

wwPDB EM Validation Summary Report (i)

Apr 23, 2024 – 12:55 pm BST

PDB ID	:	6ZVH
EMDB ID	:	EMD-11456
Title	:	EDF1-ribosome complex
Authors	:	Best, K.M.; Denk, T.; Cheng, J.; Thoms, M.; Berninghausen, O.; Beckmann,
		R.
Deposited on	:	2020-07-24
Resolution	:	2.90 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	2	1740	9%	23% •
2	А	221	10%	•
3	В	264	81%	19%
4	D	227	99%	•
5	Е	262	• 100%	
6	F	189	96%	•••
7	Н	189	33%	•••
8	Ι	206	99%	•

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain
9	K	98	<u>8%</u> 99%
10	L	153	99%
11	Р	129	98%
12	Q	144	<u>6%</u> 98%
13	R	135	21%
14	S	145	99%
15	Т	143	<u>8%</u> 98% ···
16	U	104	98%
17	V	83	8% 99% •
18	Х	141	97% ·
19	a	102	98%
20	с	64	12%
21	d	55	96% •
22	g	313	35% 99%
23	С	222	100%
24	G	237	99%
25	J	185	<u>98%</u> .
26	М	122	98% ·
27	Ν	150	99% ·
28	Ο	140	<u>8%</u> 99%
29	W	129	99%
30	Y	131	98%
31	Z	75	97%
32	b	83	99%
33	е	42	100%

Continued on next page...

Contr	nueu fron	i previous	page		
Mol	Chain	Length	Quality of chain		
			54%		
34	f	67	99%		•
			35%		
35	х	75	72%	25%	•
			8%		
36	У	72	100%		
			25%		
37	i	110	99%		•

Continued from previous page...

2 Entry composition (i)

There are 39 unique types of molecules in this entry. The entry contains 79014 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	2	1740	Total 36896	C 16458	N 6597	O 12102	Р 1739	0	0

• Molecule 2 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	А	221	Total 1741	C 1106	N 305	O 322	S 8	0	0

• Molecule 3 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	В	214	Total 1738	C 1103	N 310	0 311	S 14	0	0

• Molecule 4 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	227	Total 1765	C 1125	N 317	O 315	S 8	0	0

• Molecule 5 is a protein called 40S ribosomal protein S4, X isoform.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	262	Total 2076	C 1324	N 386	O 358	S 8	0	0

• Molecule 6 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	184	Total 1461	C 914	N 276	0 264	S 7	0	0

• Molecule 7 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Н	186	Total 1497	C 956	N 274	O 266	S 1	0	0

• Molecule 8 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	Ι	206	Total 1686	C 1058	N 332	O 291	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called 40S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	K	98	Total 827	C 539	N 148	0 134	S 6	0	0

• Molecule 10 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	L	153	Total 1247	C 793	N 234	0 214	S 6	0	0

• Molecule 11 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	Р	129	Total 1061	C 672	N 202	0 180	S 7	0	0

• Molecule 12 is a protein called 40S ribosomal protein S16.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	Q	144	Total 1142	C 726	N 216	0 197	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	R	135	Total 1090	$\begin{array}{c} \mathrm{C} \\ 685 \end{array}$	N 202	0 198	${ m S}{ m 5}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	S	145	Total 1198	C 751	N 242	O 203	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	Т	143	Total 1112	C 697	N 214	0 198	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	U	104	Total 821	C 514	N 155	0 148	${S \atop 4}$	0	0

• Molecule 17 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
17	V	83	Total 636	C 393	N 117	0 121	${f S}{5}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	Х	141	Total 1098	C 693	N 219	0 183	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	a	102	Total 821	C 512	N 171	0 133	${f S}{5}$	0	0

• Molecule 20 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	С	64	Total 506	C 308	N 102	0 94	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 21 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
21	d	55	Total 459	C 286	N 94	0 74	${ m S}{ m 5}$	0	0

• Molecule 22 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	AltConf	Trace			
22	g	313	Total 2436	C 1535	N 424	O 465	S 12	0	0

• Molecule 23 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
23	С	222	Total 1725	C 1115	N 298	O 302	S 10	0	0

