	A
17	AA	939	А
17	AA	942	А
17	AA	949	U
17	AA	950	А
17	AA	967	А
17	AA	975	А
17	AA	993	А
17	AA	994	А
17	AA	1001	С
17	AA	1009	С
17	AA	1015	А
17	AA	1031	G
17	AA	1042	U
17	AA	1046	A
17	AA	1049	A
17	AA	1062	G
17	AA	1069	A
17	AA	1081	U
17	AA	1082	A
17	AA	1103	A
17	AA	1105	С
17	AA	1106	С
17	AA	1109	A
17	AA	1121	A
17	AA	1128	C

Mol	Chain	Res	Type
17	AA	1138	G
17	AA	1142	А
17	AA	1143	С
17	AA	1151	С
17	AA	1167	А
17	AA	1185	С
17	AA	1187	U
17	AA	1188	А
17	AA	1189	U
17	AA	1190	С
17	AA	1193	U
17	AA	1194	С
17	AA	1213	А
17	AA	1214	A
17	AA	1215	U
17	AA	1220	A
17	AA	1223	С
17	AA	1225	С
17	AA	1226	С
17	AA	1227	G
17	AA	1228	А
17	AA	1229	U
17	AA	1230	С
17	AA	1235	U
17	AA	1236	С
17	AA	1237	А
17	AA	1248	С
17	AA	1251	А
17	AA	1261	С
17	AA	1268	С
17	AA	1271	С
17	AA	1284	U
17	AA	1290	С
17	AA	1293	С
17	AA	1295	A
17	AA	1296	A
17	AA	1297	G
17	AA	1307	G
17	AA	1326	A
17	AA	1327	G
17	AA	1330	С
17	AA	1331	А

Mol	Chain	Res	Type
17	AA	1341	С
17	AA	1342	С
17	AA	1343	А
17	AA	1344	U
17	AA	1349	U
17	AA	1353	А
17	AA	1354	А
17	AA	1356	А
17	AA	1365	А
17	AA	1369	U
17	AA	1378	С
17	AA	1390	А
17	AA	1391	U
17	AA	1402	A
17	AA	1416	А
17	AA	1422	G
17	AA	1424	U
17	AA	1430	А
17	AA	1448	U
17	AA	1459	А
17	AA	1461	А
17	AA	1463	G
17	AA	1478	А
17	AA	1482	А
17	AA	1488	С
17	AA	1503	G
17	AA	1525	C
17	AA	1526	U
17	AA	1527	А
17	AA	1528	А
17	AA	1531	С
17	AA	1537	С
17	AA	1539	С
17	AA	1540	A
17	AA	1551	G
17	AA	1557	A
17	AA	1568	U
17	AA	1571	U
17	AA	1582	G
17	AA	1584	A
17	AA	1591	С
17	AA	1594	G

Mol	Chain	Res	Type
17	AA	1595	G
17	AA	1598	G
17	AA	1599	А
43	XB	1608	G
43	XB	1609	U
43	XB	1611	G
43	XB	1615	А
43	XB	1619	С
43	XB	1620	А
43	XB	1621	А
43	XB	1646	U
43	XB	1649	С
43	XB	1659	U

All (10) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
11	XA	2066	С
11	XA	2195	А
11	XA	2417	С
11	XA	2558	А
11	XA	2574	G
11	XA	2961	С
11	XA	2962	С
17	AA	770	С
17	AA	1048	С
17	AA	1234	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

168 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Dog	Link	Bo	ond leng	ths	Bond angles		
	туре		nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
85	P5P	r4	18	85	16,23,24	0.97	1 (6%)	14,33,36	1.99	3 (21%)

Mal	Tune	Chain	Dec	Tiple	Bo	ond leng	ths	B	ond ang	les
WIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
84	Y5P	r3	39	84	$14,\!19,\!20$	3.12	3 (21%)	$18,\!26,\!29$	0.56	0
85	Y5P	r4	62	85	$14,\!19,\!20$	3.14	3 (21%)	$18,\!26,\!29$	0.58	0
84	P5P	r3	14	84	16,23,24	0.93	1 (6%)	14,33,36	2.02	3 (21%)
85	P5P	r4	69	85	16,23,24	0.96	1 (6%)	14,33,36	1.99	3 (21%)
84	Y5P	r3	64	84	14,19,20	3.13	3 (21%)	18,26,29	0.60	0
85	Y5P	r4	50	85	14,19,20	3.13	3 (21%)	18,26,29	0.58	0
85	P5P	r4	9	85	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)
85	P5P	r4	37	85	16,23,24	0.96	1 (6%)	14,33,36	1.94	3 (21%)
84	P5P	r3	19	84	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)
85	P5P	r4	73	85	16,23,24	0.98	1 (6%)	14,33,36	2.01	3 (21%)
84	P5P	r3	71	84	16,23,24	0.94	1 (6%)	14,33,36	1.97	3 (21%)
84	Y5P	r3	25	84	14,19,20	3.10	3 (21%)	18,26,29	0.60	0
85	Y5P	r4	43	85	14,19,20	3.14	3 (21%)	18,26,29	0.60	0
84	P5P	r3	51	84	16,23,24	0.95	1 (6%)	14,33,36	1.99	3 (21%)
85	Y5P	r4	47	85	14,19,20	3.16	3 (21%)	18,26,29	0.64	0
84	Y5P	r3	34	84	14,19,20	<u>3.12</u>	3 (21%)	18,26,29	0.58	0
84	P5P	r3	10	84	16,23,24	0.95	1 (6%)	14,33,36	1.98	3 (21%)
84	P5P	r3	23	84	16,23,24	0.95	1 (6%)	14,33,36	2.00	3 (21%)
84	P5P	r3	44	84	16,23,24	0.96	1 (6%)	14,33,36	1.96	3 (21%)
85	P5P	r4	14	85	16,23,24	0.95	1 (6%)	14,33,36	1.96	3 (21%)
84	P5P	r3	9	84	16,23,24	0.96	1 (6%)	14,33,36	2.01	3 (21%)
84	P5P	r3	57	84	16,23,24	0.95	1 (6%)	14,33,36	1.97	3 (21%)
85	P5P	r4	6	85	16,23,24	0.95	1 (6%)	14,33,36	2.02	3 (21%)
85	P5P	r4	63	85	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)
88	MHU	А	5	88	14,15,16	0.44	0	18,19,21	1.23	3 (16%)
85	Y5P	r4	59	85	14,19,20	3.13	3 (21%)	18,26,29	0.60	0
85	P5P	r4	19	85	16,23,24	0.95	1 (6%)	14,33,36	1.98	3 (21%)
84	Y5P	r3	40	84	14,19,20	3.10	3 (21%)	18,26,29	0.61	0
85	P5P	r4	65	85	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)
85	P5P	r4	34	17,85	16,23,24	0.97	1 (6%)	14,33,36	1.98	3 (21%)
85	Y5P	r4	72	85	14,19,20	3.12	3 (21%)	18,26,29	0.58	0
85	Y5P	r4	67	85	14,19,20	3.14	3 (21%)	18,26,29	0.58	0
84	P5P	r3	17(A)	84	16,23,24	0.95	1 (6%)	14,33,36	2.05	3 (21%)
84	P5P	r3	55	84	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)
85	P5P	r4	15	85	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)

Mal	T	Chain	Dec	T : 1-	Bo	nd leng	ths	B	Bond angles			
WIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2		
83	Y5P	r1	51	83	$14,\!19,\!20$	3.14	3 (21%)	18,26,29	0.57	0		
85	Y5P	r4	16	85	14,19,20	3.13	3 (21%)	18,26,29	0.59	0		
85	Y5P	r4	32	85	14,19,20	3.13	3 (21%)	18,26,29	0.56	0		
85	Y5P	r4	39	85	14,19,20	3.13	3 (21%)	18,26,29	0.57	0		
85	Y5P	r4	51	85	14,19,20	3.13	3 (21%)	18,26,29	0.57	0		
85	Y5P	r4	20	85	14,19,20	3.15	3 (21%)	18,26,29	0.59	0		
85	Y5P	r4	33	85	14,19,20	3.13	3 (21%)	18,26,29	0.55	0		
88	MHV	А	6	88	7,9,10	0.35	0	7,11,13	1.73	2 (28%)		
84	Y5P	r3	54	84	14,19,20	3.14	3 (21%)	18,26,29	0.58	0		
84	P5P	r3	4	84	16,23,24	0.97	1 (6%)	14,33,36	2.01	3 (21%)		
84	P5P	r3	22	84	16,23,24	0.95	1 (6%)	14,33,36	2.00	3 (21%)		
84	Y5P	r3	20	84	14,19,20	3.13	3 (21%)	18,26,29	0.58	0		
84	Y5P	r3	41	84	14,19,20	3.12	3 (21%)	18,26,29	0.64	0		
83	Y5P	r1	53	83	14,19,20	3.10	3 (21%)	18,26,29	0.66	0		
85	P5P	r4	71	85	16,23,24	0.94	1 (6%)	14,33,36	1.98	3 (21%)		
85	Y5P	r4	25	85	14,19,20	3.13	3 (21%)	18,26,29	0.56	0		
85	Y5P	r4	11	85	14,19,20	3.14	3 (21%)	18,26,29	0.55	0		
84	P5P	r3	26	84	16,23,24	0.96	1 (6%)	14,33,36	1.97	3 (21%)		
84	P5P	r3	35	84	16,23,24	0.96	1 (6%)	14,33,36	1.99	3 (21%)		
83	Y5P	r1	56	83	14,19,20	3.14	3 (21%)	18,26,29	0.62	0		
83	Y5P	r1	55	83	14,19,20	3.14	3 (21%)	18,26,29	0.54	0		
84	P5P	r3	21	84	16,23,24	0.97	1 (6%)	14,33,36	1.99	3 (21%)		
84	Y5P	r3	47	84	14,19,20	3.12	3 (21%)	18,26,29	0.59	0		
85	P5P	r4	21	85	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)		
85	Y5P	r4	2	85	14,19,20	3.14	3 (21%)	18,26,29	0.56	0		
85	Y5P	r4	68	85	14,19,20	3.14	3 (21%)	18,26,29	0.57	0		
83	Y5P	r1	50	83	14,19,20	3.14	3 (21%)	18,26,29	0.57	0		
84	Y5P	r3	49	84	14,19,20	3.13	3 (21%)	18,26,29	0.60	0		
85	Y5P	r4	54	85	14,19,20	3.14	3 (21%)	18,26,29	0.56	0		
84	Y5P	r3	7	84	14,19,20	3.12	3 (21%)	18,26,29	0.61	0		
84	P5P	r3	52	84	16,23,24	0.95	1 (6%)	14,33,36	2.00	3 (21%)		
85	P5P	r4	27	85	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)		
85	P5P	r4	53	85	16,23,24	0.95	1 (6%)	14,33,36	1.99	3 (21%)		
85	Y5P	r4	66	85	14,19,20	3.15	3 (21%)	18,26,29	0.55	0		
84	Y5P	r3	69	84	14,19,20	3.13	3 (21%)	18,26,29	0.61	0		

Mol	Tuno	Chain	Dog	Link	Bo	ond leng	ths	B	ond ang	les
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
84	P5P	r3	42	84	16,23,24	0.96	1 (6%)	14,33,36	2.01	3 (21%)
84	Y5P	r3	60	84	$14,\!19,\!20$	3.13	3 (21%)	$18,\!26,\!29$	0.58	0
84	Y5P	r3	24	84	$14,\!19,\!20$	3.11	3 (21%)	$18,\!26,\!29$	0.57	0
84	Y5P	r3	59	84	14,19,20	3.14	3 (21%)	18,26,29	0.57	0
85	Y5P	r4	40	85	14,19,20	3.14	3 (21%)	18,26,29	0.59	0
84	Y5P	r3	16	84	14,19,20	3.14	3 (21%)	18,26,29	0.57	0
85	Y5P	r4	8	85	14,19,20	3.13	3 (21%)	18,26,29	0.58	0
85	Y5P	r4	13	85	14,19,20	3.15	3 (21%)	18,26,29	0.54	0
85	P5P	r4	36	85	16,23,24	0.95	1 (6%)	14,33,36	1.97	3 (21%)
84	P5P	r3	5	84	16,23,24	0.95	1 (6%)	14,33,36	1.98	3 (21%)
84	Y5P	r3	13	84	14,19,20	3.13	3 (21%)	18,26,29	0.62	0
83	Y5P	r1	48	83	14,19,20	3.12	3 (21%)	18,26,29	0.57	0
83	Y5P	r1	46	83	14,19,20	3.13	3 (21%)	18,26,29	0.61	0
85	P5P	r4	64	85	16,23,24	0.96	1 (6%)	14,33,36	1.99	3 (21%)
84	Y5P	r3	58	84	14,19,20	3.12	3 (21%)	18,26,29	0.63	0
84	Y5P	r3	65	84	14,19,20	3.12	3 (21%)	18,26,29	0.61	0
84	P5P	r3	6	84	16,23,24	0.96	1 (6%)	14,33,36	1.97	3 (21%)
85	Y5P	r4	45	85	14,19,20	3.13	3 (21%)	18,26,29	0.55	0
84	P5P	r3	46	84	16,23,24	0.95	1 (6%)	14,33,36	1.97	3 (21%)
84	Y5P	r3	50	84	14,19,20	3.12	3 (21%)	18,26,29	0.61	0
85	Y5P	r4	4	85	14,19,20	3.12	3 (21%)	18,26,29	0.63	0
84	Y5P	r3	53	84	14,19,20	3.13	3 (21%)	18,26,29	0.61	0
83	Y5P	r1	49	83	14,19,20	3.14	3 (21%)	18,26,29	0.56	0
83	Y5P	r1	52	83	14,19,20	3.12	3 (21%)	18,26,29	0.56	0
84	P5P	r3	8	84	16,23,24	0.96	1 (6%)	14,33,36	2.02	3 (21%)
85	P5P	r4	26	85	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)
88	004	А	7	88	9,10,11	1.08	1 (11%)	9,12,14	1.80	3 (33%)
85	P5P	r4	28	85	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)
84	Y5P	r3	2	84	14,19,20	3.13	3 (21%)	18,26,29	0.57	0
84	P5P	r3	43	84	16,23,24	0.94	1 (6%)	14,33,36	1.97	3 (21%)
85	P5P	r4	30	85	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)
85	Y5P	r4	41	85	14,19,20	3.14	3 (21%)	18,26,29	0.57	0
84	P5P	r3	31	84	16,23,24	0.95	1 (6%)	14,33,36	2.03	3 (21%)
83	Y5P	r1	54	83	14,19,20	3.14	3 (21%)	18,26,29	0.58	0
84	P5P	r3	37	84	16,23,24	0.94	1 (6%)	14,33,36	1.97	3 (21%)

