Feb 17, 2018 – 05:13 am GMT

PDB ID : 107D
Title : SOLUTION STRUCTURE OF THE COVALENT DUOCARMYCIN A-DNA DUPLEX COMPLEX
Authors : Lin, C.H.; Patel, D.J.
Deposited on : 1995-01-17

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- Cyrange : Kirchner and Güntert (2011)
- NmrClust : Kelley et al. (1996)
- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- RCI : v_1n_11_5_13_A (Berjanski et al., 2005)
- PANAV : Wang et al. (2010)
- ShiftChecker : trunk30686
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30686
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

SOLUTION NMR

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>NMR archive (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136279</td>
<td>12091</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>57% 43%</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>7</td>
<td>14% 43% 43%</td>
</tr>
</tbody>
</table>
2 Ensemble composition and analysis

This entry contains 4 models. This entry does not contain polypeptide chains, therefore identification of well-defined residues and clustering analysis are not possible. All residues are included in the validation scores.
3 Entry composition

There are 3 unique types of molecules in this entry. The entry contains 506 atoms, of which 188 are hydrogens and 0 are deuteriums.

- Molecule 1 is a DNA chain called DNA (5’-D(*CP*CP*TP*TP*TP*TP*C)-3’).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>Total C H N O P</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>217 67 83 17 44 6</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a DNA chain called DNA (5’-D(*GP*AP*AP*AP*AP*GP*G)-3’).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>7</td>
<td>Total C H N O P</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>226 70 79 35 36 6</td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is 4-HYDROXY-2,8-DIMETHYL-1-OXO-6-(4,5,6-TRIMETHOXY-1H-INDOLE-2-CARBONYL)-1,2,3,6,7,8-HEXAHYDRO-3,6-DIAZA-AS-INDACENE-2-CARBOXYLIC ACID METHYL ESTER (three-letter code: DUO) (formula: C26H27N3O8).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C H N O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63 26 26 3 8</td>
</tr>
</tbody>
</table>
4 Residue-property plots

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

- Molecule 1: DNA (5'-D(*CP*CP*TP*TP*TP*TP*C)-3')
 - Chain A:
 - Molecule 2: DNA (5'-D(*GP*AP*AP*AP*AP*GP*G)-3')
 - Chain B:

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

- Molecule 1: DNA (5'-D(*CP*CP*TP*TP*TP*TP*C)-3')
 - Chain A:
 - Molecule 2: DNA (5'-D(*GP*AP*AP*AP*AP*GP*G)-3')
 - Chain B:
4.2.2 Score per residue for model 2

- Molecule 1: DNA (5’-D(*CP*CP*TP*TP*TP*TP*C)-3’)
 Chain A: 57% 43%

- Molecule 2: DNA (5’-D(*GP*AP*AP*AP*AP*AP*GP*G)-3’)
 Chain B: 14% 43% 43%

4.2.3 Score per residue for model 3

- Molecule 1: DNA (5’-D(*CP*CP*TP*TP*TP*TP*C)-3’)
 Chain A: 57% 43%

- Molecule 2: DNA (5’-D(*GP*AP*AP*AP*AP*AP*GP*G)-3’)
 Chain B: 14% 71% 14%

4.2.4 Score per residue for model 4

- Molecule 1: DNA (5’-D(*CP*CP*TP*TP*TP*TP*C)-3’)
 Chain A: 43% 57%

- Molecule 2: DNA (5’-D(*GP*AP*AP*AP*AP*AP*GP*G)-3’)
 Chain B: 57% 43%
5 Refinement protocol and experimental data overview

The models were refined using the following method: *MOLECULAR DYNAMICS, MATRIX RELAXATION*.

Of the ? calculated structures, 4 were deposited, based on the following criterion: ?.

The following table shows the software used for structure solution, optimisation and refinement.

<table>
<thead>
<tr>
<th>Software name</th>
<th>Classification</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-PLOR</td>
<td>refinement</td>
<td></td>
</tr>
</tbody>
</table>

No chemical shift data was provided. No validations of the models with respect to experimental NMR restraints is performed at this time.
6 Model quality

6.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: DUO

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5 \) is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#Z>5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1.65±0.03</td>
<td>5±0/147 (3.4±0.0%)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1.38±0.04</td>
<td>1±0/167 (0.4±0.3%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1.51</td>
<td>23/1256 (1.8%)</td>
</tr>
</tbody>
</table>

All unique bond outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Worst</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>5</td>
<td>DT</td>
<td>C5-C7</td>
<td>7.97</td>
<td>1.54</td>
<td>1.50</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>DT</td>
<td>C5-C7</td>
<td>6.61</td>
<td>1.54</td>
<td>1.50</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>DT</td>
<td>C5-C7</td>
<td>6.11</td>
<td>1.53</td>
<td>1.50</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>6</td>
<td>DT</td>
<td>C5-C7</td>
<td>6.01</td>
<td>1.53</td>
<td>1.50</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>DC</td>
<td>N1-C6</td>
<td>5.85</td>
<td>1.40</td>
<td>1.37</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>12</td>
<td>DA</td>
<td>N3-C4</td>
<td>5.20</td>
<td>1.38</td>
<td>1.34</td>
<td>1</td>
</tr>
</tbody>
</table>