• Molecule 24 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		Ate	AltConf	Trace			
24	G	237	Total 1923	C 1200	N 387	O 329	${ m S} 7$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	J	185	Total 1525	C 969	N 306	O 248	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	М	122	Total 942	C 590	N 165	0 179	S 8	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	52	GLN	LEU	conflict	UNP P25398
М	69	LEU	CYS	conflict	UNP P25398
М	99	ASN	LYS	conflict	UNP P25398

• Molecule 27 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	Ν	150	Total 1208	C 773	N 229	O 205	S 1	0	0

• Molecule 28 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	О	140	Total 1049	C 642	N 204	0 197	S 6	0	0

• Molecule 29 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	W	129	Total 1034	$\begin{array}{c} \mathrm{C} \\ 659 \end{array}$	N 193	0 176	S 6	0	0

• Molecule 30 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues	Atoms		AltConf	Trace			
30	Y	131	Total 1065	C 673	N 209	0 178	${ m S}{ m 5}$	0	0

• Molecule 31 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues	Atoms			AltConf	Trace		
31	Ζ	75	Total 598	C 382	N 111	O 104	S 1	0	0

• Molecule 32 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues	Atoms			AltConf	Trace		
32	b	83	Total 651	C 408	N 121	0 115	${ m S} 7$	0	0

• Molecule 33 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues	Atoms			AltConf	Trace		
33	е	42	Total 342	C 211	N 78	O 52	S 1	0	0

• Molecule 34 is a protein called Ubiquitin-40S ribosomal protein S27a.

Mol	Chain	Residues	Atoms			AltConf	Trace		
34	f	67	Total 548	C 346	N 102	O 93	S 7	0	0

• Molecule 35 is a RNA chain called E-site tRNA.

Mol	Chain	Residues	Atoms			AltConf	Trace		
35	х	75	Total 1589	C 710	N 279	O 525	Р 75	0	0

• Molecule 36 is a protein called Cell growth-regulating nucleolar protein.

Mol	Chain	Residues	Atoms		AltConf	Trace		
36	У	72	Total 603	C 395	N 105	O 103	0	0

• Molecule 37 is a protein called Endothelial differentiation-related factor 1.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
37	i	110	Total 865	C 530	N 169	O 166	0	0

• Molecule 38 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
38	2	28	TotalMg2828	0
38	G	1	Total Mg 1 1	0
38	О	1	Total Mg 1 1	0

• Molecule 39 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
39	a	1	Total Zn 1 1	0
39	d	1	Total Zn 1 1	0
39	f	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 18S rRNA

PROTEIN DATA BANK

• Molecule 13: 40S ribosomal protein S17

• Molecule 19: 40S ribosomal protein S26

Chain a:	6%98%	
12 141 A47 D60	R100 F101 F102	
• Molecule	e 20: 40S ribosomal protein S28	
Chain c:	12%	
R5 V6 Q7 D36 D37	◆ ◆ ◆ ◆	
• Molecule	e 21: 40S ribosomal protein S29	
Chain d:	96%	
G2 L6 F14 D56		
• Molecule	e 22: Receptor of activated protein C kinase 1	
Chain g:	35% 99%	
T2 E3 Q4 M5 L7 L7	R8 R27 F27 F27 F27 F28 F28 M47 F46 M47 F46 M47 F46 M47 F46 M51 F48 F48 F48 F48 F48 F48 F48 F48	D144 D144 E145 E145 S160 S161 N159 P162 P162 P163 L179 M128
N181 C182 K183 L184 K185 T186	N1.87 P202 P202 P203 C204 S205 C204 P213 P213 P213 P213 P225 P225 C214 P225 C214 P225 C214 P225 C214 P225 C214 P225 C224 C224 C224 C223 C224 C223 C224 C223 C224 C223 C223	2260 1.261 1.261 2.262 2.265 1.265 1.265 1.265 2.265 2.265 2.265 2.265 2.265 2.265 2.265 2.265 2.265 2.265 2.272 2.273 2.273 2.273 2.273
1275 \$276 \$277 \$278 \$279 \$279 \$279	A281 E282 A293 A295 C295 C295 C295 C295 C295 C295 C295 C	
• Molecule	e 23: 40S ribosomal protein S2	
Chain C:	100%	
E59 K76 S77 L78 A100	1271 H277 R279 V280	
• Molecule	e 24: 40S ribosomal protein S6	
Chain G:	19% 99%	
M1 E17 V18 D19 D20	R22 K23 L24 642 642 643 643 643 643 643 643 643 643 6449 6112 7122 7122 7122 7122 7122 7122 7122	R.2.24 Q.2.55 C.2.255 Q.2.256 Q.2.276 A.2.29 K.2.30 K.2.31 K.2.31 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.33 K.2.34 K.2.35 K.2.55