Mal	Tuno	Chain	Dec	Tiple	Bo	ond leng	ths	B	Bond angles			
NIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2		
85	P5P	r4	35	85	$16,\!23,\!24$	0.95	1 (6%)	$14,\!33,\!36$	2.00	3 (21%)		
84	P5P	r3	29	84	$16,\!23,\!24$	0.95	1 (6%)	$14,\!33,\!36$	2.00	3 (21%)		
84	Y5P	r3	33	84	$14,\!19,\!20$	3.12	3 (21%)	18,26,29	0.60	0		
85	P5P	r4	58	85	$16,\!23,\!24$	0.95	1 (6%)	14,33,36	1.97	3 (21%)		
85	P5P	r4	24	85	16,23,24	0.95	1 (6%)	14,33,36	1.99	3 (21%)		
85	P5P	r4	57	85	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)		
85	Y5P	r4	49	85	14,19,20	3.15	3 (21%)	18,26,29	0.58	0		
84	P5P	r3	66	84	16,23,24	0.96	1 (6%)	14,33,36	1.99	3 (21%)		
85	P5P	r4	23	85	16,23,24	0.96	1 (6%)	14,33,36	2.02	3 (21%)		
85	P5P	r4	44	85	16,23,24	0.96	1 (6%)	14,33,36	1.99	3 (21%)		
84	P5P	r3	11	84	16,23,24	0.95	1 (6%)	14,33,36	1.96	3 (21%)		
85	P5P	r4	7	85	16,23,24	0.97	1 (6%)	14,33,36	1.98	3 (21%)		
85	P5P	r4	70	85	16,23,24	0.94	1 (6%)	14,33,36	1.97	3 (21%)		
84	P5P	r3	45	84	16,23,24	0.95	1 (6%)	14,33,36	1.97	3 (21%)		
84	Y5P	r3	67	84	14,19,20	<mark>3.11</mark>	3 (21%)	18,26,29	0.59	0		
84	Y5P	r3	72	84	14,19,20	3.09	3 (21%)	18,26,29	0.61	0		
85	Y5P	r4	12	85	14,19,20	3.14	3 (21%)	18,26,29	0.58	0		
84	Y5P	r3	73	84	14,19,20	3.08	3 (21%)	18,26,29	0.54	0		
84	Y5P	r3	61	84	14,19,20	3.12	3 (21%)	18,26,29	0.58	0		
84	Y5P	r3	32	84	14,19,20	3.12	3 (21%)	18,26,29	0.56	0		
84	Y5P	r3	28	84	14,19,20	<mark>3.12</mark>	3 (21%)	18,26,29	0.59	0		
83	Y5P	r1	57	83	14,19,20	<mark>3.15</mark>	3 (21%)	18,26,29	0.59	0		
84	Y5P	r3	56	84	14,19,20	3.13	3 (21%)	18,26,29	0.63	0		
85	P5P	r4	5	85	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)		
85	Y5P	r4	55	85	14,19,20	3.14	3 (21%)	18,26,29	0.56	0		
85	Y5P	r4	17	85	14,19,20	3.14	3 (21%)	18,26,29	0.56	0		
85	Y5P	r4	56	85	14,19,20	3.14	3 (21%)	18,26,29	0.60	0		
84	P5P	r3	18	84	16,23,24	0.97	1 (6%)	14,33,36	1.98	3 (21%)		
85	P5P	r4	38	85	16,23,24	0.95	1 (6%)	14,33,36	1.98	3 (21%)		
84	Y5P	r3	38	84	14,19,20	3.12	3 (21%)	18,26,29	0.56	0		
85	P5P	r4	52	85	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)		
84	Y5P	r3	62	84	14,19,20	3.12	3 (21%)	18,26,29	0.62	0		
84	Y5P	r3	70	84	14,19,20	3.13	3 (21%)	18,26,29	0.58	0		
84	Y5P	r3	27	84	14,19,20	<mark>3.12</mark>	3 (21%)	18,26,29	0.55	0		
85	P5P	r4	76	11,85	16,23,24	0.97	1 (6%)	14,33,36	2.09	3 (21%)		

Mol	Type	Chain	Bos	Link	Bo	ond leng	gths	Bond angles		
wioi	Type	Chain	Ites		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
84	Y5P	r3	63	84	$14,\!19,\!20$	3.13	3 (21%)	$18,\!26,\!29$	0.59	0
85	P5P	r4	1	85	16,23,24	0.95	1 (6%)	$14,\!33,\!36$	2.00	3 (21%)
88	DBB	А	3	88	$4,\!5,\!6$	0.56	0	$1,\!5,\!7$	0.66	0
85	P5P	r4	46	85	$16,\!23,\!24$	0.96	1 (6%)	$14,\!33,\!36$	1.97	3 (21%)
85	Y5P	r4	48	85	14,19,20	3.14	3 (21%)	18,26,29	0.60	0
84	P5P	r3	68	84	16,23,24	0.94	1 (6%)	14,33,36	2.02	3 (21%)
85	P5P	r4	22	85	16,23,24	0.94	1 (6%)	14,33,36	2.02	3 (21%)
85	Y5P	r4	74	85	14,19,20	3.15	3 (21%)	18,26,29	0.58	0
84	Y5P	r3	1	84	18,20,20	2.76	3 (16%)	25,29,29	0.69	0
88	MHW	А	1	88	9,9,10	0.82	0	10,11,13	<mark>3.06</mark>	3 (30%)
85	Y5P	r4	75	85	14,19,20	<mark>3.13</mark>	3 (21%)	18,26,29	0.71	0
85	P5P	r4	29	85	16,23,24	0.95	1 (6%)	14,33,36	2.02	3 (21%)
84	P5P	r3	74	84	16,23,24	0.94	1 (6%)	14,33,36	1.94	3 (21%)
83	Y5P	r1	47	83	14,19,20	3.14	3 (21%)	18,26,29	0.54	0
85	Y5P	r4	60	85	14,19,20	<mark>3.13</mark>	3 (21%)	18,26,29	0.59	0
85	Y5P	r4	3	85	14,19,20	3.12	3 (21%)	18,26,29	0.54	0
84	P5P	r3	48	84	16,23,24	0.96	1 (6%)	14,33,36	1.98	3 (21%)
84	Y5P	r3	12	84	14,19,20	3.12	3 (21%)	18,26,29	0.59	0
85	Y5P	r4	61	85	14,19,20	3.15	3 (21%)	18,26,29	0.55	0
84	Y5P	r3	36	84	14,19,20	3.11	3 (21%)	18,26,29	0.65	0
84	Y5P	r3	17	-	14,19,20	3.14	3 (21%)	18,26,29	0.59	0
85	P5P	r4	10	85	16,23,24	0.96	1 (6%)	14,33,36	2.00	3 (21%)
85	Y5P	r4	42	85	14,19,20	3.14	3 (21%)	18,26,29	0.59	0
84	P5P	r3	15	84	16,23,24	0.98	1 (6%)	14,33,36	1.93	3 (21%)
85	P5P	r4	31	85	16,23,24	0.93	1 (6%)	14,33,36	2.03	3 (21%)
84	P5P	r3	30	84	16,23,24	0.95	1 (6%)	14,33,36	2.00	3 (21%)
84	P5P	r3	3	84	16,23,24	0.96	1 (6%)	14,33,36	2.03	3 (21%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
85	P5P	r4	18	85	-	2/3/25/26	0/3/3/3
84	Y5P	r3	39	84	-	1/7/33/34	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
85	Y5P	r4	62	85	-	1/7/33/34	0/2/2/2
84	P5P	r3	14	84	-	1/3/25/26	0/3/3/3
85	P5P	r4	69	85	-	0/3/25/26	0/3/3/3
84	Y5P	r3	64	84	-	1/7/33/34	0/2/2/2
85	Y5P	r4	50	85	-	2/7/33/34	0/2/2/2
85	P5P	r4	9	85	-	2/3/25/26	0/3/3/3
85	P5P	r4	37	85	-	0/3/25/26	0/3/3/3
84	P5P	r3	19	84	-	2/3/25/26	0/3/3/3
85	P5P	r4	73	85	-	3/3/25/26	0/3/3/3
84	P5P	r3	71	84	-	0/3/25/26	0/3/3/3
84	Y5P	r3	25	84	-	1/7/33/34	0/2/2/2
85	Y5P	r4	43	85	-	1/7/33/34	0/2/2/2
84	P5P	r3	51	84	-	2/3/25/26	0/3/3/3
85	Y5P	r4	47	85	-	4/7/33/34	0/2/2/2
84	Y5P	r3	34	84	-	3/7/33/34	0/2/2/2
84	P5P	r3	10	84	-	0/3/25/26	0/3/3/3
84	P5P	r3	23	84	-	0/3/25/26	0/3/3/3
84	P5P	r3	44	84	-	0/3/25/26	0/3/3/3
85	P5P	r4	14	85	-	0/3/25/26	0/3/3/3
84	P5P	r3	9	84	-	0/3/25/26	0/3/3/3
84	P5P	r3	57	84	-	1/3/25/26	0/3/3/3
85	P5P	r4	6	85	-	2/3/25/26	0/3/3/3
85	P5P	r4	63	85	-	0/3/25/26	0/3/3/3
88	MHU	А	5	88	-	5/9/12/14	0/1/1/1
85	Y5P	r4	59	85	-	2/7/33/34	0/2/2/2
85	P5P	r4	19	85	-	0/3/25/26	0/3/3/3
84	Y5P	r3	40	84	-	3/7/33/34	0/2/2/2
85	P5P	r4	65	85	-	0/3/25/26	0/3/3/3
85	P5P	r4	34	17,85	-	2/3/25/26	0/3/3/3
85	Y5P	r4	72	85	-	3/7/33/34	0/2/2/2
85	Y5P	r4	67	85	-	2/7/33/34	0/2/2/2
84	P5P	r3	17(A)	84	-	3/3/25/26	0/3/3/3
84	P5P	r3	55	84	-	2/3/25/26	0/3/3/3
85	P5P	r4	15	85	-	0/3/25/26	0/3/3/3
83	Y5P	r1	51	83	-	1/7/33/34	0/2/2/2
85	Y5P	r4	16	85	-	1/7/33/34	0/2/2/2
85	Y5P	r4	32	85	_	3/7/33/34	0/2/2/2
85	Y5P	r4	39	85	_	1/7/33/34	0/2/2/2