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Worst</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>DC</td>
<td>O4'-C1'-N1</td>
<td>14.63</td>
<td>118.25</td>
<td>108.00</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>9</td>
<td>DA</td>
<td>O4'-C1'-N9</td>
<td>9.33</td>
<td>114.53</td>
<td>108.00</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>10</td>
<td>DA</td>
<td>O4'-C1'-N9</td>
<td>9.29</td>
<td>114.50</td>
<td>108.00</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>12</td>
<td>DA</td>
<td>O4'-C1'-N9</td>
<td>9.19</td>
<td>114.43</td>
<td>108.00</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>14</td>
<td>DA</td>
<td>O4'-C1'-N9</td>
<td>8.93</td>
<td>114.25</td>
<td>108.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>12</td>
<td>DA</td>
<td>O4'-C1'-C2'</td>
<td>-8.04</td>
<td>99.47</td>
<td>105.90</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>DT</td>
<td>O4'-C1'-N1</td>
<td>7.72</td>
<td>113.40</td>
<td>108.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>13</td>
<td>DG</td>
<td>P-O3'-C3'</td>
<td>7.48</td>
<td>128.67</td>
<td>119.70</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>DC</td>
<td>N1-C2-O2</td>
<td>7.07</td>
<td>123.14</td>
<td>118.90</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>DC</td>
<td>O4'-C1'-C2'</td>
<td>-6.93</td>
<td>100.36</td>
<td>105.90</td>
<td>1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>8</td>
<td>DG</td>
<td>P-O3'-C3'</td>
<td>6.80</td>
<td>127.86</td>
<td>119.70</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>6</td>
<td>DT</td>
<td>C6-C5-C7</td>
<td>-6.60</td>
<td>118.94</td>
<td>122.90</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>DT</td>
<td>C6-C5-C7</td>
<td>-6.58</td>
<td>118.95</td>
<td>122.90</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>DT</td>
<td>P-O3'-C3'</td>
<td>6.58</td>
<td>127.59</td>
<td>119.70</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>9</td>
<td>DA</td>
<td>P-O3'-C3'</td>
<td>6.49</td>
<td>127.49</td>
<td>119.70</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>DC</td>
<td>N1-C2-O2</td>
<td>6.38</td>
<td>122.73</td>
<td>118.90</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>5</td>
<td>DT</td>
<td>C6-C5-C7</td>
<td>-6.31</td>
<td>119.11</td>
<td>122.90</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>DC</td>
<td>O4'-C4'-C3'</td>
<td>6.28</td>
<td>109.77</td>
<td>106.00</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>DT</td>
<td>C6-C5-C7</td>
<td>-6.10</td>
<td>119.24</td>
<td>122.90</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>DT</td>
<td>N3-C2-O2</td>
<td>-6.09</td>
<td>118.65</td>
<td>122.30</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>DT</td>
<td>N3-C2-O2</td>
<td>-5.86</td>
<td>118.78</td>
<td>122.30</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>12</td>
<td>DA</td>
<td>C4'-C3'-C2'</td>
<td>-5.80</td>
<td>97.88</td>
<td>103.10</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>6</td>
<td>DT</td>
<td>C1'-O4'-C4'</td>
<td>-5.49</td>
<td>104.61</td>
<td>110.10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>DC</td>
<td>O4'-C1'-C2'</td>
<td>-5.33</td>
<td>101.64</td>
<td>105.90</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>DC</td>
<td>C1'-O4'-C4'</td>
<td>-5.28</td>
<td>104.83</td>
<td>110.10</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>DC</td>
<td>N1-C2-O2</td>
<td>5.25</td>
<td>122.05</td>
<td>118.90</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>5</td>
<td>DT</td>
<td>O4'-C4'-C3'</td>
<td>5.18</td>
<td>109.11</td>
<td>106.00</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>DC</td>
<td>N3-C2-O2</td>
<td>-5.04</td>
<td>118.37</td>
<td>121.90</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>DC</td>
<td>N3-C2-O2</td>
<td>-5.02</td>
<td>118.39</td>
<td>121.90</td>
<td>4</td>
</tr>
</tbody>
</table>

There are no chirality outliers.
There are no planarity outliers.

6.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>134</td>
<td>83</td>
<td>83</td>
<td>3±1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>147</td>
<td>79</td>
<td>79</td>
<td>4±0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>37</td>
<td>26</td>
<td>26</td>
<td>1±0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1272</td>
<td>752</td>
<td>752</td>
<td>30</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 15.

All unique clashes are listed below, sorted by their clash magnitude.
6.3 Torsion angles

6.3.1 Protein backbone

There are no protein molecules in this entry.

6.3.2 Protein sidechains

There are no protein molecules in this entry.

6.3.3 RNA

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates

There are no carbohydrates in this entry.
6.6 Ligand geometry

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Counts</th>
<th>Bond lengths</th>
<th>#Z>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DUO</td>
<td>B</td>
<td>15</td>
<td>-</td>
<td>38,41,41</td>
<td>1.76±0.03</td>
<td>1±0 (2±0%)</td>
</tr>
</tbody>
</table>

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Counts</th>
<th>Bond angles</th>
<th>#Z>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DUO</td>
<td>B</td>
<td>15</td>
<td>-</td>
<td>37,64,64</td>
<td>3.25±0.14</td>
<td>4±1 (10±1%)</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DUO</td>
<td>B</td>
<td>15</td>
<td>-</td>
<td>0±0,18,49,49</td>
<td>0±0,5,5,5</td>
<td></td>
</tr>
</tbody>
</table>

All unique bond outliers are listed below.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>15</td>
<td>DUO</td>
<td>C14-N13</td>
<td>6.05</td>
<td>1.46</td>
<td>1.36</td>
<td>1</td>
</tr>
</tbody>
</table>

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.
There are no chirality outliers.
There are no torsion outliers.
There are no ring outliers.

6.7 Other polymers

There are no such molecules in this entry.

6.8 Polymer linkage issues

There are no chain breaks in this entry.
7 Chemical shift validation

No chemical shift data were provided