1237		
• Molecule 25: 40S rit	posomal protein S9	
Chain J:	98%	
2 666 667 1137 1137 1137 1137 1137 1137 1		
• Molecule 26: 40S rit	posomal protein S12	
	84%	
Chain M:	98%	
V11 M12 D13 V14 V14 V14 V14 A17 A17 A17 A17 C18 Q19 C18 Q19 C20 V21 K23	124 A25 127 H28 H28 G30 G30 G30 G30 A38 A38 A38 A38 A38 A38 A38 A41 A41 A47 A47	H48 L49 452 A53 A53 S54 A55 C56 M65 M65 M65 V62 M65 V65 C64 M67 L64 V65 E71 L68 C66 C66 C66 C66 C67 C67 C67 C67 C67 C67
L76 177 V79 V79 D80 D80 M82 K84 K84 K84 C86 C86 C86 C86	wee V89 490 491 191 592 893 895 895 895 895 895 8100 8100 8100 8100 8100 8100 8100 810	D113 4 Y114 6 G115 6 G115 6 E117 6 E117 6 Q119 6 Q119 6 C120 6 F124 6 E126 6 F124 6 F124 6 F124 6 F124 6 F126 6 F126 6 F128 6 F1
• Molecule 27: 40S rit	posomal protein S13	
Chain N:	99%	
G2 K27 B31 B31 B32 A151 A151		
• Molecule 28: 40S rik	posomal protein S14	
Chain O:	99%	
E12 q13 q13 115 115 L17 L17 A22 A22 A22 C24 C24 C24 C24	K143 R150 L151	
• Molecule 29: 40S rik	posomal protein S15a	
Chain W:	99%	.
V2 664		
• Molecule 30: 40S rib	posomal protein S24	
Chain Y:	98%	

N2 T4 R8 K466 K496	D53 D77 D80 K100 K101 K122 F131 F131 F131 K132 F131 K132		
• Molecule 31:	40S ribosomal protein S25		
Chain Z:	23%		
R41 ← D42 ← N45 ← N46 ← D51 ← K52 ←	D56 K57 K60 B64 K94 K1113 K1113 K1113 C115		
• Molecule 32:	40S ribosomal protein S27		
Chain b:	99%		
P2 K36 C37 P38 G39 C40 Y41 Y41			
• Molecule 33:	40S ribosomal protein S30		
Chain e:	100%		
V2 H3 G4 V43			
• Molecule 34:	Ubiquitin-40S ribosomal protein S27a		
Chain f:	54% 99%	·	
Y85 T166 P88 K89 K92 K92 H022	L100 L100 L100 L100 K104 V105 V106 K104 V108 K107 K111 K113 K113 K113 K113 K113 K113 K113 K113 K113 K113 K113 K113 K114 K113 K113 K114 K113 K114 K113 K114 K113 K114 K114 K113 K114 K114 K115 K114 K114 K115 K114 K115 K116 K117 K116 K117 K116 K117 K117 K117 K118 K	0127 A128 C129 C129 F136 C149 F150 F150	
• Molecule 35:	E-site tRNA		
Chain x:	35%	25% ·	
	G1/ G1/ C19 C19 C29 C23 A24 A24 C28 A24 C28 A24 C28 A24 C28 A24 C28 C28 C28 C28 C28 C28 C28 C28 C28 C28	U54 C55 C55 A57 A57 C58 C58 C58 C58 C51 C52 C53 C54 C55 C56 C51 C52 C53 C54 C55 C55	A75
• Molecule 36:	Cell growth-regulating nucleolar protein		
Chain y:	100%		
K308 ♦ K320 ♦ D324 ♦ N325 €	K379		

• Molecule 37: Endothelial differentiation-related factor 1

.