00.000		p	° p° g°				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
85	Y5P	r4	51	85	-	1/7/33/34	0/2/2/2
85	Y5P	r4	20	85	-	3/7/33/34	0/2/2/2
85	Y5P	r4	33	85	-	2/7/33/34	0/2/2/2
88	MHV	А	6	88	-	0/1/12/14	0/1/1/1
84	Y5P	r3	54	84	-	1/7/33/34	0/2/2/2
84	P5P	r3	4	84	-	3/3/25/26	0/3/3/3
84	P5P	r3	22	84	-	0/3/25/26	0/3/3/3
84	Y5P	r3	20	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	41	84	-	1/7/33/34	0/2/2/2
83	Y5P	r1	53	83	-	6/7/33/34	0/2/2/2
85	P5P	r4	71	85	-	0/3/25/26	0/3/3/3
85	Y5P	r4	25	85	-	3/7/33/34	0/2/2/2
85	Y5P	r4	11	85	-	1/7/33/34	0/2/2/2
84	P5P	r3	26	84	-	0/3/25/26	0/3/3/3
84	P5P	r3	35	84	-	0/3/25/26	0/3/3/3
83	Y5P	r1	56	83	-	4/7/33/34	0/2/2/2
83	Y5P	r1	55	83	-	3/7/33/34	0/2/2/2
84	P5P	r3	21	84	-	3/3/25/26	0/3/3/3
84	Y5P	r3	47	84	-	2/7/33/34	0/2/2/2
85	P5P	r4	21	85	-	1/3/25/26	0/3/3/3
85	Y5P	r4	2	85	-	1/7/33/34	0/2/2/2
85	Y5P	r4	68	85	-	1/7/33/34	0/2/2/2
83	Y5P	r1	50	83	-	1/7/33/34	0/2/2/2
84	Y5P	r3	49	84	-	2/7/33/34	0/2/2/2
85	Y5P	r4	54	85	-	1/7/33/34	0/2/2/2
84	Y5P	r3	7	84	-	3/7/33/34	0/2/2/2
84	P5P	r3	52	84	-	0/3/25/26	0/3/3/3
85	P5P	r4	27	85	-	2/3/25/26	0/3/3/3
85	P5P	r4	53	85	-	0/3/25/26	0/3/3/3
85	Y5P	r4	66	85	-	3/7/33/34	0/2/2/2
84	Y5P	r3	69	84	-	3/7/33/34	0/2/2/2
84	P5P	r3	42	84	-	0/3/25/26	0/3/3/3
84	Y5P	r3	60	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	24	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	59	84	-	4/7/33/34	0/2/2/2
85	Y5P	r4	40	85	-	1/7/33/34	0/2/2/2
84	Y5P	r3	16	84	-	2/7/33/34	0/2/2/2
85	Y5P	r4	8	85	_	1/7/33/34	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
85	Y5P	r4	13	85	-	3/7/33/34	0/2/2/2
85	P5P	r4	36	85	-	0/3/25/26	0/3/3/3
84	P5P	r3	5	84	-	2/3/25/26	0/3/3/3
84	Y5P	r3	13	84	-	5/7/33/34	0/2/2/2
83	Y5P	r1	48	83	-	1/7/33/34	0/2/2/2
83	Y5P	r1	46	83	-	4/7/33/34	0/2/2/2
85	P5P	r4	64	85	-	2/3/25/26	0/3/3/3
84	Y5P	r3	58	84	-	2/7/33/34	0/2/2/2
84	Y5P	r3	65	84	_	3/7/33/34	0/2/2/2
84	P5P	r3	6	84	-	0/3/25/26	0/3/3/3
85	Y5P	r4	45	85	-	4/7/33/34	0/2/2/2
84	P5P	r3	46	84	_	2/3/25/26	0/3/3/3
84	Y5P	r3	50	84	-	4/7/33/34	0/2/2/2
85	Y5P	r4	4	85	-	1/7/33/34	0/2/2/2
84	Y5P	r3	53	84	-	3/7/33/34	0/2/2/2
83	Y5P	r1	49	83	-	2/7/33/34	0/2/2/2
83	Y5P	r1	52	83	_	2/7/33/34	0/2/2/2
84	P5P	r3	8	84	_	0/3/25/26	0/3/3/3
85	P5P	r4	26	85	_	2/3/25/26	0/3/3/3
88	004	A	7	88	-	1/4/6/8	0/1/1/1
85	P5P	r4	28	85	-	2/3/25/26	0/3/3/3
84	Y5P	r3	2	84	-	2/7/33/34	0/2/2/2
84	P5P	r3	43	84	-	1/3/25/26	0/3/3/3
85	P5P	r4	30	85	-	1/3/25/26	0/3/3/3
85	Y5P	r4	41	85	-	4/7/33/34	0/2/2/2
84	P5P	r3	31	84	-	0/3/25/26	0/3/3/3
83	Y5P	r1	54	83	-	1/7/33/34	0/2/2/2
84	P5P	r3	37	84	-	0/3/25/26	0/3/3/3
85	P5P	r4	35	85	-	0/3/25/26	0/3/3/3
84	P5P	r3	29	84	-	0/3/25/26	0/3/3/3
84	Y5P	r3	33	84	-	1/7/33/34	0/2/2/2
85	P5P	r4	58	85	-	0/3/25/26	0/3/3/3
85	P5P	r4	24	85	_	0/3/25/26	0/3/3/3
85	P5P	r4	57	85	_	0/3/25/26	0/3/3/3
85	Y5P	r4	49	85	-	3/7/33/34	0/2/2/2
84	P5P	r3	66	84	_	0/3/25/26	0/3/3/3
85	P5P	r4	23	85	-	3/3/25/26	0/3/3/3
85	P5P	r4	44	85	-	0/3/25/26	0/3/3/3

Mol	Туре	Chain	Res	Link	Chirals	Torsions	Rings
84	P5P	r3	11	84	-	0/3/25/26	0/3/3/3
85	P5P	r4	7	85	-	$\frac{2}{3}/\frac{25}{26}$	0/3/3/3
85	P5P	r4	70	85	-	0/3/25/26	0/3/3/3
84	P5P	r3	45	84	-	0/3/25/26	0/3/3/3
84	Y5P	r3	67	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	72	84	-	2/7/33/34	0/2/2/2
85	Y5P	r4	12	85	-	1/7/33/34	0/2/2/2
84	Y5P	r3	73	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	61	84	-	3/7/33/34	0/2/2/2
84	Y5P	r3	32	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	28	84	-	1/7/33/34	0/2/2/2
83	Y5P	r1	57	83	-	2/7/33/34	0/2/2/2
84	Y5P	r3	56	84	-	4/7/33/34	0/2/2/2
85	P5P	r4	5	85	-	0/3/25/26	0/3/3/3
85	Y5P	r4	55	85	-	1/7/33/34	0/2/2/2
85	Y5P	r4	17	85	-	3/7/33/34	0/2/2/2
85	Y5P	r4	56	85	-	3/7/33/34	0/2/2/2
84	P5P	r3	18	84	-	3/3/25/26	0/3/3/3
85	P5P	r4	38	85	-	2/3/25/26	0/3/3/3
84	Y5P	r3	38	84	-	1/7/33/34	0/2/2/2
85	P5P	r4	52	85	-	2/3/25/26	0/3/3/3
84	Y5P	r3	62	84	-	2/7/33/34	0/2/2/2
84	Y5P	r3	70	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	27	84	-	1/7/33/34	0/2/2/2
85	P5P	r4	76	11,85	-	3/3/25/26	0/3/3/3
84	Y5P	r3	63	84	-	3/7/33/34	0/2/2/2
85	P5P	r4	1	85	-	2/3/25/26	0/3/3/3
88	DBB	А	3	88	-	0/3/4/6	-
85	P5P	r4	46	85	-	0/3/25/26	0/3/3/3
85	Y5P	r4	48	85	-	3/7/33/34	0/2/2/2
84	P5P	r3	68	84	-	0/3/25/26	0/3/3/3
85	P5P	r4	22	85	-	3/3/25/26	0/3/3/3
85	Y5P	r4	74	85	-	6/7/33/34	0/2/2/2
84	Y5P	r3	1	84	-	6/10/34/34	0/2/2/2
88	MHW	А	1	88	-	0/2/2/4	0/1/1/1
85	Y5P	r4	75	85	-	5/7/33/34	0/2/2/2
85	P5P	r4	29	85	-	2/3/25/26	0/3/3/3
84	P5P	r3	74	84	-	0/3/25/26	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
83	Y5P	r1	47	83	-	3/7/33/34	0/2/2/2
85	Y5P	r4	60	85	-	1/7/33/34	0/2/2/2
85	Y5P	r4	3	85	-	1/7/33/34	0/2/2/2
84	P5P	r3	48	84	-	0/3/25/26	0/3/3/3
84	Y5P	r3	12	84	-	1/7/33/34	0/2/2/2
85	Y5P	r4	61	85	-	2/7/33/34	0/2/2/2
84	Y5P	r3	36	84	-	1/7/33/34	0/2/2/2
84	Y5P	r3	17	-	-	2/7/33/34	0/2/2/2
85	P5P	r4	10	85	-	1/3/25/26	0/3/3/3
85	Y5P	r4	42	85	-	1/7/33/34	0/2/2/2
84	P5P	r3	15	84	-	0/3/25/26	0/3/3/3
85	P5P	r4	31	85	-	1/3/25/26	0/3/3/3
84	P5P	r3	30	84	-	0/3/25/26	0/3/3/3
84	P5P	r3	3	84	-	3/3/25/26	0/3/3/3

All (340) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
85	r4	47	Y5P	C6-C5	10.61	1.52	1.33
85	r4	61	Y5P	C6-C5	10.60	1.52	1.33
85	r4	49	Y5P	C6-C5	10.59	1.52	1.33
83	r1	57	Y5P	C6-C5	10.58	1.52	1.33
84	r3	16	Y5P	C6-C5	10.57	1.52	1.33
83	r1	47	Y5P	C6-C5	10.57	1.52	1.33
85	r4	68	Y5P	C6-C5	10.56	1.52	1.33
85	r4	75	Y5P	C6-C5	10.56	1.52	1.33
85	r4	42	Y5P	C6-C5	10.55	1.52	1.33
85	r4	13	Y5P	C6-C5	10.55	1.52	1.33
84	r3	59	Y5P	C6-C5	10.55	1.52	1.33
83	r1	49	Y5P	C6-C5	10.55	1.52	1.33
83	r1	54	Y5P	C6-C5	10.54	1.52	1.33
85	r4	17	Y5P	C6-C5	10.54	1.52	1.33
85	r4	67	Y5P	C6-C5	10.54	1.52	1.33
83	r1	51	Y5P	C6-C5	10.54	1.52	1.33
83	r1	55	Y5P	C6-C5	10.54	1.52	1.33
85	r4	55	Y5P	C6-C5	10.54	1.52	1.33
84	r3	17	Y5P	C6-C5	10.54	1.52	1.33
84	r3	33	Y5P	C6-C5	10.54	1.52	1.33
85	r4	54	Y5P	C6-C5	10.54	1.52	1.33
85	r4	41	Y5P	C6-C5	10.53	1.52	1.33
85	r4	66	Y5P	C6-C5	10.53	1.52	1.33

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
83	r1	48	Y5P	C6-C5	10.53	1.52	1.33
84	r3	38	Y5P	C6-C5	10.53	1.52	1.33
85	r4	74	Y5P	C6-C5	10.53	1.52	1.33
84	r3	2	Y5P	C6-C5	10.52	1.52	1.33
85	r4	43	Y5P	C6-C5	10.52	1.52	1.33
84	r3	70	Y5P	C6-C5	10.52	1.52	1.33
85	r4	20	Y5P	C6-C5	10.52	1.52	1.33
83	r1	50	Y5P	C6-C5	10.52	1.52	1.33
85	r4	11	Y5P	C6-C5	10.52	1.52	1.33
85	r4	48	Y5P	C6-C5	10.52	1.52	1.33
83	r1	56	Y5P	C6-C5	10.52	1.52	1.33
84	r3	27	Y5P	C6-C5	10.52	1.52	1.33
85	r4	33	Y5P	C6-C5	10.52	1.52	1.33
84	r3	39	Y5P	C6-C5	10.52	1.52	1.33
84	r3	69	Y5P	C6-C5	10.51	1.52	1.33
85	r4	62	Y5P	C6-C5	10.51	1.52	1.33
85	r4	2	Y5P	C6-C5	10.51	1.52	1.33
85	r4	8	Y5P	C6-C5	10.51	1.52	1.33
85	r4	12	Y5P	C6-C5	10.51	1.52	1.33
84	r3	64	Y5P	C6-C5	10.51	1.52	1.33
85	r4	45	Y5P	C6-C5	10.51	1.52	1.33
84	r3	20	Y5P	C6-C5	10.51	1.52	1.33
85	r4	40	Y5P	C6-C5	10.51	1.52	1.33
84	r3	13	Y5P	C6-C5	10.51	1.52	1.33
84	r3	41	Y5P	C6-C5	10.51	1.52	1.33
85	r4	39	Y5P	C6-C5	10.51	1.52	1.33
85	r4	32	Y5P	C6-C5	10.51	1.52	1.33
85	r4	25	Y5P	C6-C5	10.50	1.52	1.33
85	r4	3	Y5P	C6-C5	10.50	1.52	1.33
83	r1	46	Y5P	C6-C5	10.50	1.52	1.33
84	r3	32	Y5P	C6-C5	10.50	1.52	1.33
84	r3	47	Y5P	C6-C5	10.50	1.52	1.33
84	r3	56	Y5P	C6-C5	10.50	1.52	1.33
85	r4	72	Y5P	C6-C5	10.50	1.52	1.33
84	r3	7	Y5P	C6-C5	10.49	1.52	1.33
85	r4	16	Y5P	C6-C5	10.49	1.52	1.33
84	r3	49	Y5P	C6-C5	10.49	1.52	1.33
84	r3	28	Y5P	C6-C5	10.49	1.52	1.33
84	r3	67	Y5P	C6-C5	10.49	1.52	1.33
85	r4	51	Y5P	C6-C5	10.49	1.52	1.33
84	r3	54	Y5P	C6-C5	10.49	1.52	1.33
84	r3	50	Y5P	C6-C5	10.48	1.52	1.33

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
85	r4	56	Y5P	C6-C5	10.48	1.52	1.33
85	r4	59	Y5P	C6-C5	10.48	1.52	1.33
85	r4	60	Y5P	C6-C5	10.48	1.52	1.33
84	r3	53	Y5P	C6-C5	10.48	1.52	1.33
84	r3	63	Y5P	C6-C5	10.48	1.52	1.33
84	r3	60	Y5P	C6-C5	10.47	1.52	1.33
84	r3	12	Y5P	C6-C5	10.47	1.52	1.33
84	r3	34	Y5P	C6-C5	10.47	1.52	1.33
83	r1	52	Y5P	C6-C5	10.46	1.52	1.33
84	r3	36	Y5P	C6-C5	10.46	1.52	1.33
84	r3	24	Y5P	C6-C5	10.46	1.52	1.33
84	r3	1	Y5P	C6-C5	10.46	1.52	1.33
84	r3	65	Y5P	C6-C5	10.46	1.52	1.33
85	r4	50	Y5P	C6-C5	10.46	1.52	1.33
84	r3	58	Y5P	C6-C5	10.46	1.52	1.33
84	r3	61	Y5P	C6-C5	10.45	1.52	1.33
85	r4	4	Y5P	C6-C5	10.44	1.52	1.33
84	r3	62	Y5P	C6-C5	10.44	1.52	1.33
84	r3	40	Y5P	C6-C5	10.44	1.52	1.33
84	r3	73	Y5P	C6-C5	10.44	1.52	1.33
84	r3	72	Y5P	C6-C5	10.43	1.52	1.33
83	r1	53	Y5P	C6-C5	10.42	1.51	1.33
84	r3	25	Y5P	C6-C5	10.41	1.51	1.33
85	r4	56	Y5P	C2-N1	3.93	1.45	1.36
84	r3	53	Y5P	C2-N1	3.90	1.45	1.36
84	r3	65	Y5P	C2-N1	3.90	1.45	1.36
85	r4	20	Y5P	C2-N1	3.89	1.45	1.36
85	r4	12	Y5P	C2-N1	3.88	1.45	1.36
85	r4	16	Y5P	C2-N1	3.88	1.45	1.36
84	r3	49	Y5P	C2-N1	3.87	1.45	1.36
83	r1	56	Y5P	C2-N1	3.87	1.45	1.36
83	r1	53	Y5P	C2-N1	3.87	1.45	1.36
84	r3	17	Y5P	C2-N1	3.87	1.45	1.36
84	r3	13	Y5P	C2-N1	3.87	1.45	1.36
85	r4	40	Y5P	C2-N1	3.86	1.45	1.36
85	r4	50	Y5P	C2-N1	3.86	1.45	1.36
85	r4	62	Y5P	C2-N1	3.86	1.45	1.36
84	r3	54	Y5P	C2-N1	3.86	1.45	1.36
85	r4	60	Y5P	C2-N1	3.86	1.45	1.36
85	r4	67	Y5P	C2-N1	3.86	1.45	1.36
84	r3	63	Y5P	C2-N1	3.85	1.45	1.36
84	r3	62	Y5P	C2-N1	3.85	1.45	1.36

Continued on next page...

85

85

85

85

85

83

84

r4

r4

r4

r4

r4

r1

r3

Conti	Continued from previous page									
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(Å)	Ideal(Å)			
85	r4	43	Y5P	C2-N1	3.85	1.45	1.36			
84	r3	1	Y5P	C2-N1	3.84	1.45	1.36			
83	r1	57	Y5P	C2-N1	3.84	1.45	1.36			
84	r3	56	Y5P	C2-N1	3.84	1.45	1.36			
83	r1	46	Y5P	C2-N1	3.84	1.45	1.36			
83	r1	54	Y5P	C2-N1	3.84	1.45	1.36			
84	r3	50	Y5P	C2-N1	3.84	1.45	1.36			
85	r4	8	Y5P	C2-N1	3.84	1.45	1.36			
85	r4	54	Y5P	C2-N1	3.84	1.45	1.36			
85	r4	47	Y5P	C2-N1	3.83	1.45	1.36			
85	r4	11	Y5P	C2-N1	3.83	1.45	1.36			
85	r4	66	Y5P	C2-N1	3.83	1.45	1.36			
85	r4	48	Y5P	C2-N1	3.83	1.45	1.36			
83	r1	50	Y5P	C2-N1	3.82	1.45	1.36			
85	r4	45	Y5P	C2-N1	3.82	1.45	1.36			
85	r4	59	Y5P	C2-N1	3.82	1.45	1.36			
84	r3	70	Y5P	C2-N1	3.82	1.45	1.36			
83	r1	55	Y5P	C2-N1	3.82	1.45	1.36			
84	r3	20	Y5P	C2-N1	3.82	1.45	1.36			
85	r4	33	Y5P	C2-N1	3.82	1.45	1.36			
85	r4	17	Y5P	C2-N1	3.82	1.45	1.36			
84	r3	58	Y5P	C2-N1	3.82	1.45	1.36			
83	r1	52	Y5P	C2-N1	3.82	1.45	1.36			
84	r3	60	Y5P	C2-N1	3.81	1.45	1.36			
84	r3	7	Y5P	C2-N1	3.81	1.45	1.36			
85	r4	2	Y5P	C2-N1	3.81	1.45	1.36			
83	r1	49	Y5P	C2-N1	3.81	1.45	1.36			
84	r3	12	Y5P	C2-N1	3.81	1.45	1.36			
84	r3	25	Y5P	C2-N1	3.81	1.45	1.36			
84	r3	28	Y5P	C2-N1	3.81	1.45	1.36			
85	r4	41	Y5P	C2-N1	3.81	1.45	1.36			
85	r4	68	Y5P	C2-N1	3.80	1.45	1.36			
85	r4	74	Y5P	C2-N1	3.80	1.45	1.36			
84	r3	16	Y5P	C2-N1	3.80	1.45	1.36			
84	r3	34	Y5P	C2-N1	3.80	1.45	1.36			

Y5P

Y5P

Y5P

Y5P

Y5P

Y5P

Y5P

4

32

13

51

55

51

64

C2-N1

C2-N1

C2-N1

C2-N1

C2-N1

C2-N1

C2-N1

 \sim tia d fa

Continued on next page...

1.45

1.45

1.45

1.45

1.45

1.45

1.45

1.36

1.36

1.36

1.36

1.36

1.36

1.36

3.80

3.80

3.80

3.79

3.79

3.79

3.79

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
84	r3	59	Y5P	C2-N1	3.78	1.45	1.36
84	r3	61	Y5P	C2-N1	3.78	1.45	1.36
85	r4	42	Y5P	C2-N1	3.77	1.45	1.36
85	r4	49	Y5P	C2-N1	3.77	1.45	1.36
85	r4	61	Y5P	C2-N1	3.77	1.45	1.36
85	r4	39	Y5P	C2-N1	3.77	1.45	1.36
84	r3	2	Y5P	C2-N1	3.77	1.45	1.36
85	r4	25	Y5P	C2-N1	3.77	1.45	1.36
85	r4	3	Y5P	C2-N1	3.76	1.45	1.36
84	r3	67	Y5P	C2-N1	3.76	1.45	1.36
84	r3	47	Y5P	C2-N1	3.76	1.45	1.36
84	r3	24	Y5P	C2-N1	3.76	1.45	1.36
84	r3	36	Y5P	C2-N1	3.76	1.45	1.36
84	r3	32	Y5P	C2-N1	3.75	1.45	1.36
84	r3	27	Y5P	C2-N1	3.75	1.45	1.36
83	r1	48	Y5P	C2-N1	3.75	1.45	1.36
84	r3	69	Y5P	C2-N1	3.75	1.45	1.36
84	r3	40	Y5P	C2-N1	3.74	1.45	1.36
84	r3	38	Y5P	C2-N1	3.74	1.45	1.36
83	r1	47	Y5P	C2-N1	3.74	1.45	1.36
84	r3	72	Y5P	C2-N1	3.73	1.45	1.36
84	r3	33	Y5P	C2-N1	3.73	1.45	1.36
85	r4	72	Y5P	C2-N1	3.72	1.45	1.36
84	r3	41	Y5P	C2-N1	3.71	1.45	1.36
85	r4	75	Y5P	C2-N1	3.71	1.45	1.36
84	r3	39	Y5P	C2-N1	3.70	1.44	1.36
84	r3	73	Y5P	C2-N1	3.63	1.44	1.36
88	А	7	004	CB-CA	-2.99	1.49	1.52
85	r4	32	Y5P	C6-N1	2.70	1.44	1.37
85	r4	50	Y5P	C6-N1	2.69	1.44	1.37
84	r3	60	Y5P	C6-N1	2.68	1.44	1.37
83	r1	52	Y5P	C6-N1	2.68	1.44	1.37
84	r3	17	Y5P	C6-N1	2.68	1.44	1.37
85	r4	66	Y5P	C6-N1	2.67	1.44	1.37
85	r4	55	Y5P	C6-N1	2.67	1.44	1.37
85	r4	41	Y5P	C6-N1	2.67	1.44	1.37
85	r4	61	Y5P	C6-N1	2.67	1.44	1.37
83	r1	51	Y5P	C6-N1	2.67	1.44	1.37
85	r4	16	Y5P	C6-N1	2.67	1.43	1.37
85	r4	62	Y5P	C6-N1	2.67	1.43	1.37
85	r4	40	Y5P	C6-N1	2.67	1.43	1.37
84	r3	62	Y5P	C6-N1	2.67	1.43	1.37

001000	nucu jion	" proceed	le page	•			
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(Å)	Ideal(Å)
85	r4	47	Y5P	C6-N1	2.67	1.43	1.37
85	r4	17	Y5P	C6-N1	2.66	1.43	1.37
85	r4	2	Y5P	C6-N1	2.66	1.43	1.37
85	r4	51	Y5P	C6-N1	2.66	1.43	1.37
85	r4	60	Y5P	C6-N1	2.66	1.43	1.37
83	r1	56	Y5P	C6-N1	2.66	1.43	1.37
85	r4	4	Y5P	C6-N1	2.66	1.43	1.37
84	r3	13	Y5P	C6-N1	2.66	1.43	1.37
84	r3	63	Y5P	C6-N1	2.66	1.43	1.37
85	r4	74	Y5P	C6-N1	2.66	1.43	1.37
84	r3	47	Y5P	C6-N1	2.66	1.43	1.37
84	r3	16	Y5P	C6-N1	2.65	1.43	1.37
85	r4	11	Y5P	C6-N1	2.65	1.43	1.37
83	r1	57	Y5P	C6-N1	2.65	1.43	1.37
84	r3	54	Y5P	C6-N1	2.65	1.43	1.37
83	r1	46	Y5P	C6-N1	2.65	1.43	1.37
85	r4	13	Y5P	C6-N1	2.65	1.43	1.37
84	r3	7	Y5P	C6-N1	2.65	1.43	1.37
83	r1	50	Y5P	C6-N1	2.65	1.43	1.37
84	r3	53	Y5P	C6-N1	2.65	1.43	1.37
85	r4	42	Y5P	C6-N1	2.65	1.43	1.37
84	r3	1	Y5P	C6-N1	2.65	1.43	1.37
85	r4	3	Y5P	C6-N1	2.65	1.43	1.37
83	r1	47	Y5P	C6-N1	2.64	1.43	1.37
84	r3	56	Y5P	C6-N1	2.64	1.43	1.37
83	r1	49	Y5P	C6-N1	2.64	1.43	1.37
84	r3	59	Y5P	C6-N1	2.64	1.43	1.37
85	r4	20	Y5P	C6-N1	2.64	1.43	1.37
85	r4	25	Y5P	C6-N1	2.64	1.43	1.37
85	r4	49	Y5P	C6-N1	2.64	1.43	1.37
83	r1	55	Y5P	C6-N1	2.64	1.43	1.37
85	r4	43	Y5P	C6-N1	2.64	1.43	1.37
84	r3	2	Y5P	C6-N1	2.64	1.43	1.37
85	r4	39	Y5P	C6-N1	2.64	1.43	1.37
84	r3	34	Y5P	C6-N1	2.64	1.43	1.37
85	r4	56	Y5P	C6-N1	2.63	1.43	1.37
85	r4	59	Y5P	C6-N1	2.63	1.43	1.37
84	r3	20	Y5P	C6-N1	2.63	1.43	1.37
84	r3	49	Y5P	C6-N1	2.63	1.43	1.37
84	r3	38	Y5P	C6-N1	2.63	1.43	1.37
84	r3	58	Y5P	C6-N1	2.63	1.43	1.37
83	r1	48	Y5P	C6-N1	2.63	1.43	1.37