25% Chain i: 99%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	81976	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	28	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.332	Depositor
Minimum map value	-0.064	Depositor
Average map value	0.003	Depositor
Map value standard deviation	0.016	Depositor
Recommended contour level	0.06	Depositor
Map size (Å)	423.6, 423.6, 423.6	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.059, 1.059, 1.059	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain Bond lengths		Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	2	0.94	3/41241~(0.0%)	1.04	158/64258~(0.2%)
2	А	0.45	0/1778	0.62	1/2416~(0.0%)
3	В	0.43	0/1765	0.52	0/2362
4	D	0.43	0/1793	0.64	1/2414~(0.0%)
5	Ε	0.43	0/2118	0.59	1/2849~(0.0%)
6	F	0.43	0/1481	0.62	1/1988~(0.1%)
7	Н	0.38	0/1519	0.63	0/2033
8	Ι	0.44	0/1715	0.59	1/2287~(0.0%)
9	Κ	0.45	0/851	0.64	1/1147~(0.1%)
10	L	0.50	0/1268	0.60	0/1696
11	Р	0.43	0/1082	0.65	1/1446~(0.1%)
12	Q	0.44	0/1160	0.68	0/1553
13	R	0.39	0/1105	0.63	1/1484~(0.1%)
14	S	0.40	0/1216	0.65	2/1628~(0.1%)
15	Т	0.42	0/1131	0.64	1/1515~(0.1%)
16	U	0.39	0/831	0.66	1/1115~(0.1%)
17	V	0.45	0/643	0.64	0/860
18	Х	0.47	0/1116	0.61	0/1490
19	a	0.46	0/836	0.61	1/1121~(0.1%)
20	с	0.42	0/508	0.70	0/680
21	d	0.50	0/470	0.67	1/623~(0.2%)
22	g	0.37	0/2493	0.63	2/3394~(0.1%)
23	С	0.50	0/1762	0.62	0/2381
24	G	0.37	0/1946	0.58	1/2590~(0.0%)
25	J	0.43	0/1550	0.57	1/2069~(0.0%)
26	М	0.33	0/952	0.69	1/1279~(0.1%)
27	Ν	0.46	0/1232	0.54	0/1656
28	0	0.42	0/1062	0.63	0/1425
29	W	0.48	0/1051	0.60	1/1406~(0.1%)
30	Y	0.43	0/1083	0.57	0/1438
31	Ζ	0.34	0/604	0.59	0/810
32	b	0.40	0/665	0.58	0/891

Mal	Chain	Bo	nd lengths	Bond angles	
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	е	0.39	0/345	0.53	0/451
34	f	0.38	0/560	0.72	1/745~(0.1%)
35	Х	0.32	0/1773	0.96	6/2759~(0.2%)
36	У	0.33	0/613	0.52	0/819
37	i	0.32	0/872	0.55	1/1167~(0.1%)
All	All	0.72	3/84190~(0.0%)	0.87	186/122245~(0.2%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
3	В	0	1
4	D	0	1
6	F	0	1
7	Н	0	2
12	Q	0	1
13	R	0	1
15	Т	0	1
16	U	0	1
17	V	0	1
18	Х	0	3
24	G	0	1
25	J	0	1
28	0	0	1
29	W	0	1
30	Y	0	1
31	Ζ	0	1
32	b	0	1
All	All	0	20

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	2	1422	G	C6-N1	-6.96	1.34	1.39
1	2	1422	G	C6-O6	-5.24	1.19	1.24
1	2	1417	С	N3-C4	-5.09	1.30	1.33

The worst 5 of 186 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$\operatorname{Ideal}(^{o})$
1	2	1417	С	N3-C4-N4	-29.59	97.29	118.00
1	2	1422	G	N1-C6-O6	-28.04	103.08	119.90
1	2	1417	С	C5-C4-N4	23.82	136.87	120.20
1	2	1422	G	C5-C6-O6	22.55	142.13	128.60
1	2	501	С	N1-C2-O2	14.35	127.51	118.90

There are no chirality outliers.

5 of 20 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
3	В	221	PRO	Peptide
4	D	192	TRP	Peptide
6	F	78	MET	Peptide
7	Н	15	LYS	Peptide
7	Н	29	GLU	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	А	219/221~(99%)	206 (94%)	12 (6%)	1 (0%)	29	61
3	В	212/264~(80%)	205 (97%)	7 (3%)	0	100	100
4	D	225/227~(99%)	209 (93%)	16 (7%)	0	100	100
5	Е	260/262~(99%)	252 (97%)	7 (3%)	1 (0%)	34	66
6	F	180/189~(95%)	171 (95%)	9 (5%)	0	100	100
7	Н	182/189~(96%)	171 (94%)	11 (6%)	0	100	100
8	Ι	204/206~(99%)	199 (98%)	5 (2%)	0	100	100

Continued on next page...