Conti	nueu fron	i previoi	is page				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
84	r3	33	Y5P	C6-N1	2.63	1.43	1.37
85	r4	54	Y5P	C6-N1	2.63	1.43	1.37
84	r3	24	Y5P	C6-N1	2.62	1.43	1.37
84	r3	61	Y5P	C6-N1	2.62	1.43	1.37
84	r3	28	Y5P	C6-N1	2.62	1.43	1.37
85	r4	68	Y5P	C6-N1	2.62	1.43	1.37
84	r3	69	Y5P	C6-N1	2.62	1.43	1.37
85	r4	48	Y5P	C6-N1	2.62	1.43	1.37
83	r1	54	Y5P	C6-N1	2.62	1.43	1.37
84	r3	36	Y5P	C6-N1	2.62	1.43	1.37
84	r3	12	Y5P	C6-N1	2.62	1.43	1.37
84	r3	65	Y5P	C6-N1	2.62	1.43	1.37
85	r4	75	Y5P	C6-N1	2.62	1.43	1.37
84	r3	27	Y5P	C6-N1	2.62	1.43	1.37
84	r3	67	Y5P	C6-N1	2.61	1.43	1.37
85	r4	8	Y5P	C6-N1	2.61	1.43	1.37
85	r4	33	Y5P	C6-N1	2.61	1.43	1.37
85	r4	45	Y5P	C6-N1	2.61	1.43	1.37
85	r4	67	Y5P	C6-N1	2.61	1.43	1.37
84	r3	25	Y5P	C6-N1	2.61	1.43	1.37
84	r3	50	Y5P	C6-N1	2.61	1.43	1.37
84	r3	64	Y5P	C6-N1	2.60	1.43	1.37
85	r4	12	Y5P	C6-N1	2.60	1.43	1.37
84	r3	32	Y5P	C6-N1	2.60	1.43	1.37
84	r3	70	Y5P	C6-N1	2.59	1.43	1.37
85	r4	72	Y5P	C6-N1	2.59	1.43	1.37
84	r3	41	Y5P	C6-N1	2.59	1.43	1.37
84	r3	40	Y5P	C6-N1	2.59	1.43	1.37
84	r3	72	Y5P	C6-N1	2.57	1.43	1.37
84	r3	39	Y5P	C6-N1	2.57	1.43	1.37
83	r1	53	Y5P	C6-N1	2.57	1.43	1.37
84	r3	73	Y5P	C6-N1	2.54	1.43	1.37
84	r3	31	P5P	C5-C4	-2.27	1.34	1.40
84	r3	29	P5P	C5-C4	-2.26	1.35	1.40
84	r3	26	P5P	C5-C4	-2.25	1.35	1.40
84	r3	44	P5P	C5-C4	-2.24	1.35	1.40
84	r3	35	P5P	C5-C4	-2.24	1.35	1.40
84	r3	66	P5P	C5-C4	-2.24	1.35	1.40
84	r3	43	P5P	C5-C4	-2.24	1.35	1.40
85	r4	69	P5P	C5-C4	-2.23	1.35	1.40
84	r3	42	P5P	C5-C4	-2.23	1.35	1.40
84	r3	30	P5P	C5-C4	-2.23	1.35	1.40

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
85	r4	64	P5P	C5-C4	-2.23	1.35	1.40
84	r3	6	P5P	C5-C4	-2.23	1.35	1.40
84	r3	23	P5P	C5-C4	-2.23	1.35	1.40
84	r3	52	P5P	C5-C4	-2.23	1.35	1.40
85	r4	1	P5P	C5-C4	-2.23	1.35	1.40
84	r3	51	P5P	C5-C4	-2.22	1.35	1.40
84	r3	71	P5P	C5-C4	-2.22	1.35	1.40
84	r3	3	P5P	C5-C4	-2.22	1.35	1.40
84	r3	11	P5P	C5-C4	-2.22	1.35	1.40
84	r3	10	P5P	C5-C4	-2.22	1.35	1.40
84	r3	4	P5P	C5-C4	-2.21	1.35	1.40
84	r3	18	P5P	C5-C4	-2.21	1.35	1.40
85	r4	24	P5P	C5-C4	-2.21	1.35	1.40
85	r4	73	P5P	C5-C4	-2.21	1.35	1.40
85	r4	70	P5P	C5-C4	-2.21	1.35	1.40
85	r4	28	P5P	C5-C4	-2.21	1.35	1.40
85	r4	65	P5P	C5-C4	-2.21	1.35	1.40
85	r4	44	P5P	C5-C4	-2.21	1.35	1.40
85	r4	15	P5P	C5-C4	-2.21	1.35	1.40
85	r4	52	P5P	C5-C4	-2.21	1.35	1.40
85	r4	53	P5P	C5-C4	-2.21	1.35	1.40
84	r3	68	P5P	C5-C4	-2.20	1.35	1.40
85	r4	36	P5P	C5-C4	-2.20	1.35	1.40
85	r4	34	P5P	C5-C4	-2.20	1.35	1.40
85	r4	21	P5P	C5-C4	-2.20	1.35	1.40
84	r3	21	P5P	C5-C4	-2.20	1.35	1.40
85	r4	37	P5P	C5-C4	-2.20	1.35	1.40
84	r3	48	P5P	C5-C4	-2.20	1.35	1.40
84	r3	22	P5P	C5-C4	-2.20	1.35	1.40
84	r3	17(A)	P5P	C5-C4	-2.20	1.35	1.40
85	r4	58	P5P	C5-C4	-2.20	1.35	1.40
85	r4	5	P5P	C5-C4	-2.20	1.35	1.40
84	r3	37	P5P	C5-C4	-2.20	1.35	1.40
85	r4	46	P5P	C5-C4	-2.20	1.35	1.40
85	r4	71	P5P	C5-C4	-2.19	1.35	1.40
85	r4	35	P5P	C5-C4	-2.19	1.35	1.40
85	r4	57	P5P	C5-C4	-2.19	1.35	1.40
85	r4	30	P5P	C5-C4	-2.19	1.35	1.40
85	r4	38	P5P	C5-C4	-2.19	1.35	1.40
84	r3	46	P5P	C5-C4	-2.19	1.35	1.40
85	r4	76	P5P	C5-C4	-2.19	1.35	1.40
84	r3	15	P5P	C5-C4	-2.19	1.35	1.40

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
85	r4	6	P5P	C5-C4	-2.18	1.35	1.40
85	r4	9	P5P	C5-C4	-2.18	1.35	1.40
84	r3	19	P5P	C5-C4	-2.18	1.35	1.40
84	r3	74	P5P	C5-C4	-2.18	1.35	1.40
85	r4	26	P5P	C5-C4	-2.18	1.35	1.40
85	r4	29	P5P	C5-C4	-2.18	1.35	1.40
85	r4	63	P5P	C5-C4	-2.18	1.35	1.40
85	r4	31	P5P	C5-C4	-2.18	1.35	1.40
84	r3	45	P5P	C5-C4	-2.18	1.35	1.40
84	r3	5	P5P	C5-C4	-2.18	1.35	1.40
85	r4	7	P5P	C5-C4	-2.18	1.35	1.40
85	r4	10	P5P	C5-C4	-2.17	1.35	1.40
85	r4	23	P5P	C5-C4	-2.17	1.35	1.40
84	r3	9	P5P	C5-C4	-2.17	1.35	1.40
85	r4	19	P5P	C5-C4	-2.17	1.35	1.40
85	r4	14	P5P	C5-C4	-2.17	1.35	1.40
84	r3	14	P5P	C5-C4	-2.17	1.35	1.40
85	r4	27	P5P	C5-C4	-2.17	1.35	1.40
84	r3	8	P5P	C5-C4	-2.17	1.35	1.40
85	r4	18	P5P	C5-C4	-2.16	1.35	1.40
84	r3	57	P5P	C5-C4	-2.16	1.35	1.40
84	r3	55	P5P	C5-C4	-2.14	1.35	1.40
85	r4	22	P5P	C5-C4	-2.11	1.35	1.40

α \cdot \cdot \cdot	•	
Continued tr	om previous	page

All (250) bond angle outliers are listed beid	All	nd	(236)	angle	outliers	are	listed	below
---	-----	----	-------	-------	----------	-----	--------	-------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
88	А	1	MHW	O-C-CA	-8.04	116.60	124.22
84	r3	31	P5P	N1-C2-N3	-6.03	119.94	127.65
85	r4	52	P5P	N1-C2-N3	-6.02	119.94	127.65
85	r4	73	P5P	N1-C2-N3	-6.01	119.95	127.65
84	r3	29	P5P	N1-C2-N3	-6.00	119.97	127.65
84	r3	52	P5P	N1-C2-N3	-6.00	119.97	127.65
85	r4	63	P5P	N1-C2-N3	-5.99	119.98	127.65
84	r3	51	P5P	N1-C2-N3	-5.99	119.98	127.65
85	r4	24	P5P	N1-C2-N3	-5.99	119.99	127.65
84	r3	42	P5P	N1-C2-N3	-5.99	119.99	127.65
85	r4	29	P5P	N1-C2-N3	-5.98	119.99	127.65
85	r4	65	P5P	N1-C2-N3	-5.97	120.00	127.65
84	r3	3	P5P	N1-C2-N3	-5.97	120.01	127.65
84	r3	30	P5P	N1-C2-N3	-5.97	120.01	127.65
84	r3	22	P5P	N1-C2-N3	-5.97	120.01	127.65

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
85	r4	6	P5P	N1-C2-N3	-5.96	120.02	127.65
85	r4	1	P5P	N1-C2-N3	-5.96	120.03	127.65
85	r4	35	P5P	N1-C2-N3	-5.96	120.03	127.65
85	r4	53	P5P	N1-C2-N3	-5.96	120.03	127.65
85	r4	69	P5P	N1-C2-N3	-5.96	120.03	127.65
84	r3	19	P5P	N1-C2-N3	-5.95	120.04	127.65
85	r4	71	P5P	N1-C2-N3	-5.95	120.04	127.65
84	r3	68	P5P	N1-C2-N3	-5.95	120.04	127.65
84	r3	9	P5P	N1-C2-N3	-5.94	120.04	127.65
84	r3	23	P5P	N1-C2-N3	-5.94	120.05	127.65
85	r4	15	P5P	N1-C2-N3	-5.94	120.06	127.65
85	r4	44	P5P	N1-C2-N3	-5.94	120.06	127.65
85	r4	64	P5P	N1-C2-N3	-5.93	120.06	127.65
84	r3	66	P5P	N1-C2-N3	-5.93	120.06	127.65
85	r4	28	P5P	N1-C2-N3	-5.93	120.06	127.65
84	r3	17(A)	P5P	N1-C2-N3	-5.93	120.06	127.65
85	r4	46	P5P	N1-C2-N3	-5.93	120.07	127.65
85	r4	57	P5P	N1-C2-N3	-5.93	120.07	127.65
84	r3	26	P5P	N1-C2-N3	-5.92	120.07	127.65
85	r4	30	P5P	N1-C2-N3	-5.92	120.07	127.65
85	r4	9	P5P	N1-C2-N3	-5.92	120.07	127.65
85	r4	38	P5P	N1-C2-N3	-5.92	120.08	127.65
84	r3	43	P5P	N1-C2-N3	-5.92	120.08	127.65
84	r3	35	P5P	N1-C2-N3	-5.92	120.08	127.65
84	r3	18	P5P	N1-C2-N3	-5.91	120.08	127.65
84	r3	21	P5P	N1-C2-N3	-5.91	120.08	127.65
85	r4	5	P5P	N1-C2-N3	-5.91	120.08	127.65
84	r3	8	P5P	N1-C2-N3	-5.91	120.09	127.65
85	r4	19	P5P	N1-C2-N3	-5.91	120.09	127.65
85	r4	23	P5P	N1-C2-N3	-5.91	120.09	127.65
85	r4	21	P5P	N1-C2-N3	-5.90	120.10	127.65
85	r4	70	P5P	N1-C2-N3	-5.90	120.10	127.65
85	r4	58	P5P	N1-C2-N3	-5.90	120.11	127.65
85	r4	76	P5P	N1-C2-N3	-5.90	120.11	127.65
85	r4	18	P5P	N1-C2-N3	-5.89	120.11	127.65
85	r4	10	P5P	N1-C2-N3	-5.89	120.12	127.65
85	r4	26	P5P	N1-C2-N3	-5.89	120.12	127.65
84	r3	4	P5P	N1-C2-N3	-5.89	120.12	127.65
84	r3	37	P5P	N1-C2-N3	-5.89	120.12	127.65
84	r3	48	P5P	N1-C2-N3	-5.89	120.12	127.65
84	r3	44	P5P	N1-C2-N3	-5.88	120.12	127.65
84	r3	71	P5P	N1-C2-N3	-5.88	120.13	127.65

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
85	r4	7	P5P	N1-C2-N3	-5.88	120.13	127.65
84	r3	11	P5P	N1-C2-N3	-5.88	120.13	127.65
85	r4	14	P5P	N1-C2-N3	-5.87	120.13	127.65
84	r3	10	P5P	N1-C2-N3	-5.87	120.13	127.65
85	r4	34	P5P	N1-C2-N3	-5.87	120.13	127.65
84	r3	6	P5P	N1-C2-N3	-5.87	120.13	127.65
85	r4	36	P5P	N1-C2-N3	-5.87	120.14	127.65
85	r4	27	P5P	N1-C2-N3	-5.87	120.14	127.65
85	r4	37	P5P	N1-C2-N3	-5.86	120.14	127.65
85	r4	31	P5P	N1-C2-N3	-5.86	120.16	127.65
84	r3	5	P5P	N1-C2-N3	-5.86	120.16	127.65
85	r4	22	P5P	N1-C2-N3	-5.85	120.17	127.65
84	r3	15	P5P	N1-C2-N3	-5.82	120.20	127.65
84	r3	45	P5P	N1-C2-N3	-5.80	120.23	127.65
84	r3	55	P5P	N1-C2-N3	-5.79	120.24	127.65
84	r3	57	P5P	N1-C2-N3	-5.76	120.27	127.65
84	r3	14	P5P	N1-C2-N3	-5.74	120.30	127.65
84	r3	74	P5P	N1-C2-N3	-5.71	120.34	127.65
84	r3	46	P5P	N1-C2-N3	-5.71	120.34	127.65
88	А	1	MHW	C-CA-N	4.01	121.92	115.41
85	r4	76	P5P	C1'-N9-C4	3.50	132.80	126.64
84	r3	14	P5P	C1'-N9-C4	3.43	132.67	126.64
85	r4	22	P5P	C1'-N9-C4	3.26	132.37	126.64
85	r4	31	P5P	C1'-N9-C4	3.26	132.37	126.64
84	r3	8	P5P	C1'-N9-C4	3.25	132.35	126.64
85	r4	23	P5P	C1'-N9-C4	3.23	132.32	126.64
84	r3	55	P5P	C1'-N9-C4	3.21	132.29	126.64
88	А	7	004	CG2-CB-CA	-3.21	115.48	120.65
84	r3	57	P5P	C1'-N9-C4	3.20	132.27	126.64
85	r4	1	P5P	C6-N1-C2	3.19	120.41	115.84
85	r4	52	P5P	C6-N1-C2	3.18	120.39	115.84
84	r3	31	P5P	C6-N1-C2	3.16	120.36	115.84
84	r3	22	P5P	C6-N1-C2	3.16	120.36	115.84
85	r4	24	P5P	C6-N1-C2	3.14	120.34	115.84
85	r4	10	P5P	C1'-N9-C4	3.14	132.15	126.64
84	r3	68	P5P	C6-N1-C2	3.13	120.33	115.84
84	r3	29	P5P	C6-N1-C2	3.13	120.33	115.84
84	r3	52	P5P	C6-N1-C2	3.13	120.32	115.84
84	r3	19	P5P	C6-N1-C2	3.12	120.31	115.84
84	r3	46	P5P	C1'-N9-C4	3.12	132.12	126.64
85	r4	71	P5P	C6-N1-C2	3.11	120.30	115.84
85	r4	31	P5P	C6-N1-C2	3.11	120.29	115.84

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
84	r3	35	P5P	C6-N1-C2	3.11	120.29	115.84
85	r4	29	P5P	C6-N1-C2	3.10	120.28	115.84
84	r3	51	P5P	C6-N1-C2	3.10	120.28	115.84
85	r4	53	P5P	C6-N1-C2	3.10	120.28	115.84
84	r3	23	P5P	C6-N1-C2	3.10	120.28	115.84
85	r4	44	P5P	C6-N1-C2	3.10	120.28	115.84
85	r4	65	P5P	C6-N1-C2	3.10	120.28	115.84
85	r4	29	P5P	C1'-N9-C4	3.10	132.08	126.64
85	r4	46	P5P	C6-N1-C2	3.09	120.27	115.84
84	r3	30	P5P	C6-N1-C2	3.09	120.27	115.84
85	r4	69	P5P	C6-N1-C2	3.09	120.26	115.84
85	r4	6	P5P	C6-N1-C2	3.09	120.26	115.84
84	r3	10	P5P	C6-N1-C2	3.08	120.26	115.84
88	А	7	004	CG1-CB-CA	3.08	125.62	120.65
85	r4	23	P5P	C6-N1-C2	3.08	120.25	115.84
85	r4	9	P5P	C6-N1-C2	3.08	120.25	115.84
85	r4	18	P5P	C6-N1-C2	3.08	120.25	115.84
84	r3	42	P5P	C6-N1-C2	3.08	120.25	115.84
85	r4	35	P5P	C6-N1-C2	3.08	120.25	115.84
85	r4	64	P5P	C6-N1-C2	3.07	120.24	115.84
85	r4	63	P5P	C6-N1-C2	3.07	120.24	115.84
84	r3	3	P5P	C6-N1-C2	3.07	120.24	115.84
84	r3	9	P5P	C6-N1-C2	3.07	120.24	115.84
85	r4	36	P5P	C6-N1-C2	3.07	120.23	115.84
85	r4	19	P5P	C6-N1-C2	3.07	120.23	115.84
85	r4	10	P5P	C6-N1-C2	3.07	120.23	115.84
84	r3	8	P5P	C6-N1-C2	3.06	120.23	115.84
85	r4	5	P5P	C6-N1-C2	3.06	120.23	115.84
84	r3	26	P5P	C6-N1-C2	3.05	120.21	115.84
85	r4	21	P5P	C6-N1-C2	3.05	120.21	115.84
85	r4	38	P5P	C6-N1-C2	3.05	120.21	115.84
84	r3	43	P5P	C6-N1-C2	3.05	120.21	115.84
85	r4	30	P5P	C6-N1-C2	3.05	120.21	115.84
85	r4	15	P5P	C6-N1-C2	3.05	120.20	115.84
84	r3	15	P5P	C6-N1-C2	3.04	120.20	115.84
85	r4	73	P5P	C6-N1-C2	3.04	120.20	115.84
84	r3	3	P5P	C1'-N9-C4	3.04	131.98	126.64
85	r4	57	P5P	C6-N1-C2	3.04	120.19	115.84
84	r3	48	P5P	C6-N1-C2	3.03	120.19	115.84
85	r4	27	P5P	C6-N1-C2	3.03	120.19	115.84
84	r3	37	P5P	C6-N1-C2	3.03	120.18	115.84
85	r4	26	P5P	C6-N1-C2	3.03	120.18	115.84

Mol	Chain	\mathbf{Res}	Type	Atoms		$Observed(^{o})$	$ $ Ideal(o)
84	r3	21	P5P	C6-N1-C2	3.03	120.18	115.84
85	r4	28	P5P	C6-N1-C2	3.03	120.18	115.84
84	r3	74	P5P	C6-N1-C2	3.03	120.17	115.84
84	r3	66	P5P	C6-N1-C2	3.02	120.17	115.84
85	r4	70	P5P	C6-N1-C2	3.02	120.17	115.84
84	r3	4	P5P	C6-N1-C2	3.02	120.16	115.84
84	r3	6	P5P	C6-N1-C2	3.02	120.16	115.84
85	r4	34	P5P	C6-N1-C2	3.02	120.16	115.84
84	r3	68	P5P	C1'-N9-C4	3.02	131.94	126.64
85	r4	58	P5P	C6-N1-C2	3.02	120.16	115.84
85	r4	14	P5P	C6-N1-C2	3.02	120.16	115.84
84	r3	5	P5P	C6-N1-C2	3.01	120.16	115.84
84	r3	17(A)	P5P	C6-N1-C2	3.01	120.16	115.84
84	r3	45	P5P	C1'-N9-C4	3.01	131.93	126.64
84	r3	44	P5P	C6-N1-C2	3.01	120.15	115.84
84	r3	45	P5P	C6-N1-C2	3.01	120.15	115.84
85	r4	37	P5P	C6-N1-C2	3.01	120.14	115.84
85	r4	76	P5P	C6-N1-C2	3.00	120.14	115.84
84	r3	18	P5P	C6-N1-C2	3.00	120.14	115.84
84	r3	71	P5P	C6-N1-C2	3.00	120.14	115.84
85	r4	22	P5P	C6-N1-C2	2.99	120.13	115.84
84	r3	11	P5P	C6-N1-C2	2.99	120.12	115.84
85	r4	26	P5P	C1'-N9-C4	2.98	131.88	126.64
84	r3	55	P5P	C6-N1-C2	2.98	120.11	115.84
85	r4	6	P5P	C1'-N9-C4	2.98	131.88	126.64
84	r3	17(A)	P5P	C1'-N9-C4	2.97	131.87	126.64
85	r4	7	P5P	C6-N1-C2	2.97	120.10	115.84
85	r4	5	P5P	C1'-N9-C4	2.97	131.86	126.64
84	r3	46	P5P	C6-N1-C2	2.95	120.06	115.84
84	r3	14	P5P	C6-N1-C2	2.95	120.06	115.84
84	r3	21	P5P	C1'-N9-C4	2.94	131.81	126.64
85	r4	73	P5P	C1'-N9-C4	2.94	131.81	126.64
84	r3	9	P5P	C1'-N9-C4	2.94	131.80	126.64
84	r3	10	P5P	C1'-N9-C4	2.92	131.78	126.64
84	r3	35	P5P	C1'-N9-C4	2.92	131.77	126.64
85	r4	36	P5P	C1'-N9-C4	2.90	131.74	126.64
84	r3	5	P5P	C1'-N9-C4	2.89	131.72	126.64
85	r4	27	P5P	C1'-N9-C4	2.89	131.72	126.64
88	A	7	004	CB-CA-N	-2.89	105.49	112.40
85	r4	18	P5P	C1'-N9-C4	2.89	131.71	126.64
84	r3	57	P5P	C6-N1-C2	2.88	119.96	115.84
84	r3	23	P5P	C1'-N9-C4	2.87	131.69	126.64

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
85	r4	7	P5P	C1'-N9-C4	2.87	131.69	126.64
85	r4	44	P5P	C1'-N9-C4	2.87	131.68	126.64
85	r4	64	P5P	C1'-N9-C4	2.85	131.65	126.64
85	r4	28	P5P	C1'-N9-C4	2.85	131.65	126.64
85	r4	34	P5P	C1'-N9-C4	2.84	131.63	126.64
84	r3	66	P5P	C1'-N9-C4	2.82	131.60	126.64
85	r4	30	P5P	C1'-N9-C4	2.82	131.60	126.64
84	r3	4	P5P	C1'-N9-C4	2.82	131.59	126.64
84	r3	11	P5P	C1'-N9-C4	2.82	131.59	126.64
84	r3	37	P5P	C1'-N9-C4	2.82	131.59	126.64
84	r3	31	P5P	C1'-N9-C4	2.81	131.59	126.64
84	r3	22	P5P	C1'-N9-C4	2.80	131.56	126.64
85	r4	21	P5P	C1'-N9-C4	2.78	131.53	126.64
85	r4	70	P5P	C1'-N9-C4	2.78	131.53	126.64
85	r4	53	P5P	C1'-N9-C4	2.77	131.51	126.64
85	r4	1	P5P	C1'-N9-C4	2.77	131.51	126.64
85	r4	19	P5P	C1'-N9-C4	2.76	131.50	126.64
84	r3	71	P5P	C1'-N9-C4	2.76	131.49	126.64
85	r4	14	P5P	C1'-N9-C4	2.75	131.48	126.64
85	r4	52	P5P	C1'-N9-C4	2.75	131.48	126.64
85	r4	9	P5P	C1'-N9-C4	2.75	131.47	126.64
84	r3	48	P5P	C1'-N9-C4	2.74	131.46	126.64
88	А	5	MHU	O-C-CA	-2.74	117.60	124.78
85	r4	58	P5P	C1'-N9-C4	2.73	131.44	126.64
84	r3	74	P5P	C1'-N9-C4	2.73	131.44	126.64
85	r4	65	P5P	C1'-N9-C4	2.73	131.44	126.64
84	r3	18	P5P	C1'-N9-C4	2.72	131.41	126.64
84	r3	29	P5P	C1'-N9-C4	2.71	131.41	126.64
85	r4	63	P5P	C1'-N9-C4	2.71	131.41	126.64
85	r4	69	P5P	C1'-N9-C4	2.71	131.40	126.64
84	r3	51	P5P	C1'-N9-C4	2.70	131.38	126.64
85	r4	35	P5P	C1'-N9-C4	2.70	131.38	126.64
84	r3	6	P5P	C1'-N9-C4	2.69	131.37	126.64
85	r4	71	P5P	C1'-N9-C4	2.67	131.33	126.64
85	r4	15	P5P	C1'-N9-C4	2.67	131.32	126.64
85	r4	46	P5P	C1'-N9-C4	2.66	131.32	126.64
88	A	6	MHV	CD2-CG-CB	2.66	119.86	115.89
88	A	1	MHW	CE-N-CA	$2.6\overline{6}$	121.26	116.69
84	r3	26	P5P	C1'-N9-C4	$2.6\overline{6}$	131.31	126.64
84	r3	19	P5P	C1'-N9-C4	2.65	131.30	126.64
85	r4	24	P5P	C1'-N9-C4	$2.\overline{65}$	131.29	126.64
84	r3	42	P5P	C1'-N9-C4	2.65	131.29	126.64

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
84	r3	30	P5P	C1'-N9-C4	2.64	131.28	126.64
85	r4	57	P5P	C1'-N9-C4	2.64	131.27	126.64
85	r4	38	P5P	C1'-N9-C4	2.63	131.26	126.64
84	r3	15	P5P	C1'-N9-C4	2.63	131.25	126.64
85	r4	37	P5P	C1'-N9-C4	2.61	131.22	126.64
84	r3	44	P5P	C1'-N9-C4	2.56	131.15	126.64
84	r3	43	P5P	C1'-N9-C4	2.56	131.14	126.64
88	А	6	MHV	CB-CA-N	-2.42	107.50	112.50
84	r3	52	P5P	C1'-N9-C4	2.41	130.87	126.64
88	A	5	MHU	CM-N-CA	2.37	121.00	113.64
88	A	5	MHU	CB-CA-N	-2.11	107.38	110.65

There are no chirality outliers.