$\alpha \rightarrow 1$	C		
Continued	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
9	Κ	96/98~(98%)	87~(91%)	9~(9%)	0	100	100
10	L	151/153~(99%)	145~(96%)	6~(4%)	0	100	100
11	Р	127/129~(98%)	122 (96%)	5(4%)	0	100	100
12	Q	142/144~(99%)	129 (91%)	12 (8%)	1 (1%)	22	54
13	R	133/135~(98%)	123 (92%)	10 (8%)	0	100	100
14	S	143/145~(99%)	137 (96%)	6 (4%)	0	100	100
15	Т	141/143~(99%)	135 (96%)	5 (4%)	1 (1%)	22	54
16	U	102/104~(98%)	95~(93%)	7 (7%)	0	100	100
17	V	81/83~(98%)	76 (94%)	5~(6%)	0	100	100
18	Х	139/141~(99%)	131 (94%)	7(5%)	1 (1%)	22	54
19	a	100/102~(98%)	94 (94%)	5 (5%)	1 (1%)	15	45
20	с	62/64~(97%)	54 (87%)	8 (13%)	0	100	100
21	d	53/55~(96%)	51 (96%)	1 (2%)	1 (2%)	8	28
22	g	311/313~(99%)	292 (94%)	19 (6%)	0	100	100
23	С	220/222 (99%)	209 (95%)	10 (4%)	1 (0%)	29	61
24	G	235/237~(99%)	227 (97%)	8 (3%)	0	100	100
25	J	183/185~(99%)	176 (96%)	6 (3%)	1 (0%)	29	61
26	М	120/122~(98%)	117 (98%)	3 (2%)	0	100	100
27	Ν	148/150~(99%)	148 (100%)	0	0	100	100
28	Ο	138/140 (99%)	129 (94%)	9~(6%)	0	100	100
29	W	127/129~(98%)	122 (96%)	5 (4%)	0	100	100
30	Y	129/131~(98%)	124 (96%)	5 (4%)	0	100	100
31	Z	73/75~(97%)	64 (88%)	9 (12%)	0	100	100
32	b	81/83~(98%)	75~(93%)	6 (7%)	0	100	100
33	е	40/42~(95%)	40 (100%)	0	0	100	100
34	f	65/67~(97%)	58 (89%)	7 (11%)	0	100	100
36	У	70/72~(97%)	68~(97%)	2(3%)	0	100	100
37	i	108/110 (98%)	106 (98%)	2(2%)	0	100	100
All	All	5000/5132~(97%)	4747 (95%)	244 (5%)	9 (0%)	50	78

 $5~{\rm of}~9$ Ramachandran outliers are listed below:

Mol	Chain	Res	Type
18	Х	127	ASN
23	С	78	LEU
15	Т	41	LYS
25	J	123	ILE
2	А	12	GLU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	А	183/183~(100%)	183 (100%)	0	100	100
3	В	195/231~(84%)	195 (100%)	0	100	100
4	D	190/190~(100%)	189 (100%)	1 (0%)	88	96
5	Е	224/224~(100%)	224 (100%)	0	100	100
6	F	156/159~(98%)	156 (100%)	0	100	100
7	Н	166/169~(98%)	165~(99%)	1 (1%)	86	96
8	Ι	178/178~(100%)	177 (99%)	1 (1%)	86	96
9	К	89/89~(100%)	89 (100%)	0	100	100
10	L	137/137~(100%)	136 (99%)	1 (1%)	84	95
11	Р	115/115~(100%)	114 (99%)	1 (1%)	78	93
12	Q	119/119~(100%)	118 (99%)	1 (1%)	81	94
13	R	122/122~(100%)	122 (100%)	0	100	100
14	S	126/126~(100%)	126 (100%)	0	100	100
15	Т	113/113~(100%)	112 (99%)	1 (1%)	78	93
16	U	94/94~(100%)	94 (100%)	0	100	100
17	V	67/67~(100%)	67~(100%)	0	100	100
18	X	113/113~(100%)	113 (100%)	0	100	100
19	a	89/89~(100%)	89 (100%)	0	100	100
20	с	57/57~(100%)	57 (100%)	0	100	100
21	d	48/48 (100%)	48 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
22	g	272/272~(100%)	271 (100%)	1 (0%)	91	97
23	С	188/188~(100%)	188 (100%)	0	100	100
24	G	207/207~(100%)	206 (100%)	1 (0%)	88	96
25	J	161/161~(100%)	161 (100%)	0	100	100
26	М	102/104 (98%)	101 (99%)	1 (1%)	76	92
27	Ν	130/130~(100%)	129 (99%)	1 (1%)	81	94
28	Ο	110/110 (100%)	109 (99%)	1 (1%)	78	93
29	W	112/112~(100%)	112 (100%)	0	100	100
30	Y	113/113 (100%)	111 (98%)	2 (2%)	59	85
31	Ζ	66/66~(100%)	65~(98%)	1 (2%)	65	87
32	b	75/75~(100%)	75 (100%)	0	100	100
33	е	34/34~(100%)	34 (100%)	0	100	100
34	f	60/60~(100%)	60 (100%)	0	100	100
36	У	68/68~(100%)	68 (100%)	0	100	100
37	i	92/92~(100%)	92 (100%)	0	100	100
All	All	4371/4415 (99%)	4356 (100%)	15 (0%)	92	98

Continued from previous page...

 $5~{\rm of}~15$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
22	g	225	LYS
30	Y	118	ARG
24	G	98	ARG
31	Ζ	41	ARG
28	0	150	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such side chains are listed below:

Mol	Chain	Res	Type
9	Κ	7	ASN
12	Q	97	GLN
16	U	100	GLN
26	М	52	GLN
36	у	321	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	2	1717/1740~(98%)	377 (21%)	11 (0%)
35	Х	74/75~(98%)	20 (27%)	0
All	All	1791/1815~(98%)	397 (22%)	11 (0%)

5 of 397 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	2	2	А
1	2	17	С
1	2	25	А
1	2	33	G
1	2	41	G

5 of 11 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	2	688	U
1	2	1265	А
1	2	1520	G
1	2	1434	С
1	2	552	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 33 ligands modelled in this entry, 33 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	2	4

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	2	753:C	O3'	785:C	Р	30.20
1	2	698:G	O3'	730:C	Р	15.36
1	2	739:C	O3'	746:C	Р	12.19
1	2	225:G	O3'	287:U	Р	7.08

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11456. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

Z Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 211

Z Index: 182

6.3.2 Raw map

X Index: 201

Y Index: 214

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.06. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{11456}msk_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1454 nm^3 ; this corresponds to an approximate mass of 1313 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.345 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.90	-	-
Author-provided FSC curve	2.86	3.23	2.92
Unmasked-calculated*	3.18	4.20	3.27

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11456 and PDB model 6ZVH. Per-residue inclusion information can be found in section 3 on page 11.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.06 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.06).

9.4 Atom inclusion (i)

At the recommended contour level, 85% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.06) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8040	0.5570
2	0.8950	0.5830
А	0.7610	0.5670
В	0.8160	0.5780
С	0.8520	0.5930
D	0.7360	0.5340
E	0.8420	0.5890
F	0.8050	0.5540
G	0.6620	0.5190
Н	0.5430	0.4920
Ι	0.8040	0.5590
J	0.8310	0.5740
K	0.7470	0.5410
L	0.8430	0.5890
М	0.1840	0.3390
N	0.8820	0.6000
0	0.8470	0.5700
Р	0.6870	0.5240
Q	0.7870	0.5680
R	0.6600	0.5180
S	0.7230	0.5280
Т	0.7380	0.5470
U	0.6550	0.5060
V	0.7600	0.5680
W	0.9250	0.6180
X	0.9250	0.6110
Y	0.7180	0.5360
Z	0.5820	0.4910
a	0.8720	0.5860
b	0.7110	0.5550
С	0.6960	0.5220
d	0.9390	0.6100
е	0.8140	0.5780
f	0.3410	0.4070
g	0.4880	0.4870

 $Continued \ on \ next \ page...$

Continued from previous page...

Chain	Atom inclusion	Q-score
i	0.5750	0.5310
X	0.4910	0.2680
у	0.7420	0.5410