All (267) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
83	r1	46	Y5P	C4'-C5'-O5'-P
83	r1	46	Y5P	C3'-C4'-C5'-O5'
83	r1	46	Y5P	O4'-C1'-N1-C6
83	r1	52	Y5P	O4'-C1'-N1-C2
83	r1	53	Y5P	O4'-C4'-C5'-O5'
83	r1	54	Y5P	O4'-C1'-N1-C2
83	r1	55	Y5P	O4'-C4'-C5'-O5'
83	r1	56	Y5P	O4'-C4'-C5'-O5'
84	r3	1	Y5P	C2'-C1'-N1-C6
84	r3	4	P5P	O4'-C4'-C5'-O5'
84	r3	5	P5P	C3'-C4'-C5'-O5'
84	r3	16	Y5P	O4'-C1'-N1-C2
84	r3	19	P5P	C3'-C4'-C5'-O5'
84	r3	21	P5P	C3'-C4'-C5'-O5'
84	r3	21	P5P	O4'-C4'-C5'-O5'
84	r3	21	P5P	C4'-C5'-O5'-P
84	r3	27	Y5P	O4'-C1'-N1-C2
84	r3	28	Y5P	O4'-C1'-N1-C2
84	r3	32	Y5P	O4'-C1'-N1-C2
84	r3	33	Y5P	O4'-C1'-N1-C2
84	r3	34	Y5P	O4'-C4'-C5'-O5'
84	r3	34	Y5P	C3'-C4'-C5'-O5'
84	r3	36	Y5P	O4'-C1'-N1-C2
84	r3	38	Y5P	O4'-C1'-N1-C2
84	r3	41	Y5P	$O4$ '- $C1$ '- $N1$ - $\overline{C2}$
84	r3	50	Y5P	O4'-C1'-N1-C2

EMD-11394,	6ZSD
------------	------

Mol	Chain	Res	Type	Atoms
84	r3	55	P5P	O4'-C4'-C5'-O5'
84	r3	63	Y5P	O4'-C4'-C5'-O5'
84	r3	63	Y5P	C3'-C4'-C5'-O5'
84	r3	65	Y5P	O4'-C1'-N1-C2
84	r3	69	Y5P	O4'-C1'-N1-C2
84	r3	70	Y5P	O4'-C1'-N1-C2
84	r3	72	Y5P	O4'-C1'-N1-C2
85	r4	2	Y5P	O4'-C1'-N1-C2
85	r4	8	Y5P	O4'-C1'-N1-C2
85	r4	9	P5P	O4'-C4'-C5'-O5'
85	r4	13	Y5P	O4'-C4'-C5'-O5'
85	r4	13	Y5P	C3'-C4'-C5'-O5'
85	r4	13	Y5P	O4'-C1'-N1-C2
85	r4	16	Y5P	O4'-C1'-N1-C2
85	r4	21	P5P	C4'-C5'-O5'-P
85	r4	22	P5P	C3'-C4'-C5'-O5'
85	r4	22	P5P	O4'-C4'-C5'-O5'
85	r4	26	P5P	C3'-C4'-C5'-O5'
85	r4	26	P5P	O4'-C4'-C5'-O5'
85	r4	29	P5P	O4'-C4'-C5'-O5'
85	r4	32	Y5P	O4'-C4'-C5'-O5'
85	r4	39	Y5P	O4'-C1'-N1-C2
85	r4	40	Y5P	O4'-C1'-N1-C2
85	r4	41	Y5P	O4'-C4'-C5'-O5'
85	r4	41	Y5P	C3'-C4'-C5'-O5'
85	r4	47	Y5P	O4'-C4'-C5'-O5'
85	r4	48	Y5P	C3'-C4'-C5'-O5'
85	r4	52	P5P	C3'-C4'-C5'-O5'
85	r4	54	Y5P	O4'-C1'-N1-C2
85	r4	55	Y5P	O4'-C1'-N1-C2
85	r4	56	Y5P	O4'-C4'-C5'-O5'
85	r4	59	Y5P	O4'-C1'-N1-C2
85	r4	64	P5P	C3'-C4'-C5'-O5'
85	r4	$\overline{64}$	P5P	O4'-C4'-C5'-O5'
85	r4	66	Y5P	C3'-C4'-C5'-O5'
85	r4	72	Y5P	C3'-C4'-C5'-O5'
85	r4	73	P5P	C3'-C4'-C5'-O5'
85	r4	75	Y5P	O4'-C4'-C5'-O5'
88	А	5	MHU	O-C-CA-CB
83	r1	47	Y5P	O4'-C1'-N1-C2
83	r1	48	Y5P	O4'-C1'-N1-C2
83	r1	49	Y5P	O4'-C1'-N1-C2

Continued from previous page...

	intaca ji cii			· · · · · · · · · · · · · · · · · · ·
Mol	Chain	Res	Type	Atoms
83	r1	50	Y5P	O4'-C1'-N1-C2
83	r1	51	Y5P	O4'-C1'-N1-C2
84	r3	7	Y5P	O4'-C1'-N1-C2
84	r3	12	Y5P	O4'-C1'-N1-C2
84	r3	17	Y5P	O4'-C1'-N1-C2
84	r3	20	Y5P	O4'-C1'-N1-C2
84	r3	24	Y5P	O4'-C1'-N1-C2
84	r3	25	Y5P	O4'-C1'-N1-C2
84	r3	34	Y5P	O4'-C1'-N1-C2
84	r3	49	Y5P	O4'-C1'-N1-C2
84	r3	53	Y5P	O4'-C1'-N1-C2
84	r3	54	Y5P	O4'-C1'-N1-C2
84	r3	59	Y5P	O4'-C1'-N1-C2
84	r3	60	Y5P	O4'-C1'-N1-C2
84	r3	61	Y5P	O4'-C1'-N1-C2
84	r3	62	Y5P	O4'-C1'-N1-C2
84	r3	63	Y5P	O4'-C1'-N1-C2
84	r3	64	Y5P	O4'-C1'-N1-C2
84	r3	67	Y5P	O4'-C1'-N1-C2
85	r4	3	Y5P	O4'-C1'-N1-C2
85	r4	12	Y5P	O4'-C1'-N1-C2
85	r4	17	Y5P	O4'-C1'-N1-C2
85	r4	20	Y5P	O4'-C1'-N1-C2
85	r4	25	Y5P	O4'-C1'-N1-C2
85	r4	32	Y5P	O4'-C1'-N1-C2
85	r4	41	Y5P	O4'-C1'-N1-C2
85	r4	42	Y5P	O4'-C1'-N1-C2
85	r4	43	Y5P	O4'-C1'-N1-C2
85	r4	45	Y5P	O4'-C1'-N1-C2
85	r4	48	Y5P	O4'-C1'-N1-C2
85	r4	49	Y5P	O4'-C1'-N1-C2
85	r4	50	Y5P	O4'-C1'-N1-C2
85	r4	51	Y5P	O4'-C1'-N1-C2
85	r4	56	Y5P	O4'-C1'-N1-C2
85	r4	60	Y5P	O4'-C1'-N1-C2
85	r4	61	Y5P	O4'-C1'-N1-C2
85	r4	62	Y5P	O4'-C1'-N1-C2
85	r4	66	Y5P	O4'-C1'-N1-C2
85	r4	67	Y5P	O4'-C1'-N1-C2
85	r4	68	Y5P	O4'-C1'-N1-C2
85	r4	72	Y5P	O4'-C1'-N1-C2
84	r3	40	Y5P	O4'-C1'-N1-C6

Continued from previous page...

EMD-11394,	6ZSD
------------	------

Mol	Chain	Res	Type	Atoms
88	А	5	MHU	CE1-CZ-NZ-CZ2
88	А	5	MHU	CE2-CZ-NZ-CZ1
85	r4	75	Y5P	C2'-C1'-N1-C2
88	А	5	MHU	CE1-CZ-NZ-CZ1
88	А	5	MHU	CE2-CZ-NZ-CZ2
84	r3	47	Y5P	C4'-C5'-O5'-P
85	r4	23	P5P	C4'-C5'-O5'-P
83	r1	47	Y5P	C3'-C4'-C5'-O5'
83	r1	53	Y5P	C3'-C4'-C5'-O5'
84	r3	3	P5P	O4'-C4'-C5'-O5'
84	r3	4	P5P	C3'-C4'-C5'-O5'
84	r3	17(A)	P5P	C3'-C4'-C5'-O5'
84	r3	17(A)	P5P	O4'-C4'-C5'-O5'
84	r3	18	P5P	O4'-C4'-C5'-O5'
84	r3	50	Y5P	O4'-C4'-C5'-O5'
84	r3	55	P5P	C3'-C4'-C5'-O5'
84	r3	59	Y5P	O4'-C4'-C5'-O5'
84	r3	61	Y5P	O4'-C4'-C5'-O5'
84	r3	61	Y5P	C3'-C4'-C5'-O5'
85	r4	6	P5P	O4'-C4'-C5'-O5'
85	r4	9	P5P	C3'-C4'-C5'-O5'
85	r4	17	Y5P	O4'-C4'-C5'-O5'
85	r4	28	P5P	O4'-C4'-C5'-O5'
85	r4	29	P5P	C3'-C4'-C5'-O5'
85	r4	32	Y5P	C3'-C4'-C5'-O5'
85	r4	45	Y5P	O4'-C4'-C5'-O5'
85	r4	45	Y5P	C3'-C4'-C5'-O5'
85	r4	52	P5P	O4'-C4'-C5'-O5'
85	r4	56	Y5P	C3'-C4'-C5'-O5'
85	r4	66	Y5P	O4'-C4'-C5'-O5'
85	r4	73	P5P	O4'-C4'-C5'-O5'
85	r4	74	Y5P	O4'-C4'-C5'-O5'
85	r4	75	Y5P	C3'-C4'-C5'-O5'
85	r4	76	P5P	O4'-C4'-C5'-O5'
85	r4	74	Y5P	O4'-C1'-N1-C6
84	r3	1	Y5P	C2'-C1'-N1-C2
85	r4	75	Y5P	C2'-C1'-N1-C6
83	r1	46	Y5P	O4'-C4'-C5'-O5'
83	r1	47	Y5P	O4'-C4'-C5'-O5'
83	r1	55	Y5P	C3'-C4'-C5'-O5'
83	r1	56	Y5P	C3'-C4'-C5'-O5'
84	r3	1	Y5P	C3'-C4'-C5'-O5'

Continued from previous page...

Y5P C3'-C4'-C5'-O5' Continued on next page...

EMD-11394,	6ZSD
------------	------

00.000	naca ji on	v proceec	re page	·
Mol	Chain	Res	Type	Atoms
84	r3	3	P5P	C3'-C4'-C5'-O5'
84	r3	7	Y5P	O4'-C4'-C5'-O5'
84	r3	7	Y5P	C3'-C4'-C5'-O5'
84	r3	18	P5P	C3'-C4'-C5'-O5'
84	r3	50	Y5P	C3'-C4'-C5'-O5'
84	r3	59	Y5P	C3'-C4'-C5'-O5'
85	r4	6	P5P	C3'-C4'-C5'-O5'
85	r4	38	P5P	O4'-C4'-C5'-O5'
85	r4	47	Y5P	C3'-C4'-C5'-O5'
85	r4	74	Y5P	C3'-C4'-C5'-O5'
83	r1	57	Y5P	O4'-C1'-N1-C2
84	r3	40	Y5P	C2'-C1'-N1-C2
85	r4	74	Y5P	C2'-C1'-N1-C2
84	r3	40	Y5P	C2'-C1'-N1-C6
85	r4	74	Y5P	C2'-C1'-N1-C6
84	r3	39	Y5P	O4'-C1'-N1-C2
84	r3	73	Y5P	O4'-C1'-N1-C2
85	r4	4	Y5P	O4'-C1'-N1-C2
85	r4	47	Y5P	O4'-C1'-N1-C2
85	r4	75	Y5P	O4'-C1'-N1-C2
84	r3	46	P5P	C4'-C5'-O5'-P
85	r4	20	Y5P	C4'-C5'-O5'-P
84	r3	53	Y5P	C3'-C4'-C5'-O5'
85	r4	25	Y5P	C3'-C4'-C5'-O5'
84	r3	13	Y5P	C4'-C5'-O5'-P
84	r3	1	Y5P	O4'-C4'-C5'-O5'
84	r3	51	P5P	C3'-C4'-C5'-O5'
85	r4	48	Y5P	O4'-C4'-C5'-O5'
83	r1	55	Y5P	O4'-C1'-N1-C2
85	r4	11	Y5P	O4'-C1'-N1-C2
85	r4	22	P5P	C4'-C5'-O5'-P
84	r3	5	P5P	O4'-C4'-C5'-O5'
84	r3	19	P5P	O4'-C4'-C5'-O5'
84	r3	53	Y5P	O4'-C4'-C5'-O5'
84	r3	65	Y5P	O4'-C4'-C5'-O5'
85	r4	49	Y5P	O4'-C4'-C5'-O5'
85	r4	72	Y5P	O4'-C4'-C5'-O5'
83	r1	53	Y5P	C2'-C1'-N1-C2
83	r1	53	Y5P	C2'-C1'-N1-C6
85	r4	49	Y5P	C3'-C4'-C5'-O5'
85	r4	76	P5P	C3'-C4'-C5'-O5'
84	r3	13	Y5P	C2'-C1'-N1-C2

Continued from previous page...

Mol	Chain	Res	Type	Atoms			
84	r3	69	Y5P	C3'-C4'-C5'-O5'			
85	r4	23	P5P	C3'-C4'-C5'-O5'			
88	А	7	004	C-CA-CB-CG1			
84	r3	43	P5P	C4'-C5'-O5'-P			
84	r3	51	P5P	O4'-C4'-C5'-O5'			
85	r4	38	P5P	C3'-C4'-C5'-O5'			
85	r4	73	P5P	C4'-C5'-O5'-P			
85	r4	25	Y5P	O4'-C4'-C5'-O5'			
83	r1	53	Y5P	O4'-C1'-N1-C2			
84	r3	47	Y5P	O4'-C1'-N1-C2			
84	r3	59	Y5P	C4'-C5'-O5'-P			
85	r4	34	P5P	C4'-C5'-O5'-P			
85	r4	47	Y5P	C4'-C5'-O5'-P			
84	r3	17	Y5P	04'-C4'-C5'-O5'			
85	r4	28	P5P	C3'-C4'-C5'-O5'			
84	r3	13	Y5P	O4'-C1'-N1-C2			
85	r4	1	P5P	C4'-C5'-O5'-P			
85	r4	30	P5P	C4'-C5'-O5'-P			
85	r4	45	Y5P	C4'-C5'-O5'-P			
85	r4	17	Y5P	C3'-C4'-C5'-O5'			
84	r3	13	Y5P	C2'-C1'-N1-C6			
83	r1	53	Y5P	O4'-C1'-N1-C6			
84	r3	1	Y5P	O4'-C1'-N1-C6			
84	r3	3	P5P	C4'-C5'-O5'-P			
84	r3	14	P5P	C4'-C5'-O5'-P			
84	r3	69	Y5P	O4'-C4'-C5'-O5'			
85	r4	27	P5P	C3'-C4'-C5'-O5'			
85	r4	31	P5P	O4'-C4'-C5'-O5'			
84	r3	56	Y5P	O4'-C1'-N1-C2			
84	r3	18	P5P	C4'-C5'-O5'-P			
85	r4	18	P5P	C4'-C5'-O5'-P			
84	r3	2	Y5P	O4'-C1'-N1-C2			
85	r4	7	P5P	O4'-C4'-C5'-O5'			
83	r1	56	Y5P	O4'-C1'-N1-C6			
84	r3	56	Y5P	C2'-C1'-N1-C2			
84	r3	58	Y5P	O4'-C1'-N1-C2			
85	r4	33	Y5P	O4'-C1'-N1-C2			
84	r3	16	Y5P	C4'-C5'-O5'-P			
84	r3	17(A)	P5P	C4'-C5'-O5'-P			
84	r3	50	Y5P	C4'-C5'-O5'-P			
85	r4	10	P5P	C4'-C5'-O5'-P			
85	r4	33	Y5P	C4'-C5'-O5'-P			

Continued from previous page...

EMD-11394,	6ZSD
------------	------

Mol	Chain	Res	Type	Atoms
83	r1	56	Y5P	C2'-C1'-N1-C6
84	r3	49	Y5P	C3'-C4'-C5'-O5'
85	r4	41	Y5P	C2'-C1'-N1-C6
84	r3	1	Y5P	O4'-C1'-N1-C2
84	r3	65	Y5P	C3'-C4'-C5'-O5'
85	r4	23	P5P	O4'-C4'-C5'-O5'
84	r3	13	Y5P	O4'-C1'-N1-C6
83	r1	49	Y5P	C2'-C1'-N1-C6
85	r4	67	Y5P	C2'-C1'-N1-C6
85	r4	76	P5P	C4'-C5'-O5'-P
85	r4	1	P5P	O4'-C4'-C5'-O5'
85	r4	27	P5P	O4'-C4'-C5'-O5'
84	r3	57	P5P	O4'-C4'-C5'-O5'
84	r3	62	Y5P	C2'-C1'-N1-C6
84	r3	2	Y5P	C2'-C1'-N1-C2
84	r3	56	Y5P	C2'-C1'-N1-C6
84	r3	4	P5P	C4'-C5'-O5'-P
85	r4	61	Y5P	C4'-C5'-O5'-P
85	r4	74	Y5P	C4'-C5'-O5'-P
83	r1	52	Y5P	O4'-C4'-C5'-O5'
83	r1	57	Y5P	C3'-C4'-C5'-O5'
84	r3	46	P5P	C3'-C4'-C5'-O5'
85	r4	7	P5P	C3'-C4'-C5'-O5'
85	r4	18	P5P	O4'-C4'-C5'-O5'
85	r4	34	P5P	O4'-C4'-C5'-O5'
85	r4	59	Y5P	O4'-C4'-C5'-O5'
84	r3	58	Y5P	C2'-C1'-N1-C2
85	r4	20	Y5P	C3'-C4'-C5'-O5'
84	r3	56	Y5P	O4'-C1'-N1-C6
84	r3	72	Y5P	C4'-C5'-O5'-P
85	r4	50	Y5P	C2'-C1'-N1-C6

Continued from previous page...

There are no ring outliers.

3 monomers are involved in 5 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
88	А	7	004	3	0
88	А	3	DBB	1	0
88	А	1	MHW	1	0

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 204 ligands modelled in this entry, 202 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Ма	Mal Tuna Chain Dag		Dec	Tinle	В	ond leng	$_{ m gths}$	Bond angles		
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
92	GTP	AX	500	-	26,34,34	1.14	2 (7%)	32,54,54	1.54	6 (18%)
91	DOL	XA	5144	-	43,50,50	<mark>3.51</mark>	17 (39%)	51,70,70	2.70	9 (17%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
92	GTP	AX	500	-	-	8/18/38/38	0/3/3/3
91	DOL	XA	5144	-	-	21/58/77/77	0/2/3/3

All (19) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(\text{\AA})$	Ideal(Å)
91	XA	5144	DOL	C28-C29	9.95	1.55	1.32
91	XA	5144	DOL	C22-C23	9.59	1.57	1.32
91	XA	5144	DOL	C19-C20	7.44	1.57	1.34
91	XA	5144	DOL	C6-N5	6.54	1.49	1.34
91	XA	5144	DOL	C26-N25	6.50	1.48	1.34
91	XA	5144	DOL	C22-C20	5.59	1.58	1.45
91	XA	5144	DOL	O36-C37	5.22	1.46	1.34
91	XA	5144	DOL	C42-S39	5.19	1.86	1.78
91	XA	5144	DOL	C13-C10	4.55	1.57	1.50
91	XA	5144	DOL	C16-C14	4.10	1.57	1.51

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
92	AX	500	GTP	C5-C6	-4.03	1.39	1.47
91	XA	5144	DOL	C28-C26	3.65	1.55	1.48
91	XA	5144	DOL	C8-C6	2.97	1.56	1.50
91	XA	5144	DOL	O27-C26	-2.75	1.19	1.24
91	XA	5144	DOL	O18-C17	-2.67	1.38	1.43
91	XA	5144	DOL	C13-C14	2.47	1.56	1.52
92	AX	500	GTP	C2-N3	2.26	1.38	1.33
91	XA	5144	DOL	C24-C23	2.11	1.58	1.50
91	XA	5144	DOL	O36-C32	-2.01	1.41	1.44

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
91	XA	5144	DOL	O40-S39-O41	-15.18	100.88	118.19
91	XA	5144	DOL	C24-N25-C26	-5.85	112.56	122.03
92	AX	500	GTP	PA-O3A-PB	-4.04	118.95	132.83
91	XA	5144	DOL	C32-O36-C37	-3.76	111.33	117.78
91	XA	5144	DOL	C23-C22-C20	-3.48	120.63	125.89
91	XA	5144	DOL	C4-N5-C1	-3.39	108.28	112.45
92	AX	500	GTP	C5-C6-N1	3.27	119.72	113.95
92	AX	500	GTP	PB-O3B-PG	-3.21	121.80	132.83
92	AX	500	GTP	C8-N7-C5	3.07	108.84	102.99
92	AX	500	GTP	C2-N1-C6	-3.04	119.51	125.10
91	XA	5144	DOL	C30-C29-C28	-2.87	118.60	126.44
91	XA	5144	DOL	O36-C32-C30	2.61	111.44	107.09
91	XA	5144	DOL	C3-C4-N5	2.55	105.96	103.33
91	XA	5144	DOL	C37-C1-N5	-2.51	107.90	112.26
92	AX	500	GTP	O6-C6-C5	-2.13	120.21	124.37

There are no chirality outliers.

All (29) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
91	XA	5144	DOL	C3-C2-S39-C42
91	XA	5144	DOL	C1-C2-S39-O41
91	XA	5144	DOL	C1-C2-S39-O40
91	XA	5144	DOL	C1-C2-S39-C42
91	XA	5144	DOL	C43-C42-S39-C2
91	XA	5144	DOL	C43-C42-S39-O41
91	XA	5144	DOL	C29-C30-C32-C33
91	XA	5144	DOL	C31-C30-C32-C33
92	AX	500	GTP	PB-O3B-PG-O3G

Mol	Chain	Res	Type	Atoms
92	AX	500	GTP	C5'-O5'-PA-O3A
91	XA	5144	DOL	C3-C2-S39-O41
91	XA	5144	DOL	O36-C32-C33-C35
92	AX	500	GTP	O4'-C4'-C5'-O5'
91	XA	5144	DOL	C30-C32-C33-C34
91	XA	5144	DOL	C28-C29-C30-C31
91	XA	5144	DOL	C3-C2-S39-O40
91	XA	5144	DOL	O36-C32-C33-C34
91	XA	5144	DOL	C31-C30-C32-O36
92	AX	500	GTP	C5'-O5'-PA-O2A
91	XA	5144	DOL	C29-C30-C32-O36
92	AX	500	GTP	C3'-C4'-C5'-O5'
91	XA	5144	DOL	O18-C17-C19-C20
92	AX	500	GTP	PB-O3B-PG-O1G
92	AX	500	GTP	PB-O3B-PG-O2G
91	XA	5144	DOL	C42-C43-N44-C45
92	AX	500	GTP	C5'-O5'-PA-O1A
91	XA	5144	DOL	C30-C32-C33-C35
91	XA	5144	DOL	C42-C43-N44-C47
91	XA	5144	DOL	C19-C20-C22-C23

Continued from previous page...

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
91	XA	5144	DOL	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
84	r3	2
16	A4	2
8	7	2
82	r	1
38	AV	1
7	6	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	r3	17:Y5P	O3'	17(A):P5P	Р	10.13
1	r3	16:Y5P	O3'	17:Y5P	Р	8.44
1	A4	537:ARG	С	538:ASP	N	6.17
1	7	285:ASN	С	286:LEU	N	5.97
1	r	134:ARG	С	135:LEU	N	5.37
1	AV	269:SER	С	270:PRO	N	4.55
1	6	79:GLY	С	80:GLU	N	3.39
1	A4	143:GLU	С	144:TYR	N	3.07
1	7	185:LEU	С	186:ASP	N	3.05

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11394. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 260

Y Index: 260

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 282

Y Index: 321

Z Index: 247

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.02. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1657 $\rm nm^3;$ this corresponds to an approximate mass of 1497 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11394 and PDB model 6ZSD. Per-residue inclusion information can be found in section 3 on page 23.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.02 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.02).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.02) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8390	0.3960
0	0.8630	0.4310
1	0.8500	0.4330
2	0.9170	0.5250
3	0.9010	0.5160
4	0.8860	0.4640
5	0.8600	0.4160
6	0.8300	0.3780
7	0.8280	0.3770
8	0.7280	0.2800
9	0.8480	0.4120
A	0.9180	0.4770
A0	0.7130	0.2470
A1	0.6710	0.2660
A2	0.7740	0.3390
A3	0.8450	0.4380
A4	0.5290	0.1750
AA	0.9570	0.4190
AB	0.8290	0.3800
AC	0.7970	0.3980
AD	0.7750	0.3780
AE	0.8160	0.4000
AF	0.7850	0.3520
AG	0.7600	0.3320
AH	0.7640	0.3510
AI	0.8390	0.4110
AJ	0.8000	0.4020
AK	0.8240	0.3440
AL	0.8100	0.3710
AM	0.7370	0.3010
AN	0.8310	0.3800
AO	0.7740	0.3200
AP	0.8310	0.4050
AQ	0.8400	0.4160
AR	0.7080	0.2600

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
AS	0.7450	0.3180
AT	0.8070	0.3650
AU	0.7410	0.2790
AV	0.5810	0.1820
AW	0.7940	0.3680
AX	0.7070	0.2480
AY	0.6900	0.2490
AZ	0.7600	0.2960
XA	0.9670	0.5020
XB	0.9650	0.3500
XD	0.8890	0.4690
XE	0.8830	0.4590
XF	0.9030	0.4760
XH	0.8430	0.3990
XI	0.6010	0.2690
XJ	0.6760	0.2260
XK	0.8990	0.4770
XL	0.8710	0.4590
XM	0.8770	0.4540
XN	0.8630	0.4610
XO	0.8800	0.4510
XP	0.8640	0.4150
XQ	0.7990	0.4050
XR	0.8870	0.4800
XS	0.8680	0.4660
XT	0.8940	0.4790
XU	0.8780	0.4500
XV	0.8290	0.3960
XW	0.9040	0.4950
XX	0.8460	0.4130
XY	0.8770	0.4390
XZ	0.8960	0.4860
a	0.8280	0.4190
b	0.8970	0.4700
с	0.8480	0.3990
d	0.7840	0.3540
e	0.7120	0.2460
f	0.7630	0.3290
g	0.8820	0.4510
h	0.8210	0.3700
i	0.8990	0.5010
j	0.8560	0.4400

Continued on next page...

Chain	Atom inclusion	Q-score
k	0.7520	0.2900
1	0.7390	0.2770
m	0.7840	0.3060
0	0.9030	0.4750
р	0.8290	0.3640
q	0.7340	0.3010
r	0.8800	0.4270
r1	0.4680	0.2130
r3	0.8830	0.3260
r4	0.7880	0.2180
S	0.8700	0.4310
t1	0.2610	0.2260
t2	0.2350	0.1970
t3	0.0000	0.1710
t4	0.0000	0.1650
t5	0.0000	0.1350
t6	0.0000	0.0910

Continued from previous page...